1
|
Richardson KC, Aubert A, Turner CT, Nabai L, Hiroyasu S, Pawluk MA, Cederberg RA, Zhao H, Jung K, Burleigh A, Crawford RI, Granville DJ. Granzyme K mediates IL-23-dependent inflammation and keratinocyte proliferation in psoriasis. Front Immunol 2024; 15:1398120. [PMID: 38903528 PMCID: PMC11188347 DOI: 10.3389/fimmu.2024.1398120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 05/17/2024] [Indexed: 06/22/2024] Open
Abstract
Psoriasis is an inflammatory disease with systemic manifestations that most commonly presents as itchy, erythematous, scaly plaques on extensor surfaces. Activation of the IL-23/IL-17 pro-inflammatory signaling pathway is a hallmark of psoriasis and its inhibition is key to clinical management. Granzyme K (GzmK) is an immune cell-secreted serine protease elevated in inflammatory and proliferative skin conditions. In the present study, human psoriasis lesions exhibited elevated GzmK levels compared to non-lesional psoriasis and healthy control skin. In an established murine model of imiquimod (IMQ)-induced psoriasis, genetic loss of GzmK significantly reduced disease severity, as determined by delayed plaque formation, decreased erythema and desquamation, reduced epidermal thickness, and inflammatory infiltrate. Molecular characterization in vitro revealed that GzmK contributed to macrophage secretion of IL-23 as well as PAR-1-dependent keratinocyte proliferation. These findings demonstrate that GzmK enhances IL-23-driven inflammation as well as keratinocyte proliferation to exacerbate psoriasis severity.
Collapse
Affiliation(s)
- Katlyn C. Richardson
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Alexandre Aubert
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Christopher T. Turner
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Layla Nabai
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Sho Hiroyasu
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Megan A. Pawluk
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Rachel A. Cederberg
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Integrative Oncology Department, British Columbia (BC) Cancer Research Centre, Vancouver, BC, Canada
| | - Hongyan Zhao
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Karen Jung
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | - Angela Burleigh
- Department of Dermatology and Skin Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Richard I. Crawford
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Dermatology and Skin Sciences, University of British Columbia, Vancouver, BC, Canada
| | - David J. Granville
- International Collaboration on Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- British Columbia Professional Firefighters’ Burn and Wound Healing Group, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Cigalotto L, Martinvalet D. Granzymes in health and diseases: the good, the bad and the ugly. Front Immunol 2024; 15:1371743. [PMID: 38646541 PMCID: PMC11026543 DOI: 10.3389/fimmu.2024.1371743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024] Open
Abstract
Granzymes are a family of serine proteases, composed of five human members: GA, B, H, M and K. They were first discovered in the 1980s within cytotoxic granules released during NK cell- and T cell-mediated killing. Through their various proteolytic activities, granzymes can trigger different pathways within cells, all of which ultimately lead to the same result, cell death. Over the years, the initial consideration of granzymes as mere cytotoxic mediators has changed due to surprising findings demonstrating their expression in cells other than immune effectors as well as new intracellular and extracellular activities. Additional roles have been identified in the extracellular milieu, following granzyme escape from the immunological synapse or their release by specific cell types. Outside the cell, granzyme activities mediate extracellular matrix alteration via the degradation of matrix proteins or surface receptors. In certain contexts, these processes are essential for tissue homeostasis; in others, excessive matrix degradation and extensive cell death contribute to the onset of chronic diseases, inflammation, and autoimmunity. Here, we provide an overview of both the physiological and pathological roles of granzymes, highlighting their utility while also recognizing how their unregulated presence can trigger the development and/or worsening of diseases.
Collapse
Affiliation(s)
- Lavinia Cigalotto
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| | - Denis Martinvalet
- Laboratory of Reactive Oxygen Species and Cytotoxic Immunity, Department Biomedical Sciences, University of Padova, Padova, Italy
- Veneto Institute Of Molecular Medicine (VIMM), Padova, Italy
| |
Collapse
|
3
|
Turner CT, Zeglinski MR, Boivin W, Zhao H, Pawluk MA, Richardson KC, Chandrabalan A, Bird P, Ramachandran R, Sehmi R, Lima H, Gauvreau G, Granville DJ. Granzyme K contributes to endothelial microvascular damage and leakage during skin inflammation. Br J Dermatol 2023; 189:279-291. [PMID: 36652225 DOI: 10.1093/bjd/ljac017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 06/06/2022] [Accepted: 09/13/2022] [Indexed: 01/19/2023]
Abstract
BACKGROUND Granzyme K (GzmK) is a serine protease with minimal presence in healthy tissues while abundant in inflamed tissues. Initially thought to play an exclusive role in immune-mediated cell death, extracellular GzmK can also promote inflammation. OBJECTIVES To evaluate the role of GzmK in the pathogenesis of atopic dermatitis (AD), the most common inflammatory skin disease. METHODS A panel of human AD and control samples was analysed to determine if GzmK is elevated. Next, to determine a pathological role for GzmK in AD-like skin inflammation, oxazolone-induced dermatitis was induced in GzmK-/- and wild-type (WT) mice. RESULTS In human lesional AD samples, there was an increase in the number of GzmK+ cells compared with healthy controls. GzmK-/- mice exhibited reduced overall disease severity characterized by reductions in scaling, erosions and erythema. Surprisingly, the presence of GzmK did not notably increase the overall pro-inflammatory response or epidermal barrier permeability in WT mice; rather, GzmK impaired angiogenesis, increased microvascular damage and microhaemorrhage. Mechanistically, GzmK contributed to vessel damage through cleavage of syndecan-1, a key structural component of the glycocalyx, which coats the luminal surface of vascular endothelia. CONCLUSIONS GzmK may provide a potential therapeutic target for skin conditions associated with persistent inflammation, vasculitis and pathological angiogenesis.
Collapse
Affiliation(s)
- Christopher T Turner
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia, Vancouver, BC, Canada
| | - Matthew R Zeglinski
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia, Vancouver, BC, Canada
| | - Wendy Boivin
- Department of Pathology and Laboratory Medicine; University of British Columbia, Vancouver, BC, Canada
| | - Hongyan Zhao
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia, Vancouver, BC, Canada
| | - Megan A Pawluk
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia, Vancouver, BC, Canada
| | - Katlyn C Richardson
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia, Vancouver, BC, Canada
| | - Arundhasa Chandrabalan
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Phillip Bird
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Australia
| | - Rithwik Ramachandran
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Roma Sehmi
- Division of Respirology, Department of Medicine, McMaster University, Ontario, L8S 4K1, Canada
| | - Hermenio Lima
- Division of Dermatology, Department of Medicine, McMaster University, Ontario, L8S 4K1, Canada
| | - Gail Gauvreau
- Division of Respirology, Department of Medicine, McMaster University, Ontario, L8S 4K1, Canada
| | - David J Granville
- International Collaboration On Repair Discoveries (ICORD) Centre, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
- Department of Pathology and Laboratory Medicine; University of British Columbia, Vancouver, BC, Canada
- British Columbia Professional Firefighters' Burn and Wound Healing Group, Vancouver, BC, Canada
| |
Collapse
|
4
|
Duquette D, Harmon C, Zaborowski A, Michelet X, O'Farrelly C, Winter D, Koay HF, Lynch L. Human Granzyme K Is a Feature of Innate T Cells in Blood, Tissues, and Tumors, Responding to Cytokines Rather than TCR Stimulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:633-647. [PMID: 37449888 DOI: 10.4049/jimmunol.2300083] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 06/02/2023] [Indexed: 07/18/2023]
Abstract
NK cells and CD8 T cells use cytotoxic molecules to kill virally infected and tumor cell targets. While perforin and granzyme B (GzmB) are the most commonly studied lytic molecules, less is known about granzyme K (GzmK). However, this granzyme has been recently associated with improved prognosis in solid tumors. In this study, we show that, in humans, GzmK is predominantly expressed by innate-like lymphocytes, as well as a newly identified population of GzmK+CD8+ non- mucosal-associated invariant T cells with innate-like characteristics. We found that GzmK+ T cells are KLRG1+EOMES+IL-7R+CD62L-Tcf7int, suggesting that they are central memory T and effector memory T cells. Furthermore, GzmK+ cells are absent/low in cord blood, suggesting that GzmK is upregulated with immune experience. Surprisingly, GzmK+ cells respond to cytokine stimuli alone, whereas TCR stimulation downregulates GzmK expression, coinciding with GzmB upregulation. GzmK+ cells have reduced IFN-γ production compared with GzmB+ cells in each T cell lineage. Collectively, this suggests that GzmK+ cells are not naive, and they may be an intermediate memory-like or preterminally differentiated population. GzmK+ cells are enriched in nonlymphoid tissues such as the liver and adipose. In colorectal cancer, GzmK+ cells are enriched in the tumor and can produce IFN-γ, but GzmK+ expression is mutually exclusive with IL-17a production. Thus, in humans, GzmK+ cells are innate memory-like cells that respond to cytokine stimulation alone and may be important effector cells in the tumor.
Collapse
Affiliation(s)
- Danielle Duquette
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Cathal Harmon
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | | | - Xavier Michelet
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
| | - Cliona O'Farrelly
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Des Winter
- St. Vincent's University Hospital, Dublin, Ireland
| | - Hui-Fern Koay
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Boston, MA
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Austria
| | - Lydia Lynch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
- St. Vincent's University Hospital, Dublin, Ireland
| |
Collapse
|
5
|
Inflammaging, an Imbalanced Immune Response That Needs to Be Restored for Cancer Prevention and Treatment in the Elderly. Cells 2021; 10:cells10102562. [PMID: 34685542 PMCID: PMC8533838 DOI: 10.3390/cells10102562] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/24/2021] [Indexed: 12/21/2022] Open
Abstract
Nowadays, new advances in society and health have brought an increased life expectancy. However, at the same time, aging comes with complications that impact the development of autoimmunity, neurodegenerative diseases and cancer. These complications affect the quality of life and impact the public health system. Specifically, with aging, a low-grade chronic sterile systemic inflammation with self-reactivity in the absence of acute infection occurs termed inflammaging. Inflammaging is related to an imbalanced immune response that can be either naturally acquired with aging or accelerated due to external triggers. Different molecules, metabolites and inflammatory forms of cell death are highly involved in these processes. Importantly, adoptive cellular immunotherapy is a modality of treatment for cancer patients that administers ex vivo expanded immune cells in the patient. The manipulation of these cells confers them enhanced proinflammatory properties. A general consequence of proinflammatory events is the development of autoimmune diseases and cancer. Herein, we review subsets of immune cells with a pertinent role in inflammaging, relevant proteins involved in these inflammatory events and external triggers that enhance and accelerate these processes. Moreover, we mention relevant preclinical studies that demonstrate associations of chronic inflammation with cancer development.
Collapse
|
6
|
NK Cell Patterns in Idiopathic Inflammatory Myopathies with Pulmonary Affection. Cells 2021; 10:cells10102551. [PMID: 34685530 PMCID: PMC8534165 DOI: 10.3390/cells10102551] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/14/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Pulmonary affection (PA) is associated with a substantial increase in morbidity and mortality in patients with idiopathic inflammatory myopathies (IIM). However, the underlying immune mechanisms of PA remain enigmatic and prompt deeper immunological analyses. Importantly, the Janus-faced role of natural killer (NK) cells, capable of pro-inflammatory as well as regulatory effects, might be of interest for the pathophysiologic understanding of PA in IIM. METHODS To extend our understanding of immunological alterations in IIM patients with PA, we compared the signatures of NK cells in peripheral blood using multi-color flow cytometry in IIM patients with (n = 12, of which anti-synthetase syndrome = 8 and dermatomyositis = 4) or without PA (n = 12). RESULTS We did not observe any significant differences for B cells, CD4, and CD8 T cells, while total NK cell numbers in IIM patients with PA were reduced compared to non-PA patients. NK cell alterations were driven by a particular decrease of CD56dim NK cells, while CD56bright NK cells remained unchanged. Comparisons of the cell surface expression of a large panel of NK receptors revealed an increased mean fluorescence intensity of NKG2D+ on NK cells from patients with PA compared with non-PA patients, especially on the CD56dim subset. NKG2D+ and NKp46+ cell surface levels were associated with reduced vital capacity, serving as a surrogate marker for clinical severity of PA. CONCLUSION Our data illustrate that PA in IIM is associated with alterations of the NK cell repertoire, suggesting a relevant contribution of NK cells in certain IIMs, which might pave the way for NK cell-targeted therapeutic approaches.
Collapse
|
7
|
García-Laorden MI, Hoogendijk AJ, Wiewel MA, van Vught LA, Schultz MJ, Bovenschen N, de Vos AF, van der Poll T. Intracellular expression of granzymes A, B, K and M in blood lymphocyte subsets of critically ill patients with or without sepsis. Clin Exp Immunol 2021; 205:222-231. [PMID: 33866542 PMCID: PMC8274148 DOI: 10.1111/cei.13601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/29/2022] Open
Abstract
Sepsis is a complex syndrome related to an infection-induced exaggerated inflammatory response, which is associated with a high mortality. Granzymes (Gzm) are proteases mainly found in cytotoxic lymphocytes that not only have a role in target cell death, but also as mediators of infection and inflammation. In this study we sought to analyse the intracellular expression of GzmA, B, M and K by flow cytometry in diverse blood lymphocyte populations from 22 sepsis patients, 12 non-infected intensive care unit (ICU) patients and 32 healthy controls. Additionally, we measured GzmA and B plasma levels. Both groups of patients presented decreased percentage of natural killer (NK) cells expressing GzmA, B and M relative to healthy controls, while sepsis patients showed an increased proportion of CD8+ T cells expressing GzmB compared to controls. Expression of GzmK remained relatively unaltered between groups. Extracellular levels of GzmB were increased in non-infected ICU patients relative to sepsis patients and healthy controls. Our results show differential alterations in intracellular expression of Gzm in sepsis patients and non-infected critically ill patients compared to healthy individuals depending on the lymphocyte population and on the Gzm.
Collapse
Affiliation(s)
- M Isabel García-Laorden
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,CIBER de Enfermedades Respiratorias, Instituto de Salud Carlos III, Madrid, Spain.,Research Unit, Hospital Universitario de Gran Canaria Dr. Negrín, Las Palmas de Gran Canaria, Spain
| | - Arie J Hoogendijk
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Maryse A Wiewel
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Lonneke A van Vught
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcus J Schultz
- Department of Intensive Care Medicine, and Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand.,Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Niels Bovenschen
- Department of Pathology and Center for Translational Immunology, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Alex F de Vos
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam University Medical Centers, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands.,Division of Infectious Diseases, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Bouwman AC, van Daalen KR, Crnko S, Ten Broeke T, Bovenschen N. Intracellular and Extracellular Roles of Granzyme K. Front Immunol 2021; 12:677707. [PMID: 34017346 PMCID: PMC8129556 DOI: 10.3389/fimmu.2021.677707] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 04/21/2021] [Indexed: 12/30/2022] Open
Abstract
Granzymes are a family of serine proteases stored in granules inside cytotoxic cells of the immune system. Granzyme K (GrK) has been only limitedly characterized and knowledge on its molecular functions is emerging. Traditionally GrK is described as a granule-secreted, pro-apoptotic serine protease. However, accumulating evidence is redefining the functions of GrK by the discovery of novel intracellular (e.g. cytotoxicity, inhibition of viral replication) and extracellular roles (e.g. endothelial activation and modulation of a pro-inflammatory immune cytokine response). Moreover, elevated GrK levels are associated with disease, including viral and bacterial infections, airway inflammation and thermal injury. This review aims to summarize and discuss the current knowledge of i) intracellular and extracellular GrK activity, ii) cytotoxic and non-cytotoxic GrK functioning, iii) the role of GrK in disease, and iv) GrK as a potential therapeutic target.
Collapse
Affiliation(s)
- Annemieke C Bouwman
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kim R van Daalen
- Cardiovascular Epidemiology Unit, Department of Public Health & Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Sandra Crnko
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Toine Ten Broeke
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht, Netherlands.,Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|
9
|
Garzón-Tituaña M, Arias MA, Sierra-Monzón JL, Morte-Romea E, Santiago L, Ramirez-Labrada A, Martinez-Lostao L, Paño-Pardo JR, Galvez EM, Pardo J. The Multifaceted Function of Granzymes in Sepsis: Some Facts and a Lot to Discover. Front Immunol 2020; 11:1054. [PMID: 32655547 PMCID: PMC7325996 DOI: 10.3389/fimmu.2020.01054] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/30/2020] [Indexed: 12/21/2022] Open
Abstract
Sepsis is a serious global health problem. In addition to a high incidence, this syndrome has a high mortality and is responsible for huge health expenditure. The pathophysiology of sepsis is very complex and it is not well-understood yet. However, it is widely accepted that the initial phase of sepsis is characterized by a hyperinflammatory response while the late phase is characterized by immunosuppression and immune anergy, increasing the risk of secondary infections. Granzymes (Gzms) are a family of serine proteases classified according to their cleavage specificity. Traditionally, it was assumed that all Gzms acted as cytotoxic proteases. However, recent evidence suggests that GzmB is the one with the greatest cytotoxic capacity, while the cytotoxicity of others such as GzmA and GzmK is not clear. Recent studies have found that GzmA, GzmB, GzmK, and GzmM act as pro-inflammatory mediators. Specially, solid evidences show that GzmA and GzmK function as extracellular proteases that regulate the inflammatory response irrespectively of its ability to induce cell death. Indeed, studies in animal models indicate that GzmA is involved in the cytokine release syndrome characteristic of sepsis. Moreover, the GZM family also could regulate other biological processes involved in sepsis pathophysiology like the coagulation cascade, platelet function, endothelial barrier permeability, and, in addition, could be involved in the immunosuppressive stage of sepsis. In this review, we provide a comprehensive overview on the contribution of these novel functions of Gzms to sepsis and the new therapeutic opportunities emerging from targeting these proteases for the treatment of this serious health problem.
Collapse
Affiliation(s)
- Marcela Garzón-Tituaña
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | | | - José L Sierra-Monzón
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Elena Morte-Romea
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Llipsy Santiago
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain
| | - Ariel Ramirez-Labrada
- Nanotoxicology and Immunotoxicology Unit (UNATI), Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Zaragoza, Spain
| | - Luis Martinez-Lostao
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain
| | - José R Paño-Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Hospital Clínico Universitario Lozano Blesa, Zaragoza, Spain
| | - Eva M Galvez
- Instituto de Carboquímica ICB-CSIC, Zaragoza, Spain
| | - Julián Pardo
- Fundación Instituto de Investigación Sanitaria Aragón (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), Zaragoza, Spain.,Nanoscience Institute of Aragon (INA), University of Zaragoza, Zaragoza, Spain.,Aragon I + D Foundation (ARAID), Zaragoza, Spain.,Department of Biochemistry and Molecular and Cell Biology and Department of Microbiology, Preventive Medicine and Public Health, University of Zaragoza, Zaragoza, Spain.,Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| |
Collapse
|
10
|
Kawada T. Biomarkers for healing in adults with venous leg ulcers. Wound Repair Regen 2019; 28:157. [PMID: 31774603 DOI: 10.1111/wrr.12783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 11/25/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Tomoyuki Kawada
- Department of Hygiene and Public Health, Nippon Medical School, Tokyo, Japan
| |
Collapse
|
11
|
Stacey M, Farrokhyar F. Evaluation of wound fluid biomarkers to determine healing in adults with venous leg ulcers: A prospective study. Wound Repair Regen 2019; 28:158. [PMID: 31774597 DOI: 10.1111/wrr.12784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/01/2022]
Affiliation(s)
- Michael Stacey
- Department of Surgery, McMaster University, Hamilton, Ontario, Canada
| | - Forough Farrokhyar
- Department of Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
12
|
Turner CT, Zeglinski MR, Richardson KC, Zhao H, Shen Y, Papp A, Bird PI, Granville DJ. Granzyme K Expressed by Classically Activated Macrophages Contributes to Inflammation and Impaired Remodeling. J Invest Dermatol 2019; 139:930-939. [DOI: 10.1016/j.jid.2018.09.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/18/2018] [Accepted: 09/21/2018] [Indexed: 12/24/2022]
|
13
|
van Eck JA, Shan L, Meeldijk J, Hack CE, Bovenschen N. A novel proinflammatory role for granzyme A. Cell Death Dis 2017; 8:e2630. [PMID: 28230859 PMCID: PMC5386495 DOI: 10.1038/cddis.2017.56] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Jacqueline A van Eck
- Department of Pathology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Liling Shan
- Department of Pathology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Jan Meeldijk
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - C Erik Hack
- Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| | - Niels Bovenschen
- Department of Pathology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands.,Laboratory of Translational Immunology, University Medical Center Utrecht, Utrecht 3584 CX, The Netherlands
| |
Collapse
|