1
|
Zhao W, Li X, Guan J, Yan S, Teng L, Sun X, Dong Y, Wang H, Tao W. Potential and development of cellular vesicle vaccines in cancer immunotherapy. Discov Oncol 2025; 16:48. [PMID: 39812959 PMCID: PMC11735706 DOI: 10.1007/s12672-025-01781-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
Cancer vaccines are promising as an effective means of stimulating the immune system to clear tumors as well as to establish immune surveillance. In this paper, we discuss the main platforms and current status of cancer vaccines and propose a new cancer vaccine platform, the cytosolic vesicle vaccine. This vaccine has a unique structure that can integrate antigen and adjuvant carriers to improve the delivery efficiency and immune activation ability, which brings new ideas for cancer vaccine design. Tumor exosomes carry antigens and MHC-peptide complexes, which can provide tumor antigens to antigen-processing cells and increase the chances of recognition of tumor antigens by immune cells. DEVs play a role in amplifying the immune response by acting as carriers for the dissemination of antigenic substances in dendritic cells. OMVs, with their natural adjuvant properties, are one of the advantages for the preparation of antitumor vaccines. This paper presents the advantages of these three bacteria/extracellular vesicles as cancer vaccines and discusses the potential applications of functionally modified extracellular vesicles as cancer vaccines after cellular engineering or genetic engineering, as well as current clinical trials of extracellular vesicle vaccines. In summary, extracellular vesicle vaccines are a promising direction for cancer vaccine research.
Collapse
Affiliation(s)
- Wenxi Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China
| | - Xianjun Li
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Harbin, 150081, China
| | - Jialu Guan
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China
| | - Shuai Yan
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China
| | - Lizhi Teng
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China
| | - Xitong Sun
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China
| | - Yuhan Dong
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China
| | - Hongyue Wang
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China
| | - Weiyang Tao
- Department of Breast Surgery, The First Affiliated Hospital of Harbin Medical University, No. 23, Youzheng Street, Nangang District, Harbin, 150001, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
2
|
Song MS, Nam JH, Noh KE, Lim DS. Dendritic Cell-Based Immunotherapy: The Importance of Dendritic Cell Migration. J Immunol Res 2024; 2024:7827246. [PMID: 38628676 PMCID: PMC11019573 DOI: 10.1155/2024/7827246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Dendritic cells (DCs) are specialized antigen-presenting cells that are crucial for maintaining self-tolerance, initiating immune responses against pathogens, and patrolling body compartments. Despite promising aspects, DC-based immunotherapy faces challenges that include limited availability, immune escape in tumors, immunosuppression in the tumor microenvironment, and the need for effective combination therapies. A further limitation in DC-based immunotherapy is the low population of migratory DC (around 5%-10%) that migrate to lymph nodes (LNs) through afferent lymphatics depending on the LN draining site. By increasing the population of migratory DCs, DC-based immunotherapy could enhance immunotherapeutic effects on target diseases. This paper reviews the importance of DC migration and current research progress in the context of DC-based immunotherapy.
Collapse
Affiliation(s)
- Min-Seon Song
- Department of Bioconvergence, Graduate School and Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Ji-Hee Nam
- Department of Bioconvergence, Graduate School and Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Kyung-Eun Noh
- Department of Bioconvergence, Graduate School and Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| | - Dae-Seog Lim
- Department of Bioconvergence, Graduate School and Department of Biotechnology, CHA University, 335 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do 13488, Republic of Korea
| |
Collapse
|
3
|
Dong H, Li Q, Zhang Y, Ding M, Teng Z, Mou Y. Biomaterials Facilitating Dendritic Cell-Mediated Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301339. [PMID: 37088780 PMCID: PMC10288267 DOI: 10.1002/advs.202301339] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/22/2023] [Indexed: 05/03/2023]
Abstract
Dendritic cell (DC)-based cancer immunotherapy has exhibited remarkable clinical prospects because DCs play a central role in initiating and regulating adaptive immune responses. However, the application of traditional DC-mediated immunotherapy is limited due to insufficient antigen delivery, inadequate antigen presentation, and high levels of immunosuppression. To address these challenges, engineered biomaterials have been exploited to enhance DC-mediated immunotherapeutic effects. In this review, vital principal components that can enhance DC-mediated immunotherapeutic effects are first introduced. The parameters considered in the rational design of biomaterials, including targeting modifications, size, shape, surface, and mechanical properties, which can affect biomaterial optimization of DC functions, are further summarized. Moreover, recent applications of various engineered biomaterials in the field of DC-mediated immunotherapy are reviewed, including those serve as immune component delivery platforms, remodel the tumor microenvironment, and synergistically enhance the effects of other antitumor therapies. Overall, the present review comprehensively and systematically summarizes biomaterials related to the promotion of DC functions; and specifically focuses on the recent advances in biomaterial designs for DC activation to eradicate tumors. The challenges and opportunities of treatment strategies designed to amplify DCs via the application of biomaterials are discussed with the aim of inspiring the clinical translation of future DC-mediated cancer immunotherapies.
Collapse
Affiliation(s)
- Heng Dong
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Qiang Li
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Yu Zhang
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Meng Ding
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| | - Zhaogang Teng
- Key Laboratory for Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced MaterialsJiangsu National Synergetic Innovation Centre for Advanced MaterialsNanjing University of Posts and Telecommunications9 Wenyuan RoadNanjingJiangsu210023P. R. China
| | - Yongbin Mou
- Nanjing Stomatological HospitalAffiliated Hospital of Medical School, Nanjing University30 Zhongyang RoadNanjingJiangsu210008P. R. China
| |
Collapse
|
4
|
Hu Y, Zhang W, Chu X, Wang A, He Z, Si CL, Hu W. Dendritic cell-targeting polymer nanoparticle-based immunotherapy for cancer: A review. Int J Pharm 2023; 635:122703. [PMID: 36758880 DOI: 10.1016/j.ijpharm.2023.122703] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023]
Abstract
Cancer immunity is dependent on dynamic interactions between T cells and dendritic cells (DCs). Polymer-based nanoparticles target DC receptors to improve anticancer immune responses. In this paper, DC surface receptors and their specific coupling natural ligands and antibodies are reviewed and compared. Moreover, reaction mechanisms are described, and the synergistic effects of immune adjuvants are demonstrated. Also, extracellular-targeting antigen-delivery strategies and intracellular stimulus responses are reviewed to promote the rational design of polymer delivery systems.
Collapse
Affiliation(s)
- Yeye Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Zhang
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Xiaozhong Chu
- School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Aoran Wang
- School of Chemistry & Chemical Engineering, Huaiyin Normal University, Huaian 223300, China
| | - Ziliang He
- School of Life Sciences, Huaiyin Normal University, Huaian 223300, China
| | - Chuan-Ling Si
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Weicheng Hu
- Institute of Translational Medicine, School of Medicine, Yangzhou University, Yangzhou 225009, China; Affiliated Hospital of Yangzhou University, Yangzhou 225009, China; Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, School of Medicine, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
5
|
Xia T, Wang N, Tang Y, Gao Y, Gao C, Hao J, Jiang Y, Wang X, Shan Z, Li J, Zhou H, Cui W, Qiao X, Tang L, Wang L, Li Y. Delivery of antigen to porcine dendritic cells by fusing antigen with porcine dendritic cells targeting peptide. Front Immunol 2022; 13:926279. [PMID: 36159835 PMCID: PMC9499840 DOI: 10.3389/fimmu.2022.926279] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are professional antigen-presenting cells that can recognize, capture, and process antigens. Fusing molecules targeting DCs with antigens can effectively improve the efficiency with which antigens are recognized and captured by DCs. This targeting strategy can be used for vaccine development to effectively improve the efficiency of antigen recognition and capture by DCs. The targeting sequence of porcine cytotoxic T-lymphocyte associated protein 4 (CTLA4), which binds porcine DCs, was identified in this study. Recombinant Lactobacillus reuteri (L. reuteri) expressing CTLA4-6aa (LYPPPY) and CTLA4-87aa fused to the porcine epidemic diarrhea virus (PEDV) protective antigen core neutralizing epitope (COE) were used to evaluate the ability of the two targeting motifs to bind the B7 molecule on DCs. Our results demonstrate that CTLA4-6aa could bind porcine DCs, and recombinant Lactobacillus expressing the CTLA4-6aa captured by porcine DCs was more efficient than those expressing CTLA4-87aa. In addition, the expression of DC markers, toll-like receptors, and cytokines was significantly higher in the 6aa-COE/L. reuteri-stimulated porcine DCs compared to DCs treated with 87aa-COE/L. reuteri (p<0.01) and recombinant Lactobacillus expressing CTLA4-6aa enhanced the ability of porcine DCs to activate T-cell proliferation. Our analysis of the protein structure revealed that CTLA4-87aa contains intramolecular hydrogen bonds, which may have weakened the intermolecular force between the residues on porcine CTLA4 and that on B7. In conclusion, recombinant Lactobacillus expressing CTLA4-6aa were more efficiently captured by porcine DCs and had a stronger ability to promote DC maturation and enhance T-cell proliferation. The LYPPPY motif is the optimal sequence for binding to porcine DCs. Piglets immunized with recombinant Lactobacillus showed that recombinant Lactobacillus expressing CTLA4-6aa induced significant levels of anti-PEDV-specific IgG and IgA antibody responses. Our study may promote research on DC-targeting strategies to enhance the effectiveness of porcine vaccines.
Collapse
Affiliation(s)
- Tian Xia
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Ning Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yuqing Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yueyi Gao
- Division of Viral Biologic Testing(I), China Institute of Veterinary Drug Control, Beijing, China
| | - Chong Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jianhui Hao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xiaona Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Zhifu Shan
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Han Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Xinyuan Qiao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
| | - Li Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
- *Correspondence: Yijing Li, ; Li Wang,
| | - Yijing Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- China Ministry of Agriculture Key Laboratory of Animal Pathogen Biology, Northeastern Science Inspection Station, Harbin, China
- *Correspondence: Yijing Li, ; Li Wang,
| |
Collapse
|
6
|
Zanna MY, Yasmin AR, Omar AR, Arshad SS, Mariatulqabtiah AR, Nur-Fazila SH, Mahiza MIN. Review of Dendritic Cells, Their Role in Clinical Immunology, and Distribution in Various Animal Species. Int J Mol Sci 2021; 22:ijms22158044. [PMID: 34360810 PMCID: PMC8348663 DOI: 10.3390/ijms22158044] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022] Open
Abstract
Dendritic cells (DCs) are cells derived from the hematopoietic stem cells (HSCs) of the bone marrow and form a widely distributed cellular system throughout the body. They are the most efficient, potent, and professional antigen-presenting cells (APCs) of the immune system, inducing and dispersing a primary immune response by the activation of naïve T-cells, and playing an important role in the induction and maintenance of immune tolerance under homeostatic conditions. Thus, this review has elucidated the general aspects of DCs as well as the current dynamic perspectives and distribution of DCs in humans and in various species of animals that includes mouse, rat, birds, dog, cat, horse, cattle, sheep, pig, and non-human primates. Besides the role that DCs play in immune response, they also play a pathogenic role in many diseases, thus becoming a target in disease prevention and treatment. In addition, its roles in clinical immunology have also been addressed, which include its involvement in transplantation, autoimmune disease, viral infections, cancer, and as a vaccine target. Therefore, based on the current knowledge and understanding of the important roles they play, DCs can be used in the future as a powerful tool for manipulating the immune system.
Collapse
Affiliation(s)
- Mohammed Yusuf Zanna
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Abd Rahaman Yasmin
- Department of Veterinary Laboratory Diagnosis, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (A.R.O.); (A.R.M.)
- Correspondence: ; Tel.: +603-8609-3473 or +601-7353-7341
| | - Abdul Rahman Omar
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (A.R.O.); (A.R.M.)
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.S.A.); (S.H.N.-F.); (M.I.N.M.)
| | - Siti Suri Arshad
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.S.A.); (S.H.N.-F.); (M.I.N.M.)
| | - Abdul Razak Mariatulqabtiah
- Laboratory of Vaccines and Biomolecules, Institute of Bioscience, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (A.R.O.); (A.R.M.)
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Saulol Hamid Nur-Fazila
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.S.A.); (S.H.N.-F.); (M.I.N.M.)
| | - Md Isa Nur Mahiza
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (S.S.A.); (S.H.N.-F.); (M.I.N.M.)
| |
Collapse
|
7
|
Kowalzik F, Schreiner D, Jensen C, Teschner D, Gehring S, Zepp F. mRNA-Based Vaccines. Vaccines (Basel) 2021; 9:390. [PMID: 33921028 PMCID: PMC8103517 DOI: 10.3390/vaccines9040390] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 12/24/2022] Open
Abstract
Increases in the world's population and population density promote the spread of emerging pathogens. Vaccines are the most cost-effective means of preventing this spread. Traditional methods used to identify and produce new vaccines are not adequate, in most instances, to ensure global protection. New technologies are urgently needed to expedite large scale vaccine development. mRNA-based vaccines promise to meet this need. mRNA-based vaccines exhibit a number of potential advantages relative to conventional vaccines, namely they (1) involve neither infectious elements nor a risk of stable integration into the host cell genome; (2) generate humoral and cell-mediated immunity; (3) are well-tolerated by healthy individuals; and (4) are less expensive and produced more rapidly by processes that are readily standardized and scaled-up, improving responsiveness to large emerging outbreaks. Multiple mRNA vaccine platforms have demonstrated efficacy in preventing infectious diseases and treating several types of cancers in humans as well as animal models. This review describes the factors that contribute to maximizing the production of effective mRNA vaccine transcripts and delivery systems, and the clinical applications are discussed in detail.
Collapse
Affiliation(s)
- Frank Kowalzik
- Pediatric Department, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany; (D.S.); (C.J.); (S.G.); (F.Z.)
| | - Daniel Schreiner
- Pediatric Department, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany; (D.S.); (C.J.); (S.G.); (F.Z.)
| | - Christian Jensen
- Pediatric Department, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany; (D.S.); (C.J.); (S.G.); (F.Z.)
| | - Daniel Teschner
- Department of Hematology, Medical Oncology, and Pneumology, University Medical Center of the Johannes Gutenberg University, 55122 Mainz, Germany;
| | - Stephan Gehring
- Pediatric Department, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany; (D.S.); (C.J.); (S.G.); (F.Z.)
| | - Fred Zepp
- Pediatric Department, University Medical Center of the Johannes Gutenberg-University, 55128 Mainz, Germany; (D.S.); (C.J.); (S.G.); (F.Z.)
| |
Collapse
|
8
|
Lee KS, Lee J, Lee P, Kim CU, Kim DJ, Jeong YJ, Park YJ, Tesh VL, Lee MS. Exosomes released from Shiga toxin 2a-treated human macrophages modulate inflammatory responses and induce cell death in toxin receptor expressing human cells. Cell Microbiol 2020; 22:e13249. [PMID: 32772454 DOI: 10.1111/cmi.13249] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 07/02/2020] [Accepted: 07/24/2020] [Indexed: 12/13/2022]
Abstract
Shiga toxins (Stxs) produced by Stx-producing Escherichia coli are the primarily virulence factors of hemolytic uremic syndrome and central nervous system (CNS) impairment. Although the precise mechanisms of toxin dissemination remain unclear, Stxs bind to extracellular vesicles (EVs). Exosomes, a subset of EVs, may play a key role in Stx-mediated renal injury. To test this hypothesis, we isolated exosomes from monocyte-derived macrophages in the presence of Stx2a or Stx2 toxoids. Macrophage-like differentiated THP-1 cells treated with Stxs secreted Stx-associated exosomes (Stx-Exo) of 90-130 nm in diameter, which induced cytotoxicity in recipient cells in a toxin receptor globotriaosylceramide (Gb3 )-dependent manner. Stx2-Exo engulfed by Gb3 -positive cells were translocated to the endoplasmic reticulum in the human proximal tubule epithelial cell line HK-2. Stx2-Exo contained pro-inflammatory cytokine mRNAs and proteins and induced more severe inflammation than purified Stx2a accompanied by greater death of target cells such as human renal or retinal pigment epithelial cells. Blockade of exosome biogenesis using the pharmacological inhibitor GW4869 reduced Stx2-Exo-mediated human renal cell death. Stx2-Exo isolated from human primary monocyte-derived macrophages activated caspase 3/7 and resulted in significant cell death in primary human renal cortical epithelial cells. Based on these results, we speculate that Stx-containing exosomes derived from macrophages may exacerbate cytotoxicity and inflammation and trigger cell death in toxin-sensitive cells. Therapeutic interventions targeting Stx-containing exosomes may prevent or ameliorate Stx-mediated acute vascular dysfunction.
Collapse
Affiliation(s)
- Kyung-Soo Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Jieun Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Pureum Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Chang-Ung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Yu-Jin Jeong
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Young-Jun Park
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| | - Vernon L Tesh
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College of Medicine, Bryan, Texas, USA
| | - Moo-Seung Lee
- Environmental Diseases Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea.,Department of Biomolecular Science, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, South Korea
| |
Collapse
|
9
|
Zepeda-Cervantes J, Ramírez-Jarquín JO, Vaca L. Interaction Between Virus-Like Particles (VLPs) and Pattern Recognition Receptors (PRRs) From Dendritic Cells (DCs): Toward Better Engineering of VLPs. Front Immunol 2020; 11:1100. [PMID: 32582186 PMCID: PMC7297083 DOI: 10.3389/fimmu.2020.01100] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Virus-like particles (VLPs) have been shown to be strong activators of dendritic cells (DCs). DCs are the most potent antigen presenting cells (APCs) and their activation prompts the priming of immunity mediators based on B and T cells. The first step for the activation of DCs is the binding of VLPs to pattern recognition receptors (PRRs) on the surface of DCs, followed by VLP internalization. Like wild-type viruses, VLPs use specific PRRs from the DC; however, these recognition interactions between VLPs and PRRs from DCs have not been thoroughly reviewed. In this review, we focused on the interaction between proteins that form VLPs and PRRs from DCs. Several proteins that form VLP contain glycosylations that allow the direct interaction with PRRs sensing carbohydrates, prompting DC maturation and leading to the development of strong adaptive immune responses. We also discussed how the knowledge of the molecular interaction between VLPs and PRRs from DCs can lead to the smart design of VLPs, whether based on the fusion of foreign epitopes or their chemical conjugation, as well as other modifications that have been shown to induce a stronger adaptive immune response and protection against infectious pathogens of importance in human and veterinary medicine. Finally, we address the use of VLPs as tools against cancer and allergic diseases.
Collapse
Affiliation(s)
- Jesús Zepeda-Cervantes
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Josué Orlando Ramírez-Jarquín
- Departamento de Neuropatología Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Vaca
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
10
|
Oral Vaccine Delivery: The Coming Age of Particulate Vaccines to Elicit Mucosal Immunity. MUCOSAL DELIVERY OF DRUGS AND BIOLOGICS IN NANOPARTICLES 2020. [DOI: 10.1007/978-3-030-35910-2_7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Targeting innate sensing in the tumor microenvironment to improve immunotherapy. Cell Mol Immunol 2019; 17:13-26. [PMID: 31844141 DOI: 10.1038/s41423-019-0341-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/24/2019] [Indexed: 12/14/2022] Open
Abstract
The innate immune sensing pathways play critical roles in the defense against pathogen infection, but their roles in cancer immunosurveillance and cancer therapies are less defined. We propose that defective innate immune sensing inside the tumor microenvironment might limit T-cell responses to immunotherapy. A recent mechanistic understanding of conventional therapies revealed that both innate immune sensing and T-cell responses are essential for optimal antitumor efficacy. T-cell-based immunotherapy, particularly immune checkpoint blockade, has achieved great success in reactivating antitumor immune responses to lead to tumor regression, but only in a small fraction of patients. Therefore, incorporating conventional therapy that can increase innate sensing and immunotherapy should lead to promising strategies for cancer patients. Here, we review the innate sensing pathways related to cancer initiation/progression and therapies, summarize the recent key findings in innate immune sensing related to conventional therapies, evaluate current combination strategies, and highlight the potential issues of combinational therapies in terms of antitumor efficacy and toxicities.
Collapse
|
12
|
Dusoswa SA, Horrevorts SK, Ambrosini M, Kalay H, Paauw NJ, Nieuwland R, Pegtel MD, Würdinger T, Van Kooyk Y, Garcia-Vallejo JJ. Glycan modification of glioblastoma-derived extracellular vesicles enhances receptor-mediated targeting of dendritic cells. J Extracell Vesicles 2019; 8:1648995. [PMID: 31489145 PMCID: PMC6713149 DOI: 10.1080/20013078.2019.1648995] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 07/14/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma is the most prevalent and aggressive primary brain tumour for which total tumour lysate-pulsed dendritic cell vaccination is currently under clinical evaluation. Glioblastoma extracellular vesicles (EVs) may represent an enriched cell-free source of tumour-associated (neo-) antigens to pulse dendritic cells (DCs) for the initiation of an anti-tumour immune response. Capture and uptake of EVs by DCs could occur in a receptor-mediated and presumably glycan-dependent way, yet the glycan composition of glioblastoma EVs is unknown. Here, we set out to characterize the glycocalyx composition of glioblastoma EVs by lectin-binding ELISA and comprehensive immunogold transmission electron microscopy (immuno-TEM). The surface glycan profile of human glioblastoma cell line-derived EVs (50-200 nm) was dominated by α-2,3- and α-2,6 linked sialic acid-capped complex N-glycans and bi-antennary N-glycans. Since sialic acids can trigger immune inhibitory sialic acid-binding Ig-like lectin (Siglec) receptors, we screened for Siglec ligands on the EVs. Glioblastoma EVs showed significant binding to Siglec-9, which is highly expressed on DCs. Surprisingly, however, glioblastoma EVs lack glycans that could bind Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN, CD209), a receptor that mediates uptake and induction of CD4+ and CD8+ T cell activation. Therefore, we explored whether modification of the EV glycan surface could reduce immune inhibitory Siglec binding, while enhancing EV internalization by DCs in a DC-SIGN dependent manner. Desialylation with a pan-sialic acid hydrolase led to reduction of sialic acid expression on EVs. Moreover, insertion of a high-affinity ligand (LewisY) for DC-SIGN resulted in a four-fold increase of uptake by monocyte-derived DCs. In conclusion, we show that the glycocalyx composition of EVs is a key factor of efficient DC targeting and that modification of the EV glycocalyx potentiates EVs as anti-cancer vaccine.
Collapse
Affiliation(s)
- Sophie A. Dusoswa
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Sophie K. Horrevorts
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Martino Ambrosini
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nanne J. Paauw
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, and Vesicle Observation Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michiel D. Pegtel
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Tom Würdinger
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Yvette Van Kooyk
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juan J. Garcia-Vallejo
- Department of Molecular Cell Biology & Immunology, Amsterdam Infection & Immunity Institute and Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
13
|
O'Brien LJ, Guillerey C, Radford KJ. Can Dendritic Cell Vaccination Prevent Leukemia Relapse? Cancers (Basel) 2019; 11:cancers11060875. [PMID: 31234526 PMCID: PMC6627518 DOI: 10.3390/cancers11060875] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/14/2019] [Accepted: 06/20/2019] [Indexed: 01/02/2023] Open
Abstract
Leukemias are clonal proliferative disorders arising from immature leukocytes in the bone marrow. While the advent of targeted therapies has improved survival in certain subtypes, relapse after initial therapy is a major problem. Dendritic cell (DC) vaccination has the potential to induce tumor-specific T cells providing long-lasting, anti-tumor immunity. This approach has demonstrated safety but limited clinical success until recently, as DC vaccination faces several barriers in both solid and hematological malignancies. Importantly, vaccine-mediated stimulation of protective immune responses is hindered by the aberrant production of immunosuppressive factors by cancer cells which impede both DC and T cell function. Leukemias present the additional challenge of severely disrupted hematopoiesis owing to both cytogenic defects in hematopoietic progenitors and an abnormal hematopoietic stem cell niche in the bone marrow; these factors accentuate systemic immunosuppression and DC malfunction. Despite these obstacles, several recent clinical trials have caused great excitement by extending survival in Acute Myeloid Leukemia (AML) patients through DC vaccination. Here, we review the phenotype and functional capacity of DCs in leukemia and approaches to harness DCs in leukemia patients. We describe the recent clinical successes in AML and detail the multiple new strategies that might enhance prognosis in AML and other leukemias.
Collapse
Affiliation(s)
- Liam J O'Brien
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Camille Guillerey
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Kristen J Radford
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| |
Collapse
|
14
|
Roelofsen T, Wefers C, Gorris MAJ, Textor JC, Massuger LFAG, de Vries IJM, van Altena AM. Spontaneous Regression of Ovarian Carcinoma After Septic Peritonitis; A Unique Case Report. Front Oncol 2018; 8:562. [PMID: 30555799 PMCID: PMC6281979 DOI: 10.3389/fonc.2018.00562] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/12/2018] [Indexed: 11/23/2022] Open
Abstract
Despite advances in therapy, ovarian cancer remains the most lethal gynecological malignancy and prognosis has not substantially improved over the past 3 decades. Immunotherapy is a promising new treatment option. However, the immunosuppressive cancer microenvironment must be overcome for immunotherapy to be successful. Here, we present a unique case of spontaneous regression of ovarian carcinoma after septic peritonitis. A 79-year-old woman was diagnosed with stage IIIc ovarian cancer. The omental cake biopsy was complicated by sepsis. Although the patient recovered, her physical condition did not allow further treatment for her ovarian cancer. After 6 months, spontaneous regression of the tumor was observed during surgery. Analysis of the immune infiltrate in the tissues showed a shift from a pro-tumorigenic to an anti-tumorigenic immune response after sepsis. Strong activation of the immune system during sepsis overruled the immunosuppressive tumor microenvironment and allowed for a potent anti-tumor immune response. More understanding of immunological responses in cases with cancer and septic peritonitis might be crucial to identify potential new targets for immunotherapy.
Collapse
Affiliation(s)
- Thijs Roelofsen
- Department of Obstetrics and Gynecology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - Christina Wefers
- Department of Obstetrics and Gynecology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical CentreNijmegen, Netherlands
| | - Mark A. J. Gorris
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical CentreNijmegen, Netherlands
| | - Johannes C. Textor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical CentreNijmegen, Netherlands
| | - Leon F. A. G. Massuger
- Department of Obstetrics and Gynecology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| | - I. Jolanda M. de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen Medical CentreNijmegen, Netherlands
| | - Anne M. van Altena
- Department of Obstetrics and Gynecology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherlands
| |
Collapse
|
15
|
Lee C, Lee M, Rhee I. Distinct features of dendritic cell-based immunotherapy as cancer vaccines. Clin Exp Vaccine Res 2018; 7:16-23. [PMID: 29399576 PMCID: PMC5795041 DOI: 10.7774/cevr.2018.7.1.16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 12/22/2017] [Accepted: 12/28/2017] [Indexed: 01/07/2023] Open
Abstract
Dendritic cells (DCs) are the most professional antigen presenting cells that play important roles in connection between innate and adaptive immune responses. Numerous studies revealed that the functions of DCs are related with the capture and processing of antigen as well as the migration to lymphoid tissues for the presenting antigens to T cells. These unique features of DCs allow them to be considered as therapeutic vaccines that can induce immune responses and anti-tumor activity. Here, we discuss and understand the immunological basis of DCs and presume the possibilities of DC-based vaccines for the promising cancer therapy.
Collapse
Affiliation(s)
- Chaelin Lee
- Department of Bioscience & Biotechnology, Sejong University, Seoul, Korea
| | - Myungmi Lee
- Department of Bioscience & Biotechnology, Sejong University, Seoul, Korea
| | - Inmoo Rhee
- Department of Bioscience & Biotechnology, Sejong University, Seoul, Korea
| |
Collapse
|
16
|
Zamani P, Momtazi‐Borojeni AA, Nik ME, Oskuee RK, Sahebkar A. Nanoliposomes as the adjuvant delivery systems in cancer immunotherapy. J Cell Physiol 2018; 233:5189-5199. [DOI: 10.1002/jcp.26361] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 11/29/2017] [Indexed: 01/14/2023]
Affiliation(s)
- Parvin Zamani
- BuAli Research InstituteStudent Research CommitteeDepartment of Medical BiotechnologyNanotechnology Research CenterSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Amir Abbas Momtazi‐Borojeni
- BuAli Research InstituteStudent Research CommitteeDepartment of Medical BiotechnologyNanotechnology Research CenterSchool of MedicineMashhad University of Medical SciencesMashhadIran
| | - Maryam Ebrahimi Nik
- Student Research CommitteeFaculty of PharmacyDepartment of NanotechnologyMashhad University of Medical SciencesMashhadIran
| | - Reza Kazemi Oskuee
- Targeted Drug Delivery Research CenterMashhad University of Medical SciencesMashhadIran
| | - Amirhossein Sahebkar
- Biotechnology Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
17
|
Chen P, Liu X, Sun Y, Zhou P, Wang Y, Zhang Y. Dendritic cell targeted vaccines: Recent progresses and challenges. Hum Vaccin Immunother 2017; 12:612-22. [PMID: 26513200 DOI: 10.1080/21645515.2015.1105415] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Dendritic cells (DCs) are known to be a set of morphology, structure and function of heterogeneous professional antigen presenting cells (APCs), as well as the strongest functional antigen presenting cells, which can absorb, process and present antigens. As the key regulators of innate and adaptive immune responses, DCs are at the center of the immune system and capable of interacting with both B cells and T cells, thereby manipulating the humoral and cellular immune responses. DCs provide an essential link between the innate and adaptive immunity, and the strong immune activation function of DCs and their properties of natural adjuvants, make them a valuable target for antigen delivery. Targeting antigens to DC-specific endocytic receptors in combination with the relevant antibodies or ligands along with immunostimulatory adjuvants has been recently recognized as a promising strategy for designing an effective vaccine that elicits a strong and durable T cell response against intracellular pathogens and cancer. This opinion article provides a brief summary of the rationales, superiorities and challenges of existing DC-targeting approaches.
Collapse
Affiliation(s)
- Pengfei Chen
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Xinsheng Liu
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Yuefeng Sun
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Peng Zhou
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Yonglu Wang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| | - Yongguang Zhang
- a State Key Laboratory of Veterinary Etiological Biology, OIE/National Foot and Mouth Disease Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences , Lanzhou , China
| |
Collapse
|
18
|
Sharma R, Mody N, Kushwah V, Jain S, Vyas SP. C-Type lectin receptor(s)-targeted nanoliposomes: an intelligent approach for effective cancer immunotherapy. Nanomedicine (Lond) 2017; 12:1945-1959. [DOI: 10.2217/nnm-2017-0088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: The purpose of present approach is to target C-Type lectin (CTL) receptors for preferential uptake by the macrophages/dendritic cells and improving the cross-presentation of ovalbumin. Materials & methods: Conventional and engineered nanoliposomes (MPNLs) were fabricated and extensively characterized. The nanoliposome(s) was spherical in shape; and their ζ potential, size and ovalbumin loading efficiency were recorded to be 268 ± 4.15 nm, 23.4 ± 0.35 mV, 46.65 ± 1.84%, respectively. Results: The findings demonstrate that MPNLs significantly improved the antigen uptake and its cross-presentation to evoke Th CD8+ cell-mediated cellular immunity. Conclusion: In a nutshell, this engineered approach mannose surface modification for active targeting to dendritic cells/macrophages and pH-dependent quick endosomal antigen release is a promising system for efficient cancer immunotherapy.
Collapse
Affiliation(s)
- Rajeev Sharma
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr HS Gour Central University, Sagar (MP), 470003, India
| | - Nishi Mody
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr HS Gour Central University, Sagar (MP), 470003, India
| | - Varun Kushwah
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Mohali, Punjab, 160062, India
| | - Sanyog Jain
- Department of Pharmaceutics, Centre for Pharmaceutical Nanotechnology, National Institute of Pharmaceutical Education & Research (NIPER), Mohali, Punjab, 160062, India
| | - SP Vyas
- Drug Delivery Research Laboratory, Department of Pharmaceutical Sciences, Dr HS Gour Central University, Sagar (MP), 470003, India
| |
Collapse
|
19
|
Constantino J, Gomes C, Falcão A, Neves BM, Cruz MT. Dendritic cell-based immunotherapy: a basic review and recent advances. Immunol Res 2017; 65:798-810. [DOI: 10.1007/s12026-017-8931-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
20
|
Abstract
Immunotherapy using dendritic cell (DC)-based vaccination is an approved approach for harnessing the potential of a patient's own immune system to eliminate tumor cells in metastatic hormone-refractory cancer. Overall, although many DC vaccines have been tested in the clinic and proven to be immunogenic, and in some cases associated with clinical outcome, there remains no consensus on how to manufacture DC vaccines. In this review we will discuss what has been learned thus far about human DC biology from clinical studies, and how current approaches to apply DC vaccines in the clinic could be improved to enhance anti-tumor immunity.
Collapse
|
21
|
Exosome-based tumor antigens–adjuvant co-delivery utilizing genetically engineered tumor cell-derived exosomes with immunostimulatory CpG DNA. Biomaterials 2016; 111:55-65. [DOI: 10.1016/j.biomaterials.2016.09.031] [Citation(s) in RCA: 198] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 09/26/2016] [Indexed: 01/21/2023]
|
22
|
Abstract
The use of gene delivery systems for the expression of antigenic proteins is an established means for activating a patient’s own immune system against the cancer they carry. Since tumor cells are poor antigen-presenting cells, cross-presentation of tumor antigens by dendritic cells (DCs) is essential for the generation of tumor-specific cytotoxic T-lymphocyte responses. A number of polymer-based nanomedicines have been developed to deliver genes into DCs, primarily by incorporating tumor-specific, antigen-encoding plasmid DNA with polycationic molecules to facilitate DNA loading and intracellular trafficking. Direct in vivo targeting of plasmid DNA to DC surface receptors can induce high transfection efficiency and long-term gene expression, essential for antigen loading onto major histocompatibility complex molecules and stimulation of T-cell responses. This chapter summarizes the physicochemical properties and biological information on polymer-based non-viral vectors used for targeting DCs, and discusses the main challenges for successful in vivo gene transfer into DCs.
Collapse
Affiliation(s)
- Kenneth A. Howard
- Department of Molecular Biology and Gen, Interdisciplinary Nanoscience Center (i, Aarhus, Denmark
| | - Thomas Vorup-Jensen
- Department of Biomedicine, Biophysical I, Aarhus University, Aarhus, Denmark
| | - Dan Peer
- Britannia Bldg, 2nd Fl, Rm 226, Tel-Aviv Univ, Dept Cell Research, Tel-Aviv, Israel
| |
Collapse
|
23
|
Silva AL, Soema PC, Slütter B, Ossendorp F, Jiskoot W. PLGA particulate delivery systems for subunit vaccines: Linking particle properties to immunogenicity. Hum Vaccin Immunother 2016; 12:1056-69. [PMID: 26752261 PMCID: PMC4962933 DOI: 10.1080/21645515.2015.1117714] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Among the emerging subunit vaccines are recombinant protein- and synthetic peptide-based vaccine formulations. However, proteins and peptides have a low intrinsic immunogenicity. A common strategy to overcome this is to co-deliver (an) antigen(s) with (an) immune modulator(s) by co-encapsulating them in a particulate delivery system, such as poly(lactic-co-glycolic acid) (PLGA) particles. Particulate PLGA formulations offer many advantages for antigen delivery as they are biocompatible and biodegradable; can protect the antigens from degradation and clearance; allow for co-encapsulation of antigens and immune modulators; can be targeted to antigen presenting cells; and their particulate nature can increase uptake and cross-presentation by mimicking the size and shape of an invading pathogen. In this review we discuss the pros and cons of using PLGA particulate formulations for subunit vaccine delivery and provide an overview of formulation parameters that influence their adjuvanticity and the ensuing immune response.
Collapse
Affiliation(s)
- A L Silva
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| | - P C Soema
- b Intravacc (Institute for Translational Vaccinology) , Bilthoven , The Netherlands
| | - B Slütter
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands.,c Cluster BioTherapeutics, Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| | - F Ossendorp
- d Department of Immunohematology and Blood Transfusion , Leiden University Medical Center , Leiden , The Netherlands
| | - W Jiskoot
- a Division of Drug Delivery Technology , Leiden Academic Center for Drug Research, Leiden University , Leiden , The Netherlands
| |
Collapse
|
24
|
Dolgikh MS. [Role of innate immunity in tolerance induction]. BIOMEDIT︠S︡INSKAI︠A︡ KHIMII︠A︡ 2015; 61:560-78. [PMID: 26539864 DOI: 10.18097/pbmc20156105560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review considers the role of innate immunity in mechanisms of transplant tolerance and rejection, analyse the role of innate immunity cells (dendritic cells-DC, NK, must and other cells) in these processes, and the pathes of creation of tolerogenic DC for transplant rejection therapy and tolerance.
Collapse
Affiliation(s)
- M S Dolgikh
- Shumakov Institute of Transplantology and Artificial organs
| |
Collapse
|
25
|
Abstract
The therapeutic potential of dendritic cell (DC) cancer vaccines has gained momentum in recent years. However, clinical data indicate that antitumor immune responses generally fail to translate into measurable tumor regression. This has been ascribed to a variety of tolerance mechanisms, one of which is the expression of immunosuppressive factors by DCs and T cells. With respect to cancer immunotherapies, these factors antagonise the ability to induce robust and sustained immunity required for tumor cell eradication. Gene silencing of immunosuppressive factors in either DCs or adoptive transferred T cells enhanced anti-tumor immune responses and significantly inhibited tumor growth. Therefore, engineered next generation of DC vaccines or adoptive T-cell therapy should include immunomodulatory siRNAs to release the "brakes" imposed by the immune system. Moreover, the combination of gene silencing, antigen targeting to DCs and cytoplasmic cargo delivery will improve clinical benefits.
Collapse
Key Words
- AML, acute myeloid leukemia
- CMV, human cytomegalovirus
- CTLA4, T-lymphocyte-associated antigen 4
- DC, Dendritic cells
- Gal, galectin hTERT, human telomerase reverse transcriptase
- IDO, indoleamine 2,3-dioxygenase
- IL, interleukin
- INF, interferon
- NK, natural killer
- PD1, programmed cell death
- RNA interference
- RNAi, RNA interference
- SOCS1, suppressor of cytokine signaling
- STAT, Signal transducer and activator of transcription
- T-cell therapy
- TCR, T cell receptor
- TLR, toll like receptor
- Treg, Regulatory T
- cancer vaccine
- gene silencing
- immunotherapy
- siRNA, small interfering RNA
- targeted therapies
Collapse
Affiliation(s)
- Mouldy Sioud
- a Department of Immunology; Institute for Cancer Research ; Oslo University Hospital ; Montebello , Norway
| |
Collapse
|
26
|
Wang XD, Gao NN, Diao YW, Liu Y, Gao D, Li W, Wan YY, Zhong JJ, Jin GY. Conjugation of toll-like receptor-7 agonist to gastric cancer antigen MG7-Ag exerts antitumor effects. World J Gastroenterol 2015; 21:8052-8060. [PMID: 26185376 PMCID: PMC4499347 DOI: 10.3748/wjg.v21.i26.8052] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2014] [Revised: 04/01/2015] [Accepted: 05/21/2015] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of our tumor vaccines on reversing immune tolerance and generating therapeutic response.
METHODS: Vaccines were synthesized by solid phase using an Fmoc strategy, where a small molecule toll-like receptor-7 agonist (T7) was conjugated to a monoclonal gastric cancer 7 antigen mono-epitope (T7-MG1) or tri-epitope (T7-MG3). Cytokines were measured in both mouse bone marrow dendritic cells and mouse spleen lymphocytes after exposed to the vaccines. BALB/c mice were intraperitoneally immunized with the vaccines every 2 wk for a total of three times, and then subcutaneously challenged with Ehrlich ascites carcinoma (EAC) cells. Three weeks later, the mice were killed, and the tumors were surgically removed and weighed. Serum samples were collected from the mice, and antibody titers were determined by ELISA using an alkaline phosphate-conjugated detection antibody for total IgG. Antibody-dependent cell-mediated cytotoxicity was detected by the lactate dehydrogenase method using natural killer cells as effectors and antibody-labeled EAC cells as targets. Cytotoxic T lymphocyte activities were also detected by the lactate dehydrogenase method using lymphocytes as effectors and EAC cells as targets.
RESULTS: Vaccines were successfully synthesized and validated by analytical high performance liquid chromatography and electrospray mass spectrometry, including T7, T7-MG1, and T7-MG3. Rapid inductions of tumor necrosis factor-α and interleukin-12 in bone marrow dendritic cells and interferon γ and interleukin-12 in lymphocytes occurred in vitro after T7, T7-MG1, and T7-MG3 treatment. Immunization with T7-MG3 reduced the EAC tumor burden in BALB/c mice to 62.64% ± 5.55% compared with PBS control (P < 0.01). Six or nine weeks after the first immunization, the monoclonal gastric cancer 7 antigen antibody increased significantly in the T7-MG3 group compared with the PBS control (P < 0.01). As for antibody-dependent cell-mediated cytotoxicity, antisera obtained by immunization with T7-MG3 were able to markedly enhance cell lysis compared to PBS control (31.58% ± 2.94% vs 18.02% ± 2.26%; P < 0.01). As for cytotoxic T lymphocytes, T7-MG3 exhibited obviously greater cytotoxicity compared with PBS control (40.92% ± 4.38% vs 16.29% ± 1.90%; P < 0.01).
CONCLUSION: A successful method is confirmed for the design of gastric cancer vaccines by chemical conjugation of T7 and multi-repeat-epitope of monoclonal gastric cancer 7 antigen.
Collapse
MESH Headings
- Animals
- Antibody-Dependent Cell Cytotoxicity
- Antigens, Neoplasm/immunology
- Cancer Vaccines/administration & dosage
- Cancer Vaccines/chemical synthesis
- Cancer Vaccines/immunology
- Cancer Vaccines/pharmacology
- Carcinoma, Ehrlich Tumor/drug therapy
- Carcinoma, Ehrlich Tumor/immunology
- Carcinoma, Ehrlich Tumor/pathology
- Cells, Cultured
- Cytokines/metabolism
- Epitopes
- Female
- Immunization Schedule
- Immunoconjugates/administration & dosage
- Immunoconjugates/pharmacology
- Injections, Intraperitoneal
- Lymphocytes, Tumor-Infiltrating/drug effects
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Membrane Glycoproteins/agonists
- Membrane Glycoproteins/immunology
- Membrane Glycoproteins/metabolism
- Mice, Inbred BALB C
- Signal Transduction/drug effects
- Superantigens
- T-Lymphocytes, Cytotoxic/drug effects
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Time Factors
- Toll-Like Receptor 7/agonists
- Toll-Like Receptor 7/immunology
- Toll-Like Receptor 7/metabolism
- Tumor Burden
- Tumor Escape/drug effects
Collapse
|
27
|
Boks MA, Ambrosini M, Bruijns SC, Kalay H, van Bloois L, Storm G, Garcia-Vallejo JJ, van Kooyk Y. MPLA incorporation into DC-targeting glycoliposomes favours anti-tumour T cell responses. J Control Release 2015; 216:37-46. [PMID: 26151293 DOI: 10.1016/j.jconrel.2015.06.033] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 02/04/2023]
Abstract
Dendritic cells (DC) are attractive targets for cancer immunotherapy as they initiate strong and long-lived tumour-specific T cell responses. DC can be effectively targeted in vivo with tumour antigens by using nanocarriers such as liposomes. Cross-presentation of tumour antigens is enhanced with strong adjuvants such as TLR ligands. However, often these adjuvants have off-target effects, and would benefit from a DC-specific targeting strategy, similar to the tumour antigen. The goal of this study was to develop a strategy for specifically targeting DC with tumour antigen and adjuvant by using glycoliposomes. We have generated liposomes containing the glycan Lewis(Le)(X) which is highly specific for the C-type lectin receptor DC-SIGN expressed by DC. Le(X)-modified liposomes were taken up by human monocyte-derived DC in a DC-SIGN-specific manner. As adjuvants we incorporated the TLR ligands Pam3CySK4, Poly I:C, MPLA and R848 into liposomes and compared their adjuvant capacity on DC. Incorporation of the TLR4 ligand MPLA into glycoliposomes induced DC maturation and production of pro-inflammatory cytokines, in a DC-SIGN-specific manner, and DC activation was comparable to administration of soluble MPLA. Incorporation of MPLA into glycoliposomes significantly enhanced antigen cross-presentation of the melanoma tumour antigen gp100280-288 peptide to CD8(+) T cells compared to non-glycosylated MPLA liposomes. Importantly, antigen cross-presentation of the gp100280-288 peptide was significantly higher using MPLA glycoliposomes compared to the co-administration of soluble MPLA with glycoliposomes. Taken together, our data demonstrates that specific targeting of a gp100 tumour antigen and the adjuvant MPLA to DC-SIGN-expressing DC enhances the uptake of peptide-containing liposomes, the activation of DC, and induces tumour antigen-specific CD8(+) T cell responses. These data demonstrate that adjuvant-containing glycoliposome-based vaccines targeting DC-SIGN(+) DC represent a powerful new approach for CD8(+) T cell activation.
Collapse
Affiliation(s)
- Martine A Boks
- Department of Molecular Cell Biology and Immunology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Martino Ambrosini
- Department of Molecular Cell Biology and Immunology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Sven C Bruijns
- Department of Molecular Cell Biology and Immunology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Louis van Bloois
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, The Netherlands
| | - Gert Storm
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, The Netherlands; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, The Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, VU University Medical Center (VUmc), Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, VU University Medical Center (VUmc), Amsterdam, The Netherlands.
| |
Collapse
|
28
|
Badillo-Godinez O, Gutierrez-Xicotencatl L, Plett-Torres T, Pedroza-Saavedra A, Gonzalez-Jaimes A, Chihu-Amparan L, Maldonado-Gama M, Espino-Solis G, Bonifaz LC, Esquivel-Guadarrama F. Targeting of rotavirus VP6 to DEC-205 induces protection against the infection in mice. Vaccine 2015; 33:4228-37. [PMID: 25850020 DOI: 10.1016/j.vaccine.2015.03.080] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 03/17/2015] [Accepted: 03/24/2015] [Indexed: 01/15/2023]
Abstract
Rotavirus (RV) is the primary etiologic agent of severe gastroenteritis in human infants. Although two attenuated RV-based vaccines have been licensed to be applied worldwide, they are not so effective in low-income countries, and the induced protection mechanisms have not been clearly established. Thus, it is important to develop new generation vaccines that induce long lasting heterotypic immunity. VP6 constitutes the middle layer protein of the RV virion. It is the most conserved protein and it is the target of protective T-cells; therefore, it is a potential candidate antigen for a new generation vaccine against the RV infection. We determined whether targeting the DEC-205 present in dendritic cells (DCs) with RV VP6 could induce protection at the intestinal level. VP6 was cross-linked to a monoclonal antibody (mAb) against murine DEC-205 (αDEC-205:VP6), and BALB/c mice were inoculated subcutaneously (s.c.) twice with the conjugated containing 1.5 μg of VP6 in the presence of polyinosinic-polycytidylic acid (Poly I:C) as adjuvant. As controls and following the same protocol, mice were immunized with ovalbumin (OVA) cross-linked to the mAb anti-DEC-205 (αDEC-205:OVA), VP6 cross-linked to a control isotype mAb (Isotype:VP6), 3 μg of VP6 alone, Poly I:C or PBS. Two weeks after the last inoculation, mice were orally challenged with a murine RV. Mice immunized with α-DEC-205:VP6 and VP6 alone presented similar levels of serum Abs to VP6 previous to the virus challenge. However, after the virus challenge, only α-DEC-205:VP6 induced up to a 45% IgA-independent protection. Memory T-helper (Th) cells from the spleen and the mesenteric lymph node (MLN) showed a Th1-type response upon antigen stimulation in vitro. These results show that when VP6 is administered parenterally targeting DEC-205, it can induce protection at the intestinal level at a very low dose, and this protection may be Th1-type cell dependent.
Collapse
Affiliation(s)
- O Badillo-Godinez
- Laboratorio de Inmunidad Viral, Facultad de Medicina, UAEM, Cuernavaca, MOR, Mexico; Facultad de Ciencias, UAEM, Cuernavaca, MOR, Mexico
| | | | - T Plett-Torres
- CISEI-Instituto Nacional de Salud Publica, Cuernavaca, MOR, Mexico
| | | | | | - L Chihu-Amparan
- CISEI-Instituto Nacional de Salud Publica, Cuernavaca, MOR, Mexico
| | - M Maldonado-Gama
- CISEI-Instituto Nacional de Salud Publica, Cuernavaca, MOR, Mexico
| | - G Espino-Solis
- Instituto de Biotecnologia, UNAM, Cuernavaca, MOR, Mexico
| | - L C Bonifaz
- Unidad de Inmunohistoquimica, CMN, Hospital Siglo XXI, IMSS, Mexico, D.F., Mexico
| | - F Esquivel-Guadarrama
- Laboratorio de Inmunidad Viral, Facultad de Medicina, UAEM, Cuernavaca, MOR, Mexico.
| |
Collapse
|
29
|
Johansen PT, Zucker D, Parhamifar L, Pourhassan H, Madsen DV, Henriksen JR, Gad M, Barberis A, Maj R, Andresen TL, Jensen SS. Monocyte targeting and activation by cationic liposomes formulated with a TLR7 agonist. Expert Opin Drug Deliv 2015; 12:1045-58. [PMID: 25682882 DOI: 10.1517/17425247.2015.1009444] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Monocytes are one of the major phagocytic cells that patrol for invading pathogens, and upon activation, differentiate into macrophages or antigen-presenting dendritic cells (DCs) capable of migrating to lymph nodes eliciting an adaptive immune response. The key role in regulating adaptive immune responses has drawn attention to modulate monocyte responses therapeutically within cancer, inflammation and infectious diseases. We present a technology for targeting of monocytes and delivery of a toll-like receptor (TLR) agonist in fresh blood using liposomes with a positively charged surface chemistry. METHODS Liposomes were extruded at 100 nm, incubated with fresh blood, followed by leukocyte analyses by FACS. Liposomes with and without the TLR7 agonist TMX-202 were incubated with fresh blood, and monocyte activation measured by cytokine secretion by ELISA and CD14 and DC-SIGN expression. RESULTS The liposomes target monocytes specifically over lymphocytes and granulocytes in human whole blood, and show association with 75 - 95% of the monocytes after 1 h incubation. Formulations of TMX-202 in cationic liposomes were potent in targeting and activation of monocytes, with strong induction of IL-6 and IL-12p40, and differentiation into CD14(+) and DC-SIGN+ DCs. CONCLUSION Our present liposomes selectively target monocytes in fresh blood, enabling delivery of TLR7 agonists to the intracellular TLR7 receptor, with subsequent monocyte activation and boost in secretion of proinflammatory cytokines. We envision this technology as a promising tool in future cancer immunotherapy.
Collapse
Affiliation(s)
- Pia T Johansen
- Bioneer A/S , Kogle álle 2, Hørsholm, DK-2970 , Denmark +45 51 186 306 ;
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Trentini MM, de Oliveira FM, Gaeti MPN, Batista AC, Lima EM, Kipnis A, Junqueira-Kipnis AP. Microstructured liposome subunit vaccines reduce lung inflammation and bacterial load after Mycobacterium tuberculosis infection. Vaccine 2014; 32:4324-32. [PMID: 24951861 DOI: 10.1016/j.vaccine.2014.06.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 05/04/2014] [Accepted: 06/06/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND Tuberculosis is a disease affecting millions of people throughout the world. One of the main problems in controlling the disease is the low efficacy of the Bacillus Calmette-Guérin (BCG) vaccine in protecting young adults. The development of new vaccines that induce a long-lasting immune response or that stimulate the immunity induced by BCG may improve the control of tuberculosis. METHODS The use of microstructured liposomes containing HspX, with or without MPL or CpG DNA adjuvants, as vaccines for tuberculosis was evaluated. The HspX-specific humoral and cellular immune responses to the different vaccine formulations were compared. RESULTS All vaccines containing liposome microparticles and HspX were immunogenic. Vaccines formulated with CpG DNA and HspX induced the strongest humoral and cellular immune responses, mainly by inducing interferon-γ and tumor necrosis factor-α expression by both CD4(+) and CD8(+) T cells. HspX and MPL mainly induced CD8(+) T-cell activation and specific humoral responses. When evaluated the protective efficacy of the formulations against Mycobacterium tuberculosis challenge, the microstructured liposome containing L-HspX and L-HspX-CPG DNA reduced both lung inflammatory lesions and the bacterial load. CONCLUSION We have thus demonstrated, for the first time, the use of microstructured liposomes as an adjuvant and delivery system for a vaccine formulation against tuberculosis.
Collapse
Affiliation(s)
- Monalisa Martins Trentini
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Brazil
| | - Fábio Muniz de Oliveira
- Laboratório de Bacteriologia Molecular, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Brazil
| | | | - Aline Carvalho Batista
- Laboratório de Patologia, Faculdade de Odontologia, Universidade Federal de Goiás, Brazil
| | - Eliana Martins Lima
- Laboratório de Nanotecnologia Farmacêutica - FarmaTec, Faculdade de Farmácia, Universidade Federal de Goiás, Brazil
| | - André Kipnis
- Laboratório de Bacteriologia Molecular, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Brazil
| | - Ana Paula Junqueira-Kipnis
- Laboratório de Imunopatologia das Doenças Infecciosas, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Brazil.
| |
Collapse
|
31
|
Arakawa T, Harakuni T, Miyata T, Tafuku S, Tadano M. Tricomponent fusion complex comprising a viral antigen, a pentameric α-helical coiled-coil, and an immunoglobulin-binding domain as an effective antiviral vaccine. Vaccine 2014; 32:864-71. [DOI: 10.1016/j.vaccine.2013.12.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 12/05/2013] [Accepted: 12/10/2013] [Indexed: 11/29/2022]
|
32
|
Igietseme JU, Eko FO, He Q, Black CM. Combination vaccines: design strategies and future trends. Expert Rev Vaccines 2014; 5:739-45. [PMID: 17184210 DOI: 10.1586/14760584.5.6.739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
33
|
McCormick AA, Palmer KE. Genetically engineered Tobacco mosaic virus as nanoparticle vaccines. Expert Rev Vaccines 2014; 7:33-41. [DOI: 10.1586/14760584.7.1.33] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Igartua M, Pedraz JL. Topical resiquimod: a promising adjuvant for vaccine development? Expert Rev Vaccines 2014; 9:23-7. [DOI: 10.1586/erv.09.135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
35
|
Chappell CP, Giltiay NV, Dresch C, Clark EA. Controlling immune responses by targeting antigens to dendritic cell subsets and B cells. Int Immunol 2013; 26:3-11. [PMID: 24285828 DOI: 10.1093/intimm/dxt059] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Delivering antigens in vivo by coupling them to mAbs specific for unique receptors on antigen-presenting cells (APCs) is a promising approach for modulating immune responses. Antigen delivery to receptors found on myeloid dendritic cell (DC) subsets, plasmacytoid DCs and B cells has shown them all to be viable targets to stimulate either the cellular or humoral arms of the immune system. It is now evident that antigen-targeting approaches can also be used to invoke antigen-specific inhibition of immune responses. The outcome of activation versus inhibition is determined by a combination of factors that include the choice of APC, the receptor that is targeted, whether to include an adjuvant and, if so, which adjuvant to employ. In addition to their use as a means to modulate immune responses, antigen-targeting systems are also a useful method to investigate the function of DC subsets and the early mechanistic events that underlie the initiation of both cellular and humoral immune responses. In this review, we focus on the literature surrounding the control of B-cell responses when antigen is delivered to various APC subsets.
Collapse
|
36
|
Tel J, Sittig SP, Blom RAM, Cruz LJ, Schreibelt G, Figdor CG, de Vries IJM. Targeting Uptake Receptors on Human Plasmacytoid Dendritic Cells Triggers Antigen Cross-Presentation and Robust Type I IFN Secretion. THE JOURNAL OF IMMUNOLOGY 2013; 191:5005-12. [DOI: 10.4049/jimmunol.1300787] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Oligomannose-coated liposome as a novel adjuvant for the induction of cellular immune responses to control disease status. BIOMED RESEARCH INTERNATIONAL 2013; 2013:562924. [PMID: 24224170 PMCID: PMC3810488 DOI: 10.1155/2013/562924] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Accepted: 09/03/2013] [Indexed: 01/28/2023]
Abstract
Professional phagocytic cells, such as dendritic cells, are mainly responsible for phagocytosis, antigen presentation, and cytokine secretion, which induce subsequent activation of T cell-mediated immunity. Thus, strategies that deliver antigens and stimulatory signals to the cells have significant implications for vaccine design. In this paper, we summarize the potential for liposomes coated with the neoglycolipids containing oligomannose residues (OMLs) as a novel adjuvant for induction of Th1 immune responses and CTLs specific for the encased antigen. OMLs preferentially take up peripheral phagocytic cells. In response to OML uptake, the cells secrete IL-12 selectively, enhance the expression of costimulatory molecules, and migrate into lymphoid tissues from peripheral tissues. OMLs also have the ability to deliver encapsulated protein antigens to the MHC class I and class II pathways to generate antigen-specific CTLs and Th1 cells, respectively, and lipid antigen to CD1d to activate NKT cells. Since administration of OML-based vaccines can eliminate an established tumor, inhibit elevation of the serum IgE level, and prevent progression of protozoan infections in several murine, human, and bovine models, OML-based vaccines have revealed their potential for clinical use in vaccination for a variety of diseases in which CTLs and/or Th1 cells act as effector cells.
Collapse
|
38
|
Affiliation(s)
- Rachel Lubong Sabado
- NYU Langone Medical Center Cancer Institute; New York University School of Medicine, New York; New York
| | - Nina Bhardwaj
- NYU Langone Medical Center Cancer Institute; New York University School of Medicine, New York; New York
| |
Collapse
|
39
|
Cruz LJ, Rueda F, Tacken P, Albericio F, Torensma R, Figdor CG. Enhancing immunogenicity and cross-reactivity of HIV-1 antigens by in vivo targeting to dendritic cells. Nanomedicine (Lond) 2013; 7:1591-610. [PMID: 23148541 DOI: 10.2217/nnm.12.131] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Current retroviral treatments have reduced AIDS to a chronic disease for most patients. However, given drug-related side effects, the emergence of drug-resistant strains and the persistence of viral replication, the development of alternative treatments is a pressing need. This review focuses on recent developments in HIV immunotherapy treatments, with particular emphasis on current vaccination strategies for optimizing the induction of an effective immune response by the recruitment of dendritic cells. In addition to cell-based therapies, targeted strategies aiming to deliver synthetic HIV peptides to dendritic cell-specific receptors in vivo will be discussed.
Collapse
Affiliation(s)
- Luis J Cruz
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
40
|
Mishra DK, Dhote V, Mishra PK. Transdermal immunization: biological framework and translational perspectives. Expert Opin Drug Deliv 2013; 10:183-200. [PMID: 23256860 DOI: 10.1517/17425247.2013.746660] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
INTRODUCTION The renaissance in drug delivery research during the past decade led to several new approaches toward vaccine development. Transdermal immunization (TI) is a promising modality with both practical and immunological merits. Compared with conventional routes of administration, this needle-free delivery approach with ability to target the rich immunologically milieu of the skin provides a dual-edged benefit. It not only elicits an effective immune response in both systemic and mucosal compartments but has the potential to make vaccine delivery more equitable, safer and efficient. AREAS COVERED Over the years, numerous studies have explored physical, chemical and nanocarrier-based strategies to develop vaccines using this attractive route of delivery. The review provides insight into the various facets including research at interface that might drive novel basic scientific ideas to translational outcomes. EXPERT OPINION As we continue to develop TI as a vaccine delivery method, it is important to consider the practical application of this method and device strategies that best fit the public health needs. In the authors' view, nanoengineering-based approaches holds a great promise to overcome the associated challenges in TI and might help to translate early laboratory successes into the development of effective clinical prophylactics.
Collapse
Affiliation(s)
- Dinesh Kumar Mishra
- Guru Ghasidas Central University, SLT Institute of Pharmaceutical Sciences, Department of Pharmaceutics, Bilaspur (CG) 495009, India.
| | | | | |
Collapse
|
41
|
Cornelissen R, Lievense LA, Heuvers ME, Maat AP, Hendriks RW, Hoogsteden HC, Hegmans JP, Aerts JG. Dendritic cell-based immunotherapy in mesothelioma. Immunotherapy 2012; 4:1011-22. [DOI: 10.2217/imt.12.108] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mesothelioma is a rare thoracic malignancy with a dismal prognosis. Current treatment options are scarce and clinical outcomes are rather disappointing. Due to the immunogenic nature of mesothelioma, several studies have investigated immunotherapeutic strategies to improve the prognosis of patients with mesothelioma. In the last decade, progress in knowledge of the modulation of the immune system to attack the tumor has been remarkable, but the optimal strategy for immunotherapy has yet to be unraveled. Because of their potent antigen-presenting capacity, dendritic cells are acknowledged as a promising agent in immunotherapeutic approaches in a number of malignancies. This review gives an update and provides a future perspective in which immunotherapy may improve the outcome of mesothelioma therapy.
Collapse
Affiliation(s)
- Robin Cornelissen
- Department of Pulmonary Medicine, Erasmus MC, SV-125, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Lysanne A Lievense
- Department of Pulmonary Medicine, Erasmus MC, SV-125, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Marlies E Heuvers
- Department of Pulmonary Medicine, Erasmus MC, SV-125, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Alexander P Maat
- Department of Thoracic Surgery, Erasmus Medical Center – Daniel den Hoed Cancer Center, University Medical Center, Rotterdam, The Netherlands
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, SV-125, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Henk C Hoogsteden
- Department of Pulmonary Medicine, Erasmus MC, SV-125, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Joost P Hegmans
- Department of Pulmonary Medicine, Erasmus MC, SV-125, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
| | - Joachim G Aerts
- Department of Pulmonary Medicine, Erasmus MC, SV-125, PO-Box 2040, 3000 CA Rotterdam, The Netherlands
| |
Collapse
|
42
|
Pathogen recognition and activation of the innate immune response in zebrafish. Adv Hematol 2012; 2012:159807. [PMID: 22811714 PMCID: PMC3395205 DOI: 10.1155/2012/159807] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Accepted: 04/22/2012] [Indexed: 12/28/2022] Open
Abstract
The zebrafish has proven itself as an excellent model to study vertebrate innate immunity. It presents us with possibilities for in vivo imaging of host-pathogen interactions which are unparalleled in mammalian model systems. In addition, its suitability for genetic approaches is providing new insights on the mechanisms underlying the innate immune response. Here, we review the pattern recognition receptors that identify invading microbes, as well as the innate immune effector mechanisms that they activate in zebrafish embryos. We compare the current knowledge about these processes in mammalian models and zebrafish and discuss recent studies using zebrafish infection models that have advanced our general understanding of the innate immune system. Furthermore, we use transcriptome analysis of zebrafish infected with E. tarda, S. typhimurium, and M. marinum to visualize the gene expression profiles resulting from these infections. Our data illustrate that the two acute disease-causing pathogens, E. tarda and S. typhimurium, elicit a highly similar proinflammatory gene induction profile, while the chronic disease-causing pathogen, M. marinum, induces a weaker and delayed innate immune response.
Collapse
|
43
|
Joshi MD, Unger WJ, Storm G, van Kooyk Y, Mastrobattista E. Targeting tumor antigens to dendritic cells using particulate carriers. J Control Release 2012; 161:25-37. [DOI: 10.1016/j.jconrel.2012.05.010] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 11/27/2022]
|
44
|
Antigen targeting to major histocompatibility complex class II with streptococcal mitogenic exotoxin Z-2 M1, a superantigen-based vaccine carrier. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:574-86. [PMID: 22301693 DOI: 10.1128/cvi.05446-11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Streptococcal mitogenic exotoxin Z-2 (SMEZ-2) is a streptococcal superantigen that primarily stimulates human T cells bearing Vβ8 and mouse T cells bearing Vβ11. Mutagenesis of T cell receptor (TCR)-binding residues (W75L, K182Q, D42C) produced a mutant called M1 that was >10(5)-fold less active toward human peripheral blood lymphocytes and splenocytes from transgenic mice that express human CD4 and either human HLA-DR3-DQ2 or HLA-DR4-DQ8. Similarly, cytokine production in response to M1 in lymphocyte culture was rendered undetectable, and no change in the frequency of Vβ11-bearing T cells in mice receiving M1 was observed. M1 toxoid was tested as a potential vaccine conjugate. Vaccination with 1 to 10 μg M1 conjugated to ovalbumin (M1-ovalbumin) resulted in more rapid and quantitatively higher levels of anti-ovalbumin IgG, with endpoint titers being 1,000- to 10,000-fold greater than those in animals immunized with unconjugated ovalbumin. Substantially higher levels of anti-ovalbumin IgG were observed in mice transgenic for human major histocompatibility complex (MHC) class II. Substitution of M1 with an MHC class II binding mutant (DM) eliminated enhanced immunity, suggesting that M1 enhanced the delivery of antigen via MHC class II-positive antigen-presenting cells that predominate within lymphoid tissue. Immunization of animals with a conjugate consisting of M1 and ovalbumin peptide from positions 323 to 339 generated levels of anti-peptide IgG 100-fold higher than those in animals immunized with peptide alone. Coupling of a TCR-defective superantigen toxoid presents a new strategy for conjugate vaccines with the additional benefit of targeted delivery to MHC class II-bearing cells.
Collapse
|
45
|
Cruz LJ, Tacken PJ, Rueda F, Domingo JC, Albericio F, Figdor CG. Targeting nanoparticles to dendritic cells for immunotherapy. Methods Enzymol 2012; 509:143-63. [PMID: 22568905 DOI: 10.1016/b978-0-12-391858-1.00008-3] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dendritic cells (DCs) are key players in the initiation of adaptive immune responses and are currently exploited in immunotherapy for treatment of cancer and infectious diseases. Development of targeted nanodelivery systems carrying vaccine components, including antigens and adjuvants, to DCs in vivo represents a promising strategy to enhance immune responses. Delivering particulate vaccines specifically to DCs and preventing nonspecific uptake by other endocytotic cells are challenging. Size represents a critical parameter determining whether particulate vaccines can penetrate lymph nodes and reach resident DCs. Specific delivery is further enhanced by actively targeting DC-specific receptors. This chapter discusses the rationale for the use of particle-based vaccines and provides an overview of antigen-delivery vehicles currently under investigation. In addition, we discuss how vaccine delivery systems may be developed, focusing on liposomes, PLGA polymers, and gold nanoparticles, to obtain safe and efficacious vaccines.
Collapse
Affiliation(s)
- Luis J Cruz
- Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
46
|
Immune recognition of tumor-associated mucin MUC1 is achieved by a fully synthetic aberrantly glycosylated MUC1 tripartite vaccine. Proc Natl Acad Sci U S A 2011; 109:261-6. [PMID: 22171012 DOI: 10.1073/pnas.1115166109] [Citation(s) in RCA: 444] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mucin MUC1 is typically aberrantly glycosylated by epithelial cancer cells manifested by truncated O-linked saccharides. The resultant glycopeptide epitopes can bind cell surface major histocompatibility complex (MHC) molecules and are susceptible to recognition by cytotoxic T lymphocytes (CTLs), whereas aberrantly glycosylated MUC1 protein on the tumor cell surface can be bound by antibodies to mediate antibody-dependent cell-mediated cytotoxicity (ADCC). Efforts to elicit CTLs and IgG antibodies against cancer-expressed MUC1 have not been successful when nonglycosylated MUC1 sequences were used for vaccination, probably due to conformational dissimilarities. Immunizations with densely glycosylated MUC1 peptides have also been ineffective due to impaired susceptibility to antigen processing. Given the challenges to immuno-target tumor-associated MUC1, we have identified the minimum requirements to consistently induce CTLs and ADCC-mediating antibodies specific for the tumor form of MUC1 resulting in a therapeutic response in a mouse model of mammary cancer. The vaccine is composed of the immunoadjuvant Pam(3)CysSK(4), a peptide T(helper) epitope and an aberrantly glycosylated MUC1 peptide. Covalent linkage of the three components was essential for maximum efficacy. The vaccine produced CTLs, which recognized both glycosylated and nonglycosylated peptides, whereas a similar nonglycosylated vaccine gave CTLs which recognized only nonglycosylated peptide. Antibodies elicited by the glycosylated tripartite vaccine were significantly more lytic compared with the unglycosylated control. As a result, immunization with the glycosylated tripartite vaccine was superior in tumor prevention. Besides its own aptness as a clinical target, these studies of MUC1 are likely predictive of a covalent linking strategy applicable to many additional tumor-associated antigens.
Collapse
|
47
|
Mackenzie-Dyck S, Attah-Poku S, Juillard V, Babiuk LA, van Drunen Littel-van den Hurk S. The synthetic peptides bovine enteric β-defensin (EBD), bovine neutrophil β-defensin (BNBD) 9 and BNBD 3 are chemotactic for immature bovine dendritic cells. Vet Immunol Immunopathol 2011; 143:87-107. [PMID: 21764462 DOI: 10.1016/j.vetimm.2011.06.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 05/11/2011] [Accepted: 06/17/2011] [Indexed: 11/17/2022]
Abstract
Human and murine immature DCs (iDCs) are highly efficient in antigen capture and processing, while as mature cells they present antigen and are potent initiators of cell-mediated immune responses. Consequently, iDCs are logical targets for vaccine antigens. Originally discovered for their antimicrobial activity, and thought of as strictly part of the innate immune system, studies with defensins such as human β (beta)-defensin 2 (hBD2) and murine β-defensin 2 (mBD2) have shown that they can function as chemo-attractant for iDCs and, in vaccination strategies, can enhance antigen-specific adaptive immune responses. Most studies to date have been conducted in mice. In contrast, little is known about defensins in cattle. To expand our understanding of the role of defensins in modulating immune responses in cattle, DCs were generated from bovine monocytes and the immature state of these bovine DCs was characterized phenotypically and through functional assays. By day 3 (DC3), bovine monocyte-derived DCs stained positively for DC-specific receptors CD1, CD80/86, CD205, DC-Lamp and MMR. When compared to conventional 6-day DC cultures or DCs cultured for 10 days with and without maturation factors, these DC3 were functionally at their most immature stage. Fourteen of the 16 known bovine β-defensins were synthesized and the synthetic peptides were screened for their ability to attract bovine iDCs. Bovine DC3 were consistently attracted to BNBD3, an analog of BNBD3 (aBNBD3), BNBD9 and bovine EBD in vitro and to aBNBD3 in vivo. These results are the first to describe chemotactic ability of synthetic bovine β-defensins for immature bovine monocyte-derived DCs.
Collapse
Affiliation(s)
- Sarah Mackenzie-Dyck
- Vaccine and Infectious Disease Organization, University of Saskatchewan, Saskatoon, Canada
| | | | | | | | | |
Collapse
|
48
|
De Temmerman ML, Rejman J, Demeester J, Irvine DJ, Gander B, De Smedt SC. Particulate vaccines: on the quest for optimal delivery and immune response. Drug Discov Today 2011; 16:569-82. [PMID: 21570475 DOI: 10.1016/j.drudis.2011.04.006] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 02/10/2011] [Accepted: 04/20/2011] [Indexed: 12/22/2022]
Abstract
Subunit vaccines offer a safer alternative to traditional organism-based vaccines, but their immunogenicity is impaired. This hurdle might be overcome by the use of micro- and nanodelivery systems carrying the antigen(s). This review discusses the rationale for the use of particulate vaccines and provides an overview of antigen-delivery vehicles currently under investigation. It further highlights the cellular uptake, antigen processing and the presentation by antigen-presenting cells because these processes are partially governed by particle characteristics and eventually determine the immunological outcome. Finally, we address the attractive concept of concomitant delivery of antigens and immunopotentiators. The condensed knowledge could be an asset for rationally designing antigen-delivery vehicles to obtain safe and efficacious vaccines.
Collapse
Affiliation(s)
- Marie-Luce De Temmerman
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
49
|
Ageichik A, Buchholz CJ, Collins MK. Lentiviral vectors targeted to MHC II are effective in immunization. Hum Gene Ther 2011; 22:1249-54. [PMID: 21247346 DOI: 10.1089/hum.2010.184] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract vectors (LVs) that are targeted to APC using a chimeric measles virus (MV) hemagglutinin (H). The MV H protein is mutated to prevent binding to MV receptors and incorporates a single-chain antibody that recognizes murine major histocompatibility complex class II (MHC II). This targeted LV is highly efficient in transduction of freshly isolated mouse B cells and dendritic cells. MHC II-positive cells in spleen are transduced after intravenous injection, and a robust immune response to an antigen transgene is generated.
Collapse
Affiliation(s)
- Alexander Ageichik
- MRC Medical Molecular Virology Centre, Division of Infection and Immunity, University College London, United Kingdom
| | | | | |
Collapse
|
50
|
Dendritic cell-directed lentivector vaccine induces antigen-specific immune responses against murine melanoma. Cancer Gene Ther 2011; 18:370-80. [PMID: 21372855 DOI: 10.1038/cgt.2011.13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Lentivectors are potential vaccine delivery vehicles because they can efficiently transduce a variety of non-dividing cells, including antigen-presenting cells, and do not cause expression of extra viral proteins. To improve safety while retaining efficiency, a dendritic cell (DC)-specific lentivector was constructed by pseudotyping the vector with an engineered viral glycoprotein derived from Sindbis virus. We assessed the level of anti-tumor immunity conferred by this engineered lentivector encoding the melanoma antigen gp100 in a mouse model. Footpad injection of the engineered lentivectors results in the best antigen-specific immune response as compared with subcutaneous and intraperitoneal injections. A single prime vaccination of the engineered lentivectors can elicit a high frequency (up to 10%) of gp100-specific CD8(+) T cells in peripheral blood 3 weeks after the vaccination and this response will be maintained at around 5% for up to 8 weeks. We found that these engineered lentivectors elicited relatively low levels of anti-vector neutralizing antibody responses. Importantly, direct injection of this engineered lentivector inhibited the growth of aggressive B16 murine melanoma. These data suggest that DC-specific lentivectors can be a novel and alternative vaccine carrier with the potential to deliver effective anti-tumor immunity for cancer immunotherapy.
Collapse
|