1
|
Reddy JP, Sherry AD, Fellman B, Liu S, Bathala T, Haymaker C, Cohen L, Smith BD, Ramirez D, Shaitelman SF, Chun SG, Medina-Rosales M, Teshome M, Brewster A, Barcenas CH, Reuben A, Ghia AJ, Ludmir EB, Weed D, Shah SJ, Mitchell MP, Woodward WA, Gomez DR, Tang C. Adding Metastasis-Directed Therapy to Standard-of-Care Systemic Therapy for Oligometastatic Breast Cancer (EXTEND): A Multicenter, Randomized Phase 2 Trial. Int J Radiat Oncol Biol Phys 2025; 121:885-893. [PMID: 39486645 PMCID: PMC11850186 DOI: 10.1016/j.ijrobp.2024.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 09/06/2024] [Accepted: 10/15/2024] [Indexed: 11/04/2024]
Abstract
PURPOSE Prior evidence suggests a progression-free survival (PFS) benefit from adding metastasis-directed therapy (MDT) to standard-of-care (SOC) systemic therapy for patients with some oligometastatic solid tumors. Randomized trials testing this hypothesis in breast cancer have yet to be published. We sought to determine whether adding MDT to SOC systemic therapy improves PFS in oligometastatic breast cancer. METHODS AND MATERIALS External Beam Radiation to Eliminate Nominal Metastatic Disease is a multicenter phase 2 randomized basket trial testing the addition of MDT to SOC systemic therapy in patients with ≤5 metastases (NCT03599765). Patients were randomly assigned 1:1 to MDT (definitive local treatment to all sites of disease, plus SOC systemic therapy) or to SOC systemic therapy-only. Primary endpoint was PFS, and secondary endpoints included overall survival, time to subsequent line of systemic therapy, and time to the appearance of new metastases. Exploratory analyses included quality of life and systemic immune response measures. RESULTS From September 2018 through July 2022, 22 and 21 patients were randomly assigned to the MDT and no-MDT arms, respectively. At a median follow-up of 24.8 months, PFS was not improved with the addition of MDT to SOC systemic therapy (median PFS 15.6 months MDT vs 24.9 months no-MDT [hazard ratio, 0.91; 95% CI, 0.34-2.48; P = .86]). Similarly, MDT did not improve overall survival, time to subsequent line of systemic therapy, or time to the appearance of new metastases (all P > .05). No significant differences were found in quality of life measures, systemic T-cell activation, or T-cell stimulatory cytokine concentration. CONCLUSIONS Among patients with oligometastatic breast cancer, the addition of MDT to SOC systemic therapy did not improve PFS. These findings suggest that MDT may have no systemic benefit in otherwise unselected patients with oligometastatic breast cancer, although this trial was limited by a heterogeneous and small sample size and overperformance of both treatment arms.
Collapse
Affiliation(s)
- Jay P Reddy
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Alexander D Sherry
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bryan Fellman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suyu Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tharakeswara Bathala
- Department of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cara Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Lorenzo Cohen
- Department of Palliative, Rehabilitation, and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Benjamin D Smith
- Department of Breast Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Ramirez
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Simona F Shaitelman
- Department of Breast Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen G Chun
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Marina Medina-Rosales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mediget Teshome
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abenaa Brewster
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Carlos H Barcenas
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alexandre Reuben
- Department of Thoracic-Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amol J Ghia
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ethan B Ludmir
- Department of Gastrointestinal Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel Weed
- Community Physician Network, Radiation Oncology Care, Indianapolis, Indiana; The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shalin J Shah
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Melissa P Mitchell
- Department of Breast Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wendy A Woodward
- Department of Breast Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel R Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chad Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Genitourinary Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
2
|
Morris ZS, Demaria S, Monjazeb AM, Formenti SC, Weichselbaum RR, Welsh J, Enderling H, Schoenfeld JD, Brody JD, McGee HM, Mondini M, Kent MS, Young KH, Galluzzi L, Karam SD, Theelen WSME, Chang JY, Huynh MA, Daib A, Pitroda S, Chung C, Serre R, Grassberger C, Deng J, Sodji QH, Nguyen AT, Patel RB, Krebs S, Kalbasi A, Kerr C, Vanpouille-Box C, Vick L, Aguilera TA, Ong IM, Herrera F, Menon H, Smart D, Ahmed J, Gartrell RD, Roland CL, Fekrmandi F, Chakraborty B, Bent EH, Berg TJ, Hutson A, Khleif S, Sikora AG, Fong L. Proceedings of the National Cancer Institute Workshop on combining immunotherapy with radiotherapy: challenges and opportunities for clinical translation. Lancet Oncol 2025; 26:e152-e170. [PMID: 40049206 DOI: 10.1016/s1470-2045(24)00656-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/31/2024] [Accepted: 11/05/2024] [Indexed: 03/09/2025]
Abstract
Radiotherapy both promotes and antagonises tumour immune recognition. Some clinical studies show improved patient outcomes when immunotherapies are integrated with radiotherapy. Safe, greater than additive, clinical response to the combination is limited to a subset of patients, however, and how radiotherapy can best be combined with immunotherapies remains unclear. The National Cancer Institute-Immuno-Oncology Translational Network-Society for Immunotherapy of Cancer-American Association of Immunology Workshop on Combining Immunotherapy with Radiotherapy was convened to identify and prioritise opportunities and challenges for radiotherapy and immunotherapy combinations. Sessions examined the immune effects of radiation, barriers to anti-tumour immune response, previous clinical trial data, immunological and computational assessment of response, and next-generation radiotherapy-immunotherapy combinations. Panel recommendations included: developing and implementing patient selection and biomarker-guided approaches; applying mechanistic understanding to optimise delivery of radiotherapy and selection of immunotherapies; using rigorous preclinical models including companion animal studies; embracing data sharing and standardisation, advanced modelling, and multidisciplinary cross-institution collaboration; interrogating clinical data, including negative trials; and incorporating novel clinical endpoints and trial designs.
Collapse
Affiliation(s)
- Zachary S Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA.
| | - Sandra Demaria
- Weill Cornell Medicine, Department of Radiation Oncology, New York, NY, USA
| | - Arta M Monjazeb
- UC Davis Health, Department of Radiation Oncology, Sacramento, CA, USA
| | - Silvia C Formenti
- Weill Cornell Medicine, Department of Radiation Oncology, New York, NY, USA
| | - Ralph R Weichselbaum
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - James Welsh
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Heiko Enderling
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | | | - Joshua D Brody
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather M McGee
- Department of Radiation Oncology and Department of Immuno-Oncology, City of Hope, Duarte, CA, USA
| | - Michele Mondini
- Gustave Roussy, Université Paris-Saclay, INSERM U1030, Villejuif, France
| | - Michael S Kent
- Davis School of Veterinary Medicine, University of California, Davis, CA, USA
| | | | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Sana D Karam
- Department of Radiation Oncology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | | | - Joe Y Chang
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Mai Anh Huynh
- Brigham and Women's Hospital-Dana-Farber Cancer Institute, Boston, MA, USA
| | - Adi Daib
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Sean Pitroda
- Department of Radiation and Cellular Oncology and the Ludwig Center for Metastasis Research, The University of Chicago, Chicago, IL, USA
| | - Caroline Chung
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Raphael Serre
- Aix Marseille University, SMARTc Unit, Inserm S 911 CRO2, Marseille, France
| | | | - Jie Deng
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Quaovi H Sodji
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Anthony T Nguyen
- Cedars-Sinai Medical Center, Department of Radiation Oncology, Los Angeles, CA, USA
| | - Ravi B Patel
- Department of Radiation Oncology, University of Pittsburgh Hillman Cancer Center, Pittsburgh, PA, USA
| | - Simone Krebs
- Molecular Imaging and Therapy Service, Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Weill Cornell Medicine, Department of Radiology, New York, NY, USA
| | - Anusha Kalbasi
- Department of Radiation Oncology, Stanford Cancer Institute, Stanford School of Medicine, Stanford, CA, USA
| | - Caroline Kerr
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | | | - Logan Vick
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | | | - Irene M Ong
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Fernanda Herrera
- Ludwig Institute for Cancer Research, Lausanne Branch, University of Lausanne, Lausanne, Switzerland
| | - Hari Menon
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - DeeDee Smart
- Radiation Oncology Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Jalal Ahmed
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robyn D Gartrell
- Department of Pediatrics, Columbia University Irving Medical Center, New York, NY, USA; Department of Oncology, Division of Pediatric Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| | - Christina L Roland
- Department of Thoracic Radiation Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Fatemeh Fekrmandi
- Department of Radiation Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Binita Chakraborty
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Eric H Bent
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Tracy J Berg
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Samir Khleif
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Lawrence Fong
- Fred Hutchinson Cancer Center, University of Washington, Seattle, WA, USA
| |
Collapse
|
3
|
Torresan S, Costa J, Zanchetta C, De Marchi L, Rizzato S, Cortiula F. Oligometastatic NSCLC: Current Perspectives and Future Challenges. Curr Oncol 2025; 32:75. [PMID: 39996875 PMCID: PMC11854464 DOI: 10.3390/curroncol32020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
Oligometastatic non-small cell lung cancer (NSCLC) represents a separate entity with a different biology and prognosis compared to stage IV NSCLC. Challenges range from the very definition of oligometastatic disease to the timing and techniques of local treatments, and their benefit in prolonging patient survival. Most of the international consensus and guidelines agree on the need for shared criteria, such as appropriate stadiation and even tissue biopsy if needed, in order to select patients that could really benefit from personalised strategies. Multidisciplinary evaluation is crucial in order to define if every lesion is amenable to radical local treatment, which appears to be the most important criterion across different guidelines. A distinction must be made depending on the time of oligo-disease detection, separating de novo oligometastatic disease from oligorecurrence, oligoprogression and oligoresidual disease. These separate entities imply a different biology and prognosis, and treatment strategies consequently must be tailored. Locoregional approaches are therefore often contemplated in order to ensure the best outcome for the patient. In non-oncogene-addicted disease, the advent of immune checkpoint blockers (ICBs) allows physicians to take into consideration consolidative treatments, but timing, technique and subsequent systemic treatment remain open issues. In oncogene-addicted NSCLC, local treatments are nowadays preferably reserved to cases of oligoprogression, but the advent of new, more potent drugs might challenge that. In this review, we summarised the current knowledge, consensuses and data from retrospective and prospective trials, with the aim of shedding some light on the topic and emphasising the unmet clinical need.
Collapse
Affiliation(s)
- Sara Torresan
- Department of Medicine (DME), University of Udine, 33100 Udine, Italy; (S.T.)
- Department of Medical Oncology, IRCCS, Centro di Riferimento Oncologico CRO di Aviano, 33081 Aviano, Italy
| | - Jacopo Costa
- Department of Medicine (DME), University of Udine, 33100 Udine, Italy; (S.T.)
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy
| | - Carol Zanchetta
- Department of Medicine (DME), University of Udine, 33100 Udine, Italy; (S.T.)
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy
| | - Lorenzo De Marchi
- Department of Medicine (DME), University of Udine, 33100 Udine, Italy; (S.T.)
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy
| | - Simona Rizzato
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy
| | - Francesco Cortiula
- Department of Oncology, University Hospital of Udine, 33100 Udine, Italy
- Department of Respiratory Medicine, Maastricht University Medical Centre, GROW School for Oncology and Reproduction, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
4
|
Jongbloed M, Bortolot M, Wee L, Huijs JW, Bellezo M, Vaes RD, Aboubakar Nana F, Hartemink KJ, De Ruysscher DK, Hendriks LE. Prognostic and Predictive Biomarkers of Oligometastatic NSCLC: New Insights and Clinical Applications. JTO Clin Res Rep 2024; 5:100740. [PMID: 39735889 PMCID: PMC11671686 DOI: 10.1016/j.jtocrr.2024.100740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 12/31/2024] Open
Abstract
This review discusses the current data on predictive and prognostic biomarkers in oligometastatic NSCLC and discusses whether biomarkers identified in other stages and widespread metastatic disease can be extrapolated to the oligometastatic disease (OMD) setting. Research is underway to explore the prognostic and predictive value of biological attributes of tumor tissue, circulating cells, the tumor microenvironment, and imaging findings as biomarkers of oligometastatic NSCLC. Biomarkers that help define true OMD and predict outcomes are needed for patient selection for oligometastatic treatment, and to avoid futile treatments in patients that will not benefit from locoregional treatment. Nevertheless, these biomarkers are still in the early stages of development and lack prospective validation in clinical trials. Furthermore, the absence of a clear definition of OMD contributes to a heterogeneous study population in which different types of OMD are mixed and treatment strategies are different. Multiple tissue-based, circulating, and imaging features are promising regarding their prognostic and predictive role in NSCLC, but data is still limited and might be biased owing to the inclusion of heterogeneous patient populations. Larger homogeneous and prospective series are needed to assess the prognostic and predictive role of these biomarkers. As obtaining tissue can be difficult and is invasive, the most promising tools for further evaluation are liquid biopsies and imaging-based biomarkers as these can also be used for longitudinal follow-up.
Collapse
Affiliation(s)
- Mandy Jongbloed
- Department of Pulmonary Diseases, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Martina Bortolot
- Department of Medicine (DMED), University of Udine, Udine, Italy
| | - Leonard Wee
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Jarno W.J. Huijs
- Department of Pulmonary Diseases, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Murillo Bellezo
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Rianne D.W. Vaes
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Koen J. Hartemink
- Department of Surgery, Netherlands Cancer Institute, Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
- Department of Thoracic Oncology, Leiden University Medical Center, Leiden, the Netherlands
| | - Dirk K.M. De Ruysscher
- Department of Radiation Oncology (Maastro Clinic), GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lizza E.L. Hendriks
- Department of Pulmonary Diseases, GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
5
|
Ludmir EB, Sherry AD, Fellman BM, Liu S, Bathala T, Haymaker C, Medina-Rosales MN, Reuben A, Holliday EB, Smith GL, Noticewala SS, Nicholas S, Price TR, Martin-Paulpeter RM, Perles LA, Lee SS, Lee MS, Smaglo BG, Huey RW, Willis J, Zhao D, Cohen L, Taniguchi CM, Koay EJ, Katz MH, Wolff RA, Das P, Pant S, Koong AC, Tang C. Addition of Metastasis-Directed Therapy to Systemic Therapy for Oligometastatic Pancreatic Ductal Adenocarcinoma (EXTEND): A Multicenter, Randomized Phase II Trial. J Clin Oncol 2024; 42:3795-3805. [PMID: 39102622 PMCID: PMC11540734 DOI: 10.1200/jco.24.00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/16/2024] [Accepted: 06/26/2024] [Indexed: 08/07/2024] Open
Abstract
PURPOSE The EXTEND trial tested the hypothesis that adding comprehensive metastasis-directed therapy (MDT) to chemotherapy would improve progression-free survival (PFS) over chemotherapy alone among patients with oligometastatic pancreatic ductal adenocarcinoma (PDAC). METHODS EXTEND (ClinicalTrials.gov identifier: NCT03599765) is a multicenter, phase II basket trial randomly assigning patients with ≤five metastases 1:1 to MDT plus systemic therapy versus systemic therapy. Disease progression was defined by radiologic criteria (RECIST v1.1), clinical progression, or death. The primary end point was PFS in the per-protocol population, evaluated after all patients achieved at least 6 months of follow-up. Exploratory end points included systemic immune response measures. RESULTS Between March 19, 2019, and February 13, 2023, 41 patients were randomly assigned and 40 were eligible for the primary analysis of PFS (19 patients in the MDT arm; 21 patients in the control arm). At a median follow-up time of 17 months, the median PFS time was 10.3 months (95% CI, 4.6 to 14.0) in the MDT arm versus 2.5 months (95% CI, 1.7 to 5.1) in the control arm. PFS was significantly improved by the addition of MDT to systemic therapy (P = .030 for stratified log-rank test) with a hazard ratio of 0.43 (95% CI, 0.20 to 0.94). No grade ≥3 or greater adverse events related to MDT were observed. Systemic immune activation events were associated with MDT and correlated with improved PFS. CONCLUSION This study supports the addition of MDT to systemic therapy for patients with oligometastatic PDAC. Induction of systemic immunity is a possible mechanism of benefit. These results warrant confirmatory trials to refine treatment strategy and provide external validation.
Collapse
Affiliation(s)
- Ethan B. Ludmir
- Department of Gastrointestinal Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexander D. Sherry
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Bryan M. Fellman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Suyu Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Tharakeswara Bathala
- Department of Abdominal Imaging, Division of Diagnostic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Cara Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Translational Molecular Pathology Immunoprofiling Laboratory (TMP-IL), The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Marina N. Medina-Rosales
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Translational Molecular Pathology Immunoprofiling Laboratory (TMP-IL), The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Alexandre Reuben
- Department of Thoracic-Head & Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Emma B. Holliday
- Department of Gastrointestinal Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Grace L. Smith
- Department of Gastrointestinal Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sonal S. Noticewala
- Department of Gastrointestinal Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sarah Nicholas
- Department of Radiation Oncology, Banner MD Anderson Cancer Center, Gilbert, AZ
| | - Tracy R. Price
- Department of Radiation Oncology, Community Health Network MD Anderson Cancer Center, Indianapolis, IN
| | - Rachael M. Martin-Paulpeter
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Luis A. Perles
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Sunyoung S. Lee
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Michael S. Lee
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brandon G. Smaglo
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ryan W. Huey
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Jason Willis
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Dan Zhao
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Lorenzo Cohen
- Department of Palliative, Rehabilitation, and Integrative Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Cullen M. Taniguchi
- Department of Gastrointestinal Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Experimental Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Eugene J. Koay
- Department of Gastrointestinal Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Matthew H.G. Katz
- Department of Surgical Oncology, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Robert A. Wolff
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Prajnan Das
- Department of Gastrointestinal Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Albert C. Koong
- Department of Gastrointestinal Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Chad Tang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Genitourinary Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX
- Department of Investigational Cancer Therapeutics, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
6
|
Balázs Z, Balermpas P, Ivanković I, Willmann J, Gitchev T, Bryant A, Guckenberger M, Krauthammer M, Andratschke N. Longitudinal cell-free DNA characterization by low-coverage whole-genome sequencing in patients undergoing high-dose radiotherapy. Radiother Oncol 2024; 197:110364. [PMID: 38834154 DOI: 10.1016/j.radonc.2024.110364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/06/2024]
Abstract
BACKGROUND AND PURPOSE Current radiotherapy guidelines rely heavily on imaging-based monitoring. Liquid biopsy monitoring promises to complement imaging by providing frequent systemic information about the tumor. In particular, cell-free DNA (cfDNA) sequencing offers a tumor-agnostic approach, which lends itself to monitoring heterogeneous cohorts of cancer patients. METHODS We collected plasma cfDNA from oligometastatic patients (OMD) and head-and-neck cancer patients (SCCHN) at six time points before, during, and after radiotherapy, and compared them to the plasma samples of healthy and polymetastatic volunteers. We performed low-pass (on average 7x) whole-genome sequencing on 93 plasma cfDNA samples and correlated copy number alterations and fragment length distributions to clinical and imaging findings. RESULTS We observed copy number alterations in 4/7 polymetastatic cancer patients, 1/7 OMD and 1/7 SCCHN patients, these patients' imaging showed progression following radiotherapy. Using unsupervised learning, we identified cancer-specific fragment length features that showed a strong correlation with copy number-based tumor fraction estimates. In 4/4 HPV-positive SCCHN patient samples, we detected viral DNA that enabled the monitoring of very low tumor fraction samples. CONCLUSIONS Our results indicate that an elevated tumor fraction is associated with tumor aggressiveness and systemic tumor spread. This information may be used to adapt treatment strategies. Further, we show that by detecting specific sequences such as viral DNA, the sensitivity of detecting cancer from cell-free DNA sequencing data can be greatly increased.
Collapse
Affiliation(s)
- Zsolt Balázs
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland; Department of Biomedical Informatics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Panagiotis Balermpas
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Ivna Ivanković
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland; Department of Biomedical Informatics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Jonas Willmann
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Todor Gitchev
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland; Department of Biomedical Informatics, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Asher Bryant
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Michael Krauthammer
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland; Department of Biomedical Informatics, University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Nicolaus Andratschke
- Department of Radiation Oncology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Mavrikios A, Remon J, Quevrin C, Mercier O, Tselikas L, Botticella A, Nicolas E, Deutsch E, Besse B, Planchard D, Barlesi F, Le Péchoux C, Levy A. Local control strategies for management of NSCLC with oligoprogressive disease. Cancer Treat Rev 2023; 120:102621. [PMID: 37690180 DOI: 10.1016/j.ctrv.2023.102621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/28/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
Progresses of systemic treatments in advanced non-small cell lung cancer (NSCLC), such as immune checkpoint blockers (ICB) and targeted therapies, led to the increased incidence of oligoprogressive disease (OPD). The OPD is a subtype of oligometastatic disease (OMD) defined as a progression of a limited number of lesions during systemic treatment exposure. The hypothesis was formulated that local radical treatments (LRT) could eradicate progressive lesions resulting from resistant clones, ultimately leading to systemic treatment sensitivity restoration. Recently published international consensuses and guidelines aim to obtain a uniform definition of OMD NSCLC, to standardize the inclusion of these patients in future clinical trials, as well as their management in daily practice. Although there is no specific definition of OPD, LRT strategies in OPD are supported after reporting promising results. Both retrospective and preliminary prospective randomized data of LRT for patients with OPD NSCLC are encouraging. More clinical and translational data are needed for selecting best scenarios where LRT should be delivered. In this review, we analyze the current available literature on LRT for patients with OPD in advanced NSCLC and discuss about future trial design and challenges.
Collapse
Affiliation(s)
- Antoine Mavrikios
- Department of Radiation Oncology, International Center for Thoracic Cancers (CICT), Gustave Roussy, F-94805 Villejuif, France
| | - Jordi Remon
- Department of Cancer Medicine, International Center for Thoracic Cancers (CICT), Gustave Roussy, F-94805 Villejuif, France
| | - Clément Quevrin
- Université Paris-Saclay, INSERM U1030, Molecular Radiotherapy and Therapeutic Innovations, F-94805 Villejuif, France
| | - Olaf Mercier
- Université Paris-Saclay, Faculté de Médecine, 94270 Le Kremlin-Bicêtre, France; Department of Thoracic and Vascular Surgery and Heart-Lung Transplantation, International Center for Thoracic Cancers (CICT), Marie-Lannelongue Hospital, Le Plessis Robinson, France
| | - Lambros Tselikas
- Université Paris-Saclay, Faculté de Médecine, 94270 Le Kremlin-Bicêtre, France; Department of Anesthesia, Surgery and Interventional Radiology (DACI), International Center for Thoracic Cancers (CICT), Gustave Roussy, F-94805 Villejuif, France
| | - Angela Botticella
- Department of Radiation Oncology, International Center for Thoracic Cancers (CICT), Gustave Roussy, F-94805 Villejuif, France
| | - Eliot Nicolas
- Department of Radiation Oncology, International Center for Thoracic Cancers (CICT), Gustave Roussy, F-94805 Villejuif, France
| | - Eric Deutsch
- Department of Radiation Oncology, International Center for Thoracic Cancers (CICT), Gustave Roussy, F-94805 Villejuif, France; Université Paris-Saclay, INSERM U1030, Molecular Radiotherapy and Therapeutic Innovations, F-94805 Villejuif, France; Université Paris-Saclay, Faculté de Médecine, 94270 Le Kremlin-Bicêtre, France
| | - Benjamin Besse
- Department of Cancer Medicine, International Center for Thoracic Cancers (CICT), Gustave Roussy, F-94805 Villejuif, France; Université Paris-Saclay, Faculté de Médecine, 94270 Le Kremlin-Bicêtre, France
| | - David Planchard
- Department of Cancer Medicine, International Center for Thoracic Cancers (CICT), Gustave Roussy, F-94805 Villejuif, France; Université Paris-Saclay, Faculté de Médecine, 94270 Le Kremlin-Bicêtre, France
| | - Fabrice Barlesi
- Department of Cancer Medicine, International Center for Thoracic Cancers (CICT), Gustave Roussy, F-94805 Villejuif, France; Université Paris-Saclay, Faculté de Médecine, 94270 Le Kremlin-Bicêtre, France
| | - Cécile Le Péchoux
- Department of Radiation Oncology, International Center for Thoracic Cancers (CICT), Gustave Roussy, F-94805 Villejuif, France
| | - Antonin Levy
- Department of Radiation Oncology, International Center for Thoracic Cancers (CICT), Gustave Roussy, F-94805 Villejuif, France; Université Paris-Saclay, INSERM U1030, Molecular Radiotherapy and Therapeutic Innovations, F-94805 Villejuif, France; Université Paris-Saclay, Faculté de Médecine, 94270 Le Kremlin-Bicêtre, France.
| |
Collapse
|
8
|
Pinato DJ, Kaneko T, D’Alessio A, Forner A, Fessas P, Minguez B, Giannini EG, Grillo F, Díaz A, Mauri FA, Fulgenzi CA, Dalla Pria A, Goldin RD, Pieri G, Toniutto P, Avellini C, Plaz Torres MC, Akarca AU, Marafioti T, Bhoori S, Miró JM, Bower M, Bräu N, Mazzaferro V. Integrated phenotyping of the anti-cancer immune response in HIV-associated hepatocellular carcinoma. JHEP Rep 2023; 5:100741. [PMID: 37274775 PMCID: PMC10238838 DOI: 10.1016/j.jhepr.2023.100741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 06/07/2023] Open
Abstract
Background & Aims HIV-seropositivity shortens survival in patients with hepatocellular carcinoma (HCC). Although risk factors for HCC including HCV infection can influence T cell phenotype, it is unknown whether HIV can influence functional characteristics of the T cell infiltrate. Methods From the Liver Cancer in HIV biorepository, we derived 129 samples of transplanted (76%) or resected (20%) HCC in eight European and North American centres. We profiled intra- and peritumoural tissue to evaluate regulatory CD4+/FOXP3+ and immune-exhausted CD8+/PD1+ T cells in HIV+ (n = 66) and HIV- (n = 63) samples. We performed targeted transcriptomics and T-cell receptor sequencing in a restricted subset of samples evaluated in relationship with HIV status. We correlated immunopathologic features with patients' characteristics including markers of HIV infection. Results Of the 66 HIV+ patients, 83% were HCV coinfected with an undetectable HIV viral load (51%) and a median blood CD4+ cell count of 430 cells/mm3 (range 15-908). Patients who were HIV+ were compared with HIV- controls with similar staging characteristics including Barcelona Clinic Liver Cancer (BCLC) stage A-B (86% vs. 83%, p = 0.16), <3 nodules (90% vs. 83%, p = 0.3) and median alpha-foetoprotein values (10.9 vs. 12.8 ng/ml, p = 0.72). HIV+ samples had higher PD-L1 expression rates in tumour tissue (51% vs. 8% p <0.0001) and displayed denser intratumoural CD4+/FOXP3+ (p <0.0001), CD8+/PD1+ (p <0.0001), with lower total peritumoural CD4+ (p <0.0001) and higher peritumoural CD8+/PD1+ (p <0.0001). Gene set analysis revealed HIV+ cases to have evidence of dysregulated adaptive and innate immunity. Tumour-infiltrating lymphocyte clonality was not influenced by HIV status. Conclusions HIV-associated HCC harbours a profoundly immune-exhausted tumour microenvironment, warranting prospective testing of immunotherapy in this treatment-deprived patient population. Impact and Implications Hepatocellular carcinoma is a non-AIDS defining malignancy characterised by poor survival. The programmed cell death (PD-1) pathway governs antiviral and anticancer immune exhaustion and is a therapeutic target in HCC. This study highlights how HIV infection is associated with significantly higher PD-L1 expression in HCC cells and in the surrounding microenvironment, leading to changes in cytotoxic and regulatory T cell function and dysregulation of proinflammatory pathways. Taken together, our results suggest dysfunctional T cell immunity as a mechanism of worse outcome in these patients and suggest clinical testing of checkpoint inhibitors in HIV-associated HCC.
Collapse
Affiliation(s)
- David J. Pinato
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Takahiro Kaneko
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
- Tokyo Medical and Dental University, Tokyo, Japan
| | - Antonio D’Alessio
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Alejandro Forner
- Liver Unit, Barcelona Clinic Liver Cancer (BCLC) Group, ICMDM, Hospital Clinic Barcelona, IDIBAPS. University of Barcelona, Barcelona, Spain
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
| | - Petros Fessas
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Beatriz Minguez
- Liver Unit, Department of Internal Medicine Hospital Universitari Vall d’Hebron, Universitat Autonoma de Barcelona, Barcelona, Spain
- Vall d’Hebron Institute of Research (VHIR), CIBERehd Vall d’Hebron, Barcelona Hospital Campus, Barcelona, Spain
| | - Edoardo G. Giannini
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Federica Grillo
- Pathology Unit, Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Alba Díaz
- National Biomedical Research Institute on Liver and Gastrointestinal Diseases (CIBEREHD), Instituto de Salud Carlos III, Madrid, Spain
- Pathology Department, Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Francesco A. Mauri
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
| | - Claudia A.M. Fulgenzi
- Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital, Du Cane Road, London, UK
- Medical Oncology Department, Fondazione Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Alessia Dalla Pria
- National Centre for HIV Malignancy, Department of Oncology, Chelsea & Westminster Hospital, London, UK
| | | | - Giulia Pieri
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Pierluigi Toniutto
- Hepatology and Liver Transplantation Unit, Department of Medical Area (DAME), University of Udine, Udine, Italy
| | - Claudio Avellini
- Azienda Ospedaliero-Universitaria “Santa Maria della Misericordia”, Institute of Histopathology, Udine, Italy
| | - Maria Corina Plaz Torres
- Gastroenterology Unit, Department of Internal Medicine, University of Genoa, IRCCS-Ospedale Policlinico San Martino, Genoa, Italy
| | - Ayse U. Akarca
- Department of Histopathology, University College London Hospital, London, UK
| | - Teresa Marafioti
- Department of Histopathology, University College London Hospital, London, UK
| | - Sherrie Bhoori
- Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
| | - Jose María Miró
- Department of Infectious Disease, Hospital Clinic-IDIBAPS, University of Barcelona, Barcelona, Spain
- CIBERINFEC, Instituto de Salud Carlos III, Madrid, Spain
| | - Mark Bower
- National Centre for HIV Malignancy, Department of Oncology, Chelsea & Westminster Hospital, London, UK
| | - Norbert Bräu
- James J. Peters VA Medical Center, Bronx, New York, NY, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vincenzo Mazzaferro
- Hepato-Pancreatic-Biliary Surgery and Liver Transplantation, Fondazione IRCCS Istituto Nazionale Tumori, Milan, Italy
- Department of Oncology, University of Milan, Milan, Italy
| |
Collapse
|
9
|
Xia J, Zhang J, Xiong Y, Zhao J, Zhou Y, Jiang T, Zhu J. Circulating tumor DNA minimal residual disease in clinical practice of non-small cell lung cancer. Expert Rev Mol Diagn 2023; 23:913-924. [PMID: 37702546 DOI: 10.1080/14737159.2023.2252334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/23/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION The advance of diagnostics and treatments has greatly improved the prognosis of non-small cell lung cancer (NSCLC) patients. However, relapse and metastasis are still common problems encountered by NSCLC patients who have achieved complete remission. Therefore, overcoming the challenge of relapse and metastasis is particularly important for improving the prognosis of NSCLC patients. Research has shown that minimal residual disease (MRD) was a potential source of tumor relapse and metastasis, and circulating tumor DNA (ctDNA) MRD has obvious advantages in predicting the relapse and metastasis of NSCLC and evaluating treatment effectiveness. Therefore, dynamic monitoring of MRD is of great significance for NSCLC patient management strategies. AREAS COVERED We have reviewed articles related to NSCLC MRD included in PubMed and describes the biological significance and historical context of MRD research, reasons for using ctDNA to evaluate MRD, and potential value and challenges of ctDNA MRD in assessing relapse and metastasis of NSCLC, ultimately guiding clinical therapeutic strategies and management. EXPERT OPINION The standardized scope of ctDNA MRD detection for NSCLC requires more clinical research evidence to minimize study differences, making it possible to include in the clinical staging as a reliable indicator.
Collapse
Affiliation(s)
- Jinghua Xia
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jiao Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yanlu Xiong
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jinbo Zhao
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Yinxi Zhou
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Tao Jiang
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jianfei Zhu
- Department of Thoracic Surgery, Tangdu Hospital, Air Force Medical University, Xi'an, China
- Department of Thoracic Surgery, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
10
|
Tang C, Sherry AD, Haymaker C, Bathala T, Liu S, Fellman B, Cohen L, Aparicio A, Zurita AJ, Reuben A, Marmonti E, Chun SG, Reddy JP, Ghia A, McGuire S, Efstathiou E, Wang J, Wang J, Pilie P, Kovitz C, Du W, Simiele SJ, Kumar R, Borghero Y, Shi Z, Chapin B, Gomez D, Wistuba I, Corn PG. Addition of Metastasis-Directed Therapy to Intermittent Hormone Therapy for Oligometastatic Prostate Cancer: The EXTEND Phase 2 Randomized Clinical Trial. JAMA Oncol 2023; 9:825-834. [PMID: 37022702 PMCID: PMC10080407 DOI: 10.1001/jamaoncol.2023.0161] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 12/20/2022] [Indexed: 04/07/2023]
Abstract
Importance Despite evidence demonstrating an overall survival benefit with up-front hormone therapy in addition to established synergy between hormone therapy and radiation, the addition of metastasis-directed therapy (MDT) to hormone therapy for oligometastatic prostate cancer, to date, has not been evaluated in a randomized clinical trial. Objective To determine in men with oligometastatic prostate cancer whether the addition of MDT to intermittent hormone therapy improves oncologic outcomes and preserves time with eugonadal testosterone compared with intermittent hormone therapy alone. Design, Setting, Participants The External Beam Radiation to Eliminate Nominal Metastatic Disease (EXTEND) trial is a phase 2, basket randomized clinical trial for multiple solid tumors testing the addition of MDT to standard-of-care systemic therapy. Men aged 18 years or older with oligometastatic prostate cancer who had 5 or fewer metastases and were treated with hormone therapy for 2 or more months were enrolled to the prostate intermittent hormone therapy basket at multicenter tertiary cancer centers from September 2018 to November 2020. The cutoff date for the primary analysis was January 7, 2022. Interventions Patients were randomized 1:1 to MDT, consisting of definitive radiation therapy to all sites of disease and intermittent hormone therapy (combined therapy arm; n = 43) or to hormone therapy only (n = 44). A planned break in hormone therapy occurred 6 months after enrollment, after which hormone therapy was withheld until progression. Main Outcomes and Measures The primary end point was disease progression, defined as death or radiographic, clinical, or biochemical progression. A key predefined secondary end point was eugonadal progression-free survival (PFS), defined as the time from achieving a eugonadal testosterone level (≥150 ng/dL; to convert to nanomoles per liter, multiply by 0.0347) until progression. Exploratory measures included quality of life and systemic immune evaluation using flow cytometry and T-cell receptor sequencing. Results The study included 87 men (median age, 67 years [IQR, 63-72 years]). Median follow-up was 22.0 months (range, 11.6-39.2 months). Progression-free survival was improved in the combined therapy arm (median not reached) compared with the hormone therapy only arm (median, 15.8 months; 95% CI, 13.6-21.2 months) (hazard ratio, 0.25; 95% CI, 0.12-0.55; P < .001). Eugonadal PFS was also improved with MDT (median not reached) compared with the hormone therapy only (6.1 months; 95% CI, 3.7 months to not estimable) (hazard ratio, 0.32; 95% CI, 0.11-0.91; P = .03). Flow cytometry and T-cell receptor sequencing demonstrated increased markers of T-cell activation, proliferation, and clonal expansion limited to the combined therapy arm. Conclusions and Relevance In this randomized clinical trial, PFS and eugonadal PFS were significantly improved with combination treatment compared with hormone treatment only in men with oligometastatic prostate cancer. Combination of MDT with intermittent hormone therapy may allow for excellent disease control while facilitating prolonged eugonadal testosterone intervals. Trial Registration ClinicalTrials.gov Identifier: NCT03599765.
Collapse
Affiliation(s)
- Chad Tang
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston
| | - Alexander D. Sherry
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Cara Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Tharakeswara Bathala
- Department of Abdominal Imaging, The University of Texas MD Anderson Cancer Center, Houston
| | - Suyu Liu
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - Bryan Fellman
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston
| | - Lorenzo Cohen
- Department of Palliative, Rehabilitation and Integrative Medicine, The University of Texas MD Anderson Cancer Center, Houston
| | - Ana Aparicio
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Amado J. Zurita
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Enrica Marmonti
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Stephen G. Chun
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Jay P. Reddy
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Amol Ghia
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Sean McGuire
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Eleni Efstathiou
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Jennifer Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Jianbo Wang
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Patrick Pilie
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Craig Kovitz
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| | - Weiliang Du
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston
| | - Samantha J. Simiele
- Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston
| | - Rachit Kumar
- Department of Radiation Oncology, Banner MD Anderson Cancer Center, Gilbert, Arizona
| | - Yerko Borghero
- Department of Radiation Oncology, Banner MD Anderson Cancer Center, Gilbert, Arizona
| | - Zheng Shi
- Department of Radiation Oncology, The University of Texas Health Science Center at San Antonio
| | - Brian Chapin
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston
| | - Daniel Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ignacio Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston
| | - Paul G. Corn
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston
| |
Collapse
|
11
|
Li YZ, Kong SN, Liu YP, Yang Y, Zhang HM. Can Liquid Biopsy Based on ctDNA/cfDNA Replace Tissue Biopsy for the Precision Treatment of EGFR-Mutated NSCLC? J Clin Med 2023; 12:jcm12041438. [PMID: 36835972 PMCID: PMC9966257 DOI: 10.3390/jcm12041438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
More and more clinical trials have explored the role of liquid biopsy in the diagnosis and treatment of EGFR-mutated NSCLC. In certain circumstances, liquid biopsy has unique advantages and offers a new way to detect therapeutic targets, analyze drug resistance mechanisms in advanced patients, and monitor MRD in patients with operable NSCLC. Although its potential cannot be ignored, more evidence is needed to support the transition from the research stage to clinical application. We reviewed the latest progress in research on the efficacy and resistance mechanisms of targeted therapy for advanced NSCLC patients with plasma ctDNA EGFR mutation and the evaluation of MRD based on ctDNA detection in perioperative and follow-up monitoring.
Collapse
|
12
|
Sherry AD, Bathala TK, Liu S, Fellman BM, Chun SG, Jasani N, Guadagnolo BA, Jhingran A, Reddy JP, Corn PG, Shah AY, Kaiser KW, Ghia AJ, Gomez DR, Tang C. Definitive Local Consolidative Therapy for Oligometastatic Solid Tumors: Results From the Lead-in Phase of the Randomized Basket Trial EXTEND. Int J Radiat Oncol Biol Phys 2022; 114:910-918. [PMID: 35691448 PMCID: PMC11041161 DOI: 10.1016/j.ijrobp.2022.05.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE The benefit of local consolidative therapy (LCT) for oligometastasis across histologies remains uncertain. EXTernal beam radiation to Eliminate Nominal metastatic Disease (EXTEND; NCT03599765) is a randomized phase 2 basket trial evaluating the effectiveness of LCT for oligometastatic solid tumors. We report here the prospective results of the single-arm "lead-in" phase intended to identify histologies most likely to accrue to histology-specific endpoints in the randomized phase. METHODS AND MATERIALS Eligible histologies included colorectal, sarcoma, lung, head and neck, ovarian, renal, melanoma, pancreatic, prostate, cervix/uterine, breast, and hepatobiliary. Patients received LCT to all sites of active metastatic disease and primary/regional disease (as applicable) plus standard-of-care systemic therapy or observation. The primary endpoint in EXTEND was progression-free survival (PFS), and the primary endpoint of the lead-phase was histology-specific accrual feasibility. Adverse events were graded by Common Terminology Criteria for Adverse Events version 4.0. RESULTS From August 2018 through January 2019, 50 patients were enrolled and 49 received definitive LCT. Prostate, breast, and kidney were the highest enrolling histologies and identified for independent accrual in the randomization phase. Most patients (73%) had 1 or 2 metastases, most often in lung or bone (79%), and received ablative radiation (62%). Median follow-up for censored patients was 38 months (range, 16-42 months). Median PFS was 13 months (95% confidence interval, 9-24), 3-year overall survival rate was 73% (95% confidence interval, 57%-83%), and local control rate was 98% (93 of 95 tumors). Two patients (4%) had Common Terminology Criteria for Adverse Events grade 3 toxic effects related to LCT; no patient had grade 4 or 5 toxic effects. CONCLUSIONS The prospective lead-in phase of the EXTEND basket trial demonstrated feasible accrual, encouraging PFS, and low rates of severe toxic effects at mature follow-up. The randomized phase is ongoing with histology-based baskets that will provide histology-specific evidence for LCT in oligometastatic disease.
Collapse
Affiliation(s)
- Alexander D Sherry
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tharakeswara K Bathala
- Department of Abdominal Imaging, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suyu Liu
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Bryan M Fellman
- Department of Biostatistics, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Stephen G Chun
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nikesh Jasani
- Department of General Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - B Ashleigh Guadagnolo
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anuja Jhingran
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jay P Reddy
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Paul G Corn
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amishi Y Shah
- Department of Genitourinary Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelsey W Kaiser
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Amol J Ghia
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Daniel R Gomez
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Chad Tang
- Department of Radiation Oncology, Division of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, Texas; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
13
|
Ratnakumaran R, McDonald F. The Management of Oligometastases in Non-small Cell Lung Cancer - is Stereotactic Ablative Radiotherapy now Standard of Care? Clin Oncol (R Coll Radiol) 2022; 34:753-760. [PMID: 36117126 DOI: 10.1016/j.clon.2022.08.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/12/2022] [Accepted: 08/22/2022] [Indexed: 01/31/2023]
Abstract
Oligometastatic non-small cell lung cancer encompasses a number of distinct clinical scenarios with a pattern of limited tumour burden on imaging. Delivering local ablative therapy to individual metastatic lesions may assist in disease modification and contribute to improved outcomes. We review the published randomised clinical trials that support the implementation of stereotactic ablative radiotherapy as a standard of care in certain oligometastatic non-small cell lung cancer clinical scenarios, and highlight the current knowledge gaps and areas of ongoing research.
Collapse
Affiliation(s)
- R Ratnakumaran
- The Lung Unit, Royal Marsden NHS Foundation Trust, London, UK; Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK.
| | - F McDonald
- The Lung Unit, Royal Marsden NHS Foundation Trust, London, UK; Division of Radiotherapy and Imaging, Institute of Cancer Research, London, UK
| |
Collapse
|
14
|
Santos PMG, Li X, Gomez DR. Local Consolidative Therapy for Oligometastatic Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:3977. [PMID: 36010969 PMCID: PMC9406686 DOI: 10.3390/cancers14163977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
In the last 20 years, significant strides have been made in our understanding of the biological mechanisms driving disease pathogenesis in metastatic non-small cell lung cancer (NSCLC). Notably, the development and application of predictive biomarkers as well as refined treatment regimens in the form of chemoimmunotherapy and novel targeted agents have led to substantial improvements in survival. Parallel to these remarkable advancements in modern systemic therapy has been a growing recognition of "oligometastatic disease" as a distinct clinical entity-defined by the presence of a controlled primary tumor and ≤5 sites of metastatic disease amenable to local consolidative therapy (LAT), with surgery or stereotactic ablative body radiotherapy (SABR). To date, three randomized studies have provided clinical evidence supporting the use of LAT/SABR in the treatment of oligometastatic NSCLC. In this review, we summarize clinical evidence from these landmark studies and highlight ongoing trials evaluating the use of LAT/SABR in a variety of clinical contexts along the oligometastatic disease spectrum. We discuss important implications and caveats of the available data, including considerations surrounding patient selection and application in routine clinical practice. We conclude by offering potential avenues for further investigation in the oligometastatic disease space.
Collapse
Affiliation(s)
| | | | - Daniel R. Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
15
|
McCall NS, McGinnis HS, Janopaul-Naylor JR, Kesarwala AH, Tian S, Stokes WA, Shelton JW, Steuer CE, Carlisle JW, Leal T, Ramalingam SS, Bradley JD, Higgins KA. Impact of Radiation Dose to the Immune Cells in Unresectable or Stage III Non-Small Cell Lung Cancer in the Durvalumab Era. Radiother Oncol 2022; 174:133-140. [PMID: 35870727 DOI: 10.1016/j.radonc.2022.07.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND /PURPOSE Higher estimated radiation doses to immune cells (EDIC) have correlated with worse overall survival (OS) in patients with locally-advanced non-small cell lung cancer (NSCLC) prior to the PACIFIC trial, which established consolidative durvalumab as standard-of-care. Here, we examine the prognostic impact of EDIC in the durvalumab era. MATERIALS/METHODS This single-institution, multi-center study included patients with unresectable stage II/III NSCLC treated with chemoradiation followed by durvalumab. Associations between EDIC [analyzed continuously and categorically (≤6 Gy vs. >6 Gy)] and OS, progression-free survival (PFS), and locoregional control (LRC) were evaluated by Kaplan-Meier and Cox proportional methods. RESULTS 100 patients were included with median follow-up of 23.7 months. The EDIC >6 Gy group had a significantly greater percentage of stage IIIB/IIIC disease (76.0% vs. 32.6%; p<0.001) and larger tumor volumes (170cc vs. 42cc; p<0.001). There were no differences in early durvalumab discontinuation from toxicity (24.1% vs. 15.2%; p=0.27). Median OS was shorter among the EDIC >6 Gy group (29.6 months vs. not reached; p<0.001). On multivariate analysis, EDIC >6 Gy correlated with worse OS (HR: 4.15, 95%CI: 1.52-11.33; p=0.006), PFS (HR: 3.79; 95%CI: 1.80-8.0; p<0.001), and LRC (HR: 2.66, 95%CI: 1.15-6.18; p=0.023). Analyzed as a continuous variable, higher EDIC was associated with worse OS (HR: 1.34; 95%CI: 1.16-1.57; p<0.001), PFS (HR: 1.52; 95%CI: 1.29-1.79; p<0.001), and LRC (HR: 1.34, 95%CI: 1.13-1.60; p=0.007). CONCLUSIONS In the immunotherapy era, EDIC is an independent predictor of OS and disease control in locally advanced NSCLC, warranting investigation into techniques to reduce dose to the immune compartment.
Collapse
Affiliation(s)
- Neal S McCall
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States.
| | - Hamilton S McGinnis
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States
| | - James R Janopaul-Naylor
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States
| | - Aparna H Kesarwala
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States
| | - Sibo Tian
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States
| | - William A Stokes
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States
| | - Joseph W Shelton
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States
| | - Conor E Steuer
- Winship Cancer Institute of Emory University, Department of Hematology & Medical Oncology, United States
| | - Jennifer W Carlisle
- Winship Cancer Institute of Emory University, Department of Hematology & Medical Oncology, United States
| | - Ticiana Leal
- Winship Cancer Institute of Emory University, Department of Hematology & Medical Oncology, United States
| | - Suresh S Ramalingam
- Winship Cancer Institute of Emory University, Department of Hematology & Medical Oncology, United States
| | - Jeffrey D Bradley
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States
| | - Kristin A Higgins
- Winship Cancer Institute of Emory University, Department of Radiation Oncology, United States
| |
Collapse
|
16
|
Baker S, Mou B, Jiang W, Liu M, Bergman AM, Schellenberg D, Alexander AS, Carolan H, Atrchian S, Berrang T, Bang A, Chng N, Matthews Q, Tyldesley S, Olson RA. Predictors of early polymetastatic relapse following stereotactic ablative radiotherapy for up to 5 oligometastases: a secondary analysis of the phase II SABR-5 trial. Int J Radiat Oncol Biol Phys 2022; 114:856-861. [PMID: 35840110 DOI: 10.1016/j.ijrobp.2022.06.094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/24/2022] [Accepted: 06/26/2022] [Indexed: 10/17/2022]
Abstract
PURPOSE A subset of patients with oligometastatic cancer experience early widespread cancer dissemination and do not benefit from metastasis-directed therapy such as stereotactic ablative radiotherapy (SABR). This study aimed to identify factors associated with early polymetastatic relapse (PMR). METHODS AND MATERIALS The XXX trial was a single arm phase II study conducted at all 6 regional cancer centres across XXX. SABR for oligometastases was only offered on trial. Patients with up to 5 oligometastatic lesions (total, progressing or induced) received SABR to all lesions. Patients were 18 years of age or older, ECOG 0-2 and life expectancy ≥ 6 months. This secondary analysis evaluated factors associated with early PMR, defined as disease recurrence within 6 months of SABR which is not amenable to further local treatment. Univariable and multivariable analyses were performed using binary logistic regression. The Kaplan Meier method and log-rank tests assessed PMR-free survival and differences between risk groups, respectively. RESULTS Between November 2016 and July 2020, 381 patients underwent treatment on XXX. A total of 16% of patients experienced PMR. Worse performance status (ECOG 1-2 vs 0; HR=2.01, p=0.018), non-prostate/breast histology (HR=3.64, p<0.001) and oligoprogression (HR=3.84, p<0.001) were independent predictors for early PMR. Risk groups were identified with median PMR-free survival ranging from 5 months to not yet reached at the time of analysis. Rates of 3-year OS were 0%, 53% (95% confidence interval [CI] 48 - 58), 77% (95% CI 73 - 81) and 93% (95% CI 90 - 96) in groups 1-4, respectively (p<0.001). CONCLUSION Four distinct risk groups for early PMR are identified, which differ significantly in PMR-free survival and overall survival. The group with all three risk factors had a median PMR-free survival of 5 months and may not benefit from local ablative therapy alone. This model should be externally validated with data from other prospective trials.
Collapse
Affiliation(s)
- S Baker
- University of British Columbia; BC Cancer, Surrey.
| | - B Mou
- University of British Columbia; BC Cancer, Kelowna
| | - W Jiang
- University of British Columbia; BC Cancer, Surrey
| | - M Liu
- University of British Columbia; BC Cancer, Vancouver
| | | | | | | | - H Carolan
- University of British Columbia; BC Cancer, Vancouver
| | - S Atrchian
- University of British Columbia; BC Cancer, Kelowna
| | - T Berrang
- University of British Columbia; BC Cancer, Victoria
| | - A Bang
- University of British Columbia; BC Cancer, Victoria
| | | | | | - S Tyldesley
- University of British Columbia; BC Cancer, Vancouver
| | - R A Olson
- University of British Columbia; BC Cancer, Prince George.
| |
Collapse
|
17
|
Mentink JF, Paats MS, Dumoulin DW, Cornelissen R, Elbers JBW, Maat APWM, von der Thüsen JH, Dingemans AMC. Defining oligometastatic non-small cell lung cancer: concept versus biology, a literature review. Transl Lung Cancer Res 2021; 10:3329-3338. [PMID: 34430370 PMCID: PMC8350082 DOI: 10.21037/tlcr-21-265] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/10/2021] [Indexed: 12/25/2022]
Abstract
Objective In this review, the concept of (synchronous) oligometastatic disease in patients with non-oncogene-driven non-small cell lung cancer (NSCLC) will be placed in the context of tumor biology and metastatic growth patterns. We will also provide considerations for clinical practice and future perspectives, which will ultimately lead to better patient selection and oligometastatic disease outcome. Background The treatment landscape of metastasized NSCLC has moved from "one-size fits all" to a personalized approach. Prognosis has traditionally been poor but new treatment options, such as immunotherapy and targeted therapy, brighten future perspectives. Another emerging development is the recognition of patients with so-called "oligometastatic" state of disease. Oligometastatic disease has been recognized as a distinct clinical presentation in which the tumor is stated to be early in its evolution of metastatic potential. It is suggested that this stage of disease has an indolent course, comes with a better prognosis and therefore could be considered for radical multimodality treatment. Methods Narrative overview of the literature synthesizing the findings of literature retrieved from searches of computerized databases, hand searches, and authoritative texts. Conclusions Oligometastatic NSCLC is a broad spectrum disease, with a variable prognosis. Although the biology and behavior of "intermediate state" of metastatic disease are not fully understood, there is evidence that a subgroup of patients can benefit from local radical treatment when integrated into a multimodality regime. The consensus definition of oligometastatic NSCLC, including accurate staging, may help to uniform future trials. The preferable treatment strategy seems to sequential systemic treatment with subsequent local radical treatment in patients with a partial response or stable disease. Prognostic factors such as N-stage, number and site of distant metastases, tumor volume, performance status, age, and tumor type should be considered. The local radical treatment strategy has to be discussed in a multidisciplinary team meeting, taking into account patient characteristics and invasiveness of the procedure. However, many aspects remain to be explored and learned about the cancer biology and characteristics of intermediate state tumors.
Collapse
Affiliation(s)
- Jill F Mentink
- Department of Respiratory Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Marthe S Paats
- Department of Respiratory Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Daphne W Dumoulin
- Department of Respiratory Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robin Cornelissen
- Department of Respiratory Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Joris B W Elbers
- Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alexander P W M Maat
- Department of Thoracic Surgery, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Jan H von der Thüsen
- Department of Pathology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Anne-Marie C Dingemans
- Department of Respiratory Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
18
|
Cortinovis D, Malapelle U, Pagni F, Russo A, Banna GL, Sala E, Rolfo C. Diagnostic and prognostic biomarkers in oligometastatic non-small cell lung cancer: a literature review. Transl Lung Cancer Res 2021; 10:3385-3400. [PMID: 34430374 PMCID: PMC8350105 DOI: 10.21037/tlcr-20-1067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 06/15/2021] [Indexed: 12/25/2022]
Abstract
Objective This review aims to summarize the possibilities of recently discovered molecular diagnostic techniques in lung cancer, by evaluating their impact on diagnosis, monitoring, and prognosis in oligometastatic disease. Background Oligometastatic non-small cell lung cancer (OM-NSCLC) is currently defined based on morphological rather than biological features. Major advances in the detection of molecular biomarkers in cell-free tumoral DNA and the models of oncogene addiction make as feasible an early diagnosis and guide the therapeutic decision-making progress to improve the prognosis. Methods This narrative review EXAMINES current approaches of diagnosis, monitoring, and prognosis of OM-NSCLC and describes the fast-evolving therapeutic scenario of this disease. We provide an overview of the powerful capability of liquid biopsy techniques applied to blood and fluid and we focus on the technological advancement of circulant biomolecular factors in OM NSCLC pathology, starting from apparently simpler models such as oncogene addicted tumors to evaluate themselves in the light of treatment with immune-checkpoint inhibitors. Conclusions A better understanding of spatial and temporal evolution of oligometastatic diseases would contribute to a more accurate diagnosis and tailored treatment. Data from prospective clinical trials in the early stage of disease, coupled with knowledge of genetic characteristics of lung tumors, are warranted. These efforts would lead to improving the possibility to eradicate the residual disease in these low burden tumoral settings, thus enhancing the definitive cure perspectives.
Collapse
Affiliation(s)
- Diego Cortinovis
- SC Medical Oncology/SS Lung Unit, ASST-Monza San Gerardo Hospital, Monza, Italy
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Fabio Pagni
- Department of Anatomic Pathology, University of Milano-Bicocca, Milan, Italy
| | | | - Giuseppe Luigi Banna
- Department of Oncology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
| | - Elisa Sala
- SC Medical Oncology/SS Lung Unit, ASST-Monza San Gerardo Hospital, Monza, Italy
| | - Christian Rolfo
- Marlene and Stewart Greenbaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
19
|
Tjong MC, Louie AV, Iyengar P, Solomon BJ, Palma DA, Siva S. Local ablative therapies in oligometastatic NSCLC-upfront or outback?-a narrative review. Transl Lung Cancer Res 2021; 10:3446-3456. [PMID: 34430379 PMCID: PMC8350079 DOI: 10.21037/tlcr-20-994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Patients with oligometastatic (OM) non-small cell lung cancer (NSCLC) have favorable outcomes compared to patients presenting with diffuse metastatic disease. Recent randomized trials have demonstrated safety and efficacy signals for local ablative therapies with radiotherapy, surgery, or radiofrequency ablation for OM-NSCLC patients alongside systemic therapies. However, it remains unclear whether local ablative therapy (LAT) should be offered either upfront preceding systemic therapies or following initial systemic therapies as local consolidative therapy (LCT). Establishing optimal timing of RT and systemic therapy combinations is essential to maximize efficacy while maintaining safety. Most published randomized trial evidence surrounding the benefits of LAT and systemic therapies were generated from OM-NSCLC patients receiving cytotoxic chemotherapy agents. With increasing use of novel agents such as targeted therapies (i.e., tyrosine kinase inhibitors) and immune checkpoint inhibitors in management of metastatic NSCLC patients, LAT timing may need to be modulated based on the use of specific agents. This narrative review will discuss the current evidence on either upfront LAT or LCT for OM-NSCLC based on published trials and cohort studies. We briefly explored the possible biological mechanisms of the potential clinical advantages of either approach. This review also summarized the ongoing trials incorporating both upfront LAT and LCT, and considerations for future LAT strategies.
Collapse
Affiliation(s)
- Michael C Tjong
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Alexander V Louie
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Puneeth Iyengar
- Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center at the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin J Solomon
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David A Palma
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Shankar Siva
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
20
|
Rashdan S, Iyengar P, Minna JD, Gerber DE. Narrative review: molecular and genetic profiling of oligometastatic non-small cell lung cancer. Transl Lung Cancer Res 2021; 10:3351-3368. [PMID: 34430372 PMCID: PMC8350108 DOI: 10.21037/tlcr-21-448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/28/2021] [Indexed: 11/30/2022]
Abstract
Objective The objectives of this review are to discuss: the definition, clinical and biologic features of oligometastatic non-small cell lung cancer (NSCLC), as well as the concept of treating oligoprogression in oligometastatic NSCLC. Background A substantial proportion of patients diagnosed with lung cancer present with metastatic disease, and a large portion of patients who present with localized disease later develop metastases. Oligometastatic NSCLC is defined as an intermediate state between localized and widespread metastatic disease, where there may be a role for curative localized therapy approach by treating the primary tumor and all metastases with radiotherapy or surgery. Despite the increasing application of this approach in patients with lung cancer, the identification of patients who might benefit from this approach is yet to be well characterized. Methods After a systematic review of the literature, a PubMed search was performed using the English language and the key terms: oligometastatic, non-small cell lung cancer (NSCLC), localized consolidative treatment (LCT), biomarkers, biologic features, clinical features. Over 500 articles were retrieved between 1889–2021. A total of 178 papers discussing the definition, clinical and biologic factors leading to oligometastatic NSCLC were reviewed and included in the discussion of this paper. Conclusions Oligometastatic NSCLC is a unique entity. Identifying patients who have oligometastatic NSCLC accurately using a combination of clinical and biologic features and treating them with localized consolidative approach appropriately results in improvement of outcome. Further understanding of the molecular mechanisms driving the formation of oligometastatic NSCLC is an important area of focus for future studies.
Collapse
Affiliation(s)
- Sawsan Rashdan
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Puneeth Iyengar
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John D Minna
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Hamon Center for Therapeutic Oncology Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - David E Gerber
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Division of Hematology-Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.,Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
21
|
Öjlert ÅK, Nebdal D, Snapkov I, Olsen V, Kidman J, Greiff V, Chee J, Helland Å. Dynamic changes in the T cell receptor repertoire during treatment with radiotherapy combined with an immune checkpoint inhibitor. Mol Oncol 2021; 15:2958-2968. [PMID: 34402187 PMCID: PMC8564644 DOI: 10.1002/1878-0261.13082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/26/2021] [Accepted: 08/13/2021] [Indexed: 02/01/2023] Open
Abstract
Previous studies have indicated a synergistic effect between radiotherapy and immunotherapy. A better understanding of how this combination affects the immune system can help to clarify its role in the treatment of metastatic cancer. We performed T cell receptor (TCR) sequencing on 46 sequentially collected samples from 15 patients with stage IV non-small cell lung cancer, receiving stereotactic body radiotherapy combined with a programmed cell death ligand-1 (PD-L1) inhibitor. TCR repertoire diversity was assessed using Rényi diversity curves and the Shannon diversity index. TCR clones were tracked over time. We found decreasing or stable diversity in the best responders, and an increase in diversity at progression in patients with an initial response. Expansion of TCR clones was more often seen in responders. Several patients also developed new clones of high abundance. This seemed to be more related to radiotherapy than to immune checkpoint blockade. In summary, we observed similar dynamics in the TCR repertoire as have been described with immunotherapy alone. In addition, the occurrence of new unique clones of high abundance after radiotherapy may indicate that radiotherapy functions as a personalized cancer vaccine.
Collapse
Affiliation(s)
- Åsa Kristina Öjlert
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Norway
| | - Daniel Nebdal
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Norway
| | - Igor Snapkov
- Department of Immunology, University of Oslo, Norway
| | - Vibeke Olsen
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Norway
| | - Joel Kidman
- National Centre for Asbestos Related Diseases, Institute of Respiratory Health, University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Victor Greiff
- Department of Immunology, University of Oslo, Norway
| | - Jonathan Chee
- National Centre for Asbestos Related Diseases, Institute of Respiratory Health, University of Western Australia, Perth, WA, Australia.,School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Åslaug Helland
- Department of Cancer Genetics, Institute for Cancer Research, Oslo University Hospital, Norway.,Department of Clinical Medicine, University of Oslo, Norway.,Department of Oncology, Oslo University Hospital, Norway
| |
Collapse
|
22
|
Abstract
Oligometastatic non-small cell lung cancer (NSCLC) has been recognized as a unique, yet common, clinical entity over the past 2-3 decades. Numerous retrospective series and early phase single arm trials have demonstrated the efficacy and safety of aggressive approaches in select patients. In addition, results from recent randomized trials have demonstrated potential benefits of radiation therapy and surgery as a form of local ablative therapy (LAT) in prolonging disease-free survival and overall survival. However, more questions remain given the limitation of existing clinical evidence and the lack of well validated biomarkers. Advances in late stage randomized trials with biological correlatives may further clarify the role of LAT to assist with clinical decision making in treating patients with oligometastatic NSCLC. In this review, we discuss the clinical and biologic data surrounding patient selection for LAT in oligometastatic NSCLC, as well as future directions in prospective and translational studies.
Collapse
Affiliation(s)
- Xingzhe Li
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Daniel Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Puneeth Iyengar
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX.
| |
Collapse
|
23
|
Morris Z, Dohopolski M, Rahimi A, Timmerman R. Future Directions in the Use of SAbR for the Treatment of Oligometastatic Cancers. Semin Radiat Oncol 2021; 31:253-262. [PMID: 34090653 DOI: 10.1016/j.semradonc.2021.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The role of local therapy as a sole therapy or part of a combined approach in treating metastatic cancer continues to evolve. The most obvious requirements for prudent implementation of local therapies like stereotactic ablative radiotherapy (SAbR) to become mainstream in treating oligometastases are (1) Clear guidance as to what particular patients might benefit, and (2) Confirmation of improvements in outcome after such treatments via clinical trials. These future directional requirements are non-negotiable. However, innovation and research offer many more opportunities to understand and improve therapy. Identifying candidates and personalizing their therapy can be afforded via proteomic, genomic and epigenomic characterization techniques. Such molecular profiling along with liquid biopsy opportunities will both help select best therapies and facilitate ongoing monitoring of response. Technologies both to find targets and help deliver less-toxic therapy continue to improve and will be available in the marketplace. These technologies include molecular-based imaging (eg, PET-PSMA), FLASH ultra-high dose rate platforms, Grid therapy, PULSAR adaptive dosing, and MRI/PET guided linear accelerators. Importantly, a treatment approach beyond oligometastastic could evolve including a rationale for using SAbR in the oligoprogressive, oligononresponsive, oligobulky and oligolethal settings as well as expansion beyond oligo- toward even plurimetastastic disease. In any case, lessons learned and experiences required by the implementation of using SAbR in oligometastatic cancer will be revisited.
Collapse
Affiliation(s)
- Zachary Morris
- Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Michael Dohopolski
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Asal Rahimi
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Robert Timmerman
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX; Department of Human Oncology, University of Wisconsin School of Medicine and Public Health, Madison, WI.
| |
Collapse
|
24
|
Remon J, Menis J, Levy A, De Ruysscher DKM, Hendriks LEL. How to optimize the incorporation of immunotherapy in trials for oligometastatic non-small cell lung cancer: a narrative review. Transl Lung Cancer Res 2021; 10:3486-3502. [PMID: 34430382 PMCID: PMC8350101 DOI: 10.21037/tlcr-20-1065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 03/24/2021] [Indexed: 12/23/2022]
Abstract
Patients with oligometastatic disease (OMD) non-small cell lung cancer (NSCLC) are considered as a subgroup of metastatic NSCLC that can obtain long-term survival or even cure. Oligometastatic refers to a state of a limited number of metastases in a limited number of organs. In clinical guidelines it is stated that patients with oligometastatic NSCLC can benefit from the addition of local radical therapy (LRT) to systemic therapy. With the introduction of minimally invasive surgery, advances in interventional radiology and stereotactic radiotherapy (SRT), LRT is becoming feasible for more and more patients. Furthermore, the introduction of immune checkpoint inhibitors (ICI) in the treatment landscape of advanced NSCLC has improved the survival of these patients. Importantly, the use of ICI in combination with LRT is also of interest in the subgroup of NSCLC patients with OMD. For example, it has been suggested that SRT may synergize with ICI as several preclinical studies reported an increased tumor antigen release, improved antigen presentation, and T-cell infiltration in irradiated tumors. In this narrative review, we describe the current evidence of immunotherapy treatment in OMD NSCLC, with a focus on future trial design and problems that need to be addressed.
Collapse
Affiliation(s)
- Jordi Remon
- Department of Medical Oncology, Centro Integral Oncológico Clara Campal (HM CIOCC), Hospital HM Delfos, HM Hospitales, Barcelona, Spain
| | - Jessica Menis
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy; Medical Oncology Department, Istituto Oncologico Veneto IRCCS, Padova, Italy
| | - Antonin Levy
- Department of Radiation Oncology, Gustave Roussy, Institut d'Oncologie Thoracique (IOT), Université Paris-Saclay, F-94805, Villejuif, France.,INSERM U1030, Molecular Radiotherapy, Gustave Roussy, Université Paris-Saclay, F-94805, Villejuif, France.,Université Paris-Saclay, F-94270, Le Kremlin-Bicêtre, France
| | - Dirk K M De Ruysscher
- Department of Radiation Oncology (MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Lizza E L Hendriks
- Department of Pulmonary Diseases GROW - School for Oncology and Developmental Biology, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|
25
|
Oligometastatic Cancer: Key Concepts and Research Opportunities for 2021 and Beyond. Cancers (Basel) 2021; 13:cancers13112518. [PMID: 34063904 PMCID: PMC8196648 DOI: 10.3390/cancers13112518] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/28/2022] Open
Abstract
Traditionally, clinicians distinguished three forms of cancer outgrowth [...].
Collapse
|
26
|
Circulating tumor DNA in lung cancer: real-time monitoring of disease evolution and treatment response. Chin Med J (Engl) 2021; 133:2476-2485. [PMID: 32960843 PMCID: PMC7575184 DOI: 10.1097/cm9.0000000000001097] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lung cancer is one of the leading causes of all cancer-related deaths. Circulating tumor DNA (ctDNA) is released from apoptotic and necrotic tumor cells. Several sensitive techniques have been invented and adapted to quantify ctDNA genomic alterations. Applications of ctDNA in lung cancer include early diagnosis and detection, prognosis prediction, detecting mutations and structural alterations, minimal residual disease, tumor mutational burden, and tumor evolution tracking. Compared to surgical biopsy and radiographic imaging, the advantages of ctDNA are that it is a non-invasive procedure, allows real-time monitoring, and has relatively high sensitivity and specificity. Given the massive research on non-small cell lung cancer, attention should be paid to small cell lung cancer.
Collapse
|
27
|
Radiation for Oligometastatic Lung Cancer in the Era of Immunotherapy: What Do We (Need to) Know? Cancers (Basel) 2021; 13:cancers13092132. [PMID: 33925139 PMCID: PMC8125691 DOI: 10.3390/cancers13092132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 04/21/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary The historical standard treatment of metastatic non-small cell lung cancer (NSCLC) consisted of palliative chemotherapy, with limited influence on survival. With the introduction of immuno- and targeted therapy, the prognosis improved largely. A subset of NSCLC patients with limited metastatic disease, called oligometastatic, might obtain long-term survival by adding a local ablative treatment on all visible disease sites, in addition to the standard systemic treatment. The evidence for this combined treatment is still scarce and comes mainly from the pre-immunotherapy era. As radiotherapy might stimulate the immune system making immunotherapy more efficient, here we review the evidence before and in the era of immunotherapy, and discuss the challenges and prospects of the combined treatment. Abstract Oligometastatic cancer is recognized as a separate entity within the spectrum of metastatic disease. It was suggested that patients with oligometastatic disease can obtain long-term survival by giving local ablative therapy (LAT) to all visible disease locations. However, the true extent from which metastatic cancer should be called “oligometastatic” is unknown, although a consensus definition for oligometastatic disease is proposed by research organizations, such as the EORTC (maximum of five metastases in three organs). Different states of the oligometastatic disease are defined, such as synchronous vs. metachronous, oligopersistent vs. oligoprogressive disease. All clinical trials including patients with non-small cell lung cancer (NSCLC) are small and most are not randomized. Two small randomized phase II trials on synchronous disease showed an improvement in progression free survival, with the addition of LAT, and one also demonstrated an overall survival benefit. Immune checkpoint inhibitors (ICI) were not part of the treatment in these trials, while ICI significantly improved long-term outcomes of patients with metastatic NSCLC. Radiotherapy might improve the prognosis of patients treated with ICI because of its immunostimulatory effects and the possibility to eradicate metastatic deposits. Here, we summarize the data for adding ablative radiotherapy to the treatment of oligometastatic NSCLC, especially in the ICI era, and discuss the challenges of combined treatment.
Collapse
|
28
|
Prediction of Microscopic Metastases in Patients with Metachronous Oligo-Metastases after Curative Treatment of Non-Small Cell Lung Cancer: A Microsimulation Study. Cancers (Basel) 2021; 13:cancers13081884. [PMID: 33919930 PMCID: PMC8070977 DOI: 10.3390/cancers13081884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/02/2021] [Accepted: 04/05/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Many patients with metachronous oligo-metastases in non-small cell lung cancer have their recurrences surgically removed, although the 5-year recurrence-free survival of this group is 16%. This does not provide any benefit for patients with additional undetected metastases. Therefore, we aim to find patient characteristics that are predictive for having additional undetected microscopic metastases. Based on a theoretical approach, we identified the size and number of detected oligo-metastases, as well as the presence of symptoms that are the most important risk predictors. Abstract Metachronous oligo-metastatic disease is variably defined as one to five metastases detected after a disease-free interval and treatment of the primary tumour with curative intent. Oligo-metastases in non-small cell lung cancer (NSCLC) are often treated with curative intent. However additional metastases are often detected later in time, and the 5-year survival is low. Burdensome surgical treatment in patients with undetected metastases may be avoided if patients with a high versus low risk of undetected metastases can be separated. Because there is no clinical data on undetected metastases available, a microsimulation model of the development and detection of metastases in 100,000 hypothetical stage I NSCLC patients with a controlled primary tumour was constructed. The model uses data from the literature as well as patient-level data. Calibration was used for the unobservable model parameters. Metastases can be detected by a scheduled scan, or an unplanned scan when the patient develops symptoms. The observable information at time of detection is used to identify subgroups of patients with a different risk of undetectable metastases. We identified the size and number of detected oligo-metastases, as well as the presence of symptoms that are the most important risk predictors. Based on these predictors, patients could be divided into a low-risk and a high-risk group, having a model-based predicted probability of 8.1% and 89.3% to have undetected metastases, respectively. Currently, the model is based on a synthesis of the literature data and individual patient-level data that were not collected for the purpose of this study. Optimization and validation of the model is necessary to allow clinical usability. We describe the type of data that needs to be collected to update our model, as well as the design of such a validation study.
Collapse
|
29
|
Almeldin DS, Malhotra J, Patel M, Aisner J, Jabbour SK. Local treatment of synchronous oligometastatic non-small cell lung cancer (NSCLC)-current consensus and future perspectives. J Thorac Dis 2020; 12:7069-7075. [PMID: 33282413 PMCID: PMC7711375 DOI: 10.21037/jtd-20-1485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Doaa Said Almeldin
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA.,Clinical Oncology Department, Cairo University, Cairo, Egypt
| | - Jyoti Malhotra
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Malini Patel
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Joseph Aisner
- Division of Medical Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| | - Salma K Jabbour
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, USA
| |
Collapse
|
30
|
Metastasis-directed therapy for oligometastasis and beyond. Br J Cancer 2020; 124:136-141. [PMID: 33204024 PMCID: PMC7782796 DOI: 10.1038/s41416-020-01128-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/19/2020] [Accepted: 09/22/2020] [Indexed: 12/25/2022] Open
Abstract
Metastasis-directed therapy (MDT)-local therapy that is intended to eradicate specific metastatic lesions-has hitherto been used with varying degrees of clinical efficacy and acceptance as a meaningful therapy for metastatic disease. Over the past 25 years, however, the momentum for using MDT to manage patients with metastatic solid tumours has increased, driven by several factors. Among these factors is the recognition that patients with limited metastatic burden could potentially derive survival benefits from MDT. Furthermore, although current systemic therapies are increasingly effective, they are infrequently curative. In addition, technological advances have broadened the spectrum of metastatic lesions that can be treated with ablative intent. Here we aim to briefly review the status of evidence for the clinical benefit of MDT based on current data mainly from trials in patients with oligometastatic disease, discuss the myriad of clinical states that might fall under and beyond the definition of oligometastasis, review technological advances in MDT and their applications beyond oligometastasis, and discuss the need for the continued co-evolution of MDT and systemic therapy as we seek to understand which patients with metastatic cancer can achieve durable remission and how to optimally manage those who cannot.
Collapse
|
31
|
Walls GM, McConnell L, McAleese J, Murray P, Lynch TB, Savage K, Hanna GG, de Castro DG. Early circulating tumour DNA kinetics measured by ultra-deep next-generation sequencing during radical radiotherapy for non-small cell lung cancer: a feasibility study. Radiat Oncol 2020; 15:132. [PMID: 32471446 PMCID: PMC7260736 DOI: 10.1186/s13014-020-01583-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The evaluation of circulating tumour DNA (ctDNA) from clinical blood samples, liquid biopsy, offers several diagnostic advantages compared with traditional tissue biopsy, such as shorter processing time, reduced patient risk and the opportunity to assess tumour heterogeneity. The historically poor sensitivity of ctDNA testing, has restricted its integration into routine clinical practice for non-metastatic disease. The early kinetics of ctDNA during radical radiotherapy for localised NSCLC have not been described with ultra-deep next generation sequencing previously. MATERIALS AND METHODS Patients with CT/PET-staged locally advanced, NSCLC prospectively consented to undergo serial venepuncture during the first week of radical radiotherapy alone. All patients received 55Gy in 20 fractions. Plasma samples were processed using the commercially available Roche AVENIO Expanded kit (Roche Sequencing Solutions, Pleasanton, CA, US) which targets 77 genes. RESULTS Tumour-specific mutations were found in all patients (1 in 3 patients; 2 in 1 patient, and 3 in 1 patient). The variant allele frequency of these mutations ranged from 0.05-3.35%. In 2 patients there was a transient increase in ctDNA levels at the 72 h timepoint compared to baseline. In all patients there was a non-significant decrease in ctDNA levels at the 7-day timepoint in comparison to baseline (p = 0.4627). CONCLUSION This study demonstrates the feasibility of applying ctDNA-optimised NGS protocols through specified time-points in a small homogenous cohort of patients with localised lung cancer treated with radiotherapy. Studies are required to assess ctDNA kinetics as a predictive biomarker in radiotherapy. Priming tumours for liquid biopsy using radiation warrants further exploration.
Collapse
Affiliation(s)
- G. M. Walls
- Centre for Cancer Research & Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE Northern Ireland
- Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, 51 Lisburn Road, Belfast, BT9 7AB Northern Ireland
| | - L. McConnell
- Centre for Cancer Research & Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE Northern Ireland
| | - J. McAleese
- Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, 51 Lisburn Road, Belfast, BT9 7AB Northern Ireland
| | - P. Murray
- Northern Ireland Biobank, Health Sciences Building, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE Northern Ireland
| | - T. B. Lynch
- Cancer Centre Belfast City Hospital, Belfast Health & Social Care Trust, 51 Lisburn Road, Belfast, BT9 7AB Northern Ireland
| | - K. Savage
- Centre for Cancer Research & Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE Northern Ireland
| | - G. G. Hanna
- Sir Peter MacCallum Department of Oncology, University of Melbourne, 305 Grattan St, Melbourne, VIC 3000 Australia
| | - D. Gonzalez de Castro
- Centre for Cancer Research & Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast, BT9 7AE Northern Ireland
| |
Collapse
|