1
|
Li J, Lv L, Hu M, Liu Z, Zhou S. Inhibition of N6-methyladenosine methylation of ASC by berberine ameliorates pyroptosis of renal tubular epithelial cells in acute kidney injury. Cell Signal 2025; 131:111732. [PMID: 40074191 DOI: 10.1016/j.cellsig.2025.111732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 03/04/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
Acute kidney injury (AKI) lacks a definitive therapeutic approach beyond supportive care. One significant pathological mechanism involves the regulated death of tubular epithelial cells; however, the regulatory mechanisms underlying this cell death pathway require further investigation. The N6-methyladenosine (m6A) modification, recognized as the most prevalent modification in eukaryotes, plays a critical role in the regulatory processes associated with AKI. Here, this study investigates the association between methyltransferase-like 3 (METTL3) and pyroptosis in mice with folic acid (FA)-induced AKI. Both in vitro and in vivo experiments have confirmed that METTL3 plays a role in AKI progression, correlating with renal epithelial cell pyroptosis and inflammation. Moreover, RNA immunoprecipitation quantitative PCR (RIP-qPCR) analysis demonstrated that METTL3-mediated m6A methylation occurred in the mRNA of Apoptosis-associated speck-like protein containing a CARD (ASC) in H2O2-induced renal tubular epithelial (TCMK-1) cells. Notably, METTL3 knockdown resulted in reduced ASC protein expression, decreased release of inflammatory factors, and reduced pyroptosis. In addition, we verified the inhibitory effect of berberine hydrochloride, a monomer used in traditional Chinese medicine, on METTL3 expression. We also demonstrated that berberine ameliorated FA-induced AKI and H2O2-induced pyroptosis in TCMK-1 cells by inhibiting METTL3 and modulating the ASC/caspase-1/Gasdermin D axis. These findings provide insights into targeted therapies and drug development for AKI.
Collapse
Affiliation(s)
- Jiacheng Li
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China
| | - Linxiao Lv
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China
| | - Mingyang Hu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China
| | - Zhangsuo Liu
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China.
| | - Sijie Zhou
- Traditional Chinese Medicine Integrated Department of Nephrology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China; Research Institute of Nephrology, Zhengzhou University, Zhengzhou 450052, PR China; Henan Province Research Center for Kidney Disease, Zhengzhou 450052, PR China; Key Laboratory of Precision Diagnosis and Treatment for Chronic Kidney Disease in Henan Province, Zhengzhou 450052, PR China; Tianjian Laboratory of Advanced Biomedical Sciences, Academy of Medical Sciences, Zhengzhou University Zhengzhou, Henan, China; Innovation Center of Basic Research for Metabolic-Associated Fatty Liver Disease, Ministry of Education of, China.
| |
Collapse
|
2
|
Zhang Y, Tian R, Feng X, Xiao B, Yue Q, Wei J, Wang L. Overexpression of METTL3 in lung cancer cells inhibits radiation-induced bystander effect. Biochem Biophys Res Commun 2025; 761:151714. [PMID: 40184791 DOI: 10.1016/j.bbrc.2025.151714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Radiation-induced bystander effects (RIBE) increase the complexity of radiation therapy (RT). m6A modification is implicated in ionizing radiation damage. This study aims to investigate the RIBE and the mechanism after promoting m6A modification. METHODS Lung adenocarcinoma cells were treated to simulate a hypoxic and 0.5 Gy RT environment. The expression levels of METTL3, METTL14, and YTDHF2 were quantified by RT-qPCR. Paracellular clonogenicity and the expression of 53BP1 and γ-H2AX were assessed by immunofluorescence. The proliferative rate was evaluated by CCK-8. Probes were employed to measure ROS levels. Micronucleus formation was evaluated microscopically. m6A-mRNA/lncRNA microarrays, MERIP-PCR, RT-qPCR, and ELISA were utilized to assess m6A modification levels and the expression of inflammatory factors. RESULTS m6A modification levels were significantly diminished under hypoxic, low-dose irradiation conditions. The overexpression of METTL3 in irradiated cancer cells resulted in increased clonogenicity and proliferation of paracellular cells, suppressed the rate of micronucleus formation, and reduced DNA damage by modulating the inflammatory response. m6A-mRNA/lncRNA microarray analyses revealed a higher correlation of inflammatory molecules NF-κB and TRAF6. Further analysis demonstrated that the m6A modification levels of inflammation-related factors such as IL-6, TLR4, NF-κB2, and TRAF6 were significantly up-regulated, while their mRNA expression levels were notably decreased. Additionally, the expression of IL-10 and TGF-β was significantly reduced, with no significant changes observed in IL-1 expression. CONCLUSION The overexpression of METTL3 facilitated m6A modification and mitigated the inflammatory response, thereby promoting paracellular cloning and proliferation, inhibiting micronucleus formation, alleviating DNA damage, and achieving the objective of suppression of RIBE.
Collapse
Affiliation(s)
- Yong Zhang
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Rongrong Tian
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Xudong Feng
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Bin Xiao
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Qi Yue
- The First Affiliated Hospital of Kunming Medical University, 295 Xichang Road, Kunming, 650032, China
| | - Jinling Wei
- The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China
| | - Li Wang
- The First People's Hospital of Yunnan Province, Kunming, 650032, Yunnan, China; The Affiliated Hospital of Kunming University of Science and Technology, Kunming, 650032, Yunnan, China.
| |
Collapse
|
3
|
Saini S, Gurung P. A comprehensive review of sensors of radiation-induced damage, radiation-induced proximal events, and cell death. Immunol Rev 2025; 329:e13409. [PMID: 39425547 PMCID: PMC11742653 DOI: 10.1111/imr.13409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2024]
Abstract
Radiation, a universal component of Earth's environment, is categorized into non-ionizing and ionizing forms. While non-ionizing radiation is relatively harmless, ionizing radiation possesses sufficient energy to ionize atoms and disrupt DNA, leading to cell damage, mutation, cancer, and cell death. The extensive use of radionuclides and ionizing radiation in nuclear technology and medical applications has sparked global concern for their capacity to cause acute and chronic illnesses. Ionizing radiation induces DNA damage either directly through strand breaks and base change or indirectly by generating reactive oxygen species (ROS) and reactive nitrogen species (RNS) via radiolysis of water. This damage triggers a complex cellular response involving recognition of DNA damage, cell cycle arrest, DNA repair mechanisms, release of pro-inflammatory cytokines, and cell death. This review focuses on the mechanisms of radiation-induced cellular damage, recognition of DNA damage and subsequent activation of repair processes, and the critical role of the innate immune response in resolution of the injury. Emphasis is placed on pattern recognition receptors (PRRs) and related receptors that detect damage-associated molecular patterns (DAMPs) and initiate downstream signaling pathways. Radiation-induced cell death pathways are discussed in detail. Understanding these processes is crucial for developing strategies to mitigate the harmful effects of radiation and improve therapeutic outcomes.
Collapse
Affiliation(s)
- Saurabh Saini
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Iowa City Veterans Affairs (VA) Medical CenterIowa CityIowaUSA
| | - Prajwal Gurung
- Inflammation ProgramUniversity of IowaIowa CityIowaUSA
- Department of Internal MedicineUniversity of IowaIowa CityIowaUSA
- Iowa City Veterans Affairs (VA) Medical CenterIowa CityIowaUSA
- Interdisciplinary Graduate Program in Human ToxicologyUniversity of IowaIowa CityIowaUSA
- Immunology Graduate ProgramUniversity of IowaIowa CityIowaUSA
- Center for Immunology and Immune Based DiseaseUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
4
|
Zhang Y, Hong W, Zheng D, Li Z, Hu Y, Chen Y, Yang P, Zeng Z, Du S. Increased IFN-β indicates better survival in hepatocellular carcinoma treated with radiotherapy. Clin Exp Immunol 2024; 218:188-198. [PMID: 39185713 PMCID: PMC11784586 DOI: 10.1093/cei/uxae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 06/12/2024] [Accepted: 08/25/2024] [Indexed: 08/27/2024] Open
Abstract
Preclinical data suggest that type I interferon (IFN) responsiveness is essential for the antitumor effects of radiotherapy (RT). However, its clinical value remains unclear. This study aimed to explore this from a clinical perspective. In cohort 1, data from 152 hepatocellular carcinoma (HCC) patients who received RT were analyzed. Blood samples were taken 1 day before and 2 weeks after RT. RT was found to increase serum levels of IFN-β (a subtype of IFN-I) in HCC patients (3.42 ± 1.57 to 5.51 ± 2.11 pg/ml, P < 0.01), particularly in those with favorable responses. Higher post-RT serum IFN-β levels (≥4.77 pg/ml) were associated with better progression-free survival (HR = 0.58, P < 0.01). Cohort 2 included 46 HCC patients, including 23 who underwent preoperative RT and 23 matched control HCC who received surgical resection without RT. Formalin-fixed paraffin-embedded samples were obtained. Neoadjuvant RT significantly increased IFN-β expression in tumor tissues compared to direct surgery (8.13% ± 5.19% to 15.10% ± 5.89%, P < 0.01). Higher post-RT IFN-β (>median) indicated better disease-free survival (P = 0.049). Additionally, increased CD11c+MHCII+CD141+ antigen-presenting cell subsets and CD103+CD39+CD8+ tumor-infiltrating lymphocytes were found in the higher IFN-β group (P = 0.02, P = 0.03), which may contribute to the favorable prognosis in higher IFN-β group. Collectively, these findings suggest that IFN-β response activated by radiation may serve as a prognostic biomarker for HCC patients undergoing RT.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weifeng Hong
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Danxue Zheng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zongjuan Li
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Medical Oncology, Shanghai Pulmonary Hospital and Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yong Hu
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yixing Chen
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Yang
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shisuo Du
- Department of Radiation Oncology, Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Zhou L, Zhu J, Liu Y, Zhou P, Gu Y. Mechanisms of radiation-induced tissue damage and response. MedComm (Beijing) 2024; 5:e725. [PMID: 39309694 PMCID: PMC11413508 DOI: 10.1002/mco2.725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Radiation-induced tissue injury (RITI) is the most common complication in clinical tumor radiotherapy. Due to the heterogeneity in the response of different tissues to radiation (IR), radiotherapy will cause different types and degrees of RITI, which greatly limits the clinical application of radiotherapy. Efforts are continuously ongoing to elucidate the molecular mechanism of RITI and develop corresponding prevention and treatment drugs for RITI. Single-cell sequencing (Sc-seq) has emerged as a powerful tool in uncovering the molecular mechanisms of RITI and for identifying potential prevention targets by enhancing our understanding of the complex intercellular relationships, facilitating the identification of novel cell phenotypes, and allowing for the assessment of cell heterogeneity and spatiotemporal developmental trajectories. Based on a comprehensive review of the molecular mechanisms of RITI, we analyzed the molecular mechanisms and regulatory networks of different types of RITI in combination with Sc-seq and summarized the targeted intervention pathways and therapeutic drugs for RITI. Deciphering the diverse mechanisms underlying RITI can shed light on its pathogenesis and unveil new therapeutic avenues to potentially facilitate the repair or regeneration of currently irreversible RITI. Furthermore, we discuss how personalized therapeutic strategies based on Sc-seq offer clinical promise in mitigating RITI.
Collapse
Affiliation(s)
- Lin Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Jiaojiao Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yuhao Liu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yongqing Gu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunanChina
- College of Life SciencesHebei UniversityBaodingChina
| |
Collapse
|
6
|
Cao Y, Chen X, Zhu Z, Luo Z, Hao Y, Yang X, Feng J, Zhang Z, Hu J, Jian Y, Zhu J, Liang W, Chen Z. STING contributes to lipopolysaccharide-induced tubular cell inflammation and pyroptosis by activating endoplasmic reticulum stress in acute kidney injury. Cell Death Dis 2024; 15:217. [PMID: 38485717 PMCID: PMC10940292 DOI: 10.1038/s41419-024-06600-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Recently, innate immunity and inflammation were recognized as the key factors for acute kidney injury (AKI) caused by sepsis, which is closely related to high mortality. Stimulator of interferon genes (STING) has emerged as a critical component of innate immune and inflammatory responses. However, the role of STING in the pathogenesis of septic AKI remains unclear. This study demonstrated that the STING was significantly activated in tubular cells induced by lipopolysaccharide (LPS) in vivo and in vitro. Tubule-specific STING knockout attenuated LPS-induced renal dysfunction and pathological changes. Mechanistically, the STING pathway promotes NOD-like receptor protein 3 (NLRP3) activation. STING triggers endoplasmic reticulum (ER) stress to induce mitochondrial reactive oxygen species (mtROS) overproduction, enhancing thioredoxin-interacting protein activation and association with NLRP3. Eventually, the NLRP3 inflammasome leads to tubular cell inflammation and pyroptosis. This study revealed the STING-regulated network and further identified the STING/ER stress/mtROS/NLRP3 inflammasome axis as an emerging pathway contributing to tubular damage in LPS-induced AKI. Hence, targeting STING may be a promising therapeutic strategy for preventing septic AKI.
Collapse
Affiliation(s)
- Yun Cao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
- Department of Nephrology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical College), Haikou, China
| | - Xinghua Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zijing Zhu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zilv Luo
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yiqun Hao
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xueyan Yang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Feng
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zongwei Zhang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jijia Hu
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yonghong Jian
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiefu Zhu
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Liang
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Zhaowei Chen
- Division of Nephrology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
7
|
Wang C, Yao S, Zhang T, Sun X, Bai C, Zhou P. RNA N6-Methyladenosine Modification in DNA Damage Response and Cancer Radiotherapy. Int J Mol Sci 2024; 25:2597. [PMID: 38473842 DOI: 10.3390/ijms25052597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The N6-methyladenosine (M6A) modification is the most common internal chemical modification of RNA molecules in eukaryotes. This modification can affect mRNA metabolism, regulate RNA transcription, nuclear export, splicing, degradation, and translation, and significantly impact various aspects of physiology and pathobiology. Radiotherapy is the most common method of tumor treatment. Different intrinsic cellular mechanisms affect the response of cells to ionizing radiation (IR) and the effectiveness of cancer radiotherapy. In this review, we summarize and discuss recent advances in understanding the roles and mechanisms of RNA M6A methylation in cellular responses to radiation-induced DNA damage and in determining the outcomes of cancer radiotherapy. Insights into RNA M6A methylation in radiation biology may facilitate the improvement of therapeutic strategies for cancer radiotherapy and radioprotection of normal tissues.
Collapse
Affiliation(s)
- Cui Wang
- College of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Shibo Yao
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Tinghui Zhang
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Xiaoya Sun
- College of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Chenjun Bai
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| | - Pingkun Zhou
- College of Public Health, Hengyang Medical School, University of South China, Hengyang 421001, China
- Beijing Key Laboratory for Radiobiology, Department of Radiation Biology, Beijing Institute of Radiation Medicine, Beijing 100850, China
| |
Collapse
|