1
|
Sproull M, Camphausen K. Partial-body Models of Radiation Exposure. Radiat Res 2025; 203:129-141. [PMID: 39923796 PMCID: PMC11973700 DOI: 10.1667/rade-24-00189.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 01/29/2025] [Indexed: 02/11/2025]
Abstract
The events of 9/11 sparked a revitalization of civil defense in the U.S. for emergency planning and preparedness for future radiological or nuclear event scenarios and specifically for mass casualty medical management of radiation exposure and injury. Research in medical countermeasure development in the form of novel pharmaceuticals to treat radiation injury and new radiation biodosimetry diagnostics, primarily focused on development of research models of uniform total-body irradiation (TBI). With the success of those models, it was recognized that most radiation exposures in the field will involve non-uniform heterogeneous irradiations and many partial-body or organ-specific irradiation models have been utilized. This review examines partial-body models of irradiations developed in the last decade for heterogeneous radiation exposures and organ-specific radiation exposure patterns. These research models have been used to further our understanding of radiation injury, novel medical countermeasures and biodosimetry diagnostics in development for future radiological and nuclear event scenarios.
Collapse
Affiliation(s)
- M. Sproull
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| | - K. Camphausen
- Radiation Oncology Branch, National Cancer Institute, Bethesda, Maryland
| |
Collapse
|
2
|
Mzizi Y, Mbambara S, Moetlhoa B, Mahapane J, Mdanda S, Sathekge M, Kgatle M. Ionising radiation exposure-induced regulation of selected biomarkers and their impact in cancer and treatment. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2024; 4:1469897. [PMID: 39498386 PMCID: PMC11532091 DOI: 10.3389/fnume.2024.1469897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024]
Abstract
Ionising radiation (IR) is a form of energy that travels as electromagnetic waves or particles. While it is vital in medical and occupational health settings, IR can also damage DNA, leading to mutations, chromosomal aberrations, and transcriptional changes that disrupt the functions of certain cell regulators, genes, and transcription factors. These disruptions can alter functions critical for cancer development, progression, and treatment response. Additionally, IR can affect various cellular proteins and their regulators within different cell signalling pathways, resulting in physiological changes that may promote cancer development, progression, and resistance to treatment. Understanding these impacts is crucial for developing strategies to mitigate the harmful effects of IR exposure and improve cancer treatment outcomes. This review focuses on specific genes and protein biomarkers regulated in response to chronic IR exposure, and how their regulation impacts disease onset, progression, and treatment response.
Collapse
Affiliation(s)
- Yonwaba Mzizi
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Saidon Mbambara
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Biomedical Sciences, Tropical Diseases Research Centre, Ndola, Zambia
| | - Boitumelo Moetlhoa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- School of Health Systems and Public Health, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Johncy Mahapane
- Department of Radiography, University of Pretoria, Pretoria, South Africa
| | - Sipho Mdanda
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mike Sathekge
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
| | - Mankgopo Kgatle
- Department of Nuclear Medicine, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa
- Basic and Translational Research, Nuclear Medicine Research Infrastructure (NuMeRI), Steve Biko Academic Hospital, Pretoria, South Africa
- Department of Medicine, University of Cape Town and Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
3
|
van der Sar IG, Wijsenbeek MS, Dumoulin DW, Jager A, van der Veldt AAM, Rossius MJP, Dingemans AMC, Moor CC. Detection of Drug-induced Interstitial Lung Disease Caused by Cancer Treatment Using Electronic Nose Exhaled Breath Analysis. Ann Am Thorac Soc 2024; 21:989-992. [PMID: 38526585 DOI: 10.1513/annalsats.202401-112rl] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024] Open
Affiliation(s)
| | | | | | - Agnes Jager
- Erasmus University Medical Center Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
4
|
Lai Y, Li Y, Gao L. Serum amyloid A protein in cancer prognosis: a meta-analysis and systematic review. Transl Cancer Res 2022; 10:2255-2264. [PMID: 35116543 PMCID: PMC8798074 DOI: 10.21037/tcr-20-3417] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/05/2021] [Indexed: 12/11/2022]
Abstract
Background Published studies showed divergent results of the prognostic value of serum amyloid A protein (SAA) in patients with different cancers. Therefore, we conducted this meta-analysis so as to assess the association between SAA and cancer prognosis. Methods A comprehensive search was conducted to identify the literatures working over SAA and survival in patients with cancers published until January 2020. Sufficient data for assessing overall survival in cancers were extracted descriptively and quantitatively from the studies and a pooled odds ratio was calculated using the Mantel-Haenszel fixed-effect or random-effect model. Results Ten eligible papers were identified by two reviewers independently, including 4 studies that evaluated renal cell carcinoma (RCC), 2 studies evaluated lung cancer and the other 3 studies evaluated melanoma, gastric cancer and different cancers. Elevated SAA expression and shorter overall survival (OS) had a statistically significant relation [pooled 1-year OR was 5.07, 95% confidence interval (CI), 3.71–6.94, Q=9.15, I2=0%; pooled 3-year OR was 4.21, 95% CI, 3.18–5.56, Q=14.94, I2=46%; pooled 5-year OR was 5.69, 95% CI, 2.66–12.18, Q=24.83, I2=80%]. Subgroup analysis of RCC patients showed remarkable association between SAA and shorter OS (pooled 1-year OR =4.76, 95% CI, 3.00–7.56, Q=4.18, I2=4%; pooled 3-year OR =4.89, 95% CI, 3.06–7.81, Q=2.88, I2=0%). Conclusions High SAA status is correlated with an unfavorable OS in different cancers, especially in RCC, and digestive cancer.
Collapse
Affiliation(s)
- Yucheng Lai
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuting Li
- The Search Lab of 3D Bioprinting (The State Key Laboratory of Fluid Power and Mechatronic System and the Oxford Centre for Tissue Engineering and Bioprocessing), College of Mechanical Engineering, Zhejiang University, Hangzhou, China
| | - Leilei Gao
- Department of Gynecology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
5
|
Teng F, Li M, Yu J. Radiation recall pneumonitis induced by PD-1/PD-L1 blockades: mechanisms and therapeutic implications. BMC Med 2020; 18:275. [PMID: 32943072 PMCID: PMC7499987 DOI: 10.1186/s12916-020-01718-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The synergistic effect of radiotherapy (RT) in combination with immunotherapy has been shown in several clinical trials and case reports. The overlapping pulmonary toxicity induced by thoracic RT and programmed death 1/programmed death ligand-1 (PD-1/PD-L1) blockades is an important issue of clinical investigation in combination treatment. Thus far, the underlying mechanism of this toxicity remains largely unknown. MAIN TEXT In this review, we discuss the unique pattern of radiation recall pneumonitis (RRP) induced by PD-1 blockade. The clinical presentation is different from common radiation pneumonitis (RP) or RRP induced by cytotoxic drugs. The immune checkpoint inhibitors may evoke an inflammatory reaction in patients' previously irradiated fields, with infiltrating lymphocytes and potential involvement of related cytokines. All RRP patients have showed durable response to anti-PD-1/PD-L1. RRP is manageable; however, interruption of checkpoint blockades is necessary and immunosuppressive treatment should be started immediately. Further analyses of the predictive factors, including RT dosimetric parameters, tumor-infiltrating lymphocytes (TILs), and PD-L1 expression, are needed given the wide use of immune checkpoint inhibitors and high mortality from lung toxicity with the combination treatment. CONCLUSION Immune checkpoint inhibitors may evoke an RRP in the patients' previously irradiated fields. Interactions between immune checkpoint inhibitors and radiotherapy should be studied further.
Collapse
Affiliation(s)
- Feifei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, China
| | - Min Li
- Department of Surgery, Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, China.
| |
Collapse
|
6
|
Vietri L, Fui A, Bergantini L, d'Alessandro M, Cameli P, Sestini P, Rottoli P, Bargagli E. Serum amyloid A: A potential biomarker of lung disorders. Respir Investig 2019; 58:21-27. [PMID: 31708467 DOI: 10.1016/j.resinv.2019.09.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/29/2019] [Accepted: 09/20/2019] [Indexed: 12/27/2022]
Abstract
Serum amyloid A is an acute-phase protein with multiple immunological functions. Serum amyloid A is involved in lipid metabolism, inflammatory reactions, granuloma formation, and cancerogenesis. Additionally, serum amyloid A is involved in the pathogenesis of different autoimmune lung diseases. The levels of serum amyloid A has been evaluated in biological fluids of patients with different lung diseases, including autoimmune disorders, chronic obstructive pulmonary diseases, obstructive sleep apnea syndrome, sarcoidosis, asthma, lung cancer, and other lung disorders, such as idiopathic pulmonary fibrosis, tuberculosis, radiation pneumonitis, and cystic fibrosis. This review focuses on the cellular and molecular interactions of serum amyloid A in different lung diseases and suggests this acute-phase protein as a prognostic marker.
Collapse
Affiliation(s)
- Lucia Vietri
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy.
| | - Annalisa Fui
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy.
| | - Laura Bergantini
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy.
| | - Miriana d'Alessandro
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy.
| | - Paolo Cameli
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy.
| | - Piersante Sestini
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy.
| | - Paola Rottoli
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy.
| | - Elena Bargagli
- Department of Medical and Surgical Sciences and Neurosciences, Respiratory Disease and Lung Transplant Unit, Siena University, Siena, Italy.
| |
Collapse
|
7
|
Rodríguez-Tomàs E, Murcia M, Arenas M, Arguís M, Gil M, Amigó N, Correig X, Torres L, Sabater S, Baiges-Gayà G, Cabré N, Luciano-Mateo F, Hernández-Aguilera A, Fort-Gallifa I, Camps J, Joven J. Serum Paraoxonase-1-Related Variables and Lipoprotein Profile in Patients with Lung or Head and Neck Cancer: Effect of Radiotherapy. Antioxidants (Basel) 2019; 8:antiox8070213. [PMID: 31295833 PMCID: PMC6680864 DOI: 10.3390/antiox8070213] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/26/2019] [Accepted: 07/05/2019] [Indexed: 12/20/2022] Open
Abstract
We investigated alterations in the levels of the antioxidant paraoxonase-1 (PON1) and the lipoprotein profile (analyzed by nuclear magnetic resonance) in patients with lung cancer (LC) or head and neck cancer (HNC), and the effects produced thereon by radiotherapy (RT). We included 33 patients with LC and 28 patients with HNC. Before irradiation, and one month after completion of RT, blood samples were obtained. The control group was composed of 50 healthy subjects. Patients had significantly lower serum PON1 activity and concentration before RT than the control group. PON1-related variables were good predictors of the presence of LC or HNC, with analytical sensitivities and specificities greater than 80%. Patients showed a significant increase in the number of particles of all subclasses of very-low-density lipoproteins (large, medium and small). However, these changes were not maintained when adjusted for age, sex, and other clinical and demographic variables. Irradiation was associated with a significant increase in PON1 concentration and, only in patients with HNC, with an increase in high-density lipoprotein-cholesterol concentration. Our results suggest that determinations of the levels of PON1-related variables may constitute good biomarkers for the evaluation of these diseases. Studies with a larger number of patients are needed to fully confirm this hypothesis.
Collapse
Affiliation(s)
- Elisabet Rodríguez-Tomàs
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca Biomèdica, 43201 Reus, Spain
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili, 43201 Reus, Spain
| | - Mauricio Murcia
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Meritxell Arenas
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain.
| | - Mònica Arguís
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain
| | | | | | - Xavier Correig
- Metabolomics Platform, CIBERDEM, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Laura Torres
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Sebastià Sabater
- Department of Radiation Oncology, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, 43201 Reus, Spain
| | - Gerard Baiges-Gayà
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca Biomèdica, 43201 Reus, Spain
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili, 43201 Reus, Spain
| | - Noemí Cabré
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca Biomèdica, 43201 Reus, Spain
| | - Fedra Luciano-Mateo
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca Biomèdica, 43201 Reus, Spain
| | - Anna Hernández-Aguilera
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili, 43201 Reus, Spain
| | - Isabel Fort-Gallifa
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili, 43201 Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili, 43201 Reus, Spain.
| | - Jorge Joven
- Universitat Rovira i Virgili, Departament de Medicina i Cirurgia, Unitat de Recerca Biomèdica, 43201 Reus, Spain
- Unitat de Recerca Biomèdica, Hospital Universitari Sant Joan de Reus, Institut d'Investigació Sanitària Pere Virgili, 43201 Reus, Spain
| |
Collapse
|
8
|
Zhao J, Li X, Zhao X, Wang J, Xi Q, Hu G. Study on the correlation of serum amyloid A level with overall survival and radiation pneumonitis in non-small cell lung cancer patients receiving thoracic radiotherapy. PRECISION RADIATION ONCOLOGY 2017. [DOI: 10.1002/pro6.20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Jing Zhao
- Department of Oncology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Xiaoyu Li
- Department of Oncology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Xueqi Zhao
- Department of Oncology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Jianhua Wang
- Department of Oncology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Qingsong Xi
- Department of Oncology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| | - Guangyuan Hu
- Department of Oncology; Tongji Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan Hubei China
| |
Collapse
|
9
|
Kainthola A, Haritwal T, Tiwari M, Gupta N, Parvez S, Tiwari M, Prakash H, Agrawala PK. Immunological Aspect of Radiation-Induced Pneumonitis, Current Treatment Strategies, and Future Prospects. Front Immunol 2017; 8:506. [PMID: 28512460 PMCID: PMC5411429 DOI: 10.3389/fimmu.2017.00506] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 04/12/2017] [Indexed: 12/21/2022] Open
Abstract
Delivery of high doses of radiation to thoracic region, particularly with non-small cell lung cancer patients, becomes difficult due to subsequent complications arising in the lungs of the patient. Radiation-induced pneumonitis is an early event evident in most radiation exposed patients observed within 2-4 months of treatment and leading to fibrosis later. Several cytokines and inflammatory molecules interplay in the vicinity of the tissue developing radiation injury leading to pneumonitis and fibrosis. While certain cytokines may be exploited as biomarkers, they also appear to be a potent target of intervention at transcriptional level. Initiation and progression of pneumonitis and fibrosis thus are dynamic processes arising after few months to year after irradiation of the lung tissue. Currently, available treatment strategies are challenged by the major dose limiting complications that curtails success of the treatment as well as well being of the patient's future life. Several approaches have been in practice while many other are still being explored to overcome such complications. The current review gives a brief account of the immunological aspects, existing management practices, and suggests possible futuristic approaches.
Collapse
Affiliation(s)
- Anup Kainthola
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Teena Haritwal
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Mrinialini Tiwari
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Noopur Gupta
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard University, New Delhi, India
| | - Manisha Tiwari
- Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Hrideysh Prakash
- School of Life Sciences, Science complex, University of Hyderabad, Hyderabad, India
| | - Paban K. Agrawala
- Department of Radiation Genetics and Epigenetics, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
10
|
Fu ZZ, Peng Y, Cao LY, Chen YS, Li K, Fu BH. Correlations Between Serum IL-6 Levels and Radiation Pneumonitis in Lung Cancer Patients: A Meta-Analysis. J Clin Lab Anal 2014; 30:145-54. [PMID: 25545734 DOI: 10.1002/jcla.21828] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 10/30/2014] [Indexed: 12/20/2022] Open
Abstract
OBJECTIVE Diagnostic significance of interleukin 6 (IL-6) for lung cancer patients with radiation pneumonitis (RP) was examined within various studies, but yielded conflicting results. Thus, this meta-analysis was performed to demonstrate correlations between serum IL-6 levels and RP in lung cancer patients. METHOD Electronic databases updated to March 2014 were searched to find relevant studies. Relevant literatures were searched under the PubMed, Embase, Web of Science, Cochrane Library, CISCOM, CINAHL, Google Scholar, CBM and CNKI databases. STATA statistical software (Version 12.0, Stata Corporation, and College Station, TX) Standardized mean difference (SMD), and its corresponding 95% confidence intervals (CIs) were used for this meta-analysis. In addition, nine cohort studies met the inclusion criteria and involved a total of 137 RP patients and 295 non-RP patients. RESULTS The results of combined SMD suggested that serum IL-6 levels in RP patients was significantly higher than in non-RP patients before radiotherapy. While, there was a significant difference in serum IL-6 levels of RP patients between before and after radiotherapy, we observed no difference in serum IL-6 levels between RP patients and non-RP patients after radiotherapy. Ethnicity-stratified analyses indicated that increased serum IL-6 levels were related to the risk of RP in lung cancer patients among Caucasians, but not detected among Asians (all P > 0.05). CONCLUSION The main finding of our meta-analysis reveals that increased serum IL-6 levels may contribute to the incidence of RP in lung cancer patients, especially among Caucasians.
Collapse
Affiliation(s)
- Zhan-Zhao Fu
- Department of Oncology, The First Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Yong Peng
- Department of Bioengineering, Yanshan University, Qinhuangdao, P.R. China
| | - Li-Yan Cao
- Department of Oncology, The First Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Yan-Sheng Chen
- MRI Room, The First Hospital of Qinhuangdao, Qinhuangdao, P.R. China
| | - Kun Li
- Department of Chemical Engineering, Yanshan University, Qinhuangdao, P.R. China
| | - Bao-Hong Fu
- Department of Chemical Engineering, Yanshan University, Qinhuangdao, P.R. China
| |
Collapse
|
11
|
Ko HL, Wang YS, Fong WL, Chi MS, Chi KH, Kao SJ. Apolipoprotein C1 (APOC1) as a novel diagnostic and prognostic biomarker for lung cancer: A marker phase I trial. Thorac Cancer 2014; 5:500-8. [PMID: 26767044 DOI: 10.1111/1759-7714.12117] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/22/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Tumor cells continuously evolve over time in response to host pressures. However, explanations as to how tumor cells are influenced by the inflammatory tumor microenvironment over time are, to date, poorly defined. We hypothesized that prognostic biomarkers could be obtained by exploring the expression of inflammation-associated genes between early and late stage lung cancer tumor samples. METHODS Candidate inflammation-associated genes, apolipoprotein C-1 (APOC1), MMP1, KMO)1, CXCL5, CXCL)7, IL-1α, IL-1β, TNF-α and IL-6 were verified by real-time quantitative polymerase chain reaction. Gene expression profiles and immunofluorescence staining of 30 lung cancer tissues were compared. RESULTS Expressions of APOC1 and IL-6 mRNA on tumor tissues in late stage disease were significantly higher than in early stage lung cancer samples. Immunofluorescence staining of tumor samples showed that the expression of APOC1 gradually increased from early to late stage in lung cancer patients. The expression levels of IL-6 and APOC1 in tumor samples were positively correlated; however, no prognostic value of APOC1 can be identified in serum samples. CONCLUSIONS We found that the level of tumor APOC1 was highly expressed in late stage lung cancer. Further research is warranted to determine the molecular mechanisms underlying the cross talk of APOC1 and IL-6 in tumor progression. An expanded sample size marker phase II study may lead to the discovery of new lung cancer therapeutics targeting APOC1.
Collapse
Affiliation(s)
- Hui-Ling Ko
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital Taipei, Taiwan
| | - Yu-Shan Wang
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital Taipei, Taiwan
| | - Weng-Lam Fong
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital Taipei, Taiwan
| | - Mau-Shin Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital Taipei, Taiwan
| | - Kwan-Hwa Chi
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital Taipei, Taiwan
| | - Shang-Jyh Kao
- Division of Chest Medicine, Shin Kong Wu Ho-Su Memorial Hospital Taipei, Taiwan
| |
Collapse
|