1
|
Ahmed KA, Kim Y, Kim S, Wang MH, DeJesus M, Arrington JA, Soyano AE, Armaghani AJ, Costa RLB, Loftus LS, Rosa M, Caudell JJ, Diaz R, Etame AB, Tran ND, Soliman H, Czerniecki BJ, Forsyth PA, Yu HHM, Han HS. Nivolumab and stereotactic radiosurgery for patients with breast cancer brain metastases: long-term results and biomarker analysis from a non-randomized, open-label, phase Ib study. J Immunother Cancer 2025; 13:e011432. [PMID: 40295143 PMCID: PMC12039042 DOI: 10.1136/jitc-2024-011432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 03/17/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND We hypothesized treatment with nivolumab and stereotactic radiosurgery (SRS) would be feasible, well tolerated, and may improve intracranial tumor control over SRS alone for breast cancer brain metastases (BCBM). METHODS The study is a phase Ib trial of nivolumab and SRS for BCBM. CLINICAL TRIAL INFORMATION NCT03807765. Key eligibility criteria include BCBM of all subtypes, age ≥18, Eastern Cooperative Oncology Group Performace Status (ECOG-PS)≤2 with ≤10 brain metastases. Treatment was initiated with a dose of nivolumab (480 mg intravenously) that was repeated every 4 weeks. The initial dose of nivolumab was followed 1 week later by SRS. Blood was collected at baseline and every 4 weeks for flow cytometry and cell-free DNA (cfDNA) assessment. RESULTS A total of 12 patients received SRS to 17 brain metastases. Breast cancer subtypes included triple negative (50%), hormone receptor (HR)+/HER2- (33%), and HR-/HER2+ (17%). Median follow-up from start of protocol therapy is 56 months. No cases of radionecrosis were noted. Two lesions were noted to undergo local failure, both pathologically confirmed, for a 12-month local control of 94%. Median distant intracranial control was 7.4 months with a 12-month control rate of 33%. Median systemic progression-free survival was 7.7 months with a 12-month rate of 42%. Median overall survival (OS) was 24.7 months with a 12-month OS of 75%. Most patients were noted to have an increase in cfDNA throughout study treatment, at week 5 compared with baseline (83%), week 25 compared with baseline (89%), and 100% at first follow-up. Intracranial control was associated with lower levels of CD4 regulatory T cells (Treg) (p=0.03) and higher levels of CD4 T effector memory (p=0.04). CONCLUSIONS Nivolumab and SRS is a safe and feasible treatment option in BCBM. Long-term follow-up revealed no cases of radiation necrosis. TRIAL REGISTRATION NUMBER NCT03807765.
Collapse
Affiliation(s)
- Kamran A Ahmed
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Younchul Kim
- Department of Biostatistics and Bioinformatics, Moffitt Cancer Center, Tampa, Florida, USA
| | - Sungjune Kim
- Department of Radiation Oncology, Mayo Clinic Jacksonville Campus, Jacksonville, Florida, USA
| | - Min Hsuan Wang
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Michelle DeJesus
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - John A Arrington
- Department of Radiology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Aixa E Soyano
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Avan J Armaghani
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Ricardo L B Costa
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Loretta S Loftus
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Marilin Rosa
- Department of Pathology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Jimmy J Caudell
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Roberto Diaz
- Department of Radiation Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Arnold B Etame
- Department of Neuro Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Nam D Tran
- Department of Neuro Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Hatem Soliman
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Brian J Czerniecki
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | - Peter A Forsyth
- Department of Neuro Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| | | | - Hyo S Han
- Department of Breast Oncology, Moffitt Cancer Center, Tampa, Florida, USA
| |
Collapse
|
2
|
Shi Y, Sulman EP. Commentary: Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines Update for the Role of Emerging Therapies in the Management of Patients With Metastatic Brain Tumors. Neurosurgery 2025:00006123-990000000-01560. [PMID: 40183551 DOI: 10.1227/neu.0000000000003438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 04/05/2025] Open
Affiliation(s)
- Yuhao Shi
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York, USA
| | - Erik P Sulman
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Neurosurgery, New York University Grossman School of Medicine, New York, New York, USA
- Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York, USA
| |
Collapse
|
3
|
Vaios EJ, Shenker RF, Hendrickson PG, Wan Z, Niedzwiecki D, Carpenter D, Floyd W, Winter SF, Shih HA, Dietrich J, Wang C, Salama AKS, Clarke JM, Allen K, Sperduto P, Mullikin T, Kirkpatrick JP, Floyd SR, Reitman ZJ. Symptomatic Necrosis With Dual Immune-Checkpoint Inhibition and Radiosurgery for Brain Metastases. JAMA Netw Open 2025; 8:e254347. [PMID: 40202761 PMCID: PMC11983232 DOI: 10.1001/jamanetworkopen.2025.4347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 02/06/2025] [Indexed: 04/10/2025] Open
Abstract
This cohort study evaluates whether immune-checkpoint inhibition therapy concurrent with radiosurgery is associated with risk of symptomatic radionecrosis among US patients with brain metastases.
Collapse
Affiliation(s)
- Eugene J. Vaios
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Rachel F. Shenker
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Peter G. Hendrickson
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Zihan Wan
- Duke Cancer Institute Biostatistics, Duke University Medical Center, Durham, North Carolina
| | - Donna Niedzwiecki
- Department of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, North Carolina
| | - David Carpenter
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Warren Floyd
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Sebastian F. Winter
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston
| | - Helen A. Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston
| | - Jorg Dietrich
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston
| | - Chunhao Wang
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
- Department of Medical Physics, Duke University Medical Center, Durham, North Carolina
| | - April K. S. Salama
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Jeffrey M. Clarke
- Division of Medical Oncology, Department of Medicine, Duke University Medical Center, Durham, North Carolina
| | - Karen Allen
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Paul Sperduto
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Trey Mullikin
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - John P. Kirkpatrick
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Scott R. Floyd
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
- Department of Pathology, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
4
|
He Y, Xie F, He T, Zhou Z, Chen Z, Jiang L, Hu W. Case Report: Intensity-modulated radiotherapy combined with immunotherapy for intramedullary spinal cord metastases of lung adenocarcinoma. Front Oncol 2025; 15:1367346. [PMID: 40129913 PMCID: PMC11931394 DOI: 10.3389/fonc.2025.1367346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 01/31/2025] [Indexed: 03/26/2025] Open
Abstract
Intramedullary spinal cord metastases (ISCMs) are rare in clinical practice and their presentation is usually an unfavorable sign with a median overall survival (mOS) of 3-4 months after diagnosis. Due to their rarity, heterogeneity and rapid progression, clinicians have few satisfactory guidelines or optimal management for ISCMs. Herein, we share a clinical experience of intensity-modulated radiotherapy (IMRT) combined with immunotherapy (IO) for ISCMs from lung adenocarcinoma (LUAD) that achieved a relatively high quality of life for 10 months, which has not been previously reported.
Collapse
Affiliation(s)
- Yingying He
- Oncology Department, Deyang People’s Hospital, Deyang, China
| | - Fei Xie
- Oncology Department, Deyang People’s Hospital, Deyang, China
| | - Tianli He
- Radiotherapy Oncology Department, Changxing Campus (Changxing People's Hospital), Second Affiliated Hospital of Zhejiang University School of Medicine, Changxing, China
| | - Zhou Zhou
- Radiotherapy Oncology Department, Changxing Campus (Changxing People's Hospital), Second Affiliated Hospital of Zhejiang University School of Medicine, Changxing, China
| | - Zhaohong Chen
- Oncology Department, Deyang People’s Hospital, Deyang, China
| | - Lixing Jiang
- Radiotherapy Oncology Department, Changxing Campus (Changxing People's Hospital), Second Affiliated Hospital of Zhejiang University School of Medicine, Changxing, China
| | - Wei Hu
- Radiotherapy Oncology Department, Changxing Campus (Changxing People's Hospital), Second Affiliated Hospital of Zhejiang University School of Medicine, Changxing, China
| |
Collapse
|
5
|
Zhang X, Sun Q, Chen R, Zhao M, Cai F, Cui Z, Jiang H. Efficacy and safety of combining anti-angiogenic therapy, radiotherapy, and PD-1 inhibitors in patients with driver gene-negative non-small cell lung cancer brain metastases: a retrospective study. BMC Cancer 2024; 24:1492. [PMID: 39627765 PMCID: PMC11616174 DOI: 10.1186/s12885-024-13264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/27/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND The efficacy and safety of anti-angiogenic combination therapy in patients with driver gene-negative non-small cell lung cancer (NSCLC) with brain metastases (BM) are uncertain. METHODS Eighty-eight records of driver gene-negative patients with NSCLC treated with craniocerebral radiotherapy (RT) and programmed death factor-1 (PD-1) inhibitors between May 2021 and May 2023 were collected. Based on whether anti-angiogenic therapy (AT) is combined or not, patients are categorized into the AT group and the non anti-angiogenic therapy (NAT) group. The NAT group patients received craniocerebral RT and PD-1 inhibitor and those in the AT group received craniocerebral RT and PD-1 inhibitor with ≥ 4 cycles of AT. Comparing the clinical efficacy and safety in these two patient cohorts was the main goal of the study. RESULTS By May 1, 2024, the iORR was 94.0% and 63.2% for AT and NAT group, respectively. The 1- and 2-year iLPFS for AT and NAT group were 93.6%, 80.9% and 69.7%, 36.4%, respectively. The 1- and 2-year iDPFS were 86.7%, 56.3% and 59.1%, 48.3%, respectively. The 1- and 2-year OS were 82.0%, 36.6% and 68.4%, 34.6%, respectively. Compared to the standard treatment (RT and PD-1 inhibitors), the addition of AT prolonged the median iLPFS (NR vs. 22.0 months, hazard ratio [HR] = 11.004, P < 0.001) and the median iDPFS (NR vs. 20.0 months, HR = 8.732, P = 0.003), but was not significant in the extension of the OS (21.0 vs. 19.0 months, HR = 1.601, P = 0.206). Multivariable analysis showed that combination therapy with AT is significantly associated with prolonged iLPFS (HR = 4.233, P = 0.002) and iDPFS (HR = 2.824, P = 0.007), whereas only GPA score is significantly associated with improved OS (HR = 0.589, P = 0.019). The incidence of hypertension in the AT group showed an increasing trend, and no significant increased risk of radiation-induced brain necrosis was found. No drug-related intracranial hemorrhage events occurred. CONCLUSION Combining AT, RT, and PD-1 inhibitors can substantially improve iLPFS and iDPFS for patients with driver gene-negative NSCLC with BM; however, it is not significantly associated with better OS.
Collapse
Affiliation(s)
- Xianwen Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Qian Sun
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Rujun Chen
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - MengDie Zhao
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Feng Cai
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Zhen Cui
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China
| | - Hao Jiang
- Department of Radiation Oncology, The First Affiliated Hospital of Bengbu Medical University, Bengbu, China.
| |
Collapse
|
6
|
Weller M, Remon J, Rieken S, Vollmuth P, Ahn MJ, Minniti G, Le Rhun E, Westphal M, Brastianos PK, Soo RA, Kirkpatrick JP, Goldberg SB, Öhrling K, Hegi-Johnson F, Hendriks LEL. Central nervous system metastases in advanced non-small cell lung cancer: A review of the therapeutic landscape. Cancer Treat Rev 2024; 130:102807. [PMID: 39151281 DOI: 10.1016/j.ctrv.2024.102807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 07/19/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
Up to 40% of patients with non-small cell lung cancer (NSCLC) develop central nervous system (CNS) metastases. Current treatments for this subgroup of patients with advanced NSCLC include local therapies (surgery, stereotactic radiosurgery, and, less frequently, whole-brain radiotherapy), targeted therapies for oncogene-addicted NSCLC (small molecules, such as tyrosine kinase inhibitors, and antibody-drug conjugates), and immune checkpoint inhibitors (as monotherapy or combination therapy), with multiple new drugs in development. However, confirming the intracranial activity of these treatments has proven to be challenging, given that most lung cancer clinical trials exclude patients with untreated and/or progressing CNS metastases, or do not include prespecified CNS-related endpoints. Here we review progress in the treatment of patients with CNS metastases originating from NSCLC, examining local treatment options, systemic therapies, and multimodal therapeutic strategies. We also consider challenges regarding assessment of treatment response and provide thoughts around future directions for managing CNS disease in patients with advanced NSCLC.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital and University of Zurich, Zurich, Switzerland.
| | - Jordi Remon
- Paris-Saclay University, Department of Cancer Medicine, Gustave Roussy, Villejuif, France.
| | - Stefan Rieken
- Department of Radiation Oncology, University Hospital Göttingen (UMG), Göttingen, Germany; Comprehensive Cancer Center Lower Saxony (CCC-N), University Hospital Göttingen (UMG), Göttingen, Germany.
| | - Philipp Vollmuth
- Division for Computational Radiology & Clinical AI, Clinic for Neuroradiology, University Hospital Bonn, Bonn, Germany; Division for Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Myung-Ju Ahn
- Division of Hematology-Oncology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea.
| | - Giuseppe Minniti
- Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, Rome, Italy; IRCCS Neuromed, Pozzilli, Italy.
| | - Emilie Le Rhun
- Departments of Neurosurgery and Neurology, University Hospital and University of Zurich, Zurich, Switzerland.
| | - Manfred Westphal
- Department of Neurosurgery and Institute for Tumor Biology, University Hospital Hamburg-Eppendorf, Hamburg, Germany.
| | | | - Ross A Soo
- Department of Hematology-Oncology, National University Hospital, Singapore, Singapore.
| | - John P Kirkpatrick
- Departments of Radiation Oncology and Neurosurgery, Duke University, Durham, NC, USA.
| | - Sarah B Goldberg
- Department of Medicine (Medical Oncology), Yale School of Medicine, Yale Cancer Center, New Haven, CT, USA.
| | | | - Fiona Hegi-Johnson
- Department of Radiation Oncology, Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, Australia; Sir Peter MacCallum Department of Clinical Oncology, University of Melbourne, Melbourne, Australia.
| | - Lizza E L Hendriks
- Department of Respiratory Medicine, Maastricht University Medical Centre, GROW School for Oncology and Reproduction, Maastricht, Netherlands.
| |
Collapse
|
7
|
Turna M, Çağlar HB. Delayed neurotoxicity in HER2-positive breast cancer: a case series on combined SRS and T-DM1 treatment. Front Oncol 2024; 14:1448593. [PMID: 39411126 PMCID: PMC11473412 DOI: 10.3389/fonc.2024.1448593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/11/2024] [Indexed: 10/19/2024] Open
Abstract
This case series presents four instances of late neurotoxicity observed in HER2-positive breast cancer patients with brain metastases following treatment with stereotactic radiosurgery (SRS) and subsequent trastuzumab emtansine (T-DM1) therapy. Despite initial control of intracranial disease, patients experienced neurological deterioration months to years post-treatment. Radiological assessments revealed distinct patterns consistent with radiation necrosis, particularly in areas previously treated with SRS and subsequent T-DM1 administration. These changes, characterized by enlarging cystic masses with hemorrhagic components, emphasize the importance of vigilant monitoring in patients undergoing combined SRS and T-DM1 therapy for brain metastatic breast cancer. This report underscores the need for further investigation into the long-term effects of combining SRS with novel systemic therapies, particularly in HER2-positive breast cancer patients with brain metastases. Understanding and mitigating late neurotoxicity are critical for optimizing treatment strategies and improving patient outcomes.
Collapse
|
8
|
Jayaraj P, Ray D, Goel K, Singh A, Kant N, Sen S. Molecular landscape of eyelid sebaceous gland carcinoma: A comprehensive review. Indian J Ophthalmol 2024; 72:1393-1403. [PMID: 39331429 PMCID: PMC11573021 DOI: 10.4103/ijo.ijo_167_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/05/2024] [Accepted: 05/25/2024] [Indexed: 09/28/2024] Open
Abstract
Eyelid sebaceous gland carcinoma (SGC) is an aggressive skin cancer characterized by a heightened risk of recurrence and metastasis. While surgical excision is the primary treatment, unraveling the molecular intricacies of SGC is imperative for advancing targeted therapeutic interventions and enhancing patient outcomes. This comprehensive review delves into the molecular landscape of eyelid SGC, emphasizing key genetic alterations, signaling pathways, epigenetic modifications, and potential therapeutic targets. Significant findings include aberrations in critical signaling pathways (β-catenin, lymphoid enhancer binding factor, hedgehog, epidermal growth factor receptor, P53, and P21WAF1) associated with SGC progression and poor prognosis. Notably, eyelid SGC manifests a distinctive mutational profile, lacking ultraviolet signature mutations in tumor protein 53 (TP53), indicating alternative mutagenic mechanisms. Next-generation sequencing identifies actionable mutations in genes such as phosphatase and tensin homolog (PTEN) and Erb-B2 receptor tyrosine kinase 2 (ERBB2), facilitating the emergence of personalized medicine approaches. Molecular chaperones, specifically X-linked inhibitor of apoptosis protein (XIAP) and BAG3, emerge as pivotal players in promoting tumor survival and proliferation. The review underscores the role of epithelial-mesenchymal transition, where regulators like E-cadherin, vimentin, and ZEB2 contribute to SGC aggressiveness. Epigenetic modifications, encompassing DNA methylation and microRNA dysregulation, further elucidate the molecular landscape. This review consolidates a comprehensive understanding of the molecular drivers of eyelid SGC, shedding light on potential therapeutic targets and providing a foundation for future investigations in diagnostic, prognostic, and personalized treatment strategies for this formidable malignancy.
Collapse
Affiliation(s)
- Perumal Jayaraj
- Department of Zoology, Sri Venkateswara College, University of Delhi, Delhi, India
| | - Debjeet Ray
- Department of Zoology, Sri Venkateswara College, University of Delhi, Delhi, India
| | - Kevika Goel
- Department of Zoology, Sri Venkateswara College, University of Delhi, Delhi, India
| | - Ananya Singh
- Department of Zoology, Sri Venkateswara College, University of Delhi, Delhi, India
| | - Nimita Kant
- Department of Zoology, Shivaji College, University of Delhi, Delhi, India
| | - Seema Sen
- Department of Ocular Pathology, Dr. Rajendra Prasad Centre for Ophthalmic Science, All India Institute of Medical Science, New Delhi, India
| |
Collapse
|
9
|
Nigen B, Bodergat T, Vaugier L, Pons-Tostivint E. [First-line immunotherapy in non-small cell lung cancer diagnosed with brain metastases]. Rev Mal Respir 2024; 41:571-582. [PMID: 38926022 DOI: 10.1016/j.rmr.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024]
Abstract
INTRODUCTION Up to 30% patients newly diagnosed with advanced non-small cell lung cancer (NSCLC) present with brain metastases. In the absence of oncogenic addiction, first-line immunotherapy, alone or in combination with chemotherapy, is the current standard of care. This review aims to synthesize the available data regarding the efficacy of immunotherapy in these patients, and to discuss the possibility of its being coordinated with local treatments such as radiotherapy. STATE OF THE ART NSCLC patients with brain metastases appear to have survival benefits with immunotherapy similar to those of NSCLC patients without brain metastases. However, this finding is based on mainly prospective studies having included highly selected patients with pre-treated and stable brain metastases. Several retrospective studies and two prospective single-arm studies have confirmed the intracranial efficacy of immunotherapy, either alone or in combination with chemotherapy. PERSPECTIVES The indications and optimal timing for cerebral radiotherapy remain subjects of debate. To date, there exists no randomized study assessing the addition of brain radiotherapy to first-line immunotherapy. That said, a recent meta-analysis showed increased intracerebral response when radiotherapy complemented immunotherapy. CONCLUSIONS For NSCLC patients with brain metastases, the available data suggest a clear benefit of first-line immunotherapy, whether alone or combined with chemotherapy. However, most of these data are drawn from retrospective, non-randomized studies with small sample sizes.
Collapse
Affiliation(s)
- B Nigen
- Service de pneumologie, centre hospitalier Les Sables-d'Olonne, Les Sables-d'Olonne, France
| | - T Bodergat
- Oncologie médicale, centre hospitalier universitaire Nantes, Nantes université, Nantes, France
| | - L Vaugier
- Département de radiothérapie, institut de cancérologie de l'Ouest, Saint-Herblain, France
| | - E Pons-Tostivint
- Oncologie médicale, centre hospitalier universitaire Nantes, Nantes université, Nantes, France; Nantes université, Inserm UMR 1307, CNRS UMR 6075, université d'Angers, CRCI2NA, Nantes, France.
| |
Collapse
|
10
|
Pikis S, Mantziaris G, Protopapa M, Tos SM, Kowalchuk RO, Ross RB, Rusthoven CG, Tripathi M, Langlois AM, Mathieu D, Lee CC, Yang HC, Peker S, Samanci Y, Zhang MY, Braunstein SE, Wei Z, Niranjan A, Lunsford DL, Sheehan J. Stereotactic radiosurgery for brain metastases from human epidermal receptor 2 positive breast Cancer: an international, multi-center study. J Neurooncol 2024; 170:199-208. [PMID: 39192068 PMCID: PMC11446965 DOI: 10.1007/s11060-024-04775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 07/09/2024] [Indexed: 08/29/2024]
Abstract
PURPOSE To report patient outcomes and local tumor control rates in a cohort of patients with biopsy-proven HER-2 positive breast cancer treated with stereotactic radiosurgery (SRS) for brain metastases (BM). METHODS This international, retrospective, multicenter study, included 195 female patients with 1706 SRS-treated BM. Radiologic and clinical outcomes after SRS were determined and prognostic factors identified. RESULTS At SRS, median patient age was 55 years [interquartile range (IQR) 47.6-62.0], and 156 (80%) patients had KPS ≥ 80. The median tumor volume was 0.1 cm3 (IQR 0.1-0.5) and the median prescription dose was 16 Gy (IQR 16-18). Local tumor control (LTC) rate was 98%, 94%, 93%, 90%, and 88% at six-, 12-, 24-, 36- and 60-months post-SRS, respectively. On multivariate analysis, tumor volume (p = < 0.001) and concurrent pertuzumab (p = 0.02) improved LTC. Overall survival (OS) rates at six-, 12-, 24-, 36-, 48-, and 60-months were 90%, 69%, 46%, 27%, 22%, and 18%, respectively. Concurrent pertuzumab improved OS (p = 0.032). In this patient subgroup, GPA scores ≥ 2.5 (p = 0.038 and p = 0.003) and rare primary tumor histologies (p = 0.01) were associated with increased and decreased OS, respectively. Asymptomatic adverse radiation events (ARE) occurred in 27 (14.0%) and symptomatic ARE in five (2.6%) patients. Invasive lobular carcinoma primary (p = 0.042) and concurrent pertuzumab (p < 0.001) conferred an increased risk for overall but not for symptomatic ARE. CONCLUSION SRS affords effective LTC for selected patients with BM from HER-2 positive breast cancer. Concurrent pertuzumab improved LTC and OS but at the same time increased the risk for overall, but not symptomatic, ARE.
Collapse
Affiliation(s)
- Stylianos Pikis
- Department of Radiotherapy and Stereotactic Radiosurgery, Mediterraneo Hospital, Athens, Greece
| | - Georgios Mantziaris
- Department of Neurological Surgery, University of Virginia Health System, University of Virginia, 1215 Lee St, Charlottesville, VA, 22908, USA
| | - Maria Protopapa
- Department of Radiotherapy and Stereotactic Radiosurgery, Mediterraneo Hospital, Athens, Greece
| | - Salem M Tos
- Department of Neurological Surgery, University of Virginia Health System, University of Virginia, 1215 Lee St, Charlottesville, VA, 22908, USA
| | | | - Richard Blake Ross
- Department of Radiation Oncology, University of Colorado, Aurora, CO, USA
| | - Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado, Aurora, CO, USA
| | - Manjul Tripathi
- Department of Neurosurgery and Radiotherapy, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anne-Marie Langlois
- Department of Neurosurgery, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - David Mathieu
- Department of Neurosurgery, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Cheng-Chia Lee
- Department of Neurosurgery School of Medicine, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Huai-Che Yang
- Department of Neurosurgery School of Medicine, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Selcuk Peker
- Department of Neurosurgery, Koc University School of Medicine, Istanbul, Turkey
| | - Yavuz Samanci
- Department of Neurosurgery, Koc University School of Medicine, Istanbul, Turkey
| | - Michael Yu Zhang
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Steve E Braunstein
- Department of Radiation Oncology, University of California, San Francisco, CA, USA
| | - Zhishuo Wei
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ajay Niranjan
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Dade L Lunsford
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jason Sheehan
- Department of Neurological Surgery, University of Virginia Health System, University of Virginia, 1215 Lee St, Charlottesville, VA, 22908, USA.
| |
Collapse
|
11
|
Lehrer EJ, Breen WG, Singh R, Palmer JD, Brown PD, Trifiletti DM, Sheehan JP. Hypofractionated Stereotactic Radiosurgery in the Management of Brain Metastases. Neurosurgery 2024; 95:253-258. [PMID: 38511946 DOI: 10.1227/neu.0000000000002897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/09/2024] [Indexed: 03/22/2024] Open
Abstract
Stereotactic radiosurgery (SRS) is an important weapon in the management of brain metastases. Single-fraction SRS is associated with local control rates ranging from approximately 70% to 100%, which are largely dependent on lesion and postoperative cavity size. The rates of local control and improved neurocognitive outcomes compared with conventional whole-brain radiation therapy have led to increased adoption of SRS in these settings. However, when treating larger targets and/or targets located in eloquent locations, the risk of normal tissue toxicity and adverse radiation effects within healthy brain tissue becomes significantly higher. Thus, hypofractionated SRS has become a widely adopted approach, which allows for the delivery of ablative doses of radiation while also minimizing the risk of toxicity. This approach has been studied in multiple retrospective reports in both the postoperative and intact settings. While there are no reported randomized data to date, there are trials underway evaluating this paradigm. In this article, we review the role of hypofractionated SRS in the management of brain metastases and emerging data that will serve to validate this treatment approach. Pertinent articles and references were obtained from a comprehensive search of PubMed/MEDLINE and clinicaltrials.gov .
Collapse
Affiliation(s)
- Eric J Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester , Minnesota , USA
| | - William G Breen
- Department of Radiation Oncology, Mayo Clinic, Rochester , Minnesota , USA
| | - Raj Singh
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus , Ohio , USA
| | - Joshua D Palmer
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus , Ohio , USA
| | - Paul D Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester , Minnesota , USA
| | | | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville , Virginia , USA
| |
Collapse
|
12
|
Mashiach E, Alzate JD, De Nigris Vasconcellos F, Adams S, Santhumayor B, Meng Y, Schnurman Z, Donahue BR, Bernstein K, Orillac C, Bollam R, Kwa MJ, Meyers M, Oratz R, Novik Y, Silverman JS, Harter DH, Golfinos JG, Kondziolka D. Improved outcomes for triple negative breast cancer brain metastases patients after stereotactic radiosurgery and new systemic approaches. J Neurooncol 2024; 168:99-109. [PMID: 38630386 DOI: 10.1007/s11060-024-04651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 03/15/2024] [Indexed: 05/15/2024]
Abstract
PURPOSE Although ongoing studies are assessing the efficacy of new systemic therapies for patients with triple negative breast cancer (TNBC), the overwhelming majority have excluded patients with brain metastases (BM). Therefore, we aim to characterize systemic therapies and outcomes in a cohort of patients with TNBC and BM managed with stereotactic radiosurgery (SRS) and delineate predictors of increased survival. METHODS We used our prospective patient registry to evaluate data from 2012 to 2023. We included patients who received SRS for TNBC-BM. A competing risk analysis was conducted to assess local and distant control. RESULTS Forty-three patients with 262 tumors were included. The median overall survival (OS) was 16 months (95% CI 13-19 months). Predictors of increased OS after initial SRS include Breast GPA score > 1 (p < 0.001) and use of immunotherapy such as pembrolizumab (p = 0.011). The median time on immunotherapy was 8 months (IQR 4.4, 11.2). The median time to new CNS lesions after the first SRS treatment was 17 months (95% CI 12-22). The cumulative rate for development of new CNS metastases after initial SRS at 6 months, 1 year, and 2 years was 23%, 40%, and 70%, respectively. Thirty patients (70%) underwent multiple SRS treatments, with a median time of 5 months (95% CI 0.59-9.4 months) for the appearance of new CNS metastases after second SRS treatment. CONCLUSIONS TNBC patients with BM can achieve longer survival than might have been previously anticipated with median survival now surpassing one year. The use of immunotherapy is associated with increased median OS of 23 months.
Collapse
Affiliation(s)
- Elad Mashiach
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA.
| | - Juan Diego Alzate
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | | | - Sylvia Adams
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Brandon Santhumayor
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Ying Meng
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Zane Schnurman
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Bernadine R Donahue
- Department of Radiation Oncology, NYU Langone Health, New York University, New York, NY, USA
- Maimonides Cancer Center, Maimonides Health, Brooklyn, NY, 11220, USA
| | - Kenneth Bernstein
- Department of Radiation Oncology, NYU Langone Health, New York University, New York, NY, USA
| | - Cordelia Orillac
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Rishitha Bollam
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Maryann J Kwa
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Marleen Meyers
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Ruth Oratz
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Yelena Novik
- Perlmutter Cancer Center, NYU Langone Health, New York University, New York, NY, USA
- Department of Medicine, NYU Langone Health, New York University, New York, NY, USA
| | - Joshua S Silverman
- Department of Radiation Oncology, NYU Langone Health, New York University, New York, NY, USA
| | - David H Harter
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - John G Golfinos
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| | - Douglas Kondziolka
- Department of Neurological Surgery, NYU Langone Health, New York University, New York, NY, USA
| |
Collapse
|
13
|
Vaios EJ, Shenker RF, Hendrickson PG, Wan Z, Niedzwiecki D, Winter SF, Shih HA, Dietrich J, Wang C, Salama AKS, Clarke JM, Allen K, Sperduto P, Mullikin T, Kirkpatrick JP, Floyd SR, Reitman ZJ. Long-Term Intracranial Outcomes With Combination Dual Immune-Checkpoint Blockade and Stereotactic Radiosurgery in Patients With Melanoma and Non-Small Cell Lung Cancer Brain Metastases. Int J Radiat Oncol Biol Phys 2024; 118:1507-1518. [PMID: 38097090 PMCID: PMC11056239 DOI: 10.1016/j.ijrobp.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 10/26/2023] [Accepted: 12/02/2023] [Indexed: 01/18/2024]
Abstract
PURPOSE The intracranial benefit of offering dual immune-checkpoint inhibition (D-ICPI) with ipilimumab and nivolumab to patients with melanoma or non-small cell lung cancer (NSCLC) receiving stereotactic radiosurgery (SRS) for brain metastases (BMs) is unknown. We hypothesized that D-ICPI improves local control compared with SRS alone. METHODS AND MATERIALS Patients with melanoma or NSCLC treated with SRS from 2014 to 2022 were evaluated. Patients were stratified by treatment with D-ICPI, single ICPI (S-ICPI), or SRS alone. Local recurrence, intracranial progression (IP), and overall survival were estimated using competing risk and Kaplan-Meier analyses. IP included both local and distant intracranial recurrence. RESULTS Two hundred eighty-eight patients (44% melanoma, 56% NSCLC) with 1,704 BMs were included. Fifty-three percent of patients had symptomatic BMs. The median follow-up was 58.8 months. Twelve-month local control rates with D-ICPI, S-ICPI, and SRS alone were 94.73% (95% CI, 91.11%-96.90%), 91.74% (95% CI, 89.30%-93.64%), and 88.26% (95% CI, 84.07%-91.41%). On Kaplan-Meier analysis, only D-ICPI was significantly associated with reduced local recurrence (P = .0032). On multivariate Cox regression, D-ICPI (hazard ratio [HR], 0.4003; 95% CI, 0.1781-0.8728; P = .0239) and planning target volume (HR, 1.022; 95% CI, 1.004-1.035; P = .0059) correlated with local control. One hundred seventy-three (60%) patients developed IP. The 12-month cumulative incidence of IP was 41.27% (95% CI, 30.27%-51.92%), 51.86% (95% CI, 42.78%-60.19%), and 57.15% (95% CI, 44.98%-67.59%) after D-ICPI, S-ICPI, and SRS alone. On competing risk analysis, only D-ICPI was significantly associated with reduced IP (P = .0408). On multivariate Cox regression, D-ICPI (HR, 0.595; 95% CI, 0.373-0.951; P = .0300) and presentation with >10 BMs (HR, 2.492; 95% CI, 1.668-3.725; P < .0001) remained significantly correlated with IP. The median overall survival after D-ICPI, S-ICPI, and SRS alone was 26.1 (95% CI, 15.5-40.7), 21.5 (16.5-29.6), and 17.5 (11.3-23.8) months. S-ICPI, fractionation, and histology were not associated with clinical outcomes. There was no difference in hospitalizations or neurologic adverse events between cohorts. CONCLUSIONS The addition of D-ICPI for patients with melanoma and NSCLC undergoing SRS is associated with improved local and intracranial control. This appears to be an effective strategy, including for patients with symptomatic or multiple BMs.
Collapse
Affiliation(s)
- Eugene J Vaios
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Rachel F Shenker
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Peter G Hendrickson
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Zihan Wan
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina
| | - Donna Niedzwiecki
- Duke Cancer Institute Biostatistics, Duke University Medical Center, Durham, North Carolina
| | - Sebastian F Winter
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Helen A Shih
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, Massachusetts
| | - Jorg Dietrich
- Division of Neuro-Oncology, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts
| | - Chunhao Wang
- Departments of Medical Physics, Duke University Medical Center, Durham, North Carolina
| | - April K S Salama
- Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Jeffrey M Clarke
- Medicine, Division of Medical Oncology, Duke University Medical Center, Durham, North Carolina
| | - Karen Allen
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Paul Sperduto
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Trey Mullikin
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - John P Kirkpatrick
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina; Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Scott R Floyd
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina
| | - Zachary J Reitman
- Departments of Radiation Oncology, Duke University Medical Center, Durham, North Carolina; Neurosurgery, Duke University Medical Center, Durham, North Carolina; Pathology, Duke University Medical Center, Durham, North Carolina.
| |
Collapse
|
14
|
Gallitto M, Pan PC, Chan MD, Milano MT, Wang TJC. The role of radiotherapy in immunotherapy strategies in the central nervous system. Neuro Oncol 2024; 26:S66-S75. [PMID: 38437664 PMCID: PMC10911795 DOI: 10.1093/neuonc/noad184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
The clinical efficacy and relative tolerability of adverse effects of immune checkpoint immunotherapy have led to its increasingly routine use in the management of multiple advanced solid malignancies. Radiation therapy (RT) is well-known to have both local and distant immunomodulatory effects, which has led to extensive investigation into the synergism of these 2 therapies. While the central nervous system (CNS) has historically been thought to be a sanctuary site, well-protected by the blood-brain barrier from the effects of immunotherapy, over the last several years studies have shown the benefits of these drugs, particularly in metastatic disease involving the CNS. This review explores current progress and the future of combination therapy with immune checkpoint inhibitors and RT.
Collapse
Affiliation(s)
- Matthew Gallitto
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York, USA
| | - Peter C Pan
- Division of Neuro-Oncology, Columbia University Irving Medical Center, New York, New York , USA
| | - Michael D Chan
- Department of Radiation Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Michael T Milano
- Department of Radiation Oncology, University of Rochester, Rochester, New York, USA
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
15
|
Mayo ZS, Billena C, Suh JH, Lo SS, Chao ST. The dilemma of radiation necrosis from diagnosis to treatment in the management of brain metastases. Neuro Oncol 2024; 26:S56-S65. [PMID: 38437665 PMCID: PMC10911797 DOI: 10.1093/neuonc/noad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024] Open
Abstract
Radiation therapy with stereotactic radiosurgery (SRS) or whole brain radiation therapy is a mainstay of treatment for patients with brain metastases. The use of SRS in the management of brain metastases is becoming increasingly common and provides excellent local control. Cerebral radiation necrosis (RN) is a late complication of radiation treatment that can be seen months to years following treatment and is often indistinguishable from tumor progression on conventional imaging. In this review article, we explore risk factors associated with the development of radiation necrosis, advanced imaging modalities used to aid in diagnosis, and potential treatment strategies to manage side effects.
Collapse
Affiliation(s)
- Zachary S Mayo
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Cole Billena
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - John H Suh
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| | - Simon S Lo
- Department of Radiation Oncology, University of Washington, Seattle, Washington, USA
| | - Samuel T Chao
- Department of Radiation Oncology, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
16
|
Vellayappan B, Lim-Fat MJ, Kotecha R, De Salles A, Fariselli L, Levivier M, Ma L, Paddick I, Pollock BE, Regis J, Sheehan JP, Suh JH, Yomo S, Sahgal A. A Systematic Review Informing the Management of Symptomatic Brain Radiation Necrosis After Stereotactic Radiosurgery and International Stereotactic Radiosurgery Society Recommendations. Int J Radiat Oncol Biol Phys 2024; 118:14-28. [PMID: 37482137 DOI: 10.1016/j.ijrobp.2023.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/02/2023] [Accepted: 07/14/2023] [Indexed: 07/25/2023]
Abstract
Radiation necrosis (RN) secondary to stereotactic radiosurgery is a significant cause of morbidity. The optimal management of corticosteroid-refractory brain RN remains unclear. Our objective was to summarize the literature specific to efficacy and toxicity of treatment paradigms for patients with symptomatic corticosteroid-refractory RN and to provide consensus guidelines for grading and management of RN on behalf of the International Stereotactic Radiosurgery Society. A systematic review of articles pertaining to treatment of RN with bevacizumab, laser interstitial thermal therapy (LITT), surgical resection, or hyperbaric oxygen therapy was performed. The primary composite outcome was clinical and/or radiologic stability/improvement (ie, proportion of patients achieving improvement or stability with the given intervention). Proportions of patients achieving the primary outcome were pooled using random weighted-effects analysis but not directly compared between interventions. Twenty-one articles were included, of which only 2 were prospective studies. Thirteen reports were relevant for bevacizumab, 5 for LITT, 5 for surgical resection and 1 for hyperbaric oxygen therapy. Weighted effects analysis revealed that bevacizumab had a pooled symptom improvement/stability rate of 86% (95% CI 77%-92%), pooled T2 imaging improvement/stability rate of 93% (95% CI 87%-98%), and pooled T1 postcontrast improvement/stability rate of 94% (95% CI 87%-98%). Subgroup analysis showed a statistically significant improvement favoring treatment with low-dose (below median, ≤7.5 mg/kg every 3 weeks) versus high-dose bevacizumab with regards to symptom improvement/stability rate (P = .02) but not for radiologic T1 or T2 changes. The pooled T1 postcontrast improvement/stability rate for LITT was 88% (95% CI 82%-93%), and pooled symptom improvement/stability rate for surgery was 89% (95% CI 81%-96%). Toxicity was inconsistently reported but was generally low for all treatment paradigms. Corticosteroid-refractory RN that does not require urgent surgical intervention, with sufficient noninvasive diagnostic testing that favors RN, can be treated medically with bevacizumab in carefully selected patients as a strong recommendation. The role of LITT is evolving as a less invasive image guided surgical modality; however, the overall evidence for each modality is of low quality. Prospective head-to-head comparisons are needed to evaluate the relative efficacy and toxicity profile among treatment approaches.
Collapse
Affiliation(s)
- Balamurugan Vellayappan
- Department of Radiation Oncology, National University Cancer Institute Singapore, National University Hospital, Singapore.
| | - Mary Jane Lim-Fat
- Division of Neurology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Antonio De Salles
- Department of Neurosurgery, University of California, Los Angeles, California; HCor Neuroscience, São Paulo, Brazil
| | - Laura Fariselli
- Department of Neurosurgery, Unit of Radiotherapy, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Marc Levivier
- Department of Clinical Neurosciences, Neurosurgery Service and Gamma Knife Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Lijun Ma
- Department of Radiation Oncology, University of Southern California, Los Angeles, California
| | - Ian Paddick
- Division Physics, National Hospital for Neurology and Neurosurgery, London, United Kingdom
| | - Bruce E Pollock
- Department of Neurological Surgery, Mayo Clinic, Rochester, Minnesota
| | - Jean Regis
- Department of Functional Neurosurgery, Aix Marseille University, Timone University Hospital, Marseille, France
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, Virginia
| | - John H Suh
- Department of Radiation Oncology, Taussig Cancer Institute, Cleveland Clinic, Cleveland, Ohio
| | - Shoji Yomo
- Division of Radiation Oncology, Aizawa Comprehensive Cancer Center, Aizawa Hospital, Matsumoto, Japan
| | - Arjun Sahgal
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Botticella A, Dhermain F. Combination of radiosurgery and immunotherapy in brain metastases: balance between efficacy and toxicities. Curr Opin Neurol 2023; 36:587-591. [PMID: 37865858 DOI: 10.1097/wco.0000000000001217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2023]
Abstract
PURPOSE OF REVIEW The incidence of brain metastasis is high and still increasing. Among local therapies, stereotactic radiosurgery (SRS) is an effective treatment option, optimally sparing normal brain, even for multiple brain metastases. Immune checkpoint inhibitors (ICIs) become the new standard of care in an increasing number of cancers, and the combination SRS and ICI is often proposed to patients, but few data have been published on the efficacy and the toxicity of this association. RECENT FINDINGS Explaining this lack of consensus: retrospective studies with different primary cancers, various treatment lines and unknown levels of steroid exposure. Concerning the toxicity, the independent association of radionecrosis with brain-PTV volume was confirmed, and a decreased dose of SRS is now tested in a randomized study. Finally, a 'concurrent' delivery of SRS and ICI (within a 4 weeks' interval) seems the optimal schedule; fractionated radiosurgery for large brain metastasis should be favored. Radio-sensitizing nanoparticles and devices aiming to increase the permeability of the blood brain barrier should be considered in future combinations. SUMMARY The efficacy/toxicity balance of SRS-ICI combination should be regularly re-evaluated, anticipating continued progress in ICI and SRS delivery, with more long-survivors potentially exposed to long-term toxicities. Patients should be included in clinical trials and clearly informed to participate more closely in the final choice.
Collapse
Affiliation(s)
- Angela Botticella
- Department of Radiation Oncology, International Center for Thoracic Cancers (CICT), Gustave Roussy Cancer Campus, Villejuif, France
| | | |
Collapse
|
18
|
Bryant JM, Doniparthi A, Weygand J, Cruz-Chamorro R, Oraiqat IM, Andreozzi J, Graham J, Redler G, Latifi K, Feygelman V, Rosenberg SA, Yu HHM, Oliver DE. Treatment of Central Nervous System Tumors on Combination MR-Linear Accelerators: Review of Current Practice and Future Directions. Cancers (Basel) 2023; 15:5200. [PMID: 37958374 PMCID: PMC10649155 DOI: 10.3390/cancers15215200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Magnetic resonance imaging (MRI) provides excellent visualization of central nervous system (CNS) tumors due to its superior soft tissue contrast. Magnetic resonance-guided radiotherapy (MRgRT) has historically been limited to use in the initial treatment planning stage due to cost and feasibility. MRI-guided linear accelerators (MRLs) allow clinicians to visualize tumors and organs at risk (OARs) directly before and during treatment, a process known as online MRgRT. This novel system permits adaptive treatment planning based on anatomical changes to ensure accurate dose delivery to the tumor while minimizing unnecessary toxicity to healthy tissue. These advancements are critical to treatment adaptation in the brain and spinal cord, where both preliminary MRI and daily CT guidance have typically had limited benefit. In this narrative review, we investigate the application of online MRgRT in the treatment of various CNS malignancies and any relevant ongoing clinical trials. Imaging of glioblastoma patients has shown significant changes in the gross tumor volume over a standard course of chemoradiotherapy. The use of adaptive online MRgRT in these patients demonstrated reduced target volumes with cavity shrinkage and a resulting reduction in radiation dose to uninvolved tissue. Dosimetric feasibility studies have shown MRL-guided stereotactic radiotherapy (SRT) for intracranial and spine tumors to have potential dosimetric advantages and reduced morbidity compared with conventional linear accelerators. Similarly, dosimetric feasibility studies have shown promise in hippocampal avoidance whole brain radiotherapy (HA-WBRT). Next, we explore the potential of MRL-based multiparametric MRI (mpMRI) and genomically informed radiotherapy to treat CNS disease with cutting-edge precision. Lastly, we explore the challenges of treating CNS malignancies and special limitations MRL systems face.
Collapse
Affiliation(s)
- John Michael Bryant
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Ajay Doniparthi
- Morsani College of Medicine, University of South Florida, Tampa, FL 33602, USA;
| | - Joseph Weygand
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Ruben Cruz-Chamorro
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Ibrahim M. Oraiqat
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Jacqueline Andreozzi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Jasmine Graham
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Gage Redler
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Kujtim Latifi
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Vladimir Feygelman
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Stephen A. Rosenberg
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Hsiang-Hsuan Michael Yu
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| | - Daniel E. Oliver
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA (I.M.O.); (J.A.); (G.R.); (K.L.); (H.-H.M.Y.)
| |
Collapse
|
19
|
Lehrer EJ, Khosla AA, Ozair A, Gurewitz J, Bernstein K, Kondziolka D, Niranjan A, Wei Z, Lunsford LD, Mathieu D, Trudel C, Deibert CP, Malouff TD, Ruiz-Garcia H, Peterson JL, Patel S, Bonney P, Hwang L, Yu C, Zada G, Picozzi P, Franzini A, Attuati L, Prasad RN, Raval RR, Palmer JD, Lee CC, Yang HC, Fakhoury KR, Rusthoven CG, Dickstein DR, Sheehan JP, Trifiletti DM, Ahluwalia MS. Immune checkpoint inhibition and single fraction stereotactic radiosurgery in brain metastases from non-small cell lung cancer: an international multicenter study of 395 patients. J Neurooncol 2023; 165:63-77. [PMID: 37889444 DOI: 10.1007/s11060-023-04413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 08/02/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE Approximately 80% of brain metastases originate from non-small cell lung cancer (NSCLC). Immune checkpoint inhibitors (ICI) and stereotactic radiosurgery (SRS) are frequently utilized in this setting. However, concerns remain regarding the risk of radiation necrosis (RN) when SRS and ICI are administered concurrently. METHODS A retrospective study was conducted through the International Radiosurgery Research Foundation. Logistic regression models and competing risks analyses were utilized to identify predictors of any grade RN and symptomatic RN (SRN). RESULTS The study included 395 patients with 2,540 brain metastases treated with single fraction SRS and ICI across 11 institutions in four countries with a median follow-up of 14.2 months. The median age was 67 years. The median margin SRS dose was 19 Gy; 36.5% of patients had a V12 Gy ≥ 10 cm3. On multivariable analysis, V12 Gy ≥ 10 cm3 was a significant predictor of developing any grade RN (OR: 2.18) and SRN (OR: 3.95). At 1-year, the cumulative incidence of any grade and SRN for all patients was 4.8% and 3.8%, respectively. For concurrent and non-concurrent groups, the cumulative incidence of any grade RN was 3.8% versus 5.3%, respectively (p = 0.35); and for SRN was 3.8% vs. 3.6%, respectively (p = 0.95). CONCLUSION The risk of any grade RN and symptomatic RN following single fraction SRS and ICI for NSCLC brain metastases increases as V12 Gy exceeds 10 cm3. Concurrent ICI and SRS do not appear to increase this risk. Radiosurgical planning techniques should aim to minimize V12 Gy.
Collapse
Affiliation(s)
- Eric J Lehrer
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, USA.
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Atulya A Khosla
- Department of Medical Oncology, Miami Cancer Institute, Miami, FL, USA
| | - Ahmad Ozair
- Department of Medical Oncology, Miami Cancer Institute, Miami, FL, USA
| | - Jason Gurewitz
- Department of Radiation Oncology, NYU Langone Medical Center, New York, NY, USA
| | - Kenneth Bernstein
- Department of Radiation Oncology, NYU Langone Medical Center, New York, NY, USA
| | - Douglas Kondziolka
- Department of Neurosurgery, NYU Langone Medical Center, New York, NY, USA
| | - Ajay Niranjan
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Zhishuo Wei
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - L Dade Lunsford
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - David Mathieu
- Department of Neurosurgery, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | - Claire Trudel
- Department of Medicine, Université de Sherbrooke, Centre de Recherche du CHUS, Sherbrooke, QC, Canada
| | | | - Timothy D Malouff
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Henry Ruiz-Garcia
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | | | - Samir Patel
- Division of Radiation Oncology, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Phillip Bonney
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Lindsay Hwang
- Department of Radiation Oncology, University of Southern California, Los Angeles, CA, USA
| | - Cheng Yu
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Gabriel Zada
- Department of Neurosurgery, University of Southern California, Los Angeles, CA, USA
| | - Piero Picozzi
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano (Mi), Italy
| | - Andrea Franzini
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano (Mi), Italy
| | - Luca Attuati
- Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano (Mi), Italy
| | - Rahul N Prasad
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Raju R Raval
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Joshua D Palmer
- Department of Radiation Oncology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Cheng-Chia Lee
- Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Huai-Che Yang
- Department of Neurosurgery, Neurological Institute, Taipei Veteran General Hospital, Taipei, Taiwan
| | - Kareem R Fakhoury
- Department of Radiation Oncology, University of Colorado, Denver, CO, USA
| | - Chad G Rusthoven
- Department of Radiation Oncology, University of Colorado, Denver, CO, USA
| | - Daniel R Dickstein
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jason P Sheehan
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, USA
| | | | | |
Collapse
|
20
|
Semenescu LE, Kamel A, Ciubotaru V, Baez-Rodriguez SM, Furtos M, Costachi A, Dricu A, Tătăranu LG. An Overview of Systemic Targeted Therapy in Renal Cell Carcinoma, with a Focus on Metastatic Renal Cell Carcinoma and Brain Metastases. Curr Issues Mol Biol 2023; 45:7680-7704. [PMID: 37754269 PMCID: PMC10528141 DOI: 10.3390/cimb45090485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/19/2023] [Indexed: 09/28/2023] Open
Abstract
The most commonly diagnosed malignancy of the urinary system is represented by renal cell carcinoma. Various subvariants of RCC were described, with a clear-cell type prevailing in about 85% of all RCC tumors. Patients with metastases from renal cell carcinoma did not have many effective therapies until the end of the 1980s, as long as hormonal therapy and chemotherapy were the only options available. The outcomes were unsatisfactory due to the poor effectiveness of the available therapeutic options, but then interferon-alpha and interleukin-2 showed treatment effectiveness, providing benefits but only for less than half of the patients. However, it was not until 2004 that targeted therapies emerged, prolonging the survival rate. Currently, new technologies and strategies are being developed to improve the actual efficacy of available treatments and their prognostic aspects. This article summarizes the mechanisms of action, importance, benefits, adverse events of special interest, and efficacy of immunotherapy in metastatic renal cell carcinoma, with a focus on brain metastases.
Collapse
Affiliation(s)
- Liliana Eleonora Semenescu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania; (L.E.S.); (A.C.)
| | - Amira Kamel
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania; (A.K.); (V.C.); (S.M.B.-R.); (L.G.T.)
| | - Vasile Ciubotaru
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania; (A.K.); (V.C.); (S.M.B.-R.); (L.G.T.)
| | - Silvia Mara Baez-Rodriguez
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania; (A.K.); (V.C.); (S.M.B.-R.); (L.G.T.)
| | - Mircea Furtos
- Neurosurgical Department, University Emergency Hospital of Bucharest, 050098 Bucharest, Romania;
| | - Alexandra Costachi
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania; (L.E.S.); (A.C.)
| | - Anica Dricu
- Department of Biochemistry, Faculty of Medicine, University of Medicine and Pharmacy of Craiova, Str. Petru Rares nr. 2-4, 710204 Craiova, Romania; (L.E.S.); (A.C.)
| | - Ligia Gabriela Tătăranu
- Neurosurgical Department, Clinical Emergency Hospital “Bagdasar-Arseni”, Soseaua Berceni 12, 041915 Bucharest, Romania; (A.K.); (V.C.); (S.M.B.-R.); (L.G.T.)
- Department of Neurosurgery, Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| |
Collapse
|
21
|
Levis M, Gastino A, De Giorgi G, Mantovani C, Bironzo P, Mangherini L, Ricci AA, Ricardi U, Cassoni P, Bertero L. Modern Stereotactic Radiotherapy for Brain Metastases from Lung Cancer: Current Trends and Future Perspectives Based on Integrated Translational Approaches. Cancers (Basel) 2023; 15:4622. [PMID: 37760591 PMCID: PMC10526239 DOI: 10.3390/cancers15184622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/01/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Brain metastases (BMs) represent the most frequent metastatic event in the course of lung cancer patients, occurring in approximately 50% of patients with non-small-cell lung cancer (NSCLC) and in up to 70% in patients with small-cell lung cancer (SCLC). Thus far, many advances have been made in the diagnostic and therapeutic procedures, allowing improvements in the prognosis of these patients. The modern approach relies on the integration of several factors, such as accurate histological and molecular profiling, comprehensive assessment of clinical parameters and precise definition of the extent of intracranial and extracranial disease involvement. The combination of these factors is pivotal to guide the multidisciplinary discussion and to offer the most appropriate treatment to these patients based on a personalized approach. Focal radiotherapy (RT), in all its modalities (radiosurgery (SRS), fractionated stereotactic radiotherapy (SRT), adjuvant stereotactic radiotherapy (aSRT)), is the cornerstone of BM management, either alone or in combination with surgery and systemic therapies. We review the modern therapeutic strategies available to treat lung cancer patients with brain involvement. This includes an accurate review of the different technical solutions which can be exploited to provide a "state-of-art" focal RT and also a detailed description of the systemic agents available as effective alternatives to SRS/SRT when a targetable molecular driver is present. In addition to the validated treatment options, we also discuss the future perspective for focal RT, based on emerging clinical reports (e.g., SRS for patients with many BMs from NSCLC or SRS for BMs from SCLC), together with a presentation of innovative and promising findings in translational research and the combination of novel targeted agents with SRS/SRT.
Collapse
Affiliation(s)
- Mario Levis
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Alessio Gastino
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Greta De Giorgi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Cristina Mantovani
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paolo Bironzo
- Oncology Unit, Department of Oncology, San Luigi Gonzaga Hospital, University of Turin, 10043 Orbassano, Italy;
| | - Luca Mangherini
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Alessia Andrea Ricci
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Umberto Ricardi
- Radiation Oncology Unit, Department of Oncology, University of Turin, 10126 Turin, Italy; (M.L.); (A.G.); (G.D.G.); (C.M.); (U.R.)
| | - Paola Cassoni
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, 10126 Turin, Italy; (L.M.); (A.A.R.); (P.C.)
| |
Collapse
|
22
|
Johannwerner L, Werner EM, Blanck O, Janssen S, Cremers F, Yu NY, Rades D. Radiation Necrosis Following Stereotactic Radiosurgery or Fractionated Stereotactic Radiotherapy with High Biologically Effective Doses for Large Brain Metastases. BIOLOGY 2023; 12:biology12050655. [PMID: 37237469 DOI: 10.3390/biology12050655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023]
Abstract
In Radiation Therapy Oncology Group 90-05, the maximum tolerated dose of single-fraction radiosurgery (SRS) for brain metastases of 21-30 mm was 18 Gy (biologically effective dose (BED) 45 Gy12). Since the patients in this study received prior brain irradiation, tolerable BED may be >45 Gy12 for de novo lesions. We investigated SRS and fractionated stereotactic radiotherapy (FSRT) with a higher BED for radiotherapy-naive lesions. Patients receiving SRS (19-20 Gy) and patients treated with FSRT (30-48 Gy in 3-12 fractions) with BED > 49 Gy12 for up to 4 brain metastases were compared for grade ≥ 2 radiation necrosis (RN). In the entire cohort (169 patients with 218 lesions), 1-year and 2-year RN rates were 8% after SRS vs. 2% and 13% after FSRT (p = 0.73) in per-patient analyses, and 7% after SRS vs. 7% and 10% after FSRT (p = 0.59) in per-lesion analyses. For lesions ≤ 20 mm (137 patients with 185 lesions), the RN rates were 4% (SRS) vs. 0% and 15%, respectively, (FSRT) (p = 0.60) in per-patient analyses, and 3% (SRS) vs. 0% and 11%, respectively, (FSRT) (p = 0.80) in per-lesion analyses. For lesions > 20 mm (32 patients with 33 lesions), the RN rates were 50% (SRS) vs. 9% (FSRT) (p = 0.012) in both per-patient and per-lesion analyses. In the SRS group, a lesion size > 20 mm was significantly associated with RN; in the FSRT group, lesion size had no impact on RN. Given the limitations of this study, FSRT with BED > 49 Gy12 was associated with low RN risk and may be safer than SRS for brain metastases > 20 mm.
Collapse
Affiliation(s)
- Leonie Johannwerner
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| | - Elisa M Werner
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| | - Oliver Blanck
- Department of Radiation Oncology, University Medical Center Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
- Saphir Radiosurgery Center Northern Germany, 24105 Kiel, Germany
| | - Stefan Janssen
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
- Medical Practice for Radiotherapy and Radiation Oncology, 30161 Hannover, Germany
| | - Florian Cremers
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic, Phoenix, AZ 85054, USA
| | - Dirk Rades
- Department of Radiation Oncology, University of Lubeck, 23562 Lubeck, Germany
| |
Collapse
|
23
|
Kowalchuk R, Mullikin TC, Breen W, Gits HC, Florez M, De B, Harmsen WS, Rose PS, Siontis BL, Costello BA, Morris JM, Lucido JJ, Olivier KR, Stish B, Laack NN, Park S, Owen D, Ghia AJ, Brown PD, Merrell KW. Development and validation of a unifying pre-treatment decision tool for intracranial and extracranial metastasis-directed radiotherapy. Front Oncol 2023; 13:1095170. [PMID: 37051531 PMCID: PMC10083422 DOI: 10.3389/fonc.2023.1095170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 03/15/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundThough metastasis-directed therapy (MDT) has the potential to improve overall survival (OS), appropriate patient selection remains challenging. We aimed to develop a model predictive of OS to refine patient selection for clinical trials and MDT.Patients and methodsWe assembled a multi-institutional cohort of patients treated with MDT (stereotactic body radiation therapy, radiosurgery, and whole brain radiation therapy). Candidate variables for recursive partitioning analysis were selected per prior studies: ECOG performance status, time from primary diagnosis, number of additional non-target organ systems involved (NOS), and intracranial metastases.ResultsA database of 1,362 patients was assembled with 424 intracranial, 352 lung, and 607 spinal treatments (n=1,383). Treatments were split into training (TC) (70%, n=968) and internal validation (IVC) (30%, n=415) cohorts. The TC had median ECOG of 0 (interquartile range [IQR]: 0-1), NOS of 1 (IQR: 0-1), and OS of 18 months (IQR: 7-35). The resulting model components and weights were: ECOG = 0, 1, and > 1 (0, 1, and 2); 0, 1, and > 1 NOS (0, 1, and 2); and intracranial target (2), with lower scores indicating more favorable OS. The model demonstrated high concordance in the TC (0.72) and IVC (0.72). The score also demonstrated high concordance for each target site (spine, brain, and lung).ConclusionThis pre-treatment decision tool represents a unifying model for both intracranial and extracranial disease and identifies patients with the longest survival after MDT who may benefit most from aggressive local therapy. Carefully selected patients may benefit from MDT even in the presence of intracranial disease, and this model may help guide patient selection for MDT.
Collapse
Affiliation(s)
- Roman Kowalchuk
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Trey C. Mullikin
- Department of Radiation Oncology, Duke University, Durham, NC, United States
| | - William Breen
- Department of Radiation Oncology, Duke University, Durham, NC, United States
| | - Hunter C. Gits
- Department of Radiation Oncology, Duke University, Durham, NC, United States
| | - Marcus Florez
- Department of Radiation Oncology, Houston, MD Anderson Cancer Center, Houston, TX, United States
| | - Brian De
- Department of Radiation Oncology, Houston, MD Anderson Cancer Center, Houston, TX, United States
| | | | - Peter Sean Rose
- Mayo Clinic, Department of Orthopedic Surgery, Rochester, MN, United States
| | | | | | - Jonathan M. Morris
- Mayo Clinic, Department of Medical Oncology, Rochester, MN, United States
| | - John J. Lucido
- Mayo Clinic, Department of Medical Physics, Rochester, MN, United States
| | - Kenneth R. Olivier
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Brad Stish
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Nadia N. Laack
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Sean Park
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Dawn Owen
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Amol J. Ghia
- Department of Radiation Oncology, Houston, MD Anderson Cancer Center, Houston, TX, United States
| | - Paul D. Brown
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
| | - Kenneth Wing Merrell
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Kenneth Wing Merrell,
| |
Collapse
|