1
|
Sturm MC, Abazid A, Stope MB. Tissue adhesion after surgical interventions (Review). Exp Ther Med 2025; 29:97. [PMID: 40165802 PMCID: PMC11956145 DOI: 10.3892/etm.2025.12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 02/28/2025] [Indexed: 04/02/2025] Open
Abstract
Tissue adhesion after surgical procedures is a common postoperative complication that affects a significant number of patients across all surgical disciplines. In pelvic surgical procedures, second-look surgeries have revealed adhesions in more than half of all patients weeks to several months after surgery. Adhesions can be asymptomatic, but they can also cause a wide range of complications, such as severe pain, nausea, vomiting, constipation, ileus and reproductive dysfunction. Undetected adhesions that lead to problems in subsequent surgical interventions are also of high clinical importance. Lysis of these adhesions before the actual surgery leads to loss of time and possible additional complications, such as trocar injuries in laparoscopies or inadvertent enterotomies during adhesiolysis, during the originally planned intervention. The health care associated with adhesion-related problems are significant. Because of the widely varying manifestations of symptoms, the already concerning figure of patients with significant adhesions is likely to increase. Outpatient healthcare expenditures are further increased because of undetected adhesions. Adhesions therefore represent a major surgical and health economic problem; however, yet there are currently few options for prophylaxis and treatment.
Collapse
Affiliation(s)
- Malin C.K. Sturm
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, D-53127 Bonn, Germany
| | - Alexander Abazid
- Department of General, Visceral and Thorax Surgery, Bundeswehr Hospital Berlin, D-10115 Berlin, Germany
| | - Matthias B. Stope
- Department of Gynecology and Gynecological Oncology, University Hospital Bonn, D-53127 Bonn, Germany
| |
Collapse
|
2
|
Chen F, Yijie W, Kexin T, Qin Z, Sha W, Xin G, Dongping Y, Junjie W, Haoxuan Z, Dan S, Qian Y, Xiuzhen H, Qingyu D, Qingquan K, Yongmei X. StatGel: An Innovative hydrogel carrying STAT3-targeted small molecule inhibitor for the treatment of abdominal adhesions. Int J Pharm 2025; 672:125320. [PMID: 39921015 DOI: 10.1016/j.ijpharm.2025.125320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/20/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Adhesions in the abdominal cavity are among the most common complications post abdominal surgery, resulting from excessive fibrous tissue proliferation and collagen synthesis due to various factors. To date, physical barrier materials have been approved for preventing adhesions, though their effectiveness remains unsatisfactory. One of the important causes of abdominal adhesions is the excessive proliferation of fibrotic cells, and our previous research indicated that STAT3 is a promising therapeutic target for anti-fibrosis. This study designed and synthesized a STAT3 targeted small molecule inhibitor compound 16 K and evaluated its anti-fibrotic effects using the CCK-8 assay on fibroblasts. Compound 16 K was then combined with GelMA (methacryloyl gelatin) hydrogel through UV curing to prepare StatGel, a 16 K-loaded hydrogel with both anti-fibrotic activity and physical barrier properties. Material property assessments showed that StatGel does not alter the inherent properties of GelMA while maintaining the capability of sustained release of compound 16 K. StatGel significantly inhibited the proliferation of L929 cells and TGF-β1-induced fibrotic differentiation, and down-regulated p-STAT3 protein without affecting the STAT3 protein. Furthermore, StatGel was demonstrated to prevent the formation of abdominal adhesions in a mouse model induced by CLP as assessed by histological examination and adhesion index. Overall, StatGel offers a potential approach for effectively preventing the formation of abdominal adhesions.
Collapse
Affiliation(s)
- Fan Chen
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu 610041 China
| | - Wang Yijie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041 China
| | - Tang Kexin
- Department of Biology, Emory University, Atlanta GA 30322, USA
| | - Zhao Qin
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu 610041 China
| | - Wan Sha
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu 610041 China
| | - Gu Xin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041 China
| | - Yao Dongping
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041 China
| | - Wu Junjie
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041 China
| | - Zhou Haoxuan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041 China
| | - Song Dan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041 China
| | - Yao Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041 China
| | - Hu Xiuzhen
- Kaizhou Hospital of Traditional Chinese Medicine, Chongqing 405400, China
| | - Dou Qingyu
- National Clinical Research Center for Geriatrics, Center of Gerontology and Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Kong Qingquan
- Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region (Hospital.C.T.), Chengdu 610041 China; Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Xie Yongmei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041 China.
| |
Collapse
|
3
|
Nakagawa K, Yamazaki M, Tanimura H, Sakaguchi N, Kohara M, Sato I, Azuma M, Nishimoto-Kakiuchi A, Kato A, Kitazawa T, Konno R, Sankai T. Development of a novel postoperative adhesion induction model in cynomolgus monkeys with high reliability and reproducibility. Sci Rep 2025; 15:7102. [PMID: 40016251 PMCID: PMC11868379 DOI: 10.1038/s41598-025-88022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/23/2025] [Indexed: 03/01/2025] Open
Abstract
Postoperative adhesions frequently occur following abdominal surgical interventions, leading to serious morbidities and requiring new therapeutic strategies. The development of new therapeutic agents to reduce postoperative adhesions needs animal models that closely mirror human pathophysiology. In this study, we established a novel surgical adhesion model in cynomolgus monkeys, which are characteristically similar to humans. Our model reliably and reproducibly developed adhesions. Histopathological analyses revealed that monkeys undergoing our novel surgery method exhibited changes consistent with those in monkeys that underwent open abdominal surgery. Furthermore, the cellular components of the adhesion tissue in our monkey model reflected those reported in human adhesion tissue. Furthermore, time-course transcriptomic analyses showed that our model accurately recapitulates the well-known progression cascade of postoperative adhesions. In addition, it identified the upregulation of gene that is absent in rodents. We expect our novel surgical method to be a promising tool for elucidating the detailed biology of postoperative adhesions and for assessing new therapeutic treatments with high translatability to human biology.
Collapse
Affiliation(s)
- Kenji Nakagawa
- Research Division, Chugai Pharmaceutical Co. Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan.
| | - Masaki Yamazaki
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Hiromi Tanimura
- Research Division, Chugai Pharmaceutical Co. Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Narumi Sakaguchi
- Research Division, Chugai Pharmaceutical Co. Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Miho Kohara
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba-shi, Ibaraki, 305-0843, Japan
| | - Izumi Sato
- Research Division, Chugai Pharmaceutical Co. Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Masahiro Azuma
- Research Division, Chugai Pharmaceutical Co. Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Ayako Nishimoto-Kakiuchi
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., 2-1-1 Nihonbashi-Muromachi Chuo-ku, Tokyo, 103-8324, Japan
| | - Atsuhiko Kato
- Translational Research Division, Chugai Pharmaceutical Co. Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Takehisa Kitazawa
- Research Division, Chugai Pharmaceutical Co. Ltd., 216 Totsuka-cho, Totsuka-ku, Yokohama, Kanagawa, 244-8602, Japan
| | - Ryo Konno
- Department of Obstetrics and Gynecology, Jichi Medical University Saitama Medical Center, 1-847 Amanumacho, Omiya-ku, Saitama-shi, Saitama, 330-8503, Japan.
| | - Tadashi Sankai
- Tsukuba Primate Research Center, National Institutes of Biomedical Innovation, Health and Nutrition, 1-1 Hachimandai, Tsukuba-shi, Ibaraki, 305-0843, Japan.
| |
Collapse
|
4
|
Tang K, Wang J, Pei X, Zhu Z, Liu J, Wan Q, Zhang X. Flexible coatings based on hydrogel to enhance the biointerface of biomedical implants. Adv Colloid Interface Sci 2025; 335:103358. [PMID: 39591835 DOI: 10.1016/j.cis.2024.103358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 10/29/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
The use of biomedical implants in surgical techniques promotes the restoration of lost tissue or organ physiological functions in the body. The interface between different materials determines their interactions and ultimately affects the physicochemical properties of biomedical implants. After implantation, the biointerface plays a crucial role in determining the biocompatibility and functionality of biomedical implants. Surface modification of biomaterials by developing novel biomaterials like various flexible coatings to meet the requirements of biointerfaces, such as mechanical performance, compatibility safety, and biological activities, can improve material-biological interactions by maintaining its original volumetric characteristics. Hydrogels possess excellent plasticity, biodegradability, biocompatibility, and extracellular-matrix-like properties, making them widely used in the biomedical field. Moreover, due to their unique three-dimensional crosslinked hydrophilic network, hydrogels can encapsulate a variety of materials, such as small molecules, polymers, and particle. In recent years, it has been proved that coating biomedical implant materials with flexible hydrogels can optimize the biointerface and holds vast potential for implant surface modification. In this review, we first discussed the potential requirements of the biointerface on the surface of implantable materials in both in vitro and in vivo biological microenvironments. Based on these comprehensive reviews, we also introduced the potential applications of hydrogels in both in vitro and in vivo settings. Finally, this review focused on the challenges faced by the biointerface of implantable materials constructed based on hydrogels and proposed future approaches to inspire researchers with new ideas.
Collapse
Affiliation(s)
- Kun Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jian Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiang Pei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zhou Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiayi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianbing Wan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xin Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
5
|
Sun L, Li X, Hao L, Dong Y, Zhou L, Zhao J, Ye W, Jiang R. Microenvironment-Responsive Hydrogel Enclosed with Bioactive Nanoparticle for Synergistic Postoperative Adhesion Prevention. ACS APPLIED MATERIALS & INTERFACES 2024; 16:60933-60947. [PMID: 39446062 DOI: 10.1021/acsami.4c10238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Postoperative adhesion (PA) is a severe complication of abdominal surgery caused by the inability of clinical physical barriers to cope with diverse pathological factors in the process of PA formation. Herein, we described a multifunctional hydrogel composed of bioactive nanoparticles (BNs) and dual-responsive hydrogel to serve as a combination of physical and pharmacological therapy for preventing PA. Specifically, BNs with pro-inflammatory cell-targeted aggregation were designed by integrating hyaluronic acid onto the polydopamine (PDA)-coated hollow ZrO2 nanoparticles loaded with antimicrobial peptides and platelet lysates that can eliminate bacterial infection and promote tissue repair. PDA can remove the excessive reactive oxygen species (ROS) and thus suppress the oxidative stress damage and accompanying inflammation in the presence of high ROS. The dynamically cross-linked host hydrogel presents injectable yet microenvironment-responsive properties, which enables complete coverage of the uneven tissue and instantly forms a physical barrier to effectively isolate injured tissues and neighboring organs, and synchronously acts as a niche to deliver the BNs in a controlled way. The hydrogel demonstrates a remarkable antiadhesion effect in a rat cecum-abdominal wall adhesion model. Together, this "all-in-one" composite hydrogel strategy capable of a physical barrier capability and pharmacological effects represents a promising clinical solution to prevent PA.
Collapse
Affiliation(s)
- Liwei Sun
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Xinmeng Li
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Lingwan Hao
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Yanhong Dong
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Lu Zhou
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun 130022, China
| | - Wei Ye
- Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Rujian Jiang
- School of Chemistry and Pharmaceutical Engineering & Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250021, China
| |
Collapse
|
6
|
Liu D, Tong H, Guo Y, Liu B, Ye C, Yang N, Wu Y. The Toll-like receptor 4 antagonist TAK-242 in combination with sodium hyaluronate alleviates postoperative abdominal adhesion in a mouse model. BMC Med Genomics 2024; 17:257. [PMID: 39456047 PMCID: PMC11520138 DOI: 10.1186/s12920-024-02031-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Postoperative abdominal adhesion is one of the most common complications after abdominal surgery. The Toll-like receptor 4 (TLR4) signaling pathway is one of the most common inflammation-related pathways, and it has been demonstrated that TLR4 is highly expressed in adhesive tissues; however, the function of TLR4 in adhesion formation has not yet been studied. In the present study, the expression of TLR4 was first detected by immunohistochemical (IHC) and double-immunofluorescence staining in 40 mice, which were randomly divided into four groups, and sacrificed at 1, 3, 5 and 7 days after surgery. Subsequently, another 40 mice were randomly divided into five groups; with the exception of the sham group, the other groups were modeled and treated with saline that contained DMSO, sodium hyaluronate (HA), TAK-242 or TAK-242 + HA (applied to damaged peritoneal wounds). A total of 7 days after surgery, the mice were sacrificed and specimens were collected. Inflammation was detected by hematoxylin and eosin staining, and ELISA of transforming growth factor- β1 (TGF-β1) and interleukin-6 (IL-6); collagen deposition was examined by Masson staining and IHC staining of α-SMA; and reactive oxygen species (ROS) were detected by ROS staining and malondialdehyde (MDA) assay. The results revealed that TLR4 was highly expressed in the adhesive tissues at 3, 5 and 7 days after surgery. In addition, TAK-242 + HA treatment could reduce abdominal adhesion formation, exhibiting lower Nair's score and inflammation scores, lower TGF-β1 and IL-6 levels, and lower collagen thickness and α-SMA levels compared with those in the control group. In addition, the TAK-242 + HA group had lower levels of ROS and MDA compared with those in the control group. The present study revealed that TLR4 was highly expressed in the process of adhesion formation and its inhibitor, TAK-242, combined with HA, could reduce adhesion formation by reducing inflammation and ROS, and alleviating collagen deposition.
Collapse
Affiliation(s)
- Dong Liu
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710061, Shaanxi, P.R. China
| | - Haochongyang Tong
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, P.R. China
| | - Yu Guo
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710061, Shaanxi, P.R. China
| | - Bin Liu
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710061, Shaanxi, P.R. China
| | - Changchun Ye
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, P.R. China
| | - Ni Yang
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710061, Shaanxi, P.R. China
| | - Yunhua Wu
- The Second Department of General Surgery, Shaanxi Provincial People's Hospital, 256 West Youyi Road, Xi'an, 710061, Shaanxi, P.R. China.
| |
Collapse
|
7
|
Lu Y, Elrod J, Herrmann M, Knopf J, Boettcher M. Neutrophil Extracellular Traps: A Crucial Factor in Post-Surgical Abdominal Adhesion Formation. Cells 2024; 13:991. [PMID: 38891123 PMCID: PMC11171752 DOI: 10.3390/cells13110991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/27/2024] [Accepted: 06/05/2024] [Indexed: 06/21/2024] Open
Abstract
Post-surgical abdominal adhesions, although poorly understood, are highly prevalent. The molecular processes underlying their formation remain elusive. This review aims to assess the relationship between neutrophil extracellular traps (NETs) and the generation of postoperative peritoneal adhesions and to discuss methods for mitigating peritoneal adhesions. A keyword or medical subject heading (MeSH) search for all original articles and reviews was performed in PubMed and Google Scholar. It included studies assessing peritoneal adhesion reformation after abdominal surgery from 2003 to 2023. After assessing for eligibility, the selected articles were evaluated using the Critical Appraisal Skills Programme checklist for qualitative research. The search yielded 127 full-text articles for assessment of eligibility, of which 7 studies met our criteria and were subjected to a detailed quality review using the Critical Appraisal Skills Programme (CASP) checklist. The selected studies offer a comprehensive analysis of adhesion pathogenesis with a special focus on the role of neutrophil extracellular traps (NETs) in the development of peritoneal adhesions. Current interventional strategies are examined, including the use of mechanical barriers, advances in regenerative medicine, and targeted molecular therapies. In particular, this review emphasizes the potential of NET-targeted interventions as promising strategies to mitigate postoperative adhesion development. Evidence suggests that in addition to their role in innate defense against infections and autoimmune diseases, NETs also play a crucial role in the formation of peritoneal adhesions after surgery. Therefore, therapeutic strategies that target NETs are emerging as significant considerations for researchers. Continued research is vital to fully elucidate the relationship between NETs and post-surgical adhesion formation to develop effective treatments.
Collapse
Affiliation(s)
- Yuqing Lu
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Julia Elrod
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Department of Internal Medicine 3—Rheumatology and Immunology, Friedrich Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
- Deutsches Zentrum für Immuntherapie (DZI), Friedrich Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054 Erlangen, Germany
| | - Jasmin Knopf
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Michael Boettcher
- Department of Pediatric Surgery, University Medical Center Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| |
Collapse
|
8
|
Kazemi K, Jamshidi K, Naseri R, Shahriarirad R, Shamsaeefar A, Hosseinzadeh A. Comparison of the effect of Everolimus, Prednisolone, and a combination of both on experimentally induced peritoneal adhesions in rats. Sci Rep 2024; 14:11077. [PMID: 38745015 PMCID: PMC11093995 DOI: 10.1038/s41598-024-61620-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Postoperative intra-abdominal adhesions represent a significant post-surgical problem. Its complications can cause a considerable clinical and cost burden. Herein, our study aimed to investigate the effect of Everolimus on peritoneal adhesion formation after inducing adhesions in rats. In this experimental study, adhesion bands were induced by intraperitoneal injection of 3 ml of 10% sterile talc solution in 64 male albino rats. The first group served as the control group. The second one received oral Prednisolone (1 mg/kg/day), the third received Everolimus (0.1 mg/kg/day), and group four received both drugs with similar dosages for four consecutive weeks. The formation of adhesion bands was qualitatively graded according to the Nair classification. The rats in the control group had extensive adhesions between the abdominal wall and the organs. Regarding substantial adhesion formation, 50% (8/16) of animals in the control group had substantial adhesions, while this rate in the groups receiving Prednisolone, Everolimus, and combination treatment was 31%, 31%, and 31%, respectively. Also, 68.75% (5/11) of the Prednisolone recipients had insubstantial adhesions, the same as Everolimus recipients, while in the combination group, 66.66% (10/15) rats had insubstantial adhesions. Everolimus demonstrated satisfactory results in reducing the rates of induced peritoneal adhesion in an experimental model, similar to Prednisolone and superior to a combination regime.
Collapse
Affiliation(s)
- Kourosh Kazemi
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamran Jamshidi
- Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reyhaneh Naseri
- Student Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Shahriarirad
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Science, Shiraz, Iran
- School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Shamsaeefar
- Shiraz Transplant Center, Abu Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Hosseinzadeh
- Department of Surgery, Shiraz University of Medical Sciences, Shiraz, Iran.
- Thoracic and Vascular Surgery Research Center, Shiraz University of Medical Science, Shiraz, Iran.
| |
Collapse
|
9
|
Huang Y, Dai X, Gong Y, Ren L, Luo Y, Sun Y, Chen M, Jiang J, Guan Z, Zhao C. ROS-responsive sprayable hydrogel as ROS scavenger and GATA6 + macrophages trap for the prevention of postoperative abdominal adhesions. J Control Release 2024; 369:573-590. [PMID: 38554773 DOI: 10.1016/j.jconrel.2024.03.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Postoperative abdominal adhesions are a common clinical problem after surgery and can cause many serious complications. Current most commonly used antiadhesion products are less effective due to their short residence time and focus primary on barrier function. Herein, we developed a sprayable hydrogel barrier (sHA-ADH/OHA-E) with self-regulated drug release based on ROS levels at the trauma site, to serve as a smart inflammatory microenvironment modulator and GATA6+ macrophages trap for non-adherent recovery from abdominal surgery. Sulfonated hyaluronic acid (HA) conjugates modified with adipic dihydrazide (sHA-ADH), and oxidized HA conjugates grafted with epigallocatechin-3-gallate (EGCG) via ROS-cleavable boronate bonds (OHA-E) were synthesized. sHA-ADH/OHA-E hydrogel was facilely fabricated within 5 s after simply mixing sHA-ADH and OHA-E through forming dynamic covalent acylhydrazones. With good biocompatibility, appropriate mechanical strength, tunable shear-thinning, self-healing, asymmetric adhesion, and reasonable in vivo retention time, sHA-ADH/OHA-E hydrogel meets the requirements of a perfect physical barrier. Intriguingly, sulfonic acid groups endowed the hydrogel with satisfactory anti-fibroblast and macrophage attachment capability, and were demonstrated for the first time to act as polyanion traps to prevent GATA6+ macrophages aggregation. Importantly, EGCG could be intelligently released by ROS triggering to alleviate oxidative stress and promote proinflammatory M1 macrophage polarize to antiinflammatory M2 phenotype. Further, the fibrinolytic system balance was restored to reduce fibrosis. Thanks to the above advantages, the sHA-ADH/OHA-E hydrogel exhibited excellent anti-adhesion effects in a rat sidewall defect-cecum abrasion model and is expected to be a promising and clinically translatable antiadhesion barrier.
Collapse
Affiliation(s)
- Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Xiuling Dai
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yujun Gong
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Lingling Ren
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yong Luo
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yue Sun
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Meixu Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Jingwen Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zilin Guan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China; State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, People's Republic of China.
| |
Collapse
|
10
|
Liu R, Zhao Z, Yang Q, Chen S, Yan Z, Li X, Liang L, Guo B, Wang B, Zhang H, Yao F, Li J. A Single-Component Janus Zwitterionic Hydrogel Patch with a Bionic Microstructure for Postoperative Adhesion Prevention. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38669466 DOI: 10.1021/acsami.4c01845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
The development of anti-adhesion hydrogels for preventing postoperative adhesions is an ongoing challenge, particularly in achieving a balance between exceptional antifouling properties and effective in situ tissue retention. In this study, we propose a unique approach with the design of a single-component Janus zwitterionic hydrogel patch featuring a bionic microstructure. The Janus patches were prepared through free radical polymerization of sulfobetaine methacrylate with N, N'-methylenebis(2-propenamide) as the cross-linker. The incorporation of hexagonal facets separated by interconnecting grooves on one side imparts durable and reliable in situ retention capabilities to the Janus hydrogel patch when it is applied to traumatized tissues. The opposing flat surface exhibits outstanding resistance to bacteria, proteins, and cell adhesion, due to the superhydrophilicity and excellent antifouling characteristics of zwitterionic polymers. This dual functionality empowers the Janus hydrogel patch to mitigate adhesions between traumatized and surrounding tissues. The hexagonal and groove bionic microstructures facilitate rapid drainage, promoting swift contact with the tissue for increased adhesion strength, while independent hexagonal microfacets enhance the peeling energy. In an in vivo setting, Janus zwitterionic hydrogel patches with surface microstructures form mutually embedded structures with the cecum surface, minimizing the likelihood of slippage and detachment. Remarkably, in vivo experiments involving abdominal wall cecum injuries illustrate the Janus zwitterionic hydrogel patch's superior anti-adhesion effectiveness compared to commercial controls. Thus, the Janus hydrogel patch, distinguished by its bionic microstructure surface, presents substantial potential in the biomedical field for averting postoperative adhesions.
Collapse
Affiliation(s)
- Rui Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhongming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Qi Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Shuang Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Zhuojun Yan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiuqiang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Lei Liang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Baoqun Wang
- Qingdao Chenland Marine Biological Engineering Company, Ltd., Qingdao 266100, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300350, China
- School of Chemistry and Chemical Engineering, Qinghai Minzu University, Xining 810007, Qinghai, China
| |
Collapse
|
11
|
Zhao Z, Sun H, Yu C, Liu B, Liu R, Yang Q, Guo B, Li X, Yao M, Yao F, Zhang H, Li J. Injectable Asymmetric Adhesive-Antifouling Bifunctional Hydrogel for Peritoneal Adhesion Prevention. Adv Healthc Mater 2024; 13:e2303574. [PMID: 38115543 DOI: 10.1002/adhm.202303574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/10/2023] [Indexed: 12/21/2023]
Abstract
Peritoneal adhesion is a common problem after abdominal surgery and can lead to various medical problems. In response to the lack of in situ retention and pro-wound healing properties of existing anti-adhesion barriers, this work reports an injectable adhesive-antifouling bifunctional hydrogel (AAB-hydrogel). This AAB-hydrogel can be constructed by "two-step" injection. The tissue adhesive hydrogel based on gallic acid-modified chitosan and aldehyde-modified dextran is prepared as the bottom hydrogel (B-hydrogel) by Schiff base reaction. The aldehyde-modified zwitterionic dextran/carboxymethyl chitosan-based hydrogel is formed on the B-hydrogel surface as the antifouling top hydrogel (T-hydrogel). The AAB-hydrogel exhibits good bilayer binding and asymmetric properties, including tissue adhesive, antifouling, and antimicrobial properties. To evaluate the anti-adhesion effect in vivo, the prepared hydrogels are injected onto the wound surface of a mouse abdominal wall abrasion-cecum defect model. Results suggest that the AAB-hydrogel has antioxidant capacity and can reduce the postoperative inflammatory response by modulating the macrophage phenotype. Moreover, the AAB-hydrogel could effectively inhibit the formation of postoperative adhesions by reducing protein deposition, and resisting fibroblast adhesions and bacteria attacking. Therefore, AAB-hydrogel is a promising candidate for the prevention of postoperative peritoneal adhesions.
Collapse
Affiliation(s)
- Zhongming Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Hong Sun
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Chaojie Yu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Baijun Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Rui Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Qi Yang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bingyan Guo
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiuqiang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Mengmeng Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Fanglian Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Hong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| | - Junjie Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300350, China
| |
Collapse
|
12
|
Zhu Y, Zhang C, Liang Y, Shi J, Yu Q, Liu S, Yu D, Liu H. Advanced postoperative tissue antiadhesive membranes enabled with electrospun nanofibers. Biomater Sci 2024; 12:1643-1661. [PMID: 38411223 DOI: 10.1039/d3bm02038j] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Tissue adhesion is one of the most common postoperative complications, which is frequently accompanied by inflammation, pain, and even dyskinesia, significantly reducing the quality of life of patients. Thus, to prevent the formation of tissue adhesions, various strategies have been explored. Among these methods, placing anti-adhesion membranes over the injured site to separate the wound from surrounding tissues is a simple and prominently favored method. Recently, electrospun nanofibers have been the most frequently investigated antiadhesive membranes due to their tunable porous structure and high porosities. They not only can act as an essential barrier and functional carrier system but also allow for high permeability and nutrient transport, showing great potential for preventing tissue adhesion. Herein, we provide a short review of the most recent applications of electrospun nanofibrous antiadhesive membranes in tendons, the abdominal cavity, dural sac, pericardium, and meninges. Firstly, each section highlights the most representative examples and they are sorted based on the latest progress of related research. Moreover, the design principles, preparation strategies, overall performances, and existing problems are highlighted and evaluated. Finally, the current challenges and several future ways to develop electrospun nanofibrous antiadhesive membranes are proposed. The systematic discussion and proposed directions can shed light on ideas and guide the reasonable design of electrospun nanofibrous membranes, contributing to the development of exceptional tissue anti-adhesive materials in the foreseeable future.
Collapse
Affiliation(s)
- Yanting Zhu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Chenwei Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Ying Liang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Jianyuan Shi
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Qiuhao Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200233, PR China
| | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, PR China
| | - Hui Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
13
|
Pais MA, Papanikolaou A, Hoyos IA, Nißler R, De Brot S, Gogos A, Rieben R, Constantinescu MA, Matter MT, Herrmann IK, Lese I. Bioglass/ceria nanoparticle hybrids for the treatment of seroma: a comparative long-term study in rats. Front Bioeng Biotechnol 2024; 12:1363126. [PMID: 38532882 PMCID: PMC10963406 DOI: 10.3389/fbioe.2024.1363126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
Background: Seroma formation is a common postoperative complication. Fibrin-based glues are typically employed in an attempt to seal the cavity. Recently, the first nanoparticle (NP)-based treatment approaches have emerged. Nanoparticle dispersions can be used as tissue glues, capitalizing on a phenomenon known as 'nanobridging'. In this process, macromolecules such as proteins physically adsorb onto the NP surface, leading to macroscopic adhesion. Although significant early seroma reduction has been shown, little is known about long-term efficacy of NPs. The aim of this study was to assess the long-term effects of NPs in reducing seroma formation, and to understand their underlying mechanism. Methods: Seroma was surgically induced bilaterally in 20 Lewis rats. On postoperative day (POD) 7, seromas were aspirated on both sides. In 10 rats, one side was treated with NPs, while the contralateral side received only NP carrier solution. In the other 10 rats, one side was treated with fibrin glue, while the other was left untreated. Seroma fluid, blood and tissue samples were obtained at defined time points. Biochemical, histopathological and immunohistochemical assessments were made. Results: NP-treated sides showed no macroscopically visible seroma formation after application on POD 7, in stark contrast to the fibrin-treated sides, where 60% of the rats had seromas on POD 14, and 50% on POD 21. At the endpoint (POD 42), sides treated with nanoparticles (NPs) exhibited significant macroscopic differences compared to other groups, including the absence of a cavity, and increased fibrous adhesions. Histologically, there were more macrophage groupings and collagen type 1 (COL1) deposits in the superficial capsule on NP-treated sides. Conclusion: NPs not only significantly reduced early manifestations of seroma and demonstrated an anti-inflammatory response, but they also led to increased adhesion formation over the long term, suggesting a decreased risk of seroma recurrence. These findings highlight both the adhesive properties of NPs and their potential for clinical therapy.
Collapse
Affiliation(s)
- Michael-Alexander Pais
- Department of Plastic and Hand Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Athanasios Papanikolaou
- Department of Plastic and Hand Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Isabel Arenas Hoyos
- Department of Plastic and Hand Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Robert Nißler
- Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), StGallen, Switzerland
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Ingenuity Lab, University Hospital Balgrist and University of Zurich, Zurich, Switzerland
| | - Simone De Brot
- COMPATH, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | - Alexander Gogos
- Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), StGallen, Switzerland
| | - Robert Rieben
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Mihai A. Constantinescu
- Department of Plastic and Hand Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Martin T. Matter
- Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), StGallen, Switzerland
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Inge K. Herrmann
- Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), StGallen, Switzerland
- Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
- Ingenuity Lab, University Hospital Balgrist and University of Zurich, Zurich, Switzerland
| | - Ioana Lese
- Department of Plastic and Hand Surgery, Inselspital, University Hospital Bern, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
14
|
Nancy Ward C, LeBlanc PE, Edward Burrell R. Effects of composition and pH on the degradation of hyaluronate and carboxymethyl cellulose gels and release of nanocrystalline silver. J Appl Biomater Funct Mater 2024; 22:22808000241257124. [PMID: 38819121 DOI: 10.1177/22808000241257124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024] Open
Abstract
Adhesions are fibrous tissue connections which are a common complication of surgical procedures and may be prevented by protecting tissue surfaces and reducing inflammation. The combination of biodegradable polymers and nanocrystalline silver can be used to create an anti-inflammatory gel to be applied during surgery. In this study, sodium hyaluronate and sodium carboxymethyl cellulose were added in concentrations from 0.25% to 1% w/v to aqueous nanocrystalline silver solutions to create viscous gels. Gels were loaded into dialysis cassettes and placed in PBS for 3 days. pH was adjusted using potassium phosphate monobasic and sodium hydroxide. Release of silver into the PBS was measured at several time points. Polymer degradation was compared by measuring the viscosity of the gels before and after the experiment. Gels lost up to 84% of initial viscosity over 3 days and released between 24% and 41% of the added silver. Gels with higher initial viscosity did not have a greater degree of degradation, as measured by percent viscosity reduction, but still resulted in a higher final viscosity. Silver release was not significantly impacted by pH or composition, but still varied between experimental groups.
Collapse
Affiliation(s)
- Colleen Nancy Ward
- Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, AB, Canada
| | - Payton E LeBlanc
- Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, AB, Canada
| | - Robert Edward Burrell
- Donadeo Innovation Centre for Engineering, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
15
|
Kargozar S, Gorgani S, Nazarnezhad S, Wang AZ. Biocompatible Nanocomposites for Postoperative Adhesion: A State-of-the-Art Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:4. [PMID: 38202459 PMCID: PMC10780749 DOI: 10.3390/nano14010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024]
Abstract
To reduce and prevent postsurgical adhesions, a variety of scientific approaches have been suggested and applied. This includes the use of advanced therapies like tissue-engineered (TE) biomaterials and scaffolds. Currently, biocompatible antiadhesive constructs play a pivotal role in managing postoperative adhesions and several biopolymer-based products, namely hyaluronic acid (HA) and polyethylene glycol (PEG), are available on the market in different forms (e.g., sprays, hydrogels). TE polymeric constructs are usually associated with critical limitations like poor biocompatibility and mechanical properties. Hence, biocompatible nanocomposites have emerged as an advanced therapy for postoperative adhesion treatment, with hydrogels and electrospun nanofibers among the most utilized antiadhesive nanocomposites for in vitro and in vivo experiments. Recent studies have revealed that nanocomposites can be engineered to generate smart three-dimensional (3D) scaffolds that can respond to different stimuli, such as pH changes. Additionally, nanocomposites can act as multifunctional materials for the prevention of adhesions and bacterial infections, as well as tissue healing acceleration. Still, more research is needed to reveal the clinical potential of nanocomposite constructs and the possible success of nanocomposite-based products in the biomedical market.
Collapse
Affiliation(s)
- Saeid Kargozar
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Sara Gorgani
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Simin Nazarnezhad
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad 917794-8564, Iran; (S.G.); (S.N.)
| | - Andrew Z. Wang
- Department of Radiation Oncology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
16
|
Yu Q, Sun H, Zhang L, Jiang L, Liang L, Yu C, Dong X, Guo B, Qiu Y, Li J, Zhang H, Yao F, Zhu D, Li J. A Zwitterionic Hydrogel with Anti-Oxidative and Anti-Inflammatory Properties for the Prevention of Peritoneal Adhesion by Inhibiting Mesothelial-Mesenchymal Transition. Adv Healthc Mater 2023; 12:e2301696. [PMID: 37669499 DOI: 10.1002/adhm.202301696] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/04/2023] [Indexed: 09/07/2023]
Abstract
Postoperative peritoneal adhesion is a serious clinical complication. Various hydrogel barriers have been developed to prevent peritoneal adhesion. However, it remains a challenge to design a hydrogel with desirable physicochemical properties and bioactivities. In this study, a zwitterionic polysaccharide-based multifunctional hydrogel is developed using epigallocatechin-3-gallate (EGCG) to prevent postoperative abdominal adhesion. This hydrogel is simple to use and has desirable properties, such as excellent injectability, self-healing, and non-swelling properties. The hydrogel also has ultralow fouling capabilities, such as superior bactericidal performance, cell and protein adhesion, and low immunogenicity resistance. Moreover, the hydrogel exhibits good antioxidant activity, which is attributed to the integration of EGCG. Furthermore, the detailed mechanism from in vivo and in vitro experimental studies illustrates that hydrogel compositions can synergistically prevent adhesion formation through multiple pathways, including anti-inflammatory and antioxidant capabilities and inhibition effects on the mesothelial-mesenchymal transition (MMT) process induced by transforming growth factor (TGF-β). In summary, this zwitterionic multifunctional hydrogel has great potential to prevent postoperative adhesion formation in the clinical setting.
Collapse
Affiliation(s)
- Qingyu Yu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Hong Sun
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Linhua Zhang
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Lijie Jiang
- School of Basic Medical Sciences, North China University of Science and Technology, Tangshan, 063210, China
| | - Lei Liang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Chaojie Yu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xiaoru Dong
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Bingyan Guo
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Yuwei Qiu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Jingwu Li
- Surgical Oncology, Tangshan People' Hospital, Tangshan, 063001, China
| | - Hong Zhang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Fanglian Yao
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Dunwan Zhu
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300192, China
| | - Junjie Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), Department of Polymer Science, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
17
|
PALA Ş, KULOĞLU T, ATILGAN R, ÖZKAN ZS, HANÇER S. What is the impact of intraperitoneal surfactant administration against postoperative intraabdominal adhesion formation? an experimental study. Turk J Med Sci 2023; 53:1817-1824. [PMID: 38813488 PMCID: PMC10760580 DOI: 10.55730/1300-0144.5752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/03/2023] [Accepted: 11/25/2023] [Indexed: 05/31/2024] Open
Abstract
Background/Aim Surfactant is a surface-active substance that, in addition to its detergent effect, also has effects that reduce inflammation and fibrosis. Because of these effects, it was aimed herein to investigate the effect of intraperitoneal surfactant application on preventing postoperative peritoneal adhesion formation in a uterine horn adhesion model. Materials and methods Twenty-one Wistar albino rats were randomly divided into 3 groups (G1-G3), as follows: G1 (n = 7): control group. The abdomen was opened and then closed; G2 (n = 7): adhesion group. The abdomen was opened. Then, a 2-cm linear incision was made over the right uterine horn, 2 mL of isotonic saline was administered intraperitoneally, and the abdomen was closed; and G3 (n = 7): treatment group. The abdomen was opened, a 2-cm linear incision was made over the right uterine horn, 2 mL (70 mg/kg) of surfactant was administered intraperitoneally, and the abdomen was closed. After 15 days, the rats were euthanized, the abdomens were reopened, and adhesion scoring was performed. After the right uterine horns were removed and fixed with 10% formalin, appropriate sections were taken from the traumatized tissue, stained with Masson's trichrome, and fibrosis and inflammation scoring were performed. Results The adhesion area and intensity were significantly higher in G2 than in G1 and G3 (p = 0.001) and were similar in G1 and G3 (p = 0.165). While fibrosis and inflammation were significantly higher in G2 than in G1 and G3 (p = 0.001), there was no difference between G1 and G3 (p = 0.5). Conclusion Intraperitoneal surfactant administration at a dose of 70 mg/kg was found to be effective in preventing intraabdominal adhesion formation in a rat uterine horn model.
Collapse
Affiliation(s)
- Şehmus PALA
- Department of Obstetrics and Gynecology, Fırat University School of Medicine, Elazığ,
Turkiye
| | - Tuncay KULOĞLU
- Department of Histology and Embryology, Fırat University School of Medicine, Elazığ,
Turkiye
| | - Remzi ATILGAN
- Department of Obstetrics and Gynecology, Fırat University School of Medicine, Elazığ,
Turkiye
| | - Zehra Sema ÖZKAN
- Department of Obstetrics and Gynecology, Kırıkkale University School of Medicine, Kırıkkale,
Turkiye
| | - Serhat HANÇER
- Department of Obstetrics and Gynecology, Fırat University School of Medicine, Elazığ,
Turkiye
| |
Collapse
|
18
|
Sirovy M, Odlozilova S, Kotek J, Zajak J, Paral J. Current options for the prevention of postoperative intra-abdominal adhesions. Asian J Surg 2023; 47:S1015-9584(23)01613-5. [PMID: 39492273 DOI: 10.1016/j.asjsur.2023.10.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/30/2023] [Accepted: 10/06/2023] [Indexed: 11/05/2024] Open
Abstract
Postoperative adhesions are the most common cause of morbidity after abdominal and pelvic surgery. The clinical manifestations of postoperative adhesions can manifest within a few weeks or even several years after the surgery. They result from peritoneal irritation caused by surgical trauma or intra-abdominal infection. Normal peritoneal healing relies on the balance between fibrin deposition and its degradation. In this paper-using information derived from the Medline, PubMed, and ScienceDirect databases-we briefly summarize the pathogenesis of postoperative intra-abdominal adhesions and various strategies for possible prevention.
Collapse
Affiliation(s)
- Miroslav Sirovy
- University of Defence, Faculty of Military Health Sciences, Department of Military Surgery, Hradec Kralove, Czech Republic; University Hospital and Charles University, Faculty of Medicine, Department of Surgery, Hradec Kralove, Czech Republic.
| | - Sarka Odlozilova
- University of Defence, Faculty of Military Health Sciences, Department of Military Surgery, Hradec Kralove, Czech Republic; University Hospital and Charles University, Faculty of Medicine, Department of Surgery, Hradec Kralove, Czech Republic
| | - Jiri Kotek
- University of Defence, Faculty of Military Health Sciences, Department of Military Surgery, Hradec Kralove, Czech Republic; University Hospital and Charles University, Faculty of Medicine, Department of Surgery, Hradec Kralove, Czech Republic
| | - Jan Zajak
- University of Defence, Faculty of Military Health Sciences, Department of Military Surgery, Hradec Kralove, Czech Republic; University Hospital and Charles University, Faculty of Medicine, Department of Surgery, Hradec Kralove, Czech Republic
| | - Jiri Paral
- University of Defence, Faculty of Military Health Sciences, Department of Military Surgery, Hradec Kralove, Czech Republic; University Hospital and Charles University, Faculty of Medicine, Department of Surgery, Hradec Kralove, Czech Republic
| |
Collapse
|
19
|
Talebloo N, Bernal MAO, Kenyon E, Mallett CL, Fazleabas A, Moore A. Detection of Endometriosis Lesions Using Gd-Based Collagen I Targeting Probe in Murine Models of Endometriosis. Mol Imaging Biol 2023; 25:833-843. [PMID: 37418136 PMCID: PMC10598151 DOI: 10.1007/s11307-023-01833-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/06/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE Endometriosis is a chronic condition characterized by high fibrotic content and affecting about 10% of women during their reproductive years. Yet, no clinically approved agents are available for non-invasive endometriosis detection. The purpose of this study was to investigate the utility of a gadolinium-based collagen type I targeting probe (EP-3533) to non-invasively detect endometriotic lesions using magnetic resonance imaging (MRI). Previously, this probe has been used for detection and staging of fibrotic lesions in the liver, lung, heart, and cancer. In this study we evaluate the potential of EP-3533 for detecting endometriosis in two murine models and compare it with a non-binding isomer (EP-3612). PROCEDURES For imaging, we utilized two GFP-expressing murine models of endometriosis (suture model and injection model) injected intravenously with EP3533 or EP-33612. Mice were imaged before and after bolus injection of the probes. The dynamic signal enhancement of MR T1 FLASH images was analyzed, normalized, and quantified, and the relative location of lesions was validated through ex vivo fluorescence imaging. Subsequently, the harvested lesions were stained for collagen, and their gadolinium content was quantified by inductively coupled plasma optical emission spectrometry (ICP-OES). RESULTS We showed that EP-3533 probe increased the signal intensity in T1-weighted images of endometriotic lesions in both models of endometriosis. Such enhancement was not detected in the muscles of the same groups or in endometriotic lesions of mice injected with EP-3612 probe. Consequentially, control tissues had significantly lower gadolinium content, compared to the lesions in experimental groups. Probe accumulation was similar in endometriotic lesions of either model. CONCLUSIONS This study provides evidence for feasibility of targeting collagen type I in the endometriotic lesions using EP3533 probe. Our future work includes investigation of the utility of this probe for therapeutic delivery in endometriosis to inhibit signaling pathways that cause the disease.
Collapse
Affiliation(s)
- Nazanin Talebloo
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Chemistry, College of Natural Sciences, Michigan State University, 578 S Shaw Lane, East Lansing, MI, 48824, USA
| | - Maria Ariadna Ochoa Bernal
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503, USA
- Department of Animal Science, Michigan State University, 474 S Shaw Ln, East Lansing, MI, 48824, USA
| | - Elizabeth Kenyon
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
| | - Christiane L Mallett
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA
- Institute for Quantitative Health Science and Engineering, Michigan State University, 775 Woodlot Drive, East Lansing, MI, 48824, USA
| | - Asgerally Fazleabas
- Department of Obstetrics, Gynecology & Reproductive Biology, Michigan State University, 400 Monroe Avenue NW, Grand Rapids, MI, 49503, USA
| | - Anna Moore
- Precision Health Program, Michigan State University, 766 Service Road, East Lansing, MI, 48824, USA.
- Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI, 48824, USA.
| |
Collapse
|
20
|
Chizen DR, Rislund DC, Robertson LM, Lim HJ, Tulandi T, Gargiulo AR, De Wilde RL, Velygodskiy A, Pierson RA. A Randomized Double-Blind Controlled Proof-of-Concept Study of Alanyl-Glutamine for Reduction of Post-Myomectomy Adhesions. Eur J Obstet Gynecol Reprod Biol 2023; 284:180-188. [PMID: 37023559 DOI: 10.1016/j.ejogrb.2023.03.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 03/16/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
STUDY OBJECTIVE To test the hypothesis that intraperitoneal instillation of a single bolus dose of l-alanyl-l-glutamine (AG) will reduce the incidence, extent and/or severity of adhesions following myomectomy and establish preliminary safety and tolerability of AG in humans. DESIGN Phase 1,2 Randomized, double-blind, placebo-controlled study (DBRCT). SETTING Tertiary care gynecology surgical centre. PATIENTS Thirty-eight women who underwent myomectomies by laparoscopy (N = 38; AG-19 vs Placebo-19) or laparotomy (N = 10; AG-5 vs Placebo-5) with a scheduled second-look laparoscopy (SLL) 6-8 weeks later. Thirty-two patients in the laparoscopy arm completed SLL. INTERVENTIONS Bolus dose of AG or normal saline solution control (0.9% NaCl) administered intraperitoneally immediately prior to suture closure of the laparoscopic ports. The average dose was 170 mL of AG or control based on a dosing scheme of 1 g/kg bodyweight. MEASUREMENTS Digital recordings obtained for all procedures. The primary endpoint was reduction in the incidence, severity and extent of post-operative adhesions analyzed by intention-to-treat (ITT) approach. Three independent, blinded reviewers evaluated all operative video recordings to assess presence of adhesions. Post-hoc analysis assessed presence or absence of adhesions in the peritoneal cavity. Secondary endpoints assessed safety and tolerability of AG. MAIN RESULTS Administration of AG reduced the incidence, severity and/or extent of post-operative adhesions (p = 0.046). The presence of adhesions in the AG group was lower than in the Control group (p = 0.041). Adhesion improvement was achieved in 15 of 15 (100%) in the AG group versus 5 of 17 (29.6%) in the placebo group. No serious adverse events were reported. No differences in safety parameters were observed. CONCLUSIONS Intraperitoneal l-alanyl-l-glutamine reduced adhesion formation in all patients following laparoscopic myomectomy. Complete absence of adhesions was achieved at all abdominal sites in 93% of patients. Results confirm AG's known effects on cellular mechanisms of adhesiogenesis and lay the foundation for new adhesion prophylaxis research and treatment.
Collapse
|
21
|
Fang Y, Huang S, Gong X, King JA, Wang Y, Zhang J, Yang X, Wang Q, Zhang Y, Zhai G, Ye L. Salt sensitive purely zwitterionic physical hydrogel for prevention of postoperative tissue adhesion. Acta Biomater 2023; 158:239-251. [PMID: 36581005 DOI: 10.1016/j.actbio.2022.12.045] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
Abdominal adhesions are a class of serious complications following abdominal surgery, resulting in a complicated and severe syndrome and sometimes leading to a Gordian knot. Traditional therapies employ hydrogels synthesized using complicated chemical formulations-often with click chemistry or thermal responsive hydrogel. The complicated synthesis process and severe conditions limit the extent of the hydrogels' applications. In this work, poly 3-[2-(methacryloyloxy)ethyl](dimethyl)-ammonio]-1-propanesulfonate (PSBMA) polymer was synthesized to self-assemble into physical hydrogels due to the inter- and intramolecular ion interactions. The strong static interaction bonding density has a substantial impact on the gelation and physicochemical properties, which is beneficial to clinical applications and offers a novel way to obtain the desired hydrogel for a specific biomedical application. Intriguingly, this PSBMA polymer can be customized into a transient network with outstanding antifouling capability depending on the ion concentration. As ion concentration increases, the PSBMA hydrogel dissociated completely, endowing it as a candidate for adhesion prevention. In the cecum-sidewall model, the PSBMA hydrogel demonstrated superior anti-adhesion properties than commercial HA hydrogel. Furthermore, we have demonstrated that this PSBMA hydrogel could inhibit the inflammatory response and encourage anti-fibrosis resulting in adhesion prevention. Most surprisingly, the recovered skins of cecum and sidewall are as smooth as the control skin without any scar and damage. In conclusion, a practical hydrogel was synthesized using a facile method based on purely zwitterionic materials, and this ion-sensitive, antifouling adjustable supramolecular hydrogel with great clinic transform potential is a promising barrier for preventing postoperative tissue adhesion. STATEMENT OF SIGNIFICANCE: The development of hydrogels with satisfactory coverage, long retention time, facile synthetic method, and good biocompatibility is vital for preventing peritoneal adhesions. Herein, we developed a salt sensitive purely zwitterionic physical hydrogel poly 3-[2-(methacryloyloxy)ethyl](dimethyl)-ammonio]-1-propanesulfonate (PSBMA) hydrogel to effectively prevent postoperative and recurrent abdominal adhesions. The hydrogel was simple to synthesize and easy to use. In the cecum-sidewall model, PSBMA hydrogel could instantaneously adhere and fix on irregular surfaces and stay in the wound for more than 10 days. The PSBMA hydrogel could inhibit the inflammatory response, encourage anti-fibrosis, and restore smoothness to damaged surfaces resulting in adhesion prevention. Overall, the PSBMA hydrogel is a promising candidate for the next generation of anti-adhesion materials to meet clinical needs.
Collapse
Affiliation(s)
- Yuelin Fang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, PR China
| | - Susu Huang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, PR China
| | - Xin Gong
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Julia A King
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - Yanqing Wang
- Department of Physiology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Jicheng Zhang
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, United States
| | - Xiaoye Yang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, PR China
| | - Qiong Wang
- College of Chemistry, Shandong Normal University, Jinan 250014, China
| | - Yabin Zhang
- Shandong Provincial Key Laboratory of Fluorine Chemistry and Chemical Materials, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Guangxi Zhai
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, PR China.
| | - Lei Ye
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44 WenhuaXilu, Jinan 250012, PR China.
| |
Collapse
|
22
|
Pyo DH, Huh JW, Lee WY, Yun SH, Kim HC, Cho YB, Park Y, Shin JK. The role of transanal tube after low anterior resection in patients with rectal cancer treated with neoadjuvant chemoradiotherapy: A propensity score-matched study. Surgery 2023; 173:335-341. [PMID: 36494274 DOI: 10.1016/j.surg.2022.10.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/11/2022] [Accepted: 10/30/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The protective efficacy of transanal tube for anastomosis was compared with that of diverting stoma in patients with rectal cancer treated with neoadjuvant chemoradiotherapy. METHODS We included consecutive patients with rectal cancer treated with neoadjuvant chemoradiotherapy and curative surgery from January 2013 to December 2019. The patients were grouped into transanal tube or diverting stoma, according to the protection methods they received. Propensity score-matching with 1:1 ratio was done. The primary outcome was the incidence of anastomotic leakage. RESULTS Of the 656 eligible patients, 207 (31.6%) and 385 (58.7%) patients were grouped into transanal tube and diverting stoma, respectively, and 64 (9.7%) patients who did not undergo either transanal tube or diverting stoma were excluded. After matching, the incidence of anastomotic leakage was 9.7% and 10.6% in diverting stoma and transanal tube, respectively (P = .871). The overall morbidity was 23.2% and 15.0% in diverting stoma and transanal tube, respectively (P = .045). In the multivariate analysis, tumor size >2.5 cm and level of anastomosis <4 cm were significant risk factors for anastomotic leakage. In a subgroup analysis for patients with the level of anastomosis >4 cm, the incidence of anastomotic leakage was not significantly different between the transanal tube and diverting stoma groups. However, for patients with a level of anastomosis <4 cm, the incidence of grade C anastomotic leakage was significantly greater in the transanal tube than in the diverting stoma group (2.5% vs 9.9%, P = .040). CONCLUSION The protective efficacy of transanal tube may be comparable to diverting stoma, especially for those with a level of anastomosis >4 cm.
Collapse
Affiliation(s)
- Dae Hee Pyo
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung Wook Huh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Woo Yong Lee
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seong Hyeon Yun
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee Cheol Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yong Beom Cho
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Yoonah Park
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jung Kyong Shin
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
23
|
Nikam SP, Hsu YH, Marks JR, Mateas C, Brigham NC, McDonald SM, Guggenheim DS, Ruppert D, Everitt JI, Levinson H, Becker ML. Anti-adhesive bioresorbable elastomer-coated composite hernia mesh that reduce intraperitoneal adhesions. Biomaterials 2023; 292:121940. [PMID: 36493714 DOI: 10.1016/j.biomaterials.2022.121940] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/07/2022]
Abstract
Intraperitoneal adhesions (IAs) are a major complication arising from abdominal repair surgeries, including hernia repair procedures. Herein, we fabricated a composite mesh device using a macroporous monofilament polypropylene mesh and a degradable elastomer coating designed to meet the requirements of this clinical application. The degradable elastomer was synthesized using an organo-base catalyzed thiol-yne addition polymerization that affords independent control of degradation rate and mechanical properties. The elastomeric coating was further enhanced by the covalent tethering of antifouling zwitterion molecules. Mechanical testing demonstrated the elastomer forms a robust coating on the polypropylene mesh does not exhibit micro-fractures, cracks or mechanical delamination under cyclic fatigue testing that exceeds peak abdominal loads (50 N/cm). Quartz crystal microbalance measurements showed the zwitterionic functionalized elastomer further reduced fibrinogen adsorption by 73% in vitro when compared to unfunctionalized elastomer controls. The elastomer exhibited degradation with limited tissue response in a 10-week murine subcutaneous implantation model. We also evaluated the composite mesh in an 84-day study in a rabbit cecal abrasion hernia adhesion model. The zwitterionic composite mesh significantly reduced the extent and tenacity of IAs by 94% and 90% respectively with respect to uncoated polypropylene mesh. The resulting composite mesh device is an excellent candidate to reduce complications related to abdominal repair through suppressed fouling and adhesion formation, reduced tissue inflammation, and appropriate degradation rate.
Collapse
Affiliation(s)
- Shantanu P Nikam
- Department of Chemistry, Duke University, Durham, NC, 27708, United States; Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Yen-Hao Hsu
- Department of Chemistry, Duke University, Durham, NC, 27708, United States; Department of Polymer Science, The University of Akron, Akron, OH 44325, United States
| | - Jessica R Marks
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | - Catalin Mateas
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Natasha C Brigham
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | | | - Dana S Guggenheim
- Department of Chemistry, Duke University, Durham, NC, 27708, United States
| | - David Ruppert
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States
| | - Jeffrey I Everitt
- Department of Pathology, Duke University, Durham, NC, 27708, United States
| | - Howard Levinson
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Duke University Medical Center, Durham, NC 27710, United States.
| | - Matthew L Becker
- Department of Chemistry, Duke University, Durham, NC, 27708, United States; Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, United States; Department of Orthopaedic Surgery, Duke University, Durham, NC, 27708, United States; Department of Biomedical Engineering, Duke University, Durham, NC, 27708, United States.
| |
Collapse
|
24
|
Lipid emulsions prevent postoperative abdominal adhesions. Asian J Surg 2023; 46:465-471. [PMID: 35688763 DOI: 10.1016/j.asjsur.2022.05.119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/27/2022] [Accepted: 05/20/2022] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Adhesions are the most common cause of long-term morbidity after abdominal surgery and most often cause various forms of intestinal passage disorders ranging from partial obstruction to complete, life-threatening intestinal obstruction. The aim of the present study was to evaluate the protective effect of intraperitoneally administered lipid emulsions on the formation of adhesions in larger animal model, as the lubricating effect of phospholipids and the mechanical barrier of the lipid component are combined with the anti-inflammatory effect of fish oil. METHODS Thirty-one female domestic pigs were randomly divided into three groups. At the end of the surgical procedure, a lipid emulsion or saline solution was applied intraperitoneally. After 14 days, an independent macroscopic, histological and immunohistochemical evaluation of the adhesions were performed. RESULTS Intraperitoneal administration of lipid emulsions significantly reduced the incidence of intra-abdominal adhesions. Microscopic examination demonstrated a significant reduction in the number of inflammatory elements and the amount of collagen in the adhesions, especially after administration of the fish oil-based emulsion. A simultaneous decrease in neovascularization was observed in the adhesions. Evaluation of the intestinal anastomosis did not reveal significant differences in healing between the groups. CONCLUSION Intraperitoneal administration of lipid emulsions can reduce the development of postoperative intra-abdominal adhesions by the combined action of phospholipids as important lubricants and lipids as a mechanical barrier. Their effect is caused by a reduction in proinflammatory and profibrotic mediators. At the same time, intraperitoneal administration of lipid emulsions does not impair healing of the anastomosis in larger animal model.
Collapse
|
25
|
EROĞLU E, UYANIKGİL Y. İntrabdominal Adezyon Oluşum Mekanizmalarına ve Tedavi Stratejilerine Histopatolojik Bakış. ARŞIV KAYNAK TARAMA DERGISI 2022. [DOI: 10.17827/aktd.1116761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Hayat standartlarını olumsuz etkileyen abdominal adezyonlar, postoperatif dönemde görülen önemli bir sağlık sorunudur. Peritoneal kavite ve serozal yüzeylerde oluşan, abdominal travmalara sebep olan kimyasal ve termal faktörler ya da enfeksiyon ve yabancı cisim reaksiyonları adezyon oluşumuna sebep olabilir. Abdominal adezyonların sınıflandırması genellikle adezyon yoğunluğuna ve prognoz ciddiyetine göre yapılsa da henüz dünya çapında kabul görmüş standart bir sınıflandırma sistemi mevcut değildir. Abdominal adezyonlar ağrı, infertilite, cerrahi sonrası hastanede yatış süresinin uzaması ve ekonomik yük gibi olumsuz sonuçlarla klinik yansımalar gösterir. Sonuç olarak, postoperatif süreçte karşılaşılan adezyonlar ciddi bir sorundur ve adezyon oluşumunu engellemek için ileri çalışmaların laboratuvar ortamından klinik araştırma modellerine uyarlanması gerekmektedir. Bu derleme çalışması intraabdominal adezyon oluşumu, histopatolojisi, derecelendirilmesi, önlenmesi ve klinik önemi ile ilgili literatürü gözden geçirmek için hazırlanmıştır.
Collapse
|
26
|
Kurtulus I, Basim S, Ozdenkaya Y. Can serum tumor necrosis factor-alpha predict peritoneal adhesions prior to secondary laparoscopic procedures? J Visc Surg 2022:S1878-7886(22)00181-3. [PMID: 36577610 DOI: 10.1016/j.jviscsurg.2022.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
AIM OF THE STUDY This study aimed to investigate the incidence and degree of postoperative intra-abdominal adhesions(POAs) in secondary laparoscopic procedures and assess the power of the preoperative levels of tumor necrosis factor-alpha(TNF-α) and interleukin-1 beta(IL-1β) and selected peripheral inflammatory biomarkers(PIBs) in the prediction of the development and extent of POA. PATIENTS AND METHODS This prospective study enrolled 103 patients who had previously undergone at least one or more laparoscopic abdominal or gynecological operations. We examined TNF-α, IL-1β, and PIBs, namely C-reactive protein, white blood cell count, neutrophil-to-lymphocyte ratio(NLR), platelet-to-lymphocyte ratio, and systemic immune-inflammation index(SII) according to the presence, location, and score of adhesions determined during secondary laparoscopic procedures. RESULTS Only age, postoperative adhesion index(PAI) score, NLR, SII, TNF-α, and IL-1β resulted in a significant difference in the existence of adhesion(P<0.05). The correlation analysis of TNF-α with variables showed that the PAI score and IL 1β levels had a significantly positive correlation. CONCLUSION The presence and extent of POA could be predicted by examining the preoperative TNF-α level in patients who had laparoscopic abdominal surgery previously. We could overcome adverse events during secondary laparoscopic procedures by assessing high-risk patients and integrating a personalized surgical approach to managing selected patients.
Collapse
Affiliation(s)
- I Kurtulus
- Department of General Surgery, Basaksehir Cam and Sakura City Hospital, Istanbul, Turkey.
| | - S Basim
- Department of General Surgery, Basaksehir State Hospital, Istanbul, Turkey
| | - Y Ozdenkaya
- Department of General Surgery, Istanbul Medipol University, Bagcilar, Istanbul, Turkey
| |
Collapse
|
27
|
Rakhshandeh H, Baradaran Rahimi V, Habibi Z, Sirousi Z, Askari VR. Punica granatum seed oil detracts peritoneal adhesion: Perusing antioxidant, anti-inflammatory, antifibrotic, and antiangiogenic impacts. Physiol Rep 2022; 10:e15545. [PMID: 36541264 PMCID: PMC9768730 DOI: 10.14814/phy2.15545] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/11/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023] Open
Abstract
Peritoneal adhesion is a significant problem following gastrointestinal surgeries, accompanied by a significant economic burden and morbidity for patients. Punica granatum seed oil (PSO) possesses antioxidative, anti-inflammatory, and anticancer effects. Thus, we aimed to evaluate the antiperitoneal adhesive properties of PSO in rats. Forty-eight Wistar rats (200-250 g) were randomly and equally divided into six groups: sham group, control group; peritoneal adhesion without any treatment, vehicle group; peritoneal adhesion with saline + Tween-80.5% treatment, and experimental groups; peritoneal adhesion with 0.5%, 1.5%, and 4.5% v/v PSO treatment. In addition, peritoneal adhesion was examined macroscopically along with evaluating the oxidative stress (malondialdehyde [MDA], nitric oxide [NO], and glutathione [GSH]) inflammatory (interleukin [IL]-6, IL-1β, and tumor necrosis factor-α [TNF-α]), fibrotic (transforming growth factor-β [TGF-β]), and angiogenic (vascular endothelial growth factor [VEGF]) factors. Our results revealed that the levels of adhesion scores, MDA, NO, IL-6, TNF-α, IL-1β, TGF-β, and VEGF, were propagated in the vehicle group while the GSH level was alleviated (p < 0.001). In contrast, premedication with PSO, especially at the lowest concentration, notably lessened the levels of adhesion scores, MDA, NO, IL-6, TNF-α, IL-1β, TGF-β, and VEGF as well as GSH in comparison to the vehicle group following the peritoneal adhesion induction (p < 0.001-0.05). As a result, PSO may prevent peritoneal adhesion through its antioxidant, anti-inflammatory, antifibrotic, and antiangiogenic properties. Therefore, PSO could be considered a beneficial candidate for the treatment of postoperative peritoneal adhesion.
Collapse
Affiliation(s)
- Hassan Rakhshandeh
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Zahra Habibi
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
| | - Zahra Sirousi
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
| | - Vahid Reza Askari
- International UNESCO Center for Health‐Related Basic Sciences and Human NutritionMashhad University of Medical SciencesMashhadIran
- Applied Biomedical Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
28
|
Hyon W, Hyon SH, Matsumura K. Evaluation of the optimal dose for maximizing the anti-adhesion performance of a self-degradable dextran-based material. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2022. [DOI: 10.1016/j.carpta.2022.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
|
29
|
Parpoudi S, Mantzoros I, Gkiouliava A, Kyziridis D, Makrantonakis A, Chatzakis C, Gekas C, Konstantaras D, Ioannidis O, Bitsianis S, Miliaras D, Aggelopoulos S. Effect of N-acetyl-L-cysteine on inflammation after intraperitoneal mesh placement in a potentially contaminated environment: An experimental study in the rat. Asian J Surg 2022; 45:2191-2196. [PMID: 34801356 DOI: 10.1016/j.asjsur.2021.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 11/05/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The use of prosthetic meshes in abdominal wall reconstruction is a well-established approach; however, in certain cases where a bowel resection coexists its application is disputed. Any underlying inflammatory process may augment adhesion formation which is a major postoperative complication. In this animal study, our aim was to investigate the effect of N-acetyl-l-cysteine (NAC) on adhesion formation and the expression of inflammatory markers when a mesh was used in a clean or a potentially contaminated environment. METHODS Sixty male Wistar rats were randomly and equally allocated in 3 groups: A, B and C. Animals in all groups underwent laparotomy, a prosthetic mesh was placed and chemoprophylaxis with ciprofloxacin was administered. In groups B and C an enterectomy was also performed. NAC was injected intraperitoneally in group C. Adhesion formation, IL-1a, IL-6, TNF-a and histological data including fibrosis, neutrophils' infiltration and neovascularization were assessed. Mesh samples were sent for cultivation. RESULTS Adhesion formation was significantly less and inflammation markers were also lower in group C compared to group B (p<0.05). Histological findings were significant for greater fibrosis, neutrophils' infiltration and neovascularization in group B compared to both group A and C. Regarding mesh cultures, more specimens were tested positive in group B (p <0.05). Outcomes between group A and C did not differ. CONCLUSION NAC effectively ameliorated adhesion formation and inflammation in a potentially septic environment where a prosthetic mesh was placed.
Collapse
Affiliation(s)
- Styliani Parpoudi
- 4th Surgical Clinic, School of Medicine, Faculty of Health Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Mantzoros
- 4th Surgical Clinic, School of Medicine, Faculty of Health Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anna Gkiouliava
- Anaesthesiology Department, Georgios Papanikolaou General Hospital, Thessaloniki, Greece.
| | - Dimitrios Kyziridis
- 4th Surgical Clinic, School of Medicine, Faculty of Health Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Apostolos Makrantonakis
- 4th Surgical Clinic, School of Medicine, Faculty of Health Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Chatzakis
- 4th Surgical Clinic, School of Medicine, Faculty of Health Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Christos Gekas
- Orthopaedic Department, Ippokrateio Hospital, Thessaloniki, Greece
| | - Dimitrios Konstantaras
- 4th Surgical Clinic, School of Medicine, Faculty of Health Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Orestis Ioannidis
- 4th Surgical Clinic, School of Medicine, Faculty of Health Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stefanos Bitsianis
- 4th Surgical Clinic, School of Medicine, Faculty of Health Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimosthenis Miliaras
- Laboratory of Histology-Embryology, School of Medicine, Faculty of Health Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stamatios Aggelopoulos
- 4th Surgical Clinic, School of Medicine, Faculty of Health Science, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
30
|
Chua JW, Thangaveloo M, Lim DXE, Madden LE, Phillips ARJ, Becker DL. Connexin43 in Post-Surgical Peritoneal Adhesion Formation. Life (Basel) 2022; 12:1734. [PMID: 36362888 PMCID: PMC9697983 DOI: 10.3390/life12111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 09/10/2024] Open
Abstract
OBJECTIVE Post-surgical peritoneal adhesions are a serious problem for the quality of life and fertility. Yet there are no effective ways of preventing their occurrence. The gap junction protein Cx43 is known to be involved in fibrosis in several different organs and disease conditions often associated with inflammation. Here we examined the Cx43 dynamic expression in an ischemic button model of surgical adhesions. METHODS Using the mouse ischemic button model, Cx43 antisense was delivered in Pluronic gel to attenuate Cx43 expression. The severity of button formation and immunofluorescence analysis of Cx43 and TGF-β1 were performed. The concentration of tissue plasminogen activator via ELISA was also performed. RESULTS As early as 6 h after button formation, the Cx43 levels were elevated in and around the button and some weak adhesions were formed. By 24 h Cx43 levels had increased further and adhesions were more defined. At 7 days the adhesions were much more robust, opaque, and vascularized, requiring blunt or sharp dissection to break them. Cx43 antisense attenuated its upregulation and, reduced the number and severity of adhesions that formed. CONCLUSION Targeting Cx43 after surgical procedures may be a potential therapeutic strategy for preventing adhesion formation or at least reducing their severity.
Collapse
Affiliation(s)
- Jia Wang Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
| | - Moogaambikai Thangaveloo
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
| | - Debbie Xiu En Lim
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
| | - Leigh E. Madden
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
| | | | - David L. Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Singapore 308232, Singapore
- Skin Research Institute Singapore, Singapore 308232, Singapore
| |
Collapse
|
31
|
Mao Y, Zeng Y, Meng Y, Li Y, Wang L. GelMA and aliphatic polyesters Janus nanofibrous membrane with lubrication/anti-fibroblast barrier functions for abdominal adhesion prevention. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
32
|
A review of recent developments of polypropylene surgical mesh for hernia repair. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Hu Q, Wu J, Zhang H, Dong W, Gu Y, Liu S. Designing Double-Layer Multi-Material Composite Patch Scaffold with Adhesion Resistance for Hernia Repair. Macromol Biosci 2022; 22:e2100510. [PMID: 35471592 DOI: 10.1002/mabi.202100510] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 04/12/2022] [Indexed: 11/10/2022]
Abstract
Hernia repair mesh is associated with a number of complications, including adhesions and limited mobility, due to insufficient mechanical strength and non-resorbability. Among them, visceral adhesions are one of the most serious complications of patch repair. In this study, a degradable patch with an anti-adhesive layer was prepared for hernia repair by 3D printing and electrospinning techniques using polycaprolactone (PCL), polyvinyl alcohol (PVA), and soybean peptide (SP). The study into the physicochemical properties of the patch was found that it had adequate mechanical strength requirements (16 N cm-1 ) and large elongation at break, which were superior than commercial polypropylene (PP) patches. In vivo and in vitro experiments showed that human umbilical vein endothelial cells (HUVECs) proliferated well on composite patches, and showed excellent biocompatibility with the host and little adhesion through a rat abdominal wall defect model. In conclusion, the results of this study show that composite patch can effectively reduce the occurrence of adhesions, while the addition of SP in the patch further enhances its biocompatibility. We believe that a regenerative biological patch with great potential in hernia repair provides a new strategy for the development of new biomimetic biodegradable patches. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qingxi Hu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China.,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, 200072, China.,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China
| | - Junjie Wu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China.,Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, Shanghai University, Shanghai, 200072, China.,National Demonstration Center for Experimental Engineering Training Education, Shanghai University, Shanghai, 200444, China
| | - Wenpei Dong
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Yan Gu
- Department of General Surgery, Huadong Hospital, Fudan University, Shanghai, 200040, China
| | - Suihong Liu
- Rapid Manufacturing Engineering Center, School of Mechatronical Engineering and Automation, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
34
|
Liang W, He W, Huang R, Tang Y, Li S, Zheng B, Lin Y, Lu Y, Wang H, Wu D. Peritoneum-Inspired Janus Porous Hydrogel with Anti-Deformation, Anti-Adhesion, and Pro-Healing Characteristics for Abdominal Wall Defect Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108992. [PMID: 34981867 DOI: 10.1002/adma.202108992] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Implantable meshes used in tension-free repair operations facilitate treatment of internal soft-tissue defects. However, clinical meshes fail to achieve anti-deformation, anti-adhesion, and pro-healing properties simultaneously, leading to undesirable surgery outcomes. Herein, inspired by the peritoneum, a novel biocompatible Janus porous poly(vinyl alcohol) hydrogel (JPVA hydrogel) is developed to achieve efficient repair of internal soft-tissue defects by a facile yet efficient strategy based on top-down solvent exchange. The densely porous and smooth bottom-surface of JPVA hydrogel minimizes adhesion of fibroblasts and does not trigger any visceral adhesion, and its loose extracellular-matrix-like porous and rough top-surface can significantly improve fibroblast adhesion and tissue growth, leading to superior abdominal wall defect treatment to commercially available PP and PCO meshes. With unique anti-swelling property (maximum swelling ratio: 6.4%), JPVA hydrogel has long-lasting anti-deformation performance and maintains high mechanical strength after immersion in phosphate-buffered saline (PBS) for 14 days, enabling tolerance to the maximum abdominal pressure in an internal wet environment. By integrating visceral anti-adhesion and defect pro-healing with anti-deformation, the JPVA hydrogel patch shows great prospects for efficient internal soft-tissue defect repair.
Collapse
Affiliation(s)
- Weiwen Liang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Wenyi He
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Rongkang Huang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Youchen Tang
- Center of Accurate Diagnosis, Treatment and Transformation of Bone and Joint Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, P. R. China
| | - Shimei Li
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Bingna Zheng
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- Center of Accurate Diagnosis, Treatment and Transformation of Bone and Joint Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, P. R. China
| | - Yayu Lin
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yuheng Lu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Hui Wang
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, P. R. China
| | - Dingcai Wu
- PCFM Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
- Center of Accurate Diagnosis, Treatment and Transformation of Bone and Joint Diseases, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518000, P. R. China
| |
Collapse
|
35
|
Poerwosusanta H, Yasmina A, Dewi FRP, Benita KN, Budi AS, Putri NS, Ainun N, Fakhriah G, Fitri A, Poerwosusanta AR, Poerwosusanta EE, Aditia D, Noor Z. Dayak Onions (Eleutherine americana L Merr) Reduced Mesothelial Cell Detachment After Laparoscopy in Rats. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.8297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Laparoscopy induces changes and detachment of mesothelial structure. Studies on the prevention of mesothelial cell detachment are rarely found. The Dayak tribe uses the Dayak onion (Eleutherine americana L. Merr) as a wound-healing agent due to its anti-inflammatory and antioxidant activities. This study aimed to prove the anti-inflammatory and antioxidant activities of Dayak onions in preventing mesothelial cell damage after laparoscopy.
Materials and methods: Thirty male Sprague-Dawley rats were classified into five groups (n = 6 per group), namely: (a) control, (b) Mediclore, (c) Dayak onion, 30-, (d) 60-, and (e) 90 mg/kg body weight, respectively. The transforming growth factor-beta (TGF-β) and total oxidant status in the peritoneal fluid were determined 24 hours after laparoscopy. Histopathological analysis of mesothelial cell numbers and the protein Zone Occludin-1 (ZO-1) expression in the peritoneum, small intestines, greater omentum, and liver were performed 7 days after the procedure. An in-silico study was conducted to analyze the anti-inflammatory effects of the components of Dayak onions.
Results: The in-silico study showed that one of the Dayak onion active compounds, eleutherine, had a potential anti-inflammatory effect and acted as a modulator of TGF-β. Following Dayak onion administration, the TGF- level, the number of mesothelial cell detachments, and ZO-1 expression were all significantly reduced (p<0.05), whereas the total oxidant status (TOS) level was not (p>0.05).
Conclusions: Our study showed that Dayak onion administration reduced TGF-β level, number of mesothelial cell detachment, and ZO-1 expression following laparoscopy.
Collapse
|
36
|
Babadi D, Rabbani S, Akhlaghi S, Haeri A. Curcumin polymeric membranes for postoperative peritoneal adhesion: Comparison of nanofiber vs. film and phospholipid-enriched vs. non-enriched formulations. Int J Pharm 2022; 614:121434. [PMID: 34995747 DOI: 10.1016/j.ijpharm.2021.121434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 12/15/2021] [Accepted: 12/23/2021] [Indexed: 12/08/2022]
Abstract
Intra-abdominal adhesion remains a major postoperative problem and is able to place individuals at lifelong risk of serious complications. Among available approaches, insertion of a barrier membrane at the site of injury partially inhibited adhesion formation. Moreover, the local administration of an anti-adhesive agent showed some favorable effects. In this study, we aimed to prepare and fully characterize polycaprolactone (PCL)-based film casts and electrospun nanofibers (NFs) containing a natural anti-inflammatory agent, curcumin (CUR), with extended-release properties. We also compared their efficiencies in preventing tissue adhesions. Additionally, the impact of soy phosphatidylcholine (SPC) enrichment on adhesion prevention was investigated. Prepared membranes were evaluated in terms of surface morphology (SEM, AFM), surface wettability, CUR release profiles, structural properties (FTIR, XRD, DSC), and mechanical behaviors. To further analyze the anti-adhesion effectiveness, a cecal abrasion model was performed on rats. SEM and AFM images showed a smoother surface in SPC-containing films. Concerning NFs, uniform bead-free fibers were observed and SPC containing NFs showed higher conductivity and lower viscosity and therefore, smaller fibers. All formulations exhibited sustained drug release over 4 weeks. In vivo findings revealed the superior performance of films compared to NFs and phospholipid-enriched formulations over non-enriched ones. Among all film formulations and in comparison to the positive control (Seprafilm®), CUR-SPC-PCL films significantly reduced peritoneal adhesions, as evidenced by gross examination, histological evaluation and immunohistochemical (IHC) analysis. The remarkable in vivo anti-adhesion activity together with suitable in vitro properties have made CUR-SPC-PCL films a promising system for postoperative anti-adhesion purposes in the clinic.
Collapse
Affiliation(s)
- Delaram Babadi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Sarah Akhlaghi
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
37
|
Song BR, Park IS, Park DY, Kim YJ, Kim MS, Lee KB, Park SR, Choi BH, Min BH. Anti-adhesive effect of chondrocyte-derived extracellular matrix surface-modified with poly-L-lysine (PLL). J Tissue Eng Regen Med 2021; 16:279-289. [PMID: 34788485 DOI: 10.1002/term.3263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/25/2021] [Accepted: 11/03/2021] [Indexed: 12/08/2022]
Abstract
After an injury, soft tissue structures in the body undergo a natural healing process through specific phases of healing. Adhesions occur as abnormal attachments between tissues and organs through the formation of blood vessels and/or fibrinous adhesions during the regenerative repair process. In this study, we developed an adhesion-preventing membrane with an improved physical protection function by modifying the surface of chondrocyte-derived extracellular matrices (CECM) with anti-adhesion function. We attempted to change the negative charge of the CECM surface to neutral using poly-L-lysine (PLL) and investigated whether it blocked fibroblast adhesion to it and showed an improved anti-adhesion effect in animal models of tissue adhesion. The surface of the membrane was modified with PLL coating (PLL 10), which neutralized the surface charge. We confirmed that the surface characteristics except for the potential difference were maintained after the modification and tested cell attachment in vitro. Adhesion inhibition was identified in a peritoneal adhesion animal model at 1 week and in a subcutaneous adhesion model for 4 weeks. N-CECM suppressed fibroblast and endothelial cell adhesion in vitro and inhibited abdominal adhesions in vivo. The CECM appeared to actively inhibit the infiltration of endothelial cells into the injured site, thereby suppressing adhesion formation, which differed from conventional adhesion barriers in the mode of action. Furthermore, the N-CECM remained intact without degradation for more than four weeks in vivo and exerted anti-adhesion effects for a long time. This study demonstrated that PLL10 surface modification rendered a neutral charge to the polymer on the extracellular matrix surface, thereby inhibiting cell and tissue adhesion. Furthermore, this study suggests a means to modify extracellular matrix surfaces to meet the specific requirements of the target tissue in preventing post-surgical adhesions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bo Ram Song
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea.,Department of Molecular Science & Technology, Ajou University, Suwon, Republic of Korea
| | - In Su Park
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Do Young Park
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Young Jick Kim
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Moon Suk Kim
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea
| | - Kyi Beom Lee
- Department of Pathology, Ajou University School of Medicine, Suwon, Republic of Korea
| | - So Ra Park
- Department of Physiology, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Byung Hyune Choi
- Department of Biomedical Sciences, College of Medicine, Inha University, Incheon, Republic of Korea
| | - Byoung-Hyun Min
- Cell Therapy Center, Ajou University Medical Center, Suwon, Republic of Korea.,Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Republic of Korea.,Department of Molecular Science & Technology, Ajou University, Suwon, Republic of Korea
| |
Collapse
|
38
|
Chua JW, Madden L, Lim SBH, Philips ARJ, Becker DL. Development of a refined ex vivo model of peritoneal adhesion formation, and a role for connexin 43 in their development. Mol Cell Biochem 2021; 477:295-305. [PMID: 34716547 DOI: 10.1007/s11010-021-04282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/21/2021] [Indexed: 11/30/2022]
Abstract
Despite many advances across the surgical sciences, post-surgical peritoneal adhesions still pose a considerable risk in modern-day procedures and are highly undesirable. We have developed a novel mouse peritoneal strip ex vivo adhesion model which may serve to bridge the gap between single cell culture systems and in vivo animal drug testing for the assessment of potential anti-adhesion agents, and study of causality of the process. We investigated the optimal conditions for adhesion formation with mouse peritoneal tissue strips by modifying an existing ex vivo rat model of peritoneal adhesions. We assessed the impact of the following conditions on the formation of adhesions: contact pressure, abrasions, and the presence of clotted blood. Macroscopic adhesions were detected in all mouse peritoneal strips exposed to specific conditions, namely abrasions and clotted blood, where peritoneal surfaces were kept in contact with pressure using cotton gauze in a tissue cassette. Adhesions were confirmed microscopically. Interestingly, connexin 43, a gap junction protein, was found to be upregulated at sites of adhesions. Key features of this model were the use of padding the abraded tissue with gauze and the use of a standardised volume of clotted blood. Using this model, peritoneal strips cultured with clotted blood between abraded surfaces were found to reproducibly develop adhesion bands at 72 h. Our goal is to develop a model that can be used in genetically modified mice in order to dissect out the role of particular genes in adhesion formation and to test drugs to prevent adhesion formation.
Collapse
Affiliation(s)
- Jia Wang Chua
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore, 308232, Singapore
| | - Leigh Madden
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore, 308232, Singapore
| | - Sophia Beng Hui Lim
- Skin Research Institute Singapore, Level 17, Clinical Sciences Building, 11, Mandalay Road, Singapore, 308232, Singapore
| | | | - David L Becker
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11, Mandalay Road, Singapore, 308232, Singapore. .,Skin Research Institute Singapore, Level 17, Clinical Sciences Building, 11, Mandalay Road, Singapore, 308232, Singapore.
| |
Collapse
|
39
|
Fu Y, Gong T, Tsauo J, Sang M, Zhao H, Zhang X, Li J, Li X. Nintedanib, a multitarget tyrosine kinase inhibitor, suppresses postoperative peritoneal adhesion formation in a rat model. Surgery 2021; 170:806-812. [PMID: 33972093 DOI: 10.1016/j.surg.2021.03.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/02/2021] [Accepted: 03/25/2019] [Indexed: 10/21/2022]
Abstract
BACKGROUND Nintedanib is an antifibrotic agent approved by the United States Food and Drug Administration for the treatment of lung fibrosis. This study aimed to evaluate the efficacy of nintedanib for the prevention of postoperative peritoneal adhesion formation in a rat model. METHODS Eighteen female Sprague-Dawley rats underwent peritoneal ischemic button creation to induce peritoneal adhesion formation and were randomly allocated to receive 1 mL saline, 50 mg/kg nintedanib, or 100 mg/kg nintedanib by gavage once daily for 7 days. Peritoneal adhesion evaluation and histological and immunochemical examinations were performed on postoperative day 7. Twelve additional Sprague-Dawley rats underwent ileal resection and anastomosis and were randomized to receive saline or 100 mg/kg nintedanib by gavage once daily for 7 days. Anastomotic bursting pressure was assessed on postoperative day 7. RESULTS All rats survived until death 7 days after surgery without complications. Peritoneal adhesion incidence, quality, and tenacity were lower in both nintedanib groups than in the saline group (P < .01), but no differences were found between the 2 nintedanib groups (P > .05). Histological and immunochemical results demonstrated less inflammation, fibrosis, collagen, and cell proliferation and fewer myofibroblasts in the ischemic buttons treated with 50 mg/kg or 100 mg/kg nintedanib than in those treated with saline (P < .01), but no difference was found between the 2 nintedanib groups (P > .05). Anastomotic bursting pressures were not significantly different between the saline and nintedanib groups (P > .05). CONCLUSION Nintedanib is effective for the prevention of postoperative peritoneal adhesion formation in a rat model.
Collapse
Affiliation(s)
- Yan Fu
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Tao Gong
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiaywei Tsauo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| | - Mingchen Sang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - He Zhao
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiaowu Zhang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jingui Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
40
|
TMIGD1 Inhibited Abdominal Adhesion Formation by Alleviating Oxidative Stress in the Mitochondria of Peritoneal Mesothelial Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9993704. [PMID: 34426761 PMCID: PMC8380160 DOI: 10.1155/2021/9993704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 11/24/2022]
Abstract
Background Postoperative abdominal adhesion remains one of the frequent complications after abdominal surgery and lacks effective intervention. Peritoneal mesothelial cell injury and healing play crucial roles in the process of adhesion formation, and identifying this mechanism might provide new insight into possible new therapeutic strategies for this disease. Transmembrane and immunoglobulin domain-containing 1 (TMIGD1) has been proven to protect renal epithelial cells from injury induced by oxidative stress and has also been identified as a novel adhesion molecule. Here, we investigated the role of TMIGD1 and its possible mechanism in adhesion formation. Materials and Methods Immunohistochemistry (IHC), qPCR, and immunofluorescence (IHF) were used to detect the expression of TMIGD1. The grade and tenacity score of adhesion were used to evaluate the adhesion formation conditions. A TMIGD1-overexpressing HMrSV5 cell line was established. MTT assay, Western blotting, Annexin V apoptosis analysis, and CK19 staining were used to measure mesothelial cell viability, apoptosis, and completeness. ROS and MDA detection were used to measure mesothelial cell oxidative stress levels. JC-1 staining, IHF, and transmission electron microscopy were performed to assess mitochondrial function. Scratch-wound and adhesion assays were used to evaluate the adhesion ability of mesothelial cells. Results First, we showed that TMIGD1 was decreased in mouse abdominal adhesion tissue and peritoneal mesothelial cells. Second, TMIGD1 overexpression inhibited adhesion formation. Third, TMIGD1 overexpression protected mesothelial cells from hydrogen peroxide- (H2O2-) induced oxidative stress injury. Fourth, TMIGD1 overexpression alleviated oxidative stress by protecting the mitochondrial function of mesothelial cells. In addition, TMIGD1 overexpression enhanced mesothelial cell adhesion. Conclusion Our findings suggest that TMIGD1 protects mesothelial cells from oxidative stress injury by protecting their mitochondrial function, which is decreased in regular abdominal adhesion tissue. In addition, TMIGD1 enhances peritoneal mesothelial cell adhesion to promote healing.
Collapse
|
41
|
Fatehi Hassanabad A, Zarzycki AN, Jeon K, Deniset JF, Fedak PWM. Post-Operative Adhesions: A Comprehensive Review of Mechanisms. Biomedicines 2021; 9:biomedicines9080867. [PMID: 34440071 PMCID: PMC8389678 DOI: 10.3390/biomedicines9080867] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 06/27/2021] [Accepted: 07/15/2021] [Indexed: 11/16/2022] Open
Abstract
Post-surgical adhesions are common in almost all surgical areas and are associated with significant rates of morbidity, mortality, and increased healthcare costs, especially when a patient requires repeat operative interventions. Many groups have studied the mechanisms driving post-surgical adhesion formation. Despite continued advancements, we are yet to identify a prevailing mechanism. It is highly likely that post-operative adhesions have a multifactorial etiology. This complex pathophysiology, coupled with our incomplete understanding of the underlying pathways, has resulted in therapeutic options that have failed to demonstrate safety and efficacy on a consistent basis. The translation of findings from basic and preclinical research into robust clinical trials has also remained elusive. Herein, we present and contextualize the latest findings surrounding mechanisms that have been implicated in post-surgical adhesion formation.
Collapse
Affiliation(s)
- Ali Fatehi Hassanabad
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.F.D.)
| | - Anna N. Zarzycki
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.F.D.)
| | - Kristina Jeon
- Department of Anesthesiology and Pain Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2R7, Canada;
| | - Justin F. Deniset
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.F.D.)
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Paul W. M. Fedak
- Section of Cardiac Surgery, Department of Cardiac Sciences, Libin Cardiovascular Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 2N9, Canada; (A.F.H.); (A.N.Z.); (J.F.D.)
- Correspondence:
| |
Collapse
|
42
|
Süntar I, Demirel MA, Ceribasi AO, Ergin I, Gökbulut A. Preventive effect of Rumex crispus L. on surgically induced intra-abdominal adhesion model in rats. Daru 2021; 29:101-115. [PMID: 33779947 PMCID: PMC8149542 DOI: 10.1007/s40199-021-00387-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/07/2021] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND Rumex crispus L. (Polygonaceae), known as "Labada" in Turkey, was reported to be used for the treatment of gynecological diseases such as postpartum complications and infertility in folk medicine. Earlier studies on R. crispus have shown that leaf, fruit and root extracts have anti-inflammatory and antioxidant activities and are used for the treatment of tumors in the uterus. The hypothesis of this study is that R. crispus may generate potential anti-adhesive activity against complex factors such as inflammation, oxidation and fibrosis. OBJECTIVES We aimed to investigate the potential anti-adhesive activity of aqueous methanol extracts of leaves, fruits and roots of R. crispus. METHODS Abdominal adhesion model was performed in 72 female Wistar Albino rats. In the first step of the experiment, the rats were divided into six groups namely, Sham, Control, Reference and Experimental Groups (consisting of three sub-groups in which R. crispus leaf, fruit and root extracts were applied at 100 mg/kg dose). The test samples were administered once to the peritoneal cavity and the rats were sacrificied at the end of the 14th day. Root extract showed prominent activity, therefore this extract was subjected to fractionation to obtain 3 fractions (30-60-100% methanol fractions) by using vacuum-liquid chromatography. In the second stage, animals were divided into 6 groups as Sham, Control, Reference and Experimental Groups (R30, R60, R100 at 100 mg/kg dose). Adhesion scoring, tissue total antioxidant and oxidant levels, histopathological and immunohistochemical (TNF-α, IL-6 and IL-8) analyzes were performed. RESULTS AND CONCLUSION Adhesion scores, inflammatory cytokines and inflammation cells decreased by the application of R. crispus root extract. The fractions also showed similar anti-inflammatory effects, but R60 was found to be more effective in prevention of intra-abdominal adhesions and uterine fibrosis. R60 fraction, possessing potential bioactivity, was investigated in terms of phenolic composition by HPLC.
Collapse
Affiliation(s)
- Ipek Süntar
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey.
| | - Murside Ayse Demirel
- Laboratory Animals Breeding and Experimental Research Center, Faculty of Pharmacy, Gazi University, Etiler, 06330, Ankara, Turkey
| | - Ali Osman Ceribasi
- Department of Pathology, Faculty of Veterinary Medicine, Fırat University, 23119, Elazig, Turkey
| | - Irem Ergin
- Department of Surgery, Faculty of Veterinary Medicine, Ankara University, Dışkapı, 06110, Ankara, Turkey
| | - Alper Gökbulut
- Department of Pharmacognosy, Faculty of Pharmacy, Ankara University, Tandogan, 06100, Ankara, Turkey
| |
Collapse
|
43
|
Small Bowel Obstruction Induced by Concurrent Postoperative Intra-Abdominal Adhesions and Small Bowel Fecal Materials in a Young Dog. Vet Sci 2021; 8:vetsci8050083. [PMID: 34066010 PMCID: PMC8151118 DOI: 10.3390/vetsci8050083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/17/2022] Open
Abstract
A 7-month-old neutered male poodle dog presented with general deterioration and gastrointestinal symptoms after two separate operations: a jejunotomy for small-intestinal foreign body removal and an exploratory laparotomy for diagnosis and treatment of the gastrointestinal symptoms that occurred 1 month after the first surgery. The dog was diagnosed as having small-bowel obstruction (SBO) due to intra-abdominal adhesions and small-bowel fecal material (SBFM) by using abdominal radiography, ultrasonography, computed tomography, and laparotomy. We removed the obstructive adhesive lesion and SBFM through enterotomies and applied an autologous peritoneal graft to the released jejunum to prevent re-adhesion. After the surgical intervention, the dog recovered quickly and was healthy at 1 year after the surgery without gastrointestinal signs. To our knowledge, this study is the first report of a successful treatment of SBO induced by postoperative intra-abdominal adhesions and SBFM after laparotomies in a dog.
Collapse
|
44
|
Yoshizaki Y, Nagata T, Fujiwara S, Takai S, Jin D, Kuzuya A, Ohya Y. Postoperative Adhesion Prevention Using a Biodegradable Temperature-Responsive Injectable Polymer System and Concomitant Effects of the Chymase Inhibitor. ACS APPLIED BIO MATERIALS 2021; 4:3079-3088. [PMID: 35014396 DOI: 10.1021/acsabm.0c01467] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Postoperative adhesion remains a problem in surgery and causes postoperative complications. Laparoscopic surgery is now common, making it increasingly important to develop injectable formulations of adhesion barriers that can be applied during such surgeries. Temperature-responsive injectable polymer (IP) systems exhibiting a sol-to-gel transition in response to temperature are promising candidates as effective adhesion barriers that can be applied conveniently during laparoscopic surgery. We previously developed IP systems exhibiting temperature-responsive irreversible gelation based on a triblock copolymer of poly(ε-caprolactone-co-glycolic acid) (PCGA) and poly(ethylene glycol) (PEG) (PCGA-b-PEG-b-PCGA: tri-PCG) and a tri-PCG derivative with acrylate groups at the termini (tri-PCG-acryl). A mixture of tri-PCG-acryl micelle solution and tri-PCG micelle solution containing polythiol exhibited an irreversible sol-to-gel transition in response to a temperature increase. The gel contains partial covalent cross-linking, and the degradation and physical properties of these IP hydrogels can easily be controlled by changing the mixing ratio of tri-PCG-acryl in the formulation. In this study, we investigated the effect of physical properties of the IP hydrogel on the efficacy of adhesion prevention using our IP system containing various amounts of tri-PCG-acryl. Our results show that an IP system with lower physical strength and rapid degradation reduces adhesion more effectively. Chymase plays a crucial role in exacerbating adhesion formation, and a peptide derivative-type chymase inhibitor (CI), Suc-Val-Pro-PheP(OPh)2, was previously reported to prevent adhesion. We thus investigated the concomitant use of this CI with our IP system using two methods: separate administration of the CI and IP and entrapping the CI in the IP hydrogel. IP systems with separately administrated CI provided better results than the administration of an IP system entrapping the CI or sole IP systems. These findings suggest that the pharmacological effect of the CI and a physical barrier generated by our IP system effectively prevents adhesion.
Collapse
Affiliation(s)
- Yuta Yoshizaki
- Organization for Research and Development of Innovative Science and Technology (ORDIST), Kansai University, 3-3-35 Yamate, Suita 564-8680, Osaka, Japan
| | - Takuya Nagata
- Faculty of Chemistry, Materials, Bioengineering, Kansai University, 3-3-35 Yamate, Suita 564-8680, Osaka, Japan
| | - Soichiro Fujiwara
- Faculty of Chemistry, Materials, Bioengineering, Kansai University, 3-3-35 Yamate, Suita 564-8680, Osaka, Japan
| | - Shinji Takai
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan
| | - Denan Jin
- Department of Innovative Medicine, Graduate School of Medicine, Osaka Medical College, 2-7 Daigakumachi, Takatsuki 569-8686, Osaka, Japan
| | - Akinori Kuzuya
- Faculty of Chemistry, Materials, Bioengineering, Kansai University, 3-3-35 Yamate, Suita 564-8680, Osaka, Japan.,Collaborate Research Center of Engineering, Medicine and Pharmacology (CEMP), Kansai University, 3-3-35 Yamate, Suita 564-8680, Osaka, Japan
| | - Yuichi Ohya
- Faculty of Chemistry, Materials, Bioengineering, Kansai University, 3-3-35 Yamate, Suita 564-8680, Osaka, Japan.,Collaborate Research Center of Engineering, Medicine and Pharmacology (CEMP), Kansai University, 3-3-35 Yamate, Suita 564-8680, Osaka, Japan
| |
Collapse
|
45
|
Gitonga EN, Shen H. Small bowel obstruction and strangulation secondary to an adhesive internal hernia post ESWL for right ureteral calculi: a case report and review of literature. BMC Gastroenterol 2021; 21:176. [PMID: 33865311 PMCID: PMC8052854 DOI: 10.1186/s12876-021-01760-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/09/2021] [Indexed: 11/20/2022] Open
Abstract
Background Extracorporeal shock wave lithotripsy (ESWL) is a relatively safe and convenient mode of treatment for ureteral and renal stones, despite its relative safety; ESWL is not without its complications. We present a case of a patient we managed for small bowel obstruction and strangulation due to an adhesive internal hernia after ESWL was done because of right ureteral calculi. Case presentation We report a case of a 59-year-old patient who presented with severe abdominal pain a few hours after ESWL because of a right upper ureteric calculus. The abdominal pain increased in severity in time and became more generalized. The patient had one episode of gross hematochezia as she was being prepped for emergency laparotomy. Intra-op, she had a strangulated internal hernia because of an omental-mesenteric adhesion. Conclusion This case report hopes to highlight the potential of complications like acquired IH due to adhesions in patients with a history of ureteral calculi, and also the complications that may come about post-ESWL. Patients who present with signs of persistent abdominal pain post-ESWL should be vigilantly observed. If symptoms persist, increase in intensity or there is a general deterioration of the patients’ hemodynamic status, even in light of negative MDCT findings, prompt surgical intervention is crucial for definitive diagnosis as well as management.
Collapse
Affiliation(s)
- Elaine N Gitonga
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China
| | - Haitao Shen
- Department of Emergency Medicine, Shengjing Hospital of China Medical University, Shenyang, 110004, People's Republic of China.
| |
Collapse
|
46
|
Ito T, Shintani Y, Fields L, Shiraishi M, Podaru MN, Kainuma S, Yamashita K, Kobayashi K, Perretti M, Lewis-McDougall F, Suzuki K. Cell barrier function of resident peritoneal macrophages in post-operative adhesions. Nat Commun 2021; 12:2232. [PMID: 33854051 PMCID: PMC8046819 DOI: 10.1038/s41467-021-22536-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/15/2021] [Indexed: 12/20/2022] Open
Abstract
Post-operative adhesions are a leading cause of abdominal surgery-associated morbidity. Exposed fibrin clots on the damaged peritoneum, in which the mesothelial barrier is disrupted, readily adhere to surrounding tissues, resulting in adhesion formation. Here we show that resident F4/80HighCD206− peritoneal macrophages promptly accumulate on the lesion and form a ‘macrophage barrier’ to shield fibrin clots in place of the lost mesothelium in mice. Depletion of this macrophage subset or blockage of CD11b impairs the macrophage barrier and exacerbates adhesions. The macrophage barrier is usually insufficient to fully preclude the adhesion formation; however, it could be augmented by IL-4-based treatment or adoptive transfer of this macrophage subset, resulting in robust prevention of adhesions. By contrast, monocyte-derived recruited peritoneal macrophages are not involved in the macrophage barrier. These results highlight a previously unidentified cell barrier function of a specific macrophage subset, also proposing an innovative approach to prevent post-operative adhesions. Peritoneal adhesions are a major cause of complications after abdominal surgery. Here the authors use a post-operative abdominal adhesion model in mice to show that resident F4/80HighCD206− macrophages form a protective barrier that can be enhanced by IL-4 administration or adoptive transfer of these cells.
Collapse
Affiliation(s)
- Tomoya Ito
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| | - Yusuke Shintani
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Laura Fields
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Manabu Shiraishi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mihai-Nicolae Podaru
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Satoshi Kainuma
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kizuku Yamashita
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Kazuya Kobayashi
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Mauro Perretti
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fiona Lewis-McDougall
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Ken Suzuki
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.
| |
Collapse
|
47
|
Tavakkoli M, Aali S, Khaledifar B, Ferns GA, Khazaei M, Fekri K, Arjmand MH. The Potential Association between the Risk of Post-Surgical Adhesion and the Activated Local Angiotensin II Type 1 Receptors: Need for Novel Treatment Strategies. Gastrointest Tumors 2021; 8:107-114. [PMID: 34307308 DOI: 10.1159/000514614] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 01/17/2021] [Indexed: 12/22/2022] Open
Abstract
Background Post-surgical adhesion bands (PSABs) are a common complication after abdominal or pelvic surgeries for different reasons like cancer treatment. Despite improvements in surgical techniques and the administration of drugs or the use of physical barriers, there has only been limited improvement in the frequency of postoperative adhesions. Complications of PSAB are pain, infertility, intestinal obstruction, and increased mortality. The most important molecular mechanisms for the development of PSAB are inflammatory response, oxidative stress, and overexpression of pro-fibrotic molecules such as transforming growth factor β. However, questions remain about the pathogenesis of this problem, for example, the causes for individual differences or why certain tissue sites are more prone to post-surgical adhesions. Summary Addressing the pathological causes of PSAB, the potential role of local angiotensin II/angiotensin II type 1 receptors (AngII/AT1R), may help to prevent this problem. Key Message The objective of this article was to explore the role of the AngII/AT1R axis potential to induce PSAB and the therapeutic potential of angiotensin receptor blockers in the prevention and treatment of PSAB.
Collapse
Affiliation(s)
- Mahmood Tavakkoli
- Kidney Transplantation Complications Research Center, Department of Internal Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeed Aali
- Department of Urology, Kashani Academic Hospital, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Borzoo Khaledifar
- Department of Surgery, Faculty of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Brighton, United Kingdom
| | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiavash Fekri
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | |
Collapse
|
48
|
Lubricin as a tool for controlling adhesion in vivo and ex vivo. Biointerphases 2021; 16:020802. [PMID: 33736436 DOI: 10.1116/6.0000779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The ability to prevent or minimize the accumulation of unwanted biological materials on implantable medical devices is important in maintaining the long-term function of implants. To address this issue, there has been a focus on materials, both biological and synthetic, that have the potential to prevent device fouling. In this review, we introduce a glycoprotein called lubricin and report on its emergence as an effective antifouling coating material. We outline the versatility of lubricin coatings on different surfaces, describe the physical properties of its monolayer structures, and highlight its antifouling properties in improving implant compatibility as well as its use in treatment of ocular diseases and arthritis. This review further describes synthetic polymers mimicking the lubricin structure and function. We also discuss the potential future use of lubricin and its synthetic mimetics as antiadhesive biomaterials for therapeutic applications.
Collapse
|
49
|
Kang S, Park S, Baek I, Song Y, Kim S, Choi D, Kim J, Lee Y. Development of poly(D,L-lactic-co-glycolic acid) films coated with biomembrane-mimicking polymers for anti-adhesion activity. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111780. [PMID: 33545908 DOI: 10.1016/j.msec.2020.111780] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/12/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
A physical barrier is one of the most effective strategies to alleviate excessive postoperative adhesion (POA) between tissues at an injury site. To overcome the limitations of current polymeric film-type physical barriers, we suggest a film of poly(lactic-co-glycolic acid) (PLGA) that is non-covalently coated with poly(2-methacryloyloxyethyl phosphorylcholine (MPC)-co-n-butyl methacrylate (BMA)) (PMB). While maintaining the degradability and mechanical properties of PLGA, the PMB coating introduces strong anti-adhesive properties to the film by forming a zwitterionic MPC-based surface through the hydrophobic interactions between BMA moieties and PLGA. Compared to SurgiWrap®, the commercially available poly(lactic acid)-based anti-adhesive film against POA, the PMB-coated PLGA film is much more inhibitory against protein adsorption and fibroblast adhesion, processes that are crucial to the POA process. PMB coating also inhibits the expression of fibronectin containing extra domain A (FN-EDA), α-smooth muscle actin (α-SMA), and collagen type IV alpha 2 (COL4A2), which are marker genes and proteins involved in fibroblast activation and excessive fibrosis during POA. Such inhibitory activities are clearly observed in a 3-dimensional culture of fibroblasts within a collagen matrix, which mimics the in vivo environment of an injury site, as well as in a 2-dimensional culture. The kinetics and the stability of the PMB coating suggest potential future clinical use to coat PLGA films to create a film-type anti-adhesion barrier that overcomes the limitations of current products.
Collapse
Affiliation(s)
- Sunah Kang
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sohyun Park
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Insu Baek
- SOLSION Biomedical, Inc., 25, Gasan digital 1-ro, Geumcheon-gu, Seoul 08594, Republic of Korea
| | - Youngjun Song
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sungwhan Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Dongkil Choi
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jungah Kim
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Yan Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
50
|
Nakamura T, Yokoyama U, Kanaya T, Ueno T, Yoda T, Ishibe A, Hidaka Y, Umemura M, Takayama T, Kaneko M, Miyagawa S, Sawa Y, Endo I, Ishikawa Y. Multilayered Human Skeletal Muscle Myoblast Sheets Promote the Healing Process After Colonic Anastomosis in Rats. Cell Transplant 2021; 30:9636897211009559. [PMID: 33880968 PMCID: PMC8076781 DOI: 10.1177/09636897211009559] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/20/2022] Open
Abstract
Colorectal anastomotic leakage is one of the most feared and fatal complications of colorectal surgery. To date, no external coating material that can prevent anastomotic leakage has been developed. As myoblasts possess anti-inflammatory capacity and improve wound healing, we developed a multilayered human skeletal muscle myoblast (HSMM) sheet by periodic exposure to supraphysiological hydrostatic pressure during repeated cell seeding. We assessed whether the application of an HSMM sheet can promote the healing process after colonic anastomosis. Partial colectomy and insufficient suturing were employed to create a high-risk colo-colonic anastomosis model in 60 nude rats. Rats were divided into a control group (n = 30) and an HSMM sheet group (n = 30). Macroscopic findings, anastomotic bursting pressure, and histology at the colonic anastomotic site were evaluated on postoperative day (POD) 3, 5, 7, 14, and 28. The application of an HSMM sheet significantly suppressed abscess formation at the anastomotic site compared to the control group on POD3 and 5. The anastomotic bursting pressure in the HSMM sheet group was higher than that in the control group on POD3 and 5. Inflammatory cell infiltration in the HSMM sheet group was significantly suppressed compared to that in the control group throughout the time course. Collagen deposition in the HSMM sheet group on POD3 was significantly abundant compared to that in the control group. Regeneration of the mucosa at the colonic anastomotic site was promoted in the HSMM sheet group compared to that in the control group on POD14 and 28. Immunohistochemical analysis demonstrated that surviving cells in the HSMM sheet gradually decreased with postoperative time and none were detected on POD14. These results suggest that the application of a multilayered HSMM sheet may prevent postoperative colonic anastomotic leakage.
Collapse
Affiliation(s)
- Takashi Nakamura
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Utako Yokoyama
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
- Department of Physiology, Tokyo Medical University, Tokyo, Japan
| | - Tomomitsu Kanaya
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takayoshi Ueno
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takanori Yoda
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Atsushi Ishibe
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yuko Hidaka
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Masanari Umemura
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Toshio Takayama
- Department of Mechanical Engineering, Tokyo Institute of Technology, Tokyo, Japan
| | - Makoto Kaneko
- Graduate School of Science and Engineering, Meijo University, Nagoya, Aichi, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Itaru Endo
- Department of Gastroenterological Surgery, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Yoshihiro Ishikawa
- Cardiovascular Research Institute, Yokohama City University, Yokohama, Kanagawa, Japan
| |
Collapse
|