1
|
Lundberg AL, Ozer EA, Wu SA, Soetikno AG, Welch SB, Liu Y, Havey RJ, Murphy RL, Hawkins C, Mason M, Achenbach CJ, Post LA. Surveillance Metrics and History of the COVID-19 Pandemic in Central Asia: Updated Epidemiological Assessment. JMIR Public Health Surveill 2024; 10:e52318. [PMID: 39013115 PMCID: PMC11391161 DOI: 10.2196/52318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/21/2024] [Accepted: 04/29/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND This study updates the COVID-19 pandemic surveillance in Central Asia we conducted during the first year of the pandemic by providing 2 additional years of data for the region. The historical context provided through additional data can inform regional preparedness and early responses to infectious outbreaks of either the SARS-CoV-2 virus or future pathogens in Central Asia. OBJECTIVE First, we aim to measure whether there was an expansion or contraction in the pandemic in Central Asia when the World Health Organization (WHO) declared the end of the public health emergency for the COVID-19 pandemic on May 5, 2023. Second, we use dynamic and genomic surveillance methods to describe the history of the pandemic in the region and situate the window of the WHO declaration within the broader history. Third, we aim to provide historical context for the course of the pandemic in Central Asia. METHODS Traditional surveillance metrics, including counts and rates of COVID-19 transmissions and deaths, and enhanced surveillance indicators, including speed, acceleration, jerk, and persistence, were used to measure shifts in the pandemic. To identify the appearance and duration of variants of concern, we used data on sequenced SARS-CoV-2 variants from the Global Initiative on Sharing All Influenza Data (GISAID). We used Nextclade nomenclature to collect clade designations from sequences and Pangolin nomenclature for lineage designations of SARS-CoV-2. Finally, we conducted a 1-sided t test to determine whether regional speed was greater than an outbreak threshold of 10. We ran the test iteratively with 6 months of data across the sample period. RESULTS Speed for the region had remained below the outbreak threshold for 7 months by the time of the WHO declaration. Acceleration and jerk were also low and stable. Although the 1- and 7-day persistence coefficients remained statistically significant, the coefficients were relatively small in magnitude (0.125 and 0.347, respectively). Furthermore, the shift parameters for either of the 2 most recent weeks around May 5, 2023, were both significant and negative, meaning the clustering effect of new COVID-19 cases became even smaller in the 2 weeks around the WHO declaration. From December 2021 onward, Omicron was the predominant variant of concern in sequenced viral samples. The rolling t test of speed equal to 10 became entirely insignificant for the first time in March 2023. CONCLUSIONS Although COVID-19 continues to circulate in Central Asia, the rate of transmission remained well below the threshold of an outbreak for 7 months ahead of the WHO declaration. COVID-19 appeared to be endemic in the region and no longer reached the threshold of a pandemic. Both standard and enhanced surveillance metrics suggest the pandemic had ended by the time of the WHO declaration.
Collapse
Affiliation(s)
- Alexander L Lundberg
- Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Pathogen Genomics and Microbial Evolution, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Scott A Wu
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alan G Soetikno
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Sarah B Welch
- Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yingxuan Liu
- Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Robert J Havey
- Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
- Department of Medicine, General Internal Medicine and Geriatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Robert L Murphy
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Claudia Hawkins
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Global Communicable and Emerging Infectious Diseases, Robert J. Havey, MD Institute for Global Health, Northwestern University,, Chicago, IL, United States
| | - Maryann Mason
- Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Chad J Achenbach
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Lori A Post
- Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
2
|
Lundberg AL, Wu SA, Soetikno AG, Hawkins C, Murphy RL, Havey RJ, Ozer EA, Moss CB, Welch SB, Mason M, Liu Y, Post LA. Updated Surveillance Metrics and History of the COVID-19 Pandemic (2020-2023) in Europe: Longitudinal Trend Analysis. JMIR Public Health Surveill 2024; 10:e53551. [PMID: 38568186 PMCID: PMC11226935 DOI: 10.2196/53551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 06/22/2024] Open
Abstract
BACKGROUND In this study, we built upon our initial research published in 2020 by incorporating an additional 2 years of data for Europe. We assessed whether COVID-19 had shifted from the pandemic to endemic phase in the region when the World Health Organization (WHO) declared the end of the public health emergency of international concern on May 5, 2023. OBJECTIVE We first aimed to measure whether there was an expansion or contraction in the pandemic in Europe at the time of the WHO declaration. Second, we used dynamic and genomic surveillance methods to describe the history of the pandemic in the region and situate the window of the WHO declaration within the broader history. Third, we provided the historical context for the course of the pandemic in Europe in terms of policy and disease burden at the country and region levels. METHODS In addition to the updates of traditional surveillance data and dynamic panel estimates from the original study, this study used data on sequenced SARS-CoV-2 variants from the Global Initiative on Sharing All Influenza Data to identify the appearance and duration of variants of concern. We used Nextclade nomenclature to collect clade designations from sequences and Pangolin nomenclature for lineage designations of SARS-CoV-2. Finally, we conducted a 1-tailed t test for whether regional weekly speed was greater than an outbreak threshold of 10. We ran the test iteratively with 6 months of data across the sample period. RESULTS Speed for the region had remained below the outbreak threshold for 4 months by the time of the WHO declaration. Acceleration and jerk were also low and stable. While the 1-day and 7-day persistence coefficients remained statistically significant, the coefficients were moderate in magnitude (0.404 and 0.547, respectively; P<.001 for both). The shift parameters for the 2 weeks around the WHO declaration were small and insignificant, suggesting little change in the clustering effect of cases on future cases at the time. From December 2021 onward, Omicron was the predominant variant of concern in sequenced viral samples. The rolling t test of speed equal to 10 became insignificant for the first time in April 2023. CONCLUSIONS While COVID-19 continues to circulate in Europe, the rate of transmission remained below the threshold of an outbreak for 4 months ahead of the WHO declaration. The region had previously been in a nearly continuous state of outbreak. The more recent trend suggested that COVID-19 was endemic in the region and no longer reached the threshold of the pandemic definition. However, several countries remained in a state of outbreak, and the conclusion that COVID-19 was no longer a pandemic in Europe at the time is unclear.
Collapse
Affiliation(s)
- Alexander L Lundberg
- Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Scott A Wu
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Alan G Soetikno
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Claudia Hawkins
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Global Communicable and Emerging Infectious Diseases, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Robert L Murphy
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Robert J. Havey, MD Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Robert J Havey
- Robert J. Havey, MD Institute for Global Health, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Medicine, General Internal Medicine and Geriatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Egon A Ozer
- Department of Medicine, Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Center for Pathogen Genomics and Microbial Evolution, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Charles B Moss
- Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, United States
| | - Sarah B Welch
- Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Maryann Mason
- Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yingxuan Liu
- Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Lori A Post
- Buehler Center for Health Policy and Economics, Robert J. Havey, MD Institute for Global Health, Northwestern University, Chicago, IL, United States
- Department of Emergency Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
3
|
Abreu MADF, Lopes BC, Assemany PP, Souza ADR, Siniscalchi LAB. COVID-19 cases, vaccination, and SARS-CoV-2 in wastewater: insights from a Brazilian municipality. JOURNAL OF WATER AND HEALTH 2024; 22:268-277. [PMID: 38421621 PMCID: wh_2024_159 DOI: 10.2166/wh.2024.159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Vaccines combatting COVID-19 demonstrate the ability to protect against disease and hospitalization, and reduce the likelihood of death caused by SARS-CoV-2. In addition, monitoring viral loads in sewage emerges as another crucial strategy in the epidemiological context, enabling early and collective detection of outbreaks. The study aimed to monitor the viral concentration of SARS-CoV-2 in untreated sewage in a Brazilian municipality. Also, it attempted to correlate these measurements with the number of clinical cases and deaths resulting from COVID-19 between July 2021 and July 2022. SARS-CoV-2 viral RNA was quantified by RT-qPCR. Pearson's correlation was performed to analyze the variables' relationship using the number of cases, deaths, vaccinated individuals, and viral concentration of SARS-CoV-2. The results revealed a significant negative correlation (p < 0.05) between the number of vaccinated individuals and the viral concentration of SARS-CoV-2, suggesting that after vaccination, the RNA viral load concentration was reduced in the sample population by the circulating concentration of wastewater. Consequently, wastewater monitoring, in addition to functioning as an early warning system for the circulation of SARS-CoV-2 and other pathogens, can offer a novel perspective that enhances decision-making, strengthens vaccination campaigns, and contributes to authorities establishing systematic networks for monitoring SARS-CoV-2.
Collapse
Affiliation(s)
- Mariana Aparecida de Freitas Abreu
- Department of Environmental Engineering (DAM), Federal University of Lavras (UFLA), Lavras, Brazil; Applied Microbiology Laboratory at the Environmental Engineering Department of UFLA, Federal University of Lavras (UFLA), Lavras, Brazil E-mail:
| | - Bruna Coelho Lopes
- Department of Sanitary and Environmental Engineering (DESA), Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Paula Peixoto Assemany
- Department of Environmental Engineering (DAM), Federal University of Lavras (UFLA), Lavras, Brazil; Applied Microbiology Laboratory at the Environmental Engineering Department of UFLA, Federal University of Lavras (UFLA), Lavras, Brazil
| | - Aline Dos Reis Souza
- Department of Environmental Engineering (DAM), Federal University of Lavras (UFLA), Lavras, Brazil
| | - Luciene Alves Batista Siniscalchi
- Department of Environmental Engineering (DAM), Federal University of Lavras (UFLA), Lavras, Brazil; Applied Microbiology Laboratory at the Environmental Engineering Department of UFLA, Federal University of Lavras (UFLA), Lavras, Brazil
| |
Collapse
|
4
|
Are the health systems of EU countries hosting Ukrainian refugees ready to adapt? THE LANCET. HEALTHY LONGEVITY 2022; 3:e639-e640. [PMID: 36122580 DOI: 10.1016/s2666-7568(22)00197-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 01/15/2023] Open
|
5
|
Namdar AB, Keikha M. The Russo-Ukrainian war crisis and vaccination of Ukrainian refugees as an urgent need. VACUNAS 2022; 23:247-248. [PMID: 35855784 PMCID: PMC9279139 DOI: 10.1016/j.vacun.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Ali Beheshti Namdar
- Gastroenterology and Hepatology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Masoud Keikha
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
6
|
Sriwitalai W, Wiwanitkit V. Commentary on "The Ukrainian refugee crisis and the COVID-19 pandemic in Europe" (Int J Surg 2022;102:106671). Int J Surg 2022; 104:106714. [PMID: 35738541 PMCID: PMC9212920 DOI: 10.1016/j.ijsu.2022.106714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/11/2022] [Indexed: 11/30/2022]
|