1
|
Chakraborty N, Dimitrov G, Kanan S, Lawrence A, Moyler C, Gautam A, Fatanmi OO, Wise SY, Carpenter AD, Hammamieh R, Singh VK. Cross-species conserved miRNA as biomarker of radiation injury over a wide dose range using nonhuman primate model. PLoS One 2024; 19:e0311379. [PMID: 39570918 PMCID: PMC11581275 DOI: 10.1371/journal.pone.0311379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 09/18/2024] [Indexed: 11/24/2024] Open
Abstract
Multiple accidents in nuclear power plants and the growing concerns about the misuse of radiation exposure in warfare have called for the rapid determination of absorbed radiation doses (RDs). The latest findings about circulating microRNA (miRNAs) using several animal models revealed considerable promises, although translating this knowledge to clinics remains a major challenge. To address this issue, we randomly divided 36 nonhuman primates (NHPs) into six groups and exposed these groups to six different radiation doses ranging from 6.0-8.5 Gy in increments of 0.5 Gy. Serum samples were collected pre-irradiation as well as three post-irradiation timepoints, namely 1, 2 and 6 days post-total body irradiation (TBI). Generated from a deep sequencing platform, the miRNA reads were multi-variate analyzed to find the differentially expressed putative biomarkers that were linked to RDs, time since irradiation (TSI) and sex. To increase these biomarkers' translational potential, we aligned the NHP-miRNAs' sequences and their functional responses to humans following an in-silico routine. Those miRNAs, which were sequentially and functionally conserved between NHPs and humans, were down selected for further analysis. A linear regression model identified miRNA markers that were consistently regulated with increasing RD but independent TSI. Likewise, a set of potential TSI-markers were identified that consistently shifted with increasing TSI, but independent of RD. Additional molecular analysis found a considerable gender bias in the low-ranges of doses when the risk to radiation-induced fatality was low. Bionetworks linked to cell quantity and cell invasion were significantly altered between the survivors and decedents. Using these biomarkers, an assay could be developed to retrospectively determine the RD and TSI with high translational potential. Ultimately, this knowledge can lead to precise and personalized medicine.
Collapse
Affiliation(s)
- Nabarun Chakraborty
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - George Dimitrov
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Vysnova, Inc., Landover, MD, United States of America
| | - Swapna Kanan
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Vysnova, Inc., Landover, MD, United States of America
| | - Alexander Lawrence
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Oak Ridge Institute for Science and Education (ORISE), MD, United States of America
| | - Candance Moyler
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Vysnova, Inc., Landover, MD, United States of America
| | - Aarti Gautam
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Oluseyi O. Fatanmi
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Stephen Y. Wise
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Alana D. Carpenter
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| | - Rasha Hammamieh
- Medical Readiness Systems Biology, CMPN, Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Vijay K. Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, United States of America
| |
Collapse
|
2
|
Nguyen LTP, Kim Y, Hur SS, Byeon HK, Ban MJ, Shim JW, Park JH, Hwang Y. PIEZO1 activation may serve as an early tissue biomarker for the prediction of irradiation-induced salivary gland dysfunction. Biochem Biophys Res Commun 2024; 727:150291. [PMID: 38959734 DOI: 10.1016/j.bbrc.2024.150291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
Irradiation (IR)-induced xerostomia is the most common side effect of radiation therapy in patients with head and neck cancer (HNC). Xerostomia diagnosis is mainly based on the patient's medical history and symptoms. Currently, no direct biomarkers are available for the early prediction of IR-induced xerostomia. Here, we identified PIEZO1 as a novel predictive tissue biomarker for xerostomia. Our data demonstrate that PIEZO1 is significantly upregulated at the gene and protein levels during IR-induced salivary gland (SG) hypofunction. Notably, PIEZO1 upregulation coincided with that of inflammatory (F4/80) and fibrotic markers (fibronectin and collagen fibers accumulation). These findings suggest that PIEZO1 upregulation in SG tissue may serve as a novel predictive marker for IR-induced xerostomia.
Collapse
Affiliation(s)
- Lan Thi Phuong Nguyen
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Chungnam-do, Republic of Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Yunhye Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Chungnam-do, Republic of Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, 31538, Republic of Korea
| | - Sung Sik Hur
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Chungnam-do, Republic of Korea
| | - Hyung Kwon Byeon
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Seoul Hospital, Seoul, 04401, Republic of Korea
| | - Myung Jin Ban
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan-si, 31151, Republic of Korea
| | - Jae-Won Shim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Chungnam-do, Republic of Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
| | - Jae Hong Park
- Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Soonchunhyang University Cheonan Hospital, Cheonan-si, 31151, Republic of Korea.
| | - Yongsung Hwang
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Chungnam-do, Republic of Korea; Department of Integrated Biomedical Science, Soonchunhyang University, Asan-si, 31538, Republic of Korea.
| |
Collapse
|
3
|
Mikulski D, Kościelny K, Dróżdż I, Nowicki M, Misiewicz M, Perdas E, Strzałka P, Wierzbowska A, Fendler W. High Serum miR-361-3p Predicts Early Postdischarge Infections after Autologous Stem Cell Transplantation. Infect Chemother 2024; 56:339-350. [PMID: 39098001 PMCID: PMC11458496 DOI: 10.3947/ic.2024.0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/24/2024] [Indexed: 08/06/2024] Open
Abstract
BACKGROUND Autologous hematopoietic stem cell transplantation (AHSCT) is currently the backbone of the treatment of multiple myeloma (MM) and relapsed and refractory lymphomas. Notably, infections contribute to over 25% of fatalities among AHSCT recipients within the initial 100 days following the procedure. In this study, we aimed to evaluate three selected miRNAs: hsa-miR-155-5p, hsa-miR-320c, and hsa-miR-361-3p, in identifying AHSCT recipients at high risk of infectious events up to 100 days post-transplantation after discharge. MATERIALS AND METHODS The study group consisted of 58 patients (43 with MM, 15 with lymphoma) treated with AHSCT. Blood samples were collected from all patients at the same time point: on day +14 after transplantation. RESULTS Fifteen patients (25.9%) experienced infectious complications after post-transplant discharge within the initial +100 days post-transplantation. The median time to infection onset was 44 days (interquartile range, 25-78). Four patients required hospitalization due to severe infection. High expression of hsa-miR-361-3p (fold change [FC], 1.79; P=0.0139) in the patients experiencing infectious complications and overexpression of hsa-miR-320c (FC, 2.14; P<0.0001) in patients requiring hospitalization were observed. In the multivariate model, both lymphoma diagnosis (odds ratio [OR], 6.88; 95% confidence interval [CI], 1.55-30.56; P=0.0112) and high expression of hsa-miR-361-3p (OR, 3.00; 95% CI, 1.40-6.41; P=0.0047) were independent factors associated with post-discharge infectious complications occurrence. Our model in 10-fold cross-validation preserved its diagnostic potential with an area under the receiver operating characteristic curve of 0.78 (95% CI, 0.64-0.92). CONCLUSION Elevated serum hsa-miR-361-3p emerges as a promising biomarker for identifying patients at risk of infection during the early post-discharge period, potentially offering optimization of the prophylactic use of antimicrobial agents tailored to the specific risk profile of each AHSCT recipient.
Collapse
Affiliation(s)
- Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
- Department of Hematooncology, Provincial Multi-Specialized Oncology and Trauma Center, Lodz, Poland
| | - Kacper Kościelny
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Mateusz Nowicki
- Department of Hematology and Transplantology, Provincial Multi-Specialized Oncology and Trauma Center, Lodz, Poland
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | | | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Piotr Strzałka
- Department of Hematology and Transplantology, Provincial Multi-Specialized Oncology and Trauma Center, Lodz, Poland
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology and Transplantology, Provincial Multi-Specialized Oncology and Trauma Center, Lodz, Poland
- Department of Hematology, Medical University of Lodz, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
4
|
Mikulski D, Nowicki M, Dróżdż I, Perdas E, Strzałka P, Kościelny K, Misiewicz M, Stawiski K, Wierzbowska A, Fendler W. MicroRNAs predict early complications of autologous hematopoietic stem cell transplantation. Biomark Res 2024; 12:42. [PMID: 38650024 PMCID: PMC11036737 DOI: 10.1186/s40364-024-00585-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 03/28/2024] [Indexed: 04/25/2024] Open
Abstract
Autologous hematopoietic stem cell transplantation (AHSCT) remains the most prevalent type of stem cell transplantation. In our study, we investigated the changes in circulating miRNAs in AHSCT recipients and their potential to predict early procedure-related complications. We collected serum samples from 77 patients, including 54 with multiple myeloma, at four key time points: before AHSCT, on the day of transplantation (day 0), and at days + 7 and + 14 post-transplantation. Through serum miRNA-seq analysis, we identified altered expression patterns and miRNAs associated with the AHSCT procedure. Validation using qPCR confirmed deviations in the levels of miRNAs at the beginning of the procedure in patients who subsequently developed bacteremia: hsa-miR-223-3p and hsa-miR-15b-5p exhibited decreased expression, while hsa-miR-126-5p had increased level. Then, a neural network model was constructed to use miRNA levels for the prediction of bacteremia. The model achieved an accuracy of 93.33% (95%CI: 68.05-99.83%), with a sensitivity of 100% (95%CI: 67.81-100.00%) and specificity of 90.91% (95%CI: 58.72-99.77%) in predicting bacteremia with mean of 6.5 ± 3.2 days before occurrence. In addition, we showed unique patterns of miRNA expression in patients experiencing platelet engraftment delay which involved the downregulation of hsa-let-7f-5p and upregulation of hsa-miR-96-5p; and neutrophil engraftment delay which was associated with decreased levels of hsa-miR-125a-5p and hsa-miR-15b-5p. Our findings highlight the significant alterations in serum miRNA levels during AHSCT and suggest the clinical utility of miRNA expression patterns as potential biomarkers that could be harnessed to improve patient outcomes, particularly by predicting the risk of bacteremia during AHSCT.
Collapse
Affiliation(s)
- Damian Mikulski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Mateusz Nowicki
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hematology and Transplantology, Provincial Multi-Specialized Oncology and Trauma Center, Lodz, Poland
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Lodz, Lodz, Poland
| | - Ewelina Perdas
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Piotr Strzałka
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hematology and Transplantology, Provincial Multi-Specialized Oncology and Trauma Center, Lodz, Poland
| | - Kacper Kościelny
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | | | - Konrad Stawiski
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Wierzbowska
- Department of Hematology, Medical University of Lodz, Lodz, Poland
- Department of Hematology and Transplantology, Provincial Multi-Specialized Oncology and Trauma Center, Lodz, Poland
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Lodz, Lodz, Poland.
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, USA.
| |
Collapse
|
5
|
Pordel S, Khorrami M, Saadatpour F, Rezaee D, Cho WC, Jahani S, Aghaei-Zarch SM, Hashemi E, Najafi S. The role of microRNA-185 in the pathogenesis of human diseases: A focus on cancer. Pathol Res Pract 2023; 249:154729. [PMID: 37639952 DOI: 10.1016/j.prp.2023.154729] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/29/2023] [Indexed: 08/31/2023]
Abstract
MicroRNAs (miRNAs) are a widely-studied class of non-coding RNAs characterized by their short length (18-25 nucleotides). The precise functions of miRNAs are not well-elucidated; however, an increasing number of studies suggest their involvement in various physiologic processes and deregulation in pathologic conditions. miRNA-185 (miR-185) is among the mostly-studied miRNAs in human diseases, which is found to play putative roles in conditions like metabolic disorders, asthma, frailty, schizophrenia, and hepatitis. Notably, many cancer studies report the downregulation of miR-185 in cell lines, tumor tissues, and plasma specimens of patients, while it demonstrates a suppressing role on the malignant properties of cancer cells in vitro and in vivo. Accordingly, miR-185 can be considered a tumor suppressor miRNA in human malignancies, while a few studies also report inconsistent findings. Being suggested as a prognostic/diagnostic biomarker, mi-185 is also found to offer clinical potentials, particularly for early diagnosis and prediction of the prognosis of cancer patients. In this review, we have outlined the studies that have evaluated the functions and clinical significance of miR-185 in different human diseases with a particular focus on cancer.
Collapse
Affiliation(s)
- Safoora Pordel
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Immunology and Allergy, The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Motahare Khorrami
- Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemeh Saadatpour
- Pharmaceutical Biotechnology Lab, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, 30 Gascoigne Road, Hong Kong, China
| | | | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Hashemi
- Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Aryankalayil M, Bylicky MA, Chopra S, Dalo J, Scott K, Ueda Y, Coleman CN. Biomarkers for Biodosimetry and Their Role in Predicting Radiation Injury. Cytogenet Genome Res 2023; 163:103-109. [PMID: 37285811 PMCID: PMC10946629 DOI: 10.1159/000531444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 06/06/2023] [Indexed: 06/09/2023] Open
Abstract
Radiation-related normal tissue injury sustained during cancer radiotherapy or in a radiological or mass casualty nuclear incident is a major health concern. Reducing the risk and mitigating consequences of radiation injury could have a broad impact on cancer patients and citizens. Efforts to discover biomarkers that can determine radiation dose, predict tissue damage, and aid medical triage are underway. Exposure to ionizing radiation causes changes in gene, protein, and metabolite expression that needs to be understood to provide a holistic picture for treating acute and chronic radiation-induced toxicities. We present evidence that both RNA (mRNA, microRNA, long noncoding RNA) and metabolomic assays may provide useful biomarkers of radiation injury. RNA markers may provide information on early pathway alterations after radiation injury that can predict damage and implicate downstream targets for mitigation. In contrast, metabolomics is impacted by changes in epigenetics, genetics, and proteomics and can be considered a downstream marker that incorporates all these changes to provide an assessment of what is currently happening within an organ. We highlight research from the past 10 years to understand how biomarkers may be used to improve personalized medicine in cancer therapy and medical decision-making in mass casualty scenarios.
Collapse
Affiliation(s)
- Molykutty Aryankalayil
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Michelle A Bylicky
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA,
| | - Sunita Chopra
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Juan Dalo
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kevin Scott
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yuki Ueda
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - C Norman Coleman
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- Radiation Research Program, National Cancer Institute, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
7
|
Chałubińska-Fendler J, Nowicka Z, Dróżdż I, Graczyk Ł, Piotrowski G, Tomasik B, Spych M, Fijuth J, Papis-Ubych A, Kędzierawski P, Kozono D, Fendler W. Radiation-induced circulating microRNAs linked to echocardiography parameters after radiotherapy. Front Oncol 2023; 13:1150979. [PMID: 37274244 PMCID: PMC10232985 DOI: 10.3389/fonc.2023.1150979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/03/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction Patients treated with radiotherapy to the chest region are at risk of cardiac sequelae, however, identification of those with greatest risk of complications remains difficult. Here, we sought to determine whether short-term changes in circulating miRNA expression are related to measures of cardiac dysfunction in follow-up. Materials and methods Two parallel patient cohorts were enrolled and followed up for 3 years after completion of RT to treat left-sided breast cancer. In the primary group (N=28) we used a a panel of 752 miRNAs to identify miRNAs associated with radiation and cardiac indices at follow up. In the second, independent cohort (N=56) we validated those candidate miRNAs with a targeted qPCR panel. In both cohorts. serum samples were collected before RT, 24h after the last dose and 1 month after RT; cardiac echocardiography was performed 2.5-3 year after RT. Results Seven miRNAs in the primary group showed marked changes in serum miRNAs immediately after RT compared to baseline and associations with cardiopulmonary dose-volume histogram metrics. Among those miRNAs: miR-15b-5p, miR-22-3p, miR-424-5p and miR-451a were confirmed to show significant decrease of expression 24 hours post-RT in the validation cohort. Moreover, miR-29c, miR-451 and miR-424 were correlated with the end-diastolic diameter of the left ventricle, which was also confirmed in multivariable analysis adjusting for RT-associated factors. Conclusion We identified a subset of circulating miRNAs predictive for cardiac function impairment in patients treated for left-sided breast cancer, although longer clinical observation could determine if these can be used to predict major clinical endpoints.
Collapse
Affiliation(s)
| | - Zuzanna Nowicka
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Łódź, Łódź, Poland
| | - Łukasz Graczyk
- Department of Radiation Oncology, Oncology Center of Radom, Radom, Poland
- Department of Teleradiotherapy, Regional Cancer Centre, Copernicus Memorial Hospital of Łódź, Łódź, Poland
| | - Grzegorz Piotrowski
- Cardiooncology Department, Medical University of Lodz, Łódź, Poland
- Cardiology Department, Nicolaus Copernicus Memorial Hospital, Łódź, Poland
| | - Bartłomiej Tomasik
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
- Department of Oncology and Radiotherapy, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Spych
- Department of Radiotherapy, Chair of Oncology, Medical University of Łódź, Łódź, Poland
| | - Jacek Fijuth
- Department of Teleradiotherapy, Regional Cancer Centre, Copernicus Memorial Hospital of Łódź, Łódź, Poland
- Department of Radiotherapy, Chair of Oncology, Medical University of Łódź, Łódź, Poland
| | - Anna Papis-Ubych
- Department of Teleradiotherapy, Regional Cancer Centre, Copernicus Memorial Hospital of Łódź, Łódź, Poland
| | | | - David Kozono
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| | - Wojciech Fendler
- Department of Biostatistics and Translational Medicine, Medical University of Łódź, Łódź, Poland
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, MA, United States
| |
Collapse
|
8
|
Wiriyakijja P, Niklander S, Santos-Silva AR, Shorrer MK, Simms ML, Villa A, Sankar V, Kerr AR, Riordain RN, Jensen SB, Delli K. World Workshop on Oral Medicine VIII: Development of a Core Outcome Set for Dry Mouth: A Systematic Review of Outcome Domains for Xerostomia. Oral Surg Oral Med Oral Pathol Oral Radiol 2023:S2212-4403(23)00068-8. [PMID: 37198047 DOI: 10.1016/j.oooo.2023.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/11/2022] [Accepted: 01/25/2023] [Indexed: 03/08/2023]
Abstract
OBJECTIVE The purpose of this study was to identify all outcome domains used in clinical studies of xerostomia, that is, subjective sensation of dry mouth. This study is part of the extended project "World Workshop on Oral Medicine Outcomes Initiative for the Direction of Research" to develop a core outcome set for dry mouth. STUDY DESIGN A systematic review was performed on MEDLINE, EMBASE, CINAHL, and Cochrane Central Register of Controlled Trials databases. All clinical and observational studies that assessed xerostomia in human participants from 2001 to 2021 were included. Information on outcome domains was extracted and mapped to the Core Outcome Measures in Effectiveness Trials taxonomy. Corresponding outcome measures were summarized. RESULTS From a total of 34,922 records retrieved, 688 articles involving 122,151 persons with xerostomia were included. There were 16 unique outcome domains and 166 outcome measures extracted. None of these domains or measures were consistently used across all the studies. The severity of xerostomia and physical functioning were the 2 most frequently assessed domains. CONCLUSION There is considerable heterogeneity in outcome domains and measures reported in clinical studies of xerostomia. This highlights the need for harmonization of dry mouth assessment to enhance comparability across studies and facilitate the synthesis of robust evidence for managing patients with xerostomia.
Collapse
|
9
|
Scognamiglio I, Cocca L, Puoti I, Palma F, Ingenito F, Quintavalle C, Affinito A, Roscigno G, Nuzzo S, Chianese RV, Belli S, Thomas G, Schomann T, Chan A, Stoppelli MP, Condorelli G. Exosomal microRNAs synergistically trigger stromal fibroblasts in breast cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:17-31. [PMID: 35317202 PMCID: PMC8908025 DOI: 10.1016/j.omtn.2022.02.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/17/2022] [Indexed: 12/13/2022]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype. TNBC progression is sustained by recruitment of a strong tumor microenvironment (TME) mainly composed of cancer-associated fibroblasts (CAFs) able to endorse tumor hallmarks. Increasing evidences demonstrate that exosomes mediate the crosstalk between cancer cells and the TME. We examined TNBC-derived exosomes and their microRNA (miRNA) cargo in activation of normal fibroblasts (NFs) toward CAFs. We demonstrated that TNBC cell-derived exosomes increased NF collagen contraction and migration alongside CAF molecular markers. Exosome-activated fibroblasts promoted the invasion potential of normal breast epithelial cells, as assessed by an organotypic co-culture assay that resembled the in vivo context. We also investigated TNBC cell-derived exosome cargo in activating NFs to CAFs by performing small RNA sequencing. We found that the synergistic action of miR-185-5p, miR-652-5p, and miR-1246 boosted fibroblast migration and contraction, promoting specific CAF subspecialization toward a pro-migratory functional state. These data highlight the role of breast cancer cells in re-education of the TME and their contribution to tumor evolution.
Collapse
Affiliation(s)
- Iolanda Scognamiglio
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Lorenza Cocca
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Ilaria Puoti
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Francesco Palma
- Percuros BV, Eerbeeklaan 42, 2573 HT Den Haag, the Netherlands
| | | | - Cristina Quintavalle
- Institute of Endocrinology and Experimental Oncology G. Salvatore (IEOS), National Research Council (CNR), Via Pansini 5, 80131 Naples, Italy
| | | | | | - Silvia Nuzzo
- IRCCS SYNLAB SDN, Via Gianturco 113, 80143 Naples, Italy
| | - Rosario Vincenzo Chianese
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
| | - Stefania Belli
- Institute of Genetics and Biophysics (IGB), National Research Council (CNR), Via Castellino 111, 80131 Naples, Italy
| | | | - Timo Schomann
- Percuros BV, Eerbeeklaan 42, 2573 HT Den Haag, the Netherlands.,Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Alan Chan
- Percuros BV, Eerbeeklaan 42, 2573 HT Den Haag, the Netherlands
| | - Maria Patrizia Stoppelli
- Institute of Genetics and Biophysics (IGB), National Research Council (CNR), Via Castellino 111, 80131 Naples, Italy
| | - Gerolama Condorelli
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy.,Institute of Endocrinology and Experimental Oncology G. Salvatore (IEOS), National Research Council (CNR), Via Pansini 5, 80131 Naples, Italy
| |
Collapse
|
10
|
Jia M, Wang Z. MicroRNAs as Biomarkers for Ionizing Radiation Injury. Front Cell Dev Biol 2022; 10:861451. [PMID: 35309926 PMCID: PMC8927810 DOI: 10.3389/fcell.2022.861451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/15/2022] [Indexed: 01/04/2023] Open
Abstract
Accidental radiation exposures such as industrial accidents and nuclear catastrophes pose a threat to human health, and the potential or substantial injury caused by ionizing radiation (IR) from medical treatment that cannot be ignored. Although the mechanisms of IR-induced damage to various organs have been gradually investigated, medical treatment of irradiated individuals is still based on clinical symptoms. Hence, minimally invasive biomarkers that can predict radiation damage are urgently needed for appropriate medical management after radiation exposure. In the field of radiation biomarker, finding molecular biomarkers to assess different levels of radiation damage is an important direction. In recent years, microRNAs have been widely reported as several diseases’ biomarkers, such as cancer and cardiovascular diseases, and microRNAs are also of interest to the ionizing radiation field as radiation response molecules, thus researchers are turning attention to the potential of microRNAs as biomarkers in tumor radiation response and the radiation toxicity prediction of normal tissues. In this review, we summarize the distribution of microRNAs, the progress on research of microRNAs as markers of IR, and make a hypothesis about the origin and destination of microRNAs in vivo after IR.
Collapse
|