1
|
Talebi F, Gregucci F, Ahmed J, Ben Chetrit N, D. Brown B, Chan TA, Chand D, Constanzo J, Demaria S, I. Gabrilovich D, Golden E, Godkin A, Guha C, P. Gupta G, Hasan A, G. Herrera F, Kaufman H, Li D, A. Melcher A, McDonald S, Merghoub T, Monjazeb AM, Paris S, Pitroda S, Sadanandam A, Schaue D, Santambrogio L, Szapary P, Sage J, W. Welsh J, Wilkins A, H. Young K, Wennerberg E, Zitvogel L, Galluzzi L, Deutsch E, C. Formenti S. Updates on radiotherapy-immunotherapy combinations: Proceedings of 8th Annual ImmunoRad Conference. Oncoimmunology 2025; 14:2507856. [PMID: 40401900 PMCID: PMC12101595 DOI: 10.1080/2162402x.2025.2507856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
The annual ImmunoRad Conference has established itself as a recurrent occasion to explore the possibility of combining radiation therapy (RT) and immunotherapy (IT) for clinical cancer management. Bringing together a number of preclinical and clinical leaders in the fields of radiation oncology, immuno-oncology and IT, this annual event fosters indeed essential conversations and fruitful exchanges on how to address existing challenges to expand the therapeutic value of RT-IT combinations. The 8th edition of the ImmunoRad Conference, which has been held in October 2024 at the Weill Cornell Medical College of New York City, highlighted exciting preclinical and clinical advances at the interface between RT and IT, setting the stage for extra progress toward extended benefits for patients with an increasing variety of tumor types. Here, we critically summarize the lines of investigation that have been discussed at the occasion of the 8th Annual ImmunoRad Conference.
Collapse
Affiliation(s)
- Fereshteh Talebi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jalal Ahmed
- Icahn Genomics Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nir Ben Chetrit
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Brian D. Brown
- Icahn Genomics Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy A. Chan
- Department of Cancer Sciences, Global Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Case Western University School of Medicine, Cleveland, OH, USA
| | | | - Julie Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Godkin
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Chandan Guha
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - Gaorav P. Gupta
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Fernanda G. Herrera
- AGORA Cancer Research Center, Swiss Cancer Center Leman, Lausanne, Switzerland
- Services of Radiation Oncology and Immuno-Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Oncology, Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Donna Li
- University of Wisconsin, Madison, WI, USA
| | - Alan A. Melcher
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Sierra McDonald
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center and Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California, San Diego, CA, USA
| | | | - Sean Pitroda
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Julien Sage
- Departments of Genetics and Pediatrics, Stanford University, Stanford, California
| | - James W. Welsh
- Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Kristina H. Young
- Division of Radiation Oncology, The Oregon Clinic, Portland, OR, USA
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Eric Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Laurence Zitvogel
- Gustave Roussy, INSERM U1015, Division of Medicine, Paris-Saclay University, Center of Clinical Investigations BIOTHERIS, Villejuif, France
| | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, INSERM U1030, Division of Medicine, Paris-Saclay University, RHU LySAIRI “Lymphocyte-Sparing Artificial Intelligence-guided Radio-Immunotherapy”, Villejuif, France
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
2
|
Pei D, Ma Z, Qiu Y, Wang M, Wang Z, Liu X, Zhang L, Zhang Z, Li R, Yan D. MRI-based machine learning reveals proteasome subunit PSMB8-mediated malignant glioma phenotypes through activating TGFBR1/2-SMAD2/3 axis. MOLECULAR BIOMEDICINE 2025; 6:28. [PMID: 40335825 PMCID: PMC12058589 DOI: 10.1186/s43556-025-00268-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 04/15/2025] [Accepted: 04/18/2025] [Indexed: 05/09/2025] Open
Abstract
Gliomas are the most prevalent and aggressive neoplasms of the central nervous system, representing a major challenge for effective treatment and patient prognosis. This study identifies the proteasome subunit beta type-8 (PSMB8/LMP7) as a promising prognostic biomarker for glioma. Using a multiparametric radiomic model derived from preoperative magnetic resonance imaging (MRI), we accurately predicted PSMB8 expression levels. Notably, radiomic prediction of poor prognosis was highly consistent with elevated PSMB8 expression. Our findings demonstrate that PSMB8 depletion not only suppressed glioma cell proliferation and migration but also induced apoptosis via activation of the transforming growth factor beta (TGF-β) signaling pathway. This was supported by downregulation of key receptors (TGFBR1 and TGFBR2). Furthermore, interference with PSMB8 expression impaired phosphorylation and nuclear translocation of SMAD2/3, critical mediators of TGF-β signaling. Consequently, these molecular alterations resulted in reduced tumor progression and enhanced sensitivity to temozolomide (TMZ), a standard chemotherapeutic agent. Overall, our findings highlight PSMB8's pivotal role in glioma pathophysiology and its potential as a prognostic marker. This study also demonstrates the clinical utility of MRI radiomics for preoperative risk stratification and pre-diagnosis. Targeted inhibition of PSMB8 may represent a therapeutic strategy to overcome TMZ resistance and improve glioma patient outcomes.
Collapse
Affiliation(s)
- Dongling Pei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zeyu Ma
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Yuning Qiu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Minkai Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Zilong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Ran Li
- School of Medicine, Hangzhou City University, Hangzhou, 310015, Zhejiang, China.
| | - Dongming Yan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
3
|
Luo Y, Ye Y, Saibaidoula Y, Zhang Y, Chen Y. Multifaceted investigations of PSMB8 provides insights into prognostic prediction and immunological target in thyroid carcinoma. PLoS One 2025; 20:e0323013. [PMID: 40334200 PMCID: PMC12058196 DOI: 10.1371/journal.pone.0323013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 04/01/2025] [Indexed: 05/09/2025] Open
Abstract
The Proteasome 20S subunit beta 8 (PSMB8) is an integral element of the immunoproteasome complex, playing a pivotal role in antigen processing. Despite its significance, the contributory role of PSMB8 in oncogenesis, particularly in thyroid carcinoma (THCA), has not been well-characterized. To address this gap in knowledge, our study endeavored to delineate the potential associations between PSMB8 and THCA. Transcriptomic profiles and clinical data of patients with THCA were retrieved from The Cancer Genome Atlas (TCGA) database to facilitate comprehensive analysis. Complementary resources from additional online databases were utilized to augment the study. Logistic regression analysis was employed to elucidate the relationship between PSMB8 and various clinicopathological parameters. Uni/multivariate Cox regression analyses were conducted to ascertain the independent prognostic factors for THCA patient outcomes. Quantitative polymerase chain reaction (qPCR) and western blot assays were employed to verify the expression level of PSMB8 in vitro. Our study demonstrated that PSMB8 was significantly upregulated in THCA, with its overexpression correlating with lymph node metastasis, extrathyroidal extension, and favorable prognosis. Immunohistochemistry substantiated a higher PSMB8 protein presence in THCA tissue compared to the normal, supporting its potential role as a moderately accurate diagnostic biomarker. Logistic regression analysis identified PSMB8 as a significant indicator of the N1 stage, classical histological subtype, and extrathyroidal extension. Age, T stage, and PSMB8 were further determined as independent prognostic factors for THCA. Functional investigations linked PSMB8 to immune processes, evidenced by its association with increased immune cell infiltration and higher stromal/immune scores, as well as a positive co-expression with several immune checkpoints. A constructed predicted competing endogenous RNA (ceRNA) network implicated PSMB8 in complex post-transcriptional regulation. Finally, in vitro assays confirmed the upregulation of PSMB8, underscoring its relevance in THCA and as a target for future research. Our work has preliminarily appraised PSMB8 as a biomarker with certain prognostic and diagnostic significance, and as a potential target for immunotherapy in THCA.
Collapse
Affiliation(s)
- Yulou Luo
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yinghui Ye
- Department of Laboratory Medicine, Xinhua Hospital, Shenzhen, Guangdong Province, China
| | - Yilina Saibaidoula
- Department of Breast Surgery, Affiliated Tumor Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
| | - Yuting Zhang
- Department of Breast Surgery, The First Affiliated Hospital, Jinan University, Guangzhou, Guangdong Province, China
| | - Yan Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Urumqi, Xinjiang Uygur Autonomous Region, China
| |
Collapse
|
4
|
Lu R, Abuduhailili X, Li Y, Wang S, Xia X, Feng Y. Integrated Analysis of PSMB8 Expression and Its Potential Roles in Hepatocellular Carcinoma. Dig Dis Sci 2025:10.1007/s10620-025-09040-9. [PMID: 40261568 DOI: 10.1007/s10620-025-09040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) represents a highly aggressive malignancy with significant global health implications. The proteasome subunit beta type-8 (PSMB8) gene, known for its association with hepatitis B virus susceptibility, has emerged as a potential regulator of tumor progression. However, its functional role and clinical significance in HCC remain poorly characterized. METHODS We conducted a comprehensive multi-omics analysis to elucidate the role of PSMB8 in HCC. PSMB8 expression profiles were derived from The Cancer Genome Atlas and validated using the GSE76427 dataset. Prognostic significance was assessed through Kaplan-Meier survival analysis. Then, we systematically evaluated the relationships between PSMB8 expression and clinicopathological features, somatic mutations, immune cell infiltration, immune regulatory genes, and immune checkpoint responses. Single-cell RNA sequencing data from the Tumor Immune Single-cell Hub database were analyzed to determine cell type-specific PSMB8 expression. Tissue-level validation was performed using multiplex immunofluorescence staining on HCC tissue microarrays. RESULTS PSMB8 demonstrated significant overexpression in HCC tissues and exhibited strong prognostic value. Single-cell analysis revealed predominant PSMB8 expression in T and B cell populations. Notably, PSMB8 expression showed significant positive correlations with immune checkpoint molecules PD-L1/CD274 and CD27. Functional enrichment analysis implicated PSMB8 in multiple oncogenic pathways, particularly proteasome-related processes. CONCLUSION Our findings position PSMB8 as a promising prognostic biomarker and potential therapeutic target in HCC. The observed associations with immune checkpoint molecules and proteasomal pathways suggest its potential role in modulating tumor immunity and protein homeostasis, warranting further investigation into its mechanistic contributions to HCC progression.
Collapse
Affiliation(s)
- Ruijiao Lu
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Xieyidai Abuduhailili
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Yuxia Li
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, China
| | - Senyu Wang
- Good Clinical Research Practice, The First Huizhou Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Xigang Xia
- Department of Hepatobiliary Pancreatic Surgery, The First Huizhou Affiliated Hospital of Guangdong Medical University, Guangdong, China
| | - Yangchun Feng
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, Urumqi, China.
- Department of Medical Laboratory Center, The First Huizhou Affiliated Hospital of Guangdong Medical University, Guangdong, China.
| |
Collapse
|
5
|
Guan B, Xu M, Zheng R, Guan G, Xu B. Novel biomarkers to predict treatment response and prognosis in locally advanced rectal cancer undergoing neoadjuvant chemoradiotherapy. BMC Cancer 2023; 23:1099. [PMID: 37953237 PMCID: PMC10642053 DOI: 10.1186/s12885-023-11354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 08/30/2023] [Indexed: 11/14/2023] Open
Abstract
PURPOSE To identify genes associated with treatment response and prognosis for locally advanced rectal cancer (LARC) patients receiving neoadjuvant chemoradiotherapy (NCRT). METHODS In our cohort, gene expression profiles of 64 tumor biopsy samples before NCRT were examined and generated. Weighted gene co-expression network analysis was performed to identify gene modules. External validation datasets included GSE3493, GSE119409, and GSE133057. The expression of candidate genes was evaluated using immunohistochemistry (IHC). TIMER was used to assess immune infiltration. RESULTS We identified and validated the capability to predict the treatment response of CCT5 and ELF1 using our data and external validation datasets. The trends of survival differences of candidate genes in the GSE133057 dataset were similar to our cohort. High levels of CCT5 and ELF1 expression were associated with NCRT resistance and poor prognosis. Furthermore, the expression of CCT5 and ELF1 were also assessed in 117 LARC patients' samples by the IHC method. Based on IHC results and Cox analysis, the risk score model with CCT5 and ELF1 was constructed and performed well. The risk score was an independent prognostic factor for progression-free survival and overall survival in LARC patients and was then used to build nomogram models. The underlying mechanisms of CCT5 and ELF1 were explored using gene set enrichment analysis. The underlying pathway including apoptosis, cell cycle, and other processes. CCT5 and ELF1 expressions were significantly correlated with immune cell infiltration. CONCLUSION CCT5 and ELF1 were determined as biomarkers for treatment response and prognosis in LARC patients. The risk score model and nomograms helped predict treatment response and survival outcomes for LARC patients undergoing NCRT.
Collapse
Affiliation(s)
- Bingjie Guan
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China
- Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Meifang Xu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rong Zheng
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, China.
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, China.
| | - Guoxian Guan
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China.
| | - Benhua Xu
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, China.
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for Tumors, Fujian Medical University, Fuzhou, China.
- Clinical Research Center for Radiology and Radiotherapy of Fujian Province (Digestive, Hematological and Breast Malignancies), Fuzhou, China.
| |
Collapse
|
6
|
Lee MH, Ratanachan D, Wang Z, Hack J, Abdulrahman L, Shamlin NP, Kalayjian M, Nesseler JP, Ganapathy E, Nguyen C, Ratikan JA, Cacalano NA, Austin D, Damoiseaux R, DiPardo B, Graham DS, Kalbasi A, Sayer JW, McBride WH, Schaue D. Adaptation of the Tumor Antigen Presentation Machinery to Ionizing Radiation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:693-705. [PMID: 37395687 PMCID: PMC10435044 DOI: 10.4049/jimmunol.2100793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/18/2022] [Indexed: 07/04/2023]
Abstract
Ionizing radiation (IR) can reprogram proteasome structure and function in cells and tissues. In this article, we show that IR can promote immunoproteasome synthesis with important implications for Ag processing and presentation and tumor immunity. Irradiation of a murine fibrosarcoma (FSA) induced dose-dependent de novo biosynthesis of the immunoproteasome subunits LMP7, LMP2, and Mecl-1, in concert with other changes in the Ag-presentation machinery (APM) essential for CD8+ T cell-mediated immunity, including enhanced expression of MHC class I (MHC-I), β2-microglobulin, transporters associated with Ag processing molecules, and their key transcriptional activator NOD-like receptor family CARD domain containing 5. In contrast, in another less immunogenic, murine fibrosarcoma (NFSA), LMP7 transcripts and expression of components of the immunoproteasome and the APM were muted after IR, which affected MHC-I expression and CD8+ T lymphocyte infiltration into NFSA tumors in vivo. Introduction of LMP7 into NFSA largely corrected these deficiencies, enhancing MHC-I expression and in vivo tumor immunogenicity. The immune adaptation in response to IR mirrored many aspects of the response to IFN-γ in coordinating the transcriptional MHC-I program, albeit with notable differences. Further investigations showed divergent upstream pathways in that, unlike IFN-γ, IR failed to activate STAT-1 in either FSA or NFSA cells while heavily relying on NF-κB activation. The IR-induced shift toward immunoproteasome production within a tumor indicates that proteasomal reprogramming is part of an integrated and dynamic tumor-host response that is specific to the stressor and the tumor and therefore is of clinical relevance for radiation oncology.
Collapse
Affiliation(s)
- Mi-Heon Lee
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Duang Ratanachan
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Zitian Wang
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jacob Hack
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Lobna Abdulrahman
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicholas P. Shamlin
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Mirna Kalayjian
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Jean Philippe Nesseler
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Ekambaram Ganapathy
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Christine Nguyen
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Josephine A. Ratikan
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Nicolas A. Cacalano
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - David Austin
- Department of Molecular and Medical Pharmacology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Robert Damoiseaux
- Department of Molecular and Medical Pharmacology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Bioengineering, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of CNSI, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Benjamin DiPardo
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Danielle S. Graham
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Surgery, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - James W. Sayer
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- School of Public Health, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - William H. McBride
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| | - Dörthe Schaue
- Department of Radiation Oncology, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Jonsson Comprehensive Cancer Center, Biostatistics and Radiology at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
7
|
Elhawary NA, Ekram SN, Abumansour IS, Azher ZA, AlJahdali IA, Alyamani NM, Naffadi HM, Sindi IA, Baazeem A, Nassir AM, Mufti AH. Sequence Variants in PSMB8/PSMB9 Immunoproteasome Genes and Risk of Urothelial Bladder Carcinoma. Cureus 2023; 15:e36293. [PMID: 36937130 PMCID: PMC10022703 DOI: 10.7759/cureus.36293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 03/19/2023] Open
Abstract
BACKGROUND The PSMB8 and PSMB9 immunoproteasome genes are essential in cell processes, such as decisions on cell survival or death, the cell cycle, and cellular differentiation. Because recent evidence has demonstrated an immunological role for proteasomes in various malignancies, including urothelial bladder carcinoma (UBC), we evaluated single nucleotide polymorphisms (SNPs) in PSMB9 and PSMB8. We determined any associations between these SNPs and susceptibility to UBC in the Saudi community. METHODS Samples of genomic DNA were taken from buccal cells of 111 patients with UBC and 78 healthy controls. TaqMan Real-Time PCR was used to determine genotype distributions and allele frequencies for the PSMB9 rs17587 G>A and PSMB8 rs2071543 G>T SNPs. We used SNPStats (https://www.snpstats.net) to choose each SNP's best interactive inheritance model. RESULTS The PSMB9 rs17587 SNP was associated with the risk of UBC (odds ratio [OR] = 5.21, P < 0.0001). In contrast, the PSMB8 rs2071543 SNP showed no association with UBC risk (OR = 1.13, P = 0.7871). In terms of genotypic distribution, the rs17587 G>A SNP was more frequent in UBC cases than controls in both the dominant (OR = 7.5; 95% confidence interval, 3.7-15.1; P = 0.0051) and recessive (OR = 17.11, 95% confidence interval 5.1-57.4; P = 0.0026) models. Genotypic distribution of the PSMB8 rs2071543 G>T SNP was not significantly different between cases and controls in any interactive inheritance models (P > 0.05). CONCLUSION These results suggest a potential role for PSMB9 as a biomarker for increased UBC risk. Discovering more genetic variants within immunoproteasome genes related to antigen presentation could help further our understanding of this risk.
Collapse
Affiliation(s)
| | - Samar N Ekram
- Medical Genetics, Umm Al-Qura University, Mecca, SAU
| | | | - Zohor A Azher
- Medical Genetics, Umm Al-Qura University, Mecca, SAU
| | | | | | | | | | | | | | - Ahmad H Mufti
- Medical Genetics, Umm Al-Qura University, Mecca, SAU
| |
Collapse
|
8
|
Huang L, Shi Y, Zhao YJ, Wang L, Hu WG, Zhu ZG, Zhang J. Long-Term Cardiac Disease- and Cancer-Associated Mortalities in Patients With Non-Metastatic Stomach Adenocarcinoma Receiving Resection and Chemotherapy: A Large Competing-Risk Population-Based Cohort Study. World J Oncol 2022; 13:69-83. [PMID: 35571338 PMCID: PMC9076150 DOI: 10.14740/wjon1445] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 02/21/2022] [Indexed: 12/03/2022] Open
Abstract
Background The survival of patients with non-metastatic gastric adenocarcinoma (nmGaC), who are receiving more and more frequently chemotherapy, has improved throughout the last decades, while treatment-caused cardiotoxicity remains a major concern. This study aimed to investigate competing causes of mortality and prognostic factors within a large cohort of patients with resected nmGaC, and to describe the heart-specific mortalities of patients undergoing resection and chemotherapy and of all resected patients. Methods In this population-based cohort study, data on patients diagnosed with nmGaC from 2004 through 2016, managed with resection with or without chemotherapy, followed up until the end of 2016, and surviving ≥ 1 month were retrieved from the US Surveillance, Epidemiology, and End Results-18 Program. Cumulative mortality functions were calculated. Prognostic factors for heart- and cancer-specific mortalities were evaluated using both multivariable-adjusted Fine-Gray subdistribution and cause-specific hazard functions. Results Together 21,257 patients with resected nmGaC were eligible for analysis with an accumulated follow-up of 73,711 person-years, where 10,718 (50%) also underwent chemotherapy. Mortalities were overestimated when using the Kaplan-Meier method. Heart diseases were the most common non-cancer cause of mortality. Compared with all resected patients, heart-specific mortality of those also receiving chemotherapy was lower overall and especially at older ages. In the total group of patients, the 8-year cumulative mortalities from heart diseases were 4.4% and 2.0% in resected patients and those also receiving chemotherapy, respectively; in patients ≥ 80 years, the heart disease-specific mortalities were as high as 11.1% and 6.5%, respectively. In overall patients undergoing resection, older ages, black ethnicity, and location at gastric antrum/pylorus were associated with increased heart-specific mortality, while more recent period, female sex, Asian/Pacific Islanders, invasion of serosa, and more positive lymph nodes were associated with lower heart-specific mortality; among those further receiving chemotherapy, only the associations with period of diagnosis, age, and ethnicity were significant. Associations with older ages were stronger for heart-specific mortality than for cancer-associated mortality. Conclusions Among survivors with resected nmGaC receiving chemotherapy, heart-specific mortality, the most common one among non-cancer causes of mortality, is not higher compared to overall resected patients in this observational study, suggesting that chemotherapy may be relatively safely administered to selected patients under strict indications. Age and ethnicity were major factors associated with heart-specific mortality in both overall resected patients and those further receiving chemotherapy. Overall and stratified cause-specific cumulative incidences of mortality are provided, which can be more clinically useful than the Kaplan-Meier estimates. Our study provides clinically useful evidence for tailored patient management.
Collapse
Affiliation(s)
- Lei Huang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), Heidelberg 69120, Germany
- These authors contributed equally to this work
| | - Yan Shi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- These authors contributed equally to this work
| | - Ya Jie Zhao
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Wang
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Guo Hu
- Medical Center on Aging of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zheng Gang Zhu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200025, China
| |
Collapse
|
9
|
Yeermaike A, Gu P, Liu D, Nadire T. LncRNA NEAT1 sponges miR-214 to promoted tumor growth in hepatocellular carcinoma. Mamm Genome 2022; 33:525-533. [PMID: 35357550 DOI: 10.1007/s00335-022-09952-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 03/13/2022] [Indexed: 12/24/2022]
Abstract
Live cancer is the sixth most prevalent diagnosed malignant tumor and the fourth leading cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is the main histological type of liver cancer. Here, we attempt to evaluate the role of long non coding RNA NEAT1 in HCC, and explore its potential mechanism in this disease. Initially, we detected the expression of NEAT1 in HCC cell lines (SMMC-7721 and Huh7 cells) using qRT-PCR. Then we transfected si-NC or si-NEAT1 into SMMC-7721 and Huh7 cells by RNA interference. CCK-8 assay, transwell assay, flow cytometry, qRT-PCR and western blotting were used to evaluate the role of NEAT1 in the biological behavior of SMMC-7721 and Huh7 cells. The rescue experiment, RIP assay and MeRIP were devoted to the underlying mechanism. NEAT1 expression level was significantly elevated in SMMC-7721 and Huh7 cells. Knockdown of NEAT1 inhibited proliferation and migration, induced apoptosis of HCC cell lines. NEAT1 serves as a sponge for miR-214. Besides, PSMB8 was a direct target of miR-214. Furthermore, ALKBH5 could up-regulate NEAT1 expression by inhibiting m6A enrichment. ALKBH5-induced NEAT1 promoted cell proliferation and migration of HCC by sponging miR-214 in vitro, which may provide a potential therapeutic target for HCC.
Collapse
Affiliation(s)
- Ahati Yeermaike
- Intervention Department, Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
| | - Peng Gu
- Intervention Department, Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
| | - Dengyao Liu
- Intervention Department, Affiliated Tumor Hospital of Xinjiang Medical University, Xinjiang Uygur Autonomous Region, Urumqi, 830000, China
| | - Tieliewuhan Nadire
- Ultrasonic Department, Affiliated Tumor Hospital of Xinjiang Medical University, The First Affiliated Hospital of Xinjiang Medical University, No.137, Liyushan South Road, Xincheng District, Xinjiang Uygur Autonomous Region, Urumqi, 830054, China.
| |
Collapse
|
10
|
Zhang Y, Guan B, WU Y, Du F, Zhuang J, Yang Y, Guan G, Liu X. LncRNAs Associated with Chemoradiotherapy Response and Prognosis in Locally Advanced Rectal Cancer. J Inflamm Res 2021; 14:6275-6292. [PMID: 34866926 PMCID: PMC8636753 DOI: 10.2147/jir.s334096] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/05/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There are only limited studies on the long non-coding RNAs (lncRNAs) associated with neoadjuvant chemoradiotherapy (NCRT) response and prognosis of locally advanced rectal cancer (LARC) patients. This study identified lncRNAs associated with NCRT response and prognosis in CRC patients and explored their potential predictive mechanisms. METHODS The study subjected the LncRNA expression profiles from our previous gene chip data to LASSO and identified a four-lncRNA signature that predicted NCRT response and prognosis. A Cox regression model was subsequently performed to identify the prognostic risk factors. The function of LINC00909, the lncRNA with the most powerful predictive ability, was finally identified in vivo and in vitro using CRC cell lines. RESULTS A comparison of the relative lncRNA expression of NCRT-responsive and non-responsive patients revealed four hub lncRNAs: DBET, LINC00909, FLJ33534, and HSD52 with AUC = 0.68, 0.73, 0.73, and 0.70, respectively (all p < 0.05). COX regression analysis further demonstrated that DBET, LINC00909 and FLJ33534 were associated with the DFS in CRC patients. The expression of the four lncRNAs was also significant in LARC patients who had not undergone NCRT (all p < 0.05). A risk score model was subsequently constructed based on the results of the multivariate COX analysis and used to predict NCRT response and prognosis in the CRC and LARC patients. The expression and prognosis of DBET, LINC00909 and FLJ33534 in the CRC tissues were further validated in the R2 platform and Oncomine database. Notably, overexpression of the LINC00909 increased the cell line resistance to the 5-FU and radiotherapy in vivo and in vitro. CONCLUSION DBET, LINC00909, and FLJ33534 are potential novel biomarkers for predicting NCRT response and prognosis in CRC patients. In particular, LINC00909 is an effective oncogene in CRC that could be used as a novel therapeutic target to enhance NCRT response.
Collapse
Affiliation(s)
- Yiyi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Bingjie Guan
- Department of Radiation Oncology, Fujian Medical University Union Hospital, Fuzhou, People’s Republic of China
| | - Yong WU
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Fan Du
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, People’s Republic of China
| | - Jinfu Zhuang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Yuanfeng Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Guoxian Guan
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| | - Xing Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People’s Republic of China
| |
Collapse
|
11
|
Pan-cancer analysis of the prognostic and immunological role of PSMB8. Sci Rep 2021; 11:20492. [PMID: 34650125 PMCID: PMC8516870 DOI: 10.1038/s41598-021-99724-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022] Open
Abstract
Recently some evidence has demonstrated the significance of PSMB8 in various malignancies. Nevertheless, PSMB8 (proteasome subunit beta 8), more familiar in the field of immunology contributing to the process of antigen presentation, is indeterminate in the role as a survival predictor of human pan-cancer. Besides, how PSMB8 interacts with immune cell infiltration in the tumor microenvironment requires further research. We then penetrated into the analysis of the PSMB8 expression profile among 33 types of cancer in the TCGA database. The results show that overexpression of PSMB8 was associated with poor clinical outcomes in overall survival (Sartorius et al. in Oncogene 35(22):2881–2892, 2016), disease-specific survival (DSS), disease-free interval (DFI), and progression-free interval (PFI) in most cancer varieties. In addition, there existed distinctly positive correlations between PSMB8 and immunity, reflected straightforwardly in the form of immune scores, tumor-infiltrating immune cells (TIICs) abundance, microsatellite instability, tumor mutation burden, and neoantigen level. Notably, specific markers of dendrite cells exhibited the tightest association with PSMB8 expression in terms of tumor-related immune infiltration patterns. Moreover, gene enrichment analysis showed that elevated PSMB8 expression was related to multiple immune-related pathways. We finally validated the PSMB8 expression in our local breast samples via quantitative PCR assays and concluded that PSMB8 appeared to perform well in predicting the survival outcome of BRCA patients. These findings elucidate the pivotal role of the antigen presentation-related gene PSMB8, which could potentially serve as a robust biomarker for prognosis determination in multiple cancers.
Collapse
|
12
|
Multiomics Differences in Lung Squamous Cell Carcinoma Patients with High Radiosensitivity Index Compared with Those with Low Radiosensitivity Index. DISEASE MARKERS 2021; 2021:3766659. [PMID: 34504628 PMCID: PMC8423540 DOI: 10.1155/2021/3766659] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022]
Abstract
Objectives Radiosensitivity Index (RSI) can predict intrinsic radiotherapy sensitivity. We analyzed multiomics characteristics in lung squamous cell carcinoma between high and low RSI groups, which may help understand the underlying molecular mechanism of radiosensitivity and guide optional treatment for patients in the future. Methods The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data were used to download clinical data, mRNA, microRNA, and lncRNA expression. Differential analyses, including mRNA, miRNA, lncRNA, and G.O. and KEGG, and GSVA analyses, were performed with R. Gene set enrichment analysis was done by GSEA. miRNA-differentially expressed gene network and ceRNA network were analyzed and graphed by the Cytoscape software. Results In TCGA data, 542 patients were obtained, including 171 in the low RSI group (LRSI) and 371 in the high RSI group (HRSI). In RNAseq, 558 significantly differentially expressed genes (DEGs) were obtained. KRT6A was the most significantly upregulated gene and IDO1 was the most significantly downregulated gene. In miRNAseq, miR-1269a was the most significantly upregulated. In lncRNAseq, LINC01871 was the most upregulated. A 66-pair interaction between differentially expressed genes and miRNAs and an 11-pair interaction between differential lncRNAs and miRNAs consisted of a ceRNA network, of which miR-184 and miR-490-3p were located in the center. In the GEO data, there were 40 DEGs. A total of 17 genes were founded in both databases, such as ADAM23, AHNAK2, BST2, COL11A1, CXCL13, FBN2, IFI27, IFI44L, MAGEA6, and PTGR1. GSVA analysis revealed 31 significant pathways. GSEA found 87 gene sets enriched in HRSI and 91 gene sets in LRSI. G.O. and KEGG of RNA expression levels revealed that these genes were most enriched in T cell activation and cytokine-cytokine receptor interaction. Conclusions Patients with lung squamous cell carcinoma have different multiomics characteristics between two groups. These differences may have an essential significance with radiotherapy effect.
Collapse
|
13
|
Zhang Y, Gao Q, Wu Y, Peng Y, Zhuang J, Yang Y, Jiang W, Liu X, Guan G. Hypermethylation and Downregulation of UTP6 Are Associated With Stemness Properties, Chemoradiotherapy Resistance, and Prognosis in Rectal Cancer: A Co-expression Network Analysis. Front Cell Dev Biol 2021; 9:607782. [PMID: 34485268 PMCID: PMC8416280 DOI: 10.3389/fcell.2021.607782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 07/12/2021] [Indexed: 12/28/2022] Open
Abstract
Background To identify the hub genes associated with chemoradiotherapy resistance in rectal cancer and explore the potential mechanism. Methods Weighted gene co-expression network analysis (WGCNA) was performed to identify the gene modules correlated with the chemoradiotherapy resistance of rectal cancer. Results The mRNA expression of 31 rectal cancer patients receiving preoperative chemoradiotherapy was described in our previous study. Through WGCNA, we demonstrated that the chemoradiotherapy resistance modules were enriched for translation, DNA replication, and the androgen receptor signaling pathway. Additionally, we identified and validated UTP6 as a new effective predictor for chemoradiotherapy sensitivity and a prognostic factor for the survival of colorectal cancer patients using our data and the GSE35452 dataset. Low UTP6 expression was correlated with significantly worse disease-free survival (DFS), overall survival (OS), and event- and relapse-free survival both in our data and the R2 Platform. Moreover, we verified the UTP6 expression in 125 locally advanced rectal cancer (LARC) patients samples by immunohistochemical analysis. The results demonstrated that low UTP6 expression was associated with worse DFS and OS by Kaplan-Meier and COX regression model analyses. Gene set enrichment and co-expression analyses showed that the mechanism of the UTP6-mediated chemoradiotherapy resistance may involve the regulation of FOXK2 expression by transcription factor pathways. Conclusion Low expression of the UTP6 was found to be associated with chemoradiotherapy resistance and the prognosis of colorectal cancer possibly via regulating FOXK2 expression by transcription factor pathways.
Collapse
Affiliation(s)
- Yiyi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Qiao Gao
- Fujian Maternity and Child Health Hospital, Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yong Wu
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yong Peng
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Jinfu Zhuang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yuanfeng Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Weizhong Jiang
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xing Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guoxian Guan
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| |
Collapse
|
14
|
Wei FZ, Mei SW, Wang ZJ, Chen JN, Shen HY, Zhao FQ, Li J, Xiao TX, Liu Q. Development and Validation of a Nomogram and a Comprehensive Prognostic Analysis of an LncRNA-Associated Competitive Endogenous RNA Network Based on Immune-Related Genes for Locally Advanced Rectal Cancer With Neoadjuvant Therapy. Front Oncol 2021; 11:697948. [PMID: 34350117 PMCID: PMC8327778 DOI: 10.3389/fonc.2021.697948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/21/2021] [Indexed: 11/24/2022] Open
Abstract
Colorectal cancer (CRC) is a common digestive tract tumor worldwide. In recent years, neoadjuvant chemoradiotherapy (CRT) has been the most comprehensive treatment for locally advanced rectal cancer (LARC). In this study, we explored immune infiltration in rectal cancer (RC) and identified immune-related differentially expressed genes (IRDEGs). Then, we identified response markers in datasets in GEO databases by principal component analysis (PCA). We also utilized three GEO datasets to identify the up- and downregulated response-related genes simultaneously and then identified genes shared between the PCA markers and three GEO datasets. Based on the hub IRDEGs, we identified target mRNAs and constructed a ceRNA network. Based on the ceRNA network, we explored prognostic biomarkers to develop a prognostic model for RC through Cox regression. We utilized the specimen to validate the expression of the two biomarkers. We also utilized LASSO regression to screen hub IRDEGs and built a nomogram to predict the response of LARC patients to CRT. All of the results show that the nomogram and prognostic model offer good prognostic value and that the ceRNA network can effectively highlight the regulatory relationship. hsa-mir-107 and WDFY3-AS2 may be prognostic biomarkers for RC.
Collapse
Affiliation(s)
- Fang-Ze Wei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shi-Wen Mei
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi-Jie Wang
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jia-Nan Chen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hai-Yu Shen
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Fu-Qiang Zhao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Juan- Li
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ti-Xian Xiao
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Liu
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Liu X, Zheng S, Peng Y, Zhuang J, Yang Y, Xu Y, Guan G. Construction of the Prediction Model for Locally Advanced Rectal Cancer Following Neoadjuvant Chemoradiotherapy Based on Pretreatment Tumor-Infiltrating Macrophage-Associated Biomarkers. Onco Targets Ther 2021; 14:2599-2610. [PMID: 33880038 PMCID: PMC8053511 DOI: 10.2147/ott.s297263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/06/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose To assess the value of macrophage-related biomarkers (CD163, CD68, MCSF, and CCL2) for predicting the response to neo-chemoradiotherapy (NCRT) and the prognosis of locally advanced rectal cancer (LARC). Methods We enrolled 191 patients who underwent neoadjuvant chemoradiotherapy and radical resection between 2011 and 2015. Tumor tissues were collected before NCRT with a colonoscope and post-surgery and were subjected to immunohistochemical analysis. Results The expression levels of macrophage-related biomarkers (CD163, CD68, MCSF, and CCL2) were lower in the pathological complete response (pCR) group when compared with the non-pCR group (all P<0.05). Based on X-tile plots, we divided the tumors in two groups and found that lower pre-NCRT/post-surgical CD163, CD68, MCSF, CCL2 scores correlated with improved DFS. Cox regression analysis demonstrated that pre-NCRT CD163 (HR=1.008, 95% CI 1.003-1.013, P=0.003) and MCSF (HR=2.187, 95% CI 1.343-3.564, P=0.002) scores were independent predictors of DFS. Based on Cox multivariate analysis, we constructed a risk score model with a powerful ability to predict pCR in LARC patients. Moreover, COX regression analysis was performed to explore the role of the risk score in LARC patients. The results demonstrated that tumor size (HR=1.291, P=0.041), worse pathological TNM stage (HR=1.789, P=0.005, and higher risk score (HR=1.084, P<0.001) were significantly associated with impaired disease-free survival. Based on the above results, a nomogram and decision curve analysis were generated. Conclusion The expression levels of macrophage-related biomarkers CD163, CD68, MCSF, and CCL2 were associated with chemoradiotherapy resistance and prognosis in LARC patients following NCRT. A risk score model was constructed which could be used to predict LARC outcome.
Collapse
Affiliation(s)
- Xing Liu
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Shuping Zheng
- Public Technology Service Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Yong Peng
- Department of General Surgery, Nanjing BenQ Medical Center, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jinfu Zhuang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Yuanfeng Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Yunlu Xu
- Public Technology Service Center, Fujian Medical University, Fuzhou, People's Republic of China
| | - Guoxian Guan
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| |
Collapse
|
16
|
Erokhov PA, Kulikov AM, Karpova YD, Rodoman GV, Sumedi IR, Goncharov AL, Razbirin DV, Gorelova VS, Sharova NP, Astakhova TM. Proteasomes in Patient Rectal Cancer and Different Intestine Locations: Where Does Proteasome Pool Change? Cancers (Basel) 2021; 13:1108. [PMID: 33807574 PMCID: PMC7961961 DOI: 10.3390/cancers13051108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/01/2021] [Indexed: 01/12/2023] Open
Abstract
A special problem in the surgery of rectal cancer is connected with a need for appropriate removal of intestine parts, along with the tumor, including the fragment close to the sphincter. To determine the length of fragments to remove, it is necessary to reveal areas without changes in molecule functioning, specific for tumor. The purpose of the present study was to investigate functioning the proteasomes, the main actors in protein hydrolysis, in patient rectal adenocarcinoma and different intestine locations. Chymotrypsin-like and caspase-like activities, open to complex influence of different factors, were analyzed in 43-54 samples by Suc-LLVY-AMC- and Z-LLE-AMC-hydrolysis correspondingly. Both activities may be arranged by the decrease in the location row: cancer→adjacent tissue→proximal (8-20 cm from tumor) and distal (2 and 4 cm from tumor) sides. These activities did not differ noticeably in proximal and distal locations. Similar patterns were detected for the activities and expression of immune subunits LMP2 and LMP7 and expression of 19S and PA28αβ activators. The largest changes in tumor were related to proteasome subtype containing LMP2 and PA28αβ that was demonstrated by native electrophoresis. Thus, the results indicate a significance of subtype LMP2-PA28αβ for tumor and absence of changes in proteasome pool in distal fragments of 2-4 cm from tumor.
Collapse
Affiliation(s)
- Pavel A. Erokhov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (P.A.E.); (A.M.K.); (Y.D.K.); (V.S.G.); (T.M.A.)
| | - Alexey M. Kulikov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (P.A.E.); (A.M.K.); (Y.D.K.); (V.S.G.); (T.M.A.)
| | - Yaroslava D. Karpova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (P.A.E.); (A.M.K.); (Y.D.K.); (V.S.G.); (T.M.A.)
| | - Grigory V. Rodoman
- Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation, 1 Ostrovityanov Street, 117997 Moscow, Russia; (G.V.R.); (I.R.S.); (A.L.G.); (D.V.R.)
| | - Ilia R. Sumedi
- Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation, 1 Ostrovityanov Street, 117997 Moscow, Russia; (G.V.R.); (I.R.S.); (A.L.G.); (D.V.R.)
| | - Artem L. Goncharov
- Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation, 1 Ostrovityanov Street, 117997 Moscow, Russia; (G.V.R.); (I.R.S.); (A.L.G.); (D.V.R.)
| | - Dmitry V. Razbirin
- Pirogov Russian National Research Medical University of Ministry of Health of Russian Federation, 1 Ostrovityanov Street, 117997 Moscow, Russia; (G.V.R.); (I.R.S.); (A.L.G.); (D.V.R.)
| | - Vera S. Gorelova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (P.A.E.); (A.M.K.); (Y.D.K.); (V.S.G.); (T.M.A.)
| | - Natalia P. Sharova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (P.A.E.); (A.M.K.); (Y.D.K.); (V.S.G.); (T.M.A.)
| | - Tatiana M. Astakhova
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia; (P.A.E.); (A.M.K.); (Y.D.K.); (V.S.G.); (T.M.A.)
| |
Collapse
|
17
|
He L, Chang H, Qi Y, Zhang B, Shao Q. ceRNA Networks: The Backbone Role in Neoadjuvant Chemoradiotherapy Resistance/Sensitivity of Locally Advanced Rectal Cancer. Technol Cancer Res Treat 2021; 20:15330338211062313. [PMID: 34908512 PMCID: PMC8689620 DOI: 10.1177/15330338211062313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Approximately 40% of rectal cancers during initial diagnosis are identified as locally advanced rectal cancers (LARCs), for which the standardized treatment scenario is total mesorectal excision following neoadjuvant chemoradiotherapy (nCRT). nCRT can lead to discernible reductions in local relapse rate and distant metastasis rate in LARC patients, in whom previously inoperable tumors may potentially be surgically removed. However, only 4% to 20% cases can attain pathological complete response, and the remaining patients who are unresponsive to nCRT have to suffer from the side effects plus toxicities and may encounter poor survival outcomes due to the late surgical intervention. As such, employing potential biomarkers to differentiate responders from nonresponders before nCRT implementation appears to be the overarching goal. Well-defined competing endogenous RNA (ceRNA) networks include long noncoding RNA (lncRNA)-microRNA (miRNA)-mRNA and circRNA-miRNA-mRNA networks. As ceRNAs, lncRNAs, and circRNAs sponge miRNAs to indirectly suppress miRNAs downstream of oncogenic mRNAs or tumor-suppressive mRNAs. The abnormal expression of mRNAs regulates the nCRT-induced DNA damage repair process through pluralistic carcinogenic signaling pathways, thereby bringing about alterations in the nCRT resistance/sensitivity of tumors. Moreover, many molecular mechanisms relevant to cell proliferation, metastasis, or apoptosis of cancers (eg, epithelial-mesenchymal transition and caspase-9-caspase-3 pathway) are influenced by ceRNA networks. Herein, we reviewed a large group of abnormally expressed mRNAs and noncoding RNAs that are associated with nCRT resistance/sensitivity in LARC patients and ultimately pinpointed the backbone role of ceRNA networks in the molecular mechanisms of nCRT resistance/sensitivity.
Collapse
Affiliation(s)
- Lin He
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, China
| | - Hao Chang
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Yuhong Qi
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Bing Zhang
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| | - Qiuju Shao
- Department of Radiotherapy, Tangdu Hospital, Air Force Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
18
|
Comprehensive Analysis of Differential Immunocyte Infiltration and Potential ceRNA Networks Involved in the Development of Atrial Fibrillation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8021208. [PMID: 33015181 PMCID: PMC7525288 DOI: 10.1155/2020/8021208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 01/12/2023]
Abstract
This study is aimed at identifying potential molecular mechanisms and candidate biomarkers in the left atrial regions for the diagnosis and treatment of valvular atrial fibrillation (VAF). Multibioinformatics methods, including linear models for microarray analysis (LIMMA), an SVA algorithm, CIBERSORT immune infiltration, and DNA methylation analysis, were employed. In addition, the protein-protein interaction (PPI) network, Gene Ontology (GO), and molecular pathways of differentially expressed genes (DEGs) or differential methylation regions were constructed. In all, compared with the normal rhythm group, 243 different mRNAs (29 downregulated and 214 upregulated) and 26 different lncRNAs (3 downregulated and 23 upregulated) were detected in the left atrium (LA) of atrial fibrillation (AF) patients, and the neutrophil and CD8+ T cell were infiltrated. Additionally, 199 different methylation sites (107 downregulated and 92 upregulated) were also identified based on DNA methylation analysis. After integration, ELOVL2, CCR2, and WEE1 were detected for differentially methylated and differentially transcribed genes. Among them, WEE1 was also a core gene identified by the competing endogenous RNA (ceRNA) network that included WEE1-KRBOX1-AS1-hsa-miR-17-5p, in VAF left atrial tissue. We combined the DNA methylation and transcriptional expression differential analysis and found that WEE1 (cg13365543) may well be a candidate gene regulated by DNA methylation modification. Moreover, KRBOX1-AS1 and WEE1 can compete endogenously and may mediate myocardial tissue infiltration into CD8+ T cells and participate in the AF process.
Collapse
|
19
|
Zhang Y, Xu M, Chen J, Chen K, Zhuang J, Yang Y, Liu X, Guan G. Prognostic Value of the FOXK Family Expression in Patients with Locally Advanced Rectal Cancer Following Neoadjuvant Chemoradiotherapy. Onco Targets Ther 2020; 13:9185-9201. [PMID: 32982306 PMCID: PMC7505718 DOI: 10.2147/ott.s255956] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Purpose To assess the role of the expression levels of FOXK family members, FOXK1 and FOXK2, in predicting response to neo-chemoradiotherapy (NCRT) and prognosis in locally advanced rectal cancer (LARC). Methods A total of 256 LARC patients who underwent NCRT and radical resection between 2011 and 2017 were enrolled in the present study. The patients were divided into a training dataset (n=169, 2011–2015) and a validation dataset (n=87, 2016–2017). Tumor tissues were collected before NCRT and post-surgery and were used for immunohistochemical analysis. Results Oncomine database analysis revealed that FOXK1 and FOXK2 were overexpressed in most cancers especially in colorectal cancer. Additionally, overexpression of FOXK1 and FOXK2 was associated with poorer prognosis by the R2 database. In both our training and validation datasets, the expression of FOXK1 and FOXK2 was lower in the pathological complete response (pCR) group compared with the non-pCR group (P<0.05). Cox regression analysis demonstrated that pathological N stage (HR=1.810, 95% CI 1.159–2.827, P=0.009), FOXK1 expression (HR=5.831, 95% CI 2.925–11.625, P<0.001), and FOXK2 expression (HR=2.390, 95% CI 11.272–4.491, P=0.007) were independent predictors of disease-free survival (DFS). Based on the Cox multivariate analysis, we constructed a risk score model that served as a prognostic biomarker and had a powerful ability to predict pCR in LARC patients upon NCRT in both training and validation groups. Conclusion Expression levels of FOXK family members were associated with chemoradiotherapy resistance and prognosis of LARC patients following NCRT and were used to construct a risk score model that is a promising biomarker for LARC.
Collapse
Affiliation(s)
- Yiyi Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Meifang Xu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Jianhua Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, People's Republic of China
| | - Kui Chen
- Department of General Surgery, The First Hospital of Fuzhou City Affiliated Fujian Medical University, Fuzhou, People's Republic of China
| | - Jinfu Zhuang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Yuanfeng Yang
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Xing Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Guoxian Guan
- Department of Colorectal Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
20
|
Sun Y, Zhang Y, Wu X, Chi P. A Four Gene-Based Risk Score System Associated with Chemoradiotherapy Response and Tumor Recurrence in Rectal Cancer by Co-Expression Network Analysis. Onco Targets Ther 2020; 13:6721-6733. [PMID: 32753901 PMCID: PMC7354918 DOI: 10.2147/ott.s256696] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 05/26/2020] [Indexed: 12/14/2022] Open
Abstract
Aim Resistance to neoadjuvant chemoradiotherapy (NCRT) and tumor recurrence presents a major clinical problem in locally advanced rectal cancer (LARC) patients. This study aimed to explore a genetic risk score related to NCRT response and tumor recurrence in rectal cancer after NCRT. Materials and Methods Weighted gene co-expression network analysis was employed to identify hub genes associated with NCRT response from the GSE93375 dataset. Prognostic hub genes were determined using Cox regression analysis and associated with disease-free survival (DFS). A risk score system was constructed and the prognostic significance of the risk score was validated in our patient cohort. A predictive nomogram for DFS was developed and validated internally. Results The Tan module had the highest correlations with NCRT response. Ten hub genes (COL15A1, THBS2, ITGB1, MMP2, CD34, SPARC, NOTCH3, PDGFRB, DCN, and SERPINH1) were associated with NCRT response. Immunostaining expression of four genes (NOTCH3, SPARC, DCN, and ITGB1) was found to be significantly associated with both NCRT response and DFS in our patient cohort and was selected to build a prognostic risk score for DFS as follows: risk score= (0.6188×Exp NOTCH3 ) + (0.6511×Exp SPARC ) + (-0.2976×Exp DCN ) + (1.0035×Exp ITGB1 ). Using this risk score, patients could be separated into high- and low-risk groups for tumor recurrence. A nomogram that incorporated the risk score, ypTNM stage, and tumor regression grade (TRG) was constructed and utilized to predict DFS in LARC patients. Conclusion The four-gene expression-based risk score system presented here could be potentially used for predicting tumor recurrence in LARC patients after NCRT.
Collapse
Affiliation(s)
- Yanwu Sun
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Yiyi Zhang
- Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Xuejing Wu
- Department of Pathology, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Pan Chi
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, People's Republic of China
| |
Collapse
|
21
|
Mass Spectrometric Comparison of HPV-Positive and HPV-Negative Oropharyngeal Cancer. Cancers (Basel) 2020; 12:cancers12061531. [PMID: 32545200 PMCID: PMC7352546 DOI: 10.3390/cancers12061531] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) consist of two distinct biological entities. While the numbers of classical, tobacco-induced HNSCC are declining, tumors caused by human papillomavirus (HPV) infection are increasing in many countries. HPV-positive HNSCC mostly arise in the oropharynx and are characterized by an enhanced sensitivity towards radiotherapy and a favorable prognosis. To identify molecular differences between both entities on the protein level, we conducted a mass spectrometric comparison of eight HPV-positive and nine HPV-negative oropharyngeal tumors (OPSCC). Overall, we identified 2051 proteins, of which 31 were found to be differentially expressed. Seventeen of these can be assorted to three functional groups, namely DNA replication, nuclear architecture and cytoskeleton regulation, with the differences in the last group potentially reflecting an enhanced migratory and invasive capacity. Furthermore, a number of identified proteins have been described to directly impact on DNA double-strand break repair or radiation sensitivity (e.g., SLC3A2, cortactin, RBBP4, Numa1), offering explanations for the differential prognosis. The unequal expression of three proteins (SLC3A2, MCM2 and lamin B1) was confirmed by immunohistochemical staining using a tissue microarray containing 205 OPSCC samples. The expression levels of SLC3A2 and lamin B1 were found be of prognostic relevance in patients with HPV-positive and HPV-negative OPSCC, respectively.
Collapse
|
22
|
Liu Y, Yang HZ, Jiang YJ, Xu LQ. miR-451a is downregulated and targets PSMB8 in prostate cancer. Kaohsiung J Med Sci 2020; 36:494-500. [PMID: 32128987 DOI: 10.1002/kjm2.12196] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/31/2019] [Accepted: 02/09/2020] [Indexed: 01/05/2023] Open
Abstract
Abnormal expression of microRNAs (miRNAs) is frequently occurred in prostate cancer (PCa). This study was aimed to investigate the biological roles of miR-451a in PCa. Quantitative real-time PCR (qRT-PCR) and Western blot were employed to investigate the expression levels of miR-451a and proteasome (prosome, macropain) subunit, beta type, 8 (PSMB8) in PCa cell lines. Luciferase activity reporter assay was used to verify the connection between miR-451a and PSMB8. in vitro functional experiments were performed to measure the effects of miR-451a or PSMB8 on PCa cell proliferation, colony formation ability, cell invasion, and cell apoptosis. miR-451a expression was downregulated, whereas PSMB8 expression was upregulated in PCa cell lines. Luciferase activity reporter assay confirmed the direct connection between miR-451a and PSMB8. Overexpression of miR-451a inhibits PCa cell proliferation, colony formation, cell invasion and promotes cell apoptosis, while the overexpression of PSMB8 caused the opposite effects. Moreover, rescue experiments confirmed PSMB8 was a functional target of miR-451a. In conclusion, this study provides novel insights into the role of miR-451a in PCa, and the results demonstrated miR-451a could inhibit PCa progression by targeting PSMB8.
Collapse
Affiliation(s)
- Yun Liu
- Department of Urinary Surgery, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, People's Republic of China
| | - Huan-Zhi Yang
- Department of Neurology, Central Hospital of Binzhou, Binzhou, Shandong, People's Republic of China
| | - Yong-Jun Jiang
- Department of Urinary Surgery, The Third People's Hospital of LinYi, Linyi, Shandong, People's Republic of China
| | - Li-Qi Xu
- Department of Urologic Surgery, No. 906 Hospital of PLA, Ningbo, Zhejiang, People's Republic of China
| |
Collapse
|
23
|
Fan X, Zhao Y. miR-451a inhibits cancer growth, epithelial-mesenchymal transition and induces apoptosis in papillary thyroid cancer by targeting PSMB8. J Cell Mol Med 2019; 23:8067-8075. [PMID: 31559672 PMCID: PMC6850967 DOI: 10.1111/jcmm.14673] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/30/2019] [Accepted: 08/18/2019] [Indexed: 12/18/2022] Open
Abstract
Despite the increasing incidence of papillary thyroid cancer in the past decade, the molecular mechanism underlying its progression remains unknown. Several studies have reported down-regulation of miR-451a or circular miR-451a in papillary thyroid cancer cell lines or patients. However, the underlying molecular mechanism remains unknown. In this study, we found that overexpression of miR-451a could inhibit proliferation, epithelial-mesenchymal transition and induce apoptosis in papillary thyroid cancer cells. Proteasome subunit beta type-8 was predicted to be a direct target of miR-451a and was validated with a luciferase reporter assay. Further functional assays showed that miR-451a could inhibit thyroid cancer progression by targeting proteasome subunit beta type-8.
Collapse
Affiliation(s)
- Xinlong Fan
- Second Ward of Head & Neck Surgery, Liaoning Cancer Hospital & Institute (Cancer Hospital of China Medical University), Shenyang, China
| | - Yuejiao Zhao
- Second Ward of Head & Neck Surgery, Liaoning Cancer Hospital & Institute (Cancer Hospital of China Medical University), Shenyang, China
| |
Collapse
|
24
|
Wang X, Ghareeb WM, Lu X, Huang Y, Huang S, Chi P. Coexpression network analysis linked H2AFJ to chemoradiation resistance in colorectal cancer. J Cell Biochem 2019; 120:10351-10362. [PMID: 30565747 DOI: 10.1002/jcb.28319] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/28/2018] [Indexed: 12/27/2022]
Abstract
Neoadjuvant chemoradiotherapy (CRT) resistance is a complex phenomenon and it remains a major problem for patients with a priori resistant tumor. Therefore, there is a strong need to investigate molecular biomarkers which may guide for treatment decision-making. In our study, weighted gene coexpression network analysis was applied to identify CRT-resistance hub modules in 12 colorectal cancer (CRC) cell lines with different CRT sensitivities from GSE20298 data set. The green module and purple module had the highest correlations with CRT resistance. Gene ontology enrichment analysis indicated that the function of these two modules focused on interferon-mediated signaling pathway, immune response, chromatin modulation, Rho GTPases activities, and regulation of apoptotic process. Then, 15 hub genes in both the coexpression and protein-protein interaction networks were selected. Among these hub genes, higher H2A histone family member J (H2AFJ) expression was independently validated in patient cohorts from two testing data sets of GSE46862 and GSE68204 to be related to CRT resistance. The receiver operating characteristic curve showed that H2AFJ could efficiently distinguish CRT-resistance cases from CRT-sensitive cases in another two testing data sets. Furthermore, meta-analysis of 12 Gene Expression Omnibus-sourced data sets showed that H2AFJ messenger RNA levels were significantly higher in CRC tissues than in normal colon tissues. High H2AFJ expression was correlated with a significant worse event- and relapse-free survival by analyzing the data from the R2: Genomics Analysis and Visualization Platform. Gene set enrichment analysis determined that the mechanism of H2AFJ-mediated CRT resistance might involve the ERK5 (MAPK7), human immunodeficiency virus Nef (HIV Nef), and inflammatory pathways. This study is the first, to the best of our knowledge, to implicate and verify H2AFJ as an effective new marker for CRT response prediction.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Waleed M Ghareeb
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
- Department of General and Gastrointestinal Surgery, Suez Canal University, Ismailia, Egypt
| | - Xingrong Lu
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Ying Huang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Shenghui Huang
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| | - Pan Chi
- Department of Colorectal Surgery, Union Hospital, Fujian Medical University, Fuzhou, People's Republic of China
| |
Collapse
|
25
|
Prince C, Hammerton G, Taylor AE, Anderson EL, Timpson NJ, Davey Smith G, Munafò MR, Relton CL, Richmond RC. Investigating the impact of cigarette smoking behaviours on DNA methylation patterns in adolescence. Hum Mol Genet 2019; 28:155-165. [PMID: 30215712 PMCID: PMC6298233 DOI: 10.1093/hmg/ddy316] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/02/2018] [Accepted: 09/03/2018] [Indexed: 01/09/2023] Open
Abstract
Smoking usually begins in adolescence, and early onset of smoking has been linked to increased risk of later life disease. There is a need to better understand the biological impact of cigarette smoking behaviours in adolescence. DNA methylation profiles related to smoking behaviours and cessation in adulthood have been previously identified, but alterations arising from smoking initiation have not been thoroughly investigated. We aimed to investigate DNA methylation in the Avon Longitudinal Study of Parents and Children in relation to (1) different smoking measures, (2) time since smoking initiation and frequency of smoke exposure and (3) latent classes of smoking behaviour. Using 2620 CpG sites previously associated with cigarette smoking, we investigated DNA methylation change in relation to own smoking measures, smoke exposure duration and frequency, and using longitudinal latent class analysis of different smoking behaviour patterns in 968 adolescents. Eleven CpG sites located in seven gene regions were differentially methylated in relation to smoking in adolescence. While only AHRR (cg05575921) showed a robust pattern of methylation in relation to weekly smoking, several CpGs showed differences in methylation among individuals who had tried smoking compared with non-smokers. In relation to smoke exposure duration and frequency, cg05575921 showed a strong dose-response relationship, while there was evidence for more immediate methylation change at other sites. Our findings illustrate the impact of cigarette smoking behaviours on DNA methylation at some smoking-responsive CpG sites, even among individuals with a short smoking history.
Collapse
Affiliation(s)
| | - Gemma Hammerton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Amy E Taylor
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Emma L Anderson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Nicholas J Timpson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - George Davey Smith
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Tobacco and Alcohol Research Group, School of Experimental Psychology, University of Bristol, Bristol, UK
| | - Caroline L Relton
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - Rebecca C Richmond
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| |
Collapse
|
26
|
Wang Q, Gregg JR, Gu J, Ye Y, Chang DW, Davis JW, Thompson TC, Kim J, Logothetis CJ, Wu X. Genetic associations of T cell cancer immune response with tumor aggressiveness in localized prostate cancer patients and disease reclassification in an active surveillance cohort. Oncoimmunology 2018; 8:e1483303. [PMID: 30546938 DOI: 10.1080/2162402x.2018.1483303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 05/21/2018] [Accepted: 05/26/2018] [Indexed: 12/23/2022] Open
Abstract
Determining prostate cancer (PCa) aggressiveness and reclassification are critical events during the treatment of localized disease and for patients undergoing active surveillance (AS). Since T cells play major roles in cancer surveillance and elimination, we aimed to identify genetic biomarkers related to T cell cancer immune response which are predictive of aggressiveness and reclassification risks in localized PCa. The genotypes of 3,586 single nucleotide polymorphisms (SNPs) from T cell cancer immune response pathways were analyzed in 1762 patients with localized disease and 393 who elected AS. The aggressiveness of PCa was defined according to pathological Gleason score (GS) and D'Amico criteria. PCa reclassification was defined according to changes in GS or tumor characteristics during subsequent surveillance biopsies. Functional characterization and analysis of immune phenotypes were also performed. In the localized PCa cohort, seven SNPs were significantly associated with the risk of aggressive disease. In the AS cohort, another eight SNPs were identified as predictors for aggressiveness and reclassification. Rs1687016 of PSMB8 was the most significant predictor of reclassification. Cumulative analysis showed that a genetic score based on the identified SNPs could significantly predict risk of D'Amico high risk disease (P-trend = 2.4E-09), GS4 + 3 disease (P-trend = 1.3E-04), biochemical recurrence (P-trend = 0.01) and reclassification (P-trend = 0.01). In addition, the rs34309 variant was associated with functional somatic mutations in the PI3K/PTEN/AKT/MTOR pathway and tumor lymphocyte infiltration. Our study provides plausible evidence that genetic variations in T cell cancer immune response can influence risks of aggressiveness and reclassification in localized PCa, which may lead to additional biological insight into these outcomes. Abbreviations: PCa, prostate cancer; AS, active surveillance; GS, Gleason score; PSA, prostate specific antigen; TCGA, The Cancer Genome Atlas; SNP, single nucleotide polymorphisms; UFG, unfavorable genotype.
Collapse
Affiliation(s)
- Qinchuan Wang
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.,Department of Surgical Oncology, Affiliated Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, China
| | - Justin R Gregg
- Departments of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian Gu
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yuanqing Ye
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David W Chang
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John W Davis
- Departments of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Timothy C Thompson
- Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeri Kim
- Departments of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Christopher J Logothetis
- Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xifeng Wu
- Departments of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
27
|
Lee IH, Kang K, Kang BW, Lee SJ, Bae WK, Hwang JE, Kim HJ, Park SY, Park JS, Choi GS, Kim JG. Genetic variations using whole-exome sequencing might predict response for neoadjuvant chemoradiotherapy in locally advanced rectal cancer. Med Oncol 2018; 35:145. [PMID: 30206710 DOI: 10.1007/s12032-018-1202-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
A good pathologic response to neoadjuvant chemoradiotherapy (CRT) in locally advanced rectal cancer (LARC) is associated with a better prognosis. However, there is no effective method to predict CRT response in LARC patients. Therefore, this study used whole-exome sequencing (WES) to identify novel biomarker predicting CRT benefit in LARC. Two independent tumor tissue sets were used to evaluate the genetic differences between the good CRT response group (15 patients achieved a pathologic complete response (pCR)) and the poor CRT response group (15 patients with pathologic stage III). After applying WES to the discovery set of 30 patients, additional samples (n = 67) were genotyped for candidate variants using TaqMan or Sanger sequencing for validation. Overall, this study included a total of 97 LARC patients. In the discovery and validation set, there was no known genetic mutation to predict response between two groups, while five candidate variants (BCL2L10 rs2231292, DLC1 rs3816748, DNAH14 rs3105571, ITIH5 rs3824658, and RAET1L rs912565) were found to be significantly associated with pCR. In the dominant model, the GC/CC genotype of DLC1 rs3816748 (p = 0.032), AC/CC genotype of DNAH14 rs3105571 (p = 0.009), and TT genotype of RAET1 rs912565 (p < 0.0001) were associated with a higher pCR rate. In the recessive model, BCL2L10 rs2231292 (p = 0.036) and ITIH5 rs3824658 (p = 0.003) were significantly associated with pCR. In the co-dominant model, 4 candidate variants (DLC1 rs3816748, DNAH14 rs3105571, ITIH5 rs3824658, and RAET1L rs912565) were significantly correlated with pCR. However, none of the candidate variants was associated with relapse-free or overall survival. The present results suggest that genetic variations of the BCL2L10 rs2231292, DLC1 rs3816748, DNAH14 rs3105571, ITIH5 rs3824658, and RAET1L rs912565 genes can be used as biomarkers predicting the CRT response for patients with LARC.
Collapse
Affiliation(s)
- In Hee Lee
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Keunsoo Kang
- Department of Microbiology, College of Natural Sciences, Dankook University, Cheonan, Republic of Korea
| | - Byung Woog Kang
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Soo Jung Lee
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Woo Kyun Bae
- Department of Hematology-Oncology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jun Eul Hwang
- Department of Hematology-Oncology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Hye Jin Kim
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Su Yeon Park
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Jun Seok Park
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Gyu Seog Choi
- Department of Surgery, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| | - Jong Gwang Kim
- Department of Oncology/Hematology, School of Medicine, Kyungpook National University, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea.
| |
Collapse
|