1
|
Neumann A, Björck L, Frick IM. Finegoldia magna, an Anaerobic Gram-Positive Bacterium of the Normal Human Microbiota, Induces Inflammation by Activating Neutrophils. Front Microbiol 2020; 11:65. [PMID: 32117109 PMCID: PMC7025542 DOI: 10.3389/fmicb.2020.00065] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 12/23/2022] Open
Abstract
The Gram-positive anaerobic commensal Finegoldia magna colonizes the skin and other non-sterile body surfaces, and is an important opportunistic pathogen. Here we analyzed the effect of F. magna on human primary neutrophils. F. magna strains ALB8 (expressing protein FAF), 312 (expressing protein L) and 505 (naturally lacking both protein FAF and L) as well as their associated proteins activate neutrophils to release reactive oxygen species, an indication for neutrophil oxidative burst. Co-incubation of neutrophils with the bacteria leads to a strong increase of CD66b surface expression, another indicator for neutrophil activation. Furthermore, all tested stimuli triggered the release of NETs from the activated neutrophils, pointing to a host defense mechanism in response to the tested stimuli. This phenotype is dependent on actin rearrangement, NADPH oxidases and the ERK1/2 pathway. Proteins FAF and L also induced the secretion of several pro-inflammatory neutrophil proteins; HBP, IL-8 and INFγ. This study shows for the first time a direct interaction of F. magna with human neutrophils and suggests that the activation of neutrophils plays a role in F. magna pathogenesis.
Collapse
Affiliation(s)
- Ariane Neumann
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | |
Collapse
|
2
|
Lorenzo D, Duarte A, Mundiñano J, Berguer P, Nepomnaschy I, Piazzon I. A B-Cell Superantigen Induces the Apoptosis of Murine and Human Malignant B Cells. PLoS One 2016; 11:e0162456. [PMID: 27603942 PMCID: PMC5014328 DOI: 10.1371/journal.pone.0162456] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 08/23/2016] [Indexed: 11/18/2022] Open
Abstract
B-cell superantigens (Sags) bind to conserved sites of the VH or VL regions of immunoglobulin molecules outside their complementarity-determining regions causing the apoptosis of normal cognate B cells. No attempts to investigate whether B-cell Sags are able to induce the apoptosis of cognate malignant B cells were reported. In the present study we show that protein L (PpL), secreted by Finegoldia magna, a B-cell Sag which interacts with κ+ bearing cells, induces the apoptosis of murine and human κ+ lymphoma B cells both in vitro and in vivo. Apoptosis was not altered by caspase-8 inhibitor. No alterations in the levels of Bid, Fas and Fas-L were found suggesting that PpL does not activate the extrinsic pathway of apoptosis. The involvement of the intrinsic pathway was clearly indicated by: i) alterations in mitochondrial membrane potential (ΔΨm) both in murine and human lymphoma cells exposed to PpL; ii) decreased levels of apoptosis in the presence of caspase-9 inhibitor; iii) significant increases of Bim and Bax protein levels and downregulation of Bcl-2; iv) the translocation from the cytoplasm to the mitochondria of Bax and Bim pro-apoptotic proteins and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor and v) the translocation of Bcl-2 protein from the mitochondria to the cytosol and its inhibition by caspase-9 inhibitor but not by caspase-8 inhibitor. The possibility of a therapeutic use of Sags in lymphoma/leukemia B cell malignancies is discussed.
Collapse
MESH Headings
- Adolescent
- Animals
- Annexin A5/metabolism
- Apoptosis/immunology
- B-Lymphocytes/drug effects
- B-Lymphocytes/immunology
- B-Lymphocytes/pathology
- B7-2 Antigen/metabolism
- Bacterial Proteins/immunology
- Bcl-2-Like Protein 11/metabolism
- Burkitt Lymphoma/genetics
- Burkitt Lymphoma/immunology
- Burkitt Lymphoma/pathology
- Caspase 8/metabolism
- Caspase 9/metabolism
- Caspase Inhibitors/pharmacology
- Cell Line, Tumor
- Cytosol/metabolism
- DNA, Neoplasm/metabolism
- DNA-Binding Proteins/immunology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immunoglobulin M/metabolism
- Immunoglobulin kappa-Chains/metabolism
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/immunology
- Lymphoma, B-Cell/pathology
- Male
- Membrane Potential, Mitochondrial/drug effects
- Mice, Inbred BALB C
- Mitochondria/drug effects
- Mitochondria/metabolism
- Protein Transport
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Signal Transduction/drug effects
- Superantigens/immunology
- bcl-2-Associated X Protein/genetics
- bcl-2-Associated X Protein/metabolism
- fas Receptor/genetics
- fas Receptor/metabolism
Collapse
Affiliation(s)
- Daniela Lorenzo
- IMEX-CONICET, Academia Nacional de Medicina de Buenos Aires, CABA, Argentina
| | - Alejandra Duarte
- IMEX-CONICET, Academia Nacional de Medicina de Buenos Aires, CABA, Argentina
| | - Juliana Mundiñano
- IMEX-CONICET, Academia Nacional de Medicina de Buenos Aires, CABA, Argentina
| | - Paula Berguer
- Fundación Instituto Leloir, IIBBA, CONICET, Buenos Aires, Argentina
| | - Irene Nepomnaschy
- IMEX-CONICET, Academia Nacional de Medicina de Buenos Aires, CABA, Argentina
| | - Isabel Piazzon
- IMEX-CONICET, Academia Nacional de Medicina de Buenos Aires, CABA, Argentina
- * E-mail:
| |
Collapse
|
3
|
Singh K, Nordström T, Mörgelin M, Brant M, Cardell LO, Riesbeck K. Haemophilus influenzae resides in tonsils and uses immunoglobulin D binding as an evasion strategy. J Infect Dis 2013; 209:1418-28. [PMID: 24218509 DOI: 10.1093/infdis/jit593] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Haemophilus influenzae (Hi) causes respiratory tract infections and is also considered to be a commensal, particularly in preschool children. Tonsils from patients (n = 617) undergoing tonsillectomy due to chronic infection or hypertrophy were examined. We found that 51% of tonsils were positive for Hi, and in 95% of cases analyzed in detail (n = 39) Hi resided intracellularly in the core tonsillar tissue. Patients harbored several intracellular unique strains and the majority were nontypeable Hi (NTHi). Interestingly, the isolated NTHi bound soluble immunoglobulin (Ig) D at the constant heavy chain domain 1 as revealed by recombinant IgD/IgG chimeras. NTHi also interacted with B lymphocytes via the IgD B-cell receptor, resulting in internalization of bacteria, T-cell-independent activation via Toll-like receptor 9, and differentiation into non-NTHi-specific IgM-producing cells. Taken together, IgD-binding NTHi leads to an unspecific immune response and may support the bacteria to circumvent the host defense.
Collapse
Affiliation(s)
- Kalpana Singh
- Medical Microbiology, Department of Laboratory Medicine Malmö, Lund University, Malmö
| | | | | | | | | | | |
Collapse
|
4
|
The production of soluble C-type lectin-like receptor 2 is a regulated process. Glycoconj J 2012; 29:315-21. [DOI: 10.1007/s10719-012-9413-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2012] [Revised: 06/04/2012] [Accepted: 06/05/2012] [Indexed: 10/28/2022]
|
5
|
Zouali M, Richard Y. Marginal zone B-cells, a gatekeeper of innate immunity. Front Immunol 2011; 2:63. [PMID: 22566852 PMCID: PMC3341996 DOI: 10.3389/fimmu.2011.00063] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/04/2011] [Indexed: 12/21/2022] Open
Abstract
To maintain the integrity of an organism constantly challenged by pathogens, the immune system is endowed with a variety of cell types. B lymphocytes were initially thought to only play a role in the adaptive branch of immunity. However, a number of converging observations revealed that two B-cell subsets, marginal zone (MZ) and B1 cells, exhibit unique developmental and functional characteristics, and can contribute to innate immune responses. In addition to their capacity to mount a local antibody response against type-2 T-cell-independent (TI-2) antigens, MZ B-cells can participate to T-cell-dependent (TD) immune responses through the capture and import of blood-borne antigens to follicular areas of the spleen. Here, we discuss the multiple roles of MZ B-cells in humans, non-human primates, and rodents. We also summarize studies – performed in transgenic mice expressing fully human antibodies on their B-cells and in macaques whose infection with Simian immunodeficiency virus (SIV) represents a suitable model for HIV-1 infection in humans – showing that infectious agents have developed strategies to subvert MZ B-cell functions. In these two experimental models, we observed that two microbial superantigens for B-cells (protein A from Staphylococcus aureus and protein L from Peptostreptococcus magnus) as well as inactivated AT-2 virions of HIV-1 and infectious SIV preferentially deplete innate-like B-cells – MZ B-cells and/or B1 B-cells – with different consequences on TI and TD antibody responses. These data revealed that viruses and bacteria have developed strategies to deplete innate-like B-cells during the acute phase of infection and to impair the antibody response. Unraveling the intimate mechanisms responsible for targeting MZ B-cells in humans will be important for understanding disease pathogenesis and for designing novel vaccine strategies.
Collapse
|
6
|
Vlková M, Froňková E, Kanderová V, Janda A, Růžičková Š, Litzman J, Šedivá A, Kalina T. Characterization of Lymphocyte Subsets in Patients with Common Variable Immunodeficiency Reveals Subsets of Naive Human B Cells Marked by CD24 Expression. THE JOURNAL OF IMMUNOLOGY 2010; 185:6431-8. [DOI: 10.4049/jimmunol.0903876] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
7
|
Jendholm J, Mörgelin M, Perez Vidakovics MLA, Carlsson M, Leffler H, Cardell LO, Riesbeck K. Superantigen- and TLR-dependent activation of tonsillar B cells after receptor-mediated endocytosis. THE JOURNAL OF IMMUNOLOGY 2009; 182:4713-20. [PMID: 19342647 DOI: 10.4049/jimmunol.0803032] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Classical B lymphocyte activation is dependent on BCR cross-linking in combination with physical interaction with Th cells. Other B cell molecules that contribute to the activation are complement, cytokine, and TLRs recognizing specific pathogen-associated molecular patterns. Moraxella (Branhamella) catarrhalis is a common Gram-negative respiratory pathogen that induces proliferation in human IgD-expressing B cells independently of T cell help. The activation is initiated by the B cell superantigen Moraxella IgD-binding protein (MID) through a nonimmune cross-linking of IgD. However, IgD cross-linking alone is not sufficient to induce proliferation. In this study, we characterized the significance of TLRs in superantigen-dependent B cell activation using whole bacteria or rMID in the presence or absence of TLR ligands. IgD cross-linking by MID sensitized B cells obtained from children with tonsillar hyperplasia for mainly TLR9, whereas TLRs 1, 2, 6, and 7 were less important. The Moraxella-induced activation was inhibited when a dominant-negative TLR9 ligand was added. Interestingly, BCR-mediated endocytosis of whole Moraxella and degradation of live bacteria in naive B cells were observed with fluorescence, confocal, and transmission electron microscopy. This unique observation proved the strong intracellular TLR9 response as well as highlighted the Ag-presenting function of B cells. In conclusion, our findings suggest an important role of TLRs in the adaptive immune response and reveal novel insights into the T cell-independent B cell activation induced by bacteria.
Collapse
Affiliation(s)
- Johan Jendholm
- Department of Laboratory Medicine, University Hospital Malmö, Lund University, Malmö, Sweden
| | | | | | | | | | | | | |
Collapse
|
8
|
Butler JE, Zhao Y, Sinkora M, Wertz N, Kacskovics I. Immunoglobulins, antibody repertoire and B cell development. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2009; 33:321-333. [PMID: 18804488 DOI: 10.1016/j.dci.2008.06.015] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Revised: 06/30/2008] [Accepted: 06/30/2008] [Indexed: 05/26/2023]
Abstract
Swine share with most placental mammals the same five antibody isotypes and same two light chain types. Loci encoding lambda, kappa and Ig heavy chains appear to be organized as they are in other mammals. Swine differ from rodents and primates, but are similar to rabbits in using a single VH family (VH3) to encode their variable heavy chain domain, but not the family used by cattle, another artiodactyl. Distinct from other hoofed mammals and rodents, Ckappa:Clambda usage resembles the 1:1 ratio seen in primates. Since IgG subclasses diversified after speciation, same name subclass homologs do not exist among swine and other mammals unless very closely related. Swine possess six putative IgG subclasses that appear to have diversified by gene duplication and exon shuffle while retaining motifs that can bind to FcgammaRs, FcRn, C1q, protein A and protein G. The epithelial chorial placenta of swine and the precosial nature of their offspring have made piglets excellent models for studies on fetal antibody repertoire development and on the postnatal role of gut colonization, maternal colostrum and neonatal infection on the development of adaptive immunity during the "critical window" of immunological development. This chapter traces the study of the humoral immune system of this species through its various eras of discovery and compiles the results in tables and figures that should be a useful reference for educators and investigators.
Collapse
Affiliation(s)
- J E Butler
- Department of Microbiology, University of Iowa, Iowa City, IA, USA.
| | | | | | | | | |
Collapse
|
9
|
Isolator and other neonatal piglet models in developmental immunology and identification of virulence factors. Anim Health Res Rev 2009; 10:35-52. [DOI: 10.1017/s1466252308001618] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe postnatal period is a ‘critical window’, a time when innate and passive immunity protect the newborn mammal while its own adaptive immune system is developing. Neonatal piglets, especially those reared in isolators, provide valuable tools for studying immunological development during this period, since environmental factors that cause ambiguity in studies with conventional animals are controlled by the experimenter. However, these models have limited value unless the swine immune system is first characterized and the necessary immunological reagents developed. Characterization has revealed numerous features of the swine immune system that did not fit mouse paradigms but may be more generally true for most mammals. These include fetal class switch recombination that is uncoupled from somatic hypermutation, the relative importance of the molecular mechanisms used to develop the antibody repertoire, the role of gut lymphoid tissue in that process, and the limited heavy chain repertoire but diverse IgG subclass repertoire. Knowledge gained from studies of adaptive immunity in isolator-reared neonatal pigs suggests that isolator piglets can be valuable in identification of virulence factors that are often masked in studies using conventional animals.
Collapse
|
10
|
Butler JE, Wertz N, Weber P, Lager KM. Porcine Reproductive and Respiratory Syndrome Virus Subverts Repertoire Development by Proliferation of Germline-Encoded B Cells of All Isotypes Bearing Hydrophobic Heavy Chain CDR3. THE JOURNAL OF IMMUNOLOGY 2008; 180:2347-56. [DOI: 10.4049/jimmunol.180.4.2347] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
11
|
Zouali M. Exploitation of host signaling pathways by B cell superantigens--potential strategies for developing targeted therapies in systemic autoimmunity. Ann N Y Acad Sci 2007; 1095:342-54. [PMID: 17404047 DOI: 10.1196/annals.1397.038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Some infectious agents produce molecules capable of interacting specifically with the immunoglobulin heavy- or light-chain variable regions, independently of the conventional-binding site. They are referred to as B cell superantigens (SAgs) and include protein A of Staphylococcus aureus (S. aureus), gp120 of HIV-1, and protein L of Peptostreptococcus magnus (P. magnus). In contrast to conventional antigens, B cell superantigens interact with conserved framework regions of immunoglobulins and can target a large proportion of B cells. In experimental models, they have been demonstrated to deplete B cell subsets responsible for innate functions, namely B-1a and marginal zone (MZ) B cells. As a result, the interactions of these superantigens with host cells impair the humoral immune response. In addition to providing clues toward understanding host-pathogen interactions and microbial pathogenesis, B cell superantigens represent potential therapeutic agents that could be used to specifically modulate expansion of B cell subsets in diseased subjects. In systemic autoimmune diseases, for example, there is activation and expansion of B cells that secrete pathogenic autoantibodies. Their depletion results in clinical improvement in both experimental animals and patients. Currently, attempts are being made to specifically deplete pathogenic autoantibody-producing B cells. Since B-1a and MZ B cells have been found to be expanded in autoimmune disorders, B cell superantigens, used alone or in combination with other biological agents, may have beneficial effects in autoimmune disease management.
Collapse
Affiliation(s)
- Moncef Zouali
- Inserm U606, Centre Viggo Petersen, Hôpital Lariboisière, 2, rue Ambroise Paré, F-75475 Paris Cedex 10, France.
| |
Collapse
|
12
|
Silverman GJ, Goodyear CS. Confounding B-cell defences: lessons from a staphylococcal superantigen. Nat Rev Immunol 2006; 6:465-75. [PMID: 16724100 DOI: 10.1038/nri1853] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Studies of microbial superantigens that target large clonal sets of B cells through conserved antigen-receptor-variable-region sites are providing new insights into the mechanisms of B-cell activation-induced cell death. These investigations have shown differences between the clonal regulation of follicular B cells (B2 cells) and the innate-like marginal-zone B cells and B1 cells, and have also shown how B-cell superantigens can affect specialized host defences against infection. Agents designed to emulate the properties of B-cell superantigens might also provide new approaches for the treatment of B-cell-mediated autoimmune and neoplastic diseases.
Collapse
Affiliation(s)
- Gregg J Silverman
- Rheumatic Disease Core Center, Department of Medicine, University of California, San Diego, La Jolla, California 92093-0663, USA.
| | | |
Collapse
|
13
|
Klimstra WB, Williams JC, Ryman KD, Heidner HW. Targeting Sindbis virus-based vectors to Fc receptor-positive cell types. Virology 2005; 338:9-21. [PMID: 15922395 DOI: 10.1016/j.virol.2005.04.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2005] [Revised: 03/01/2005] [Accepted: 04/29/2005] [Indexed: 10/25/2022]
Abstract
Some viruses display enhanced infection for Fc receptor (FcR)-positive cell types when complexed with virus-specific immunoglobulin (Ig). This process has been termed antibody-dependent enhancement of viral infection (ADE). We reasoned that the mechanism of ADE could be exploited and adapted to target alphavirus-based vectors to FcR-positive cell types. Towards this goal, recombinant Sindbis viruses were constructed that express 1 to 4 immunoglobulin-binding domains of protein L (PpL) as N-terminal extensions of the E2 glycoprotein. PpL is a bacterial protein that binds the variable region of antibody kappa light chains from a range of mammalian species. The recombinant viruses incorporated PpL/E2 fusion proteins into the virion structure and recapitulated the species-specific Ig-binding phenotypes of native PpL. Virions reacted with non-immune serum or purified IgG displayed enhanced binding and ADE for several species-matched FcR-positive murine and human cell lines. ADE required virus expression of a functional PpL Ig-binding domain, and appeared to be FcgammaR-mediated. Specifically, ADE did not occur with FcgammaR-negative cells, did not require active complement proteins, and did not occur on FcgammaR-positive murine cell lines when virions were bound by murine IgG-derived F(ab')2 fragments.
Collapse
Affiliation(s)
- William B Klimstra
- Department of Microbiology and Immunology, Center for Molecular and Tumor Virology, Louisiana State University Health Sciences Center, Shreveport, LA 71130, USA
| | | | | | | |
Collapse
|
14
|
Goodyear CS, Silverman GJ. B cell superantigens: a microbe's answer to innate-like B cells and natural antibodies. ACTA ACUST UNITED AC 2005; 26:463-84. [PMID: 15633015 DOI: 10.1007/s00281-004-0190-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Marginal zone B cells and B-1 cells have been termed innate-like B cells as they express limited repertoires that play special roles in immune defenses against common infections. These B cells are the sources of natural antibodies and are capable of highly accelerated clonal responses that help counter blood-borne infections. We have characterized a class of microbial product with highly adapted binding interactions with host immunoglobulins/B cell receptors (BCRs), which enable the targeting of large supra-clonal sets of B cells for activation-associated apoptotic death. In recent studies, we have shown that all B cells with V region-targeted BCRs are susceptible. However, compared to follicular B cells, in vivo exposure preferentially causes innate-like B cells to undergo induced death with subsequent long-lasting supra-clonal depletion and immune tolerance. Based on these properties, it is likely that B cell superantigens influence the pathogenesis of some common infections, but also may provide novel therapeutic opportunities to treat B cell neoplastic and autoimmune diseases.
Collapse
Affiliation(s)
- Carl S Goodyear
- Rheumatic Disease Core Center, Department of Medicine, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0663, USA.
| | | |
Collapse
|
15
|
Viau M, Longo NS, Lipsky PE, Björck L, Zouali M. Specific in vivo deletion of B-cell subpopulations expressing human immunoglobulins by the B-cell superantigen protein L. Infect Immun 2004; 72:3515-23. [PMID: 15155659 PMCID: PMC415702 DOI: 10.1128/iai.72.6.3515-3523.2004] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some pathogens have evolved to produce proteins, called B-cell superantigens, that can interact with human immunoglobulin variable regions, independently of the combining site, and activate B lymphocytes that express the target immunoglobulins. However, the in vivo consequences of these interactions on human B-cell numbers and function are largely unknown. Using transgenic mice expressing fully human immunoglobulins, we studied the consequences of in vivo exposure of protein L of Peptostreptococcus magnus with human immunoglobulins. In the mature pool of B cells, protein L exposure resulted in a specific reduction of splenic marginal-zone B cells and peritoneal B-1 cells. Splenic B cells exhibited a skewed light-chain repertoire consistent with the capacity of protein L to bind specific kappa gene products. Remarkably, these two B-cell subsets are implicated in innate B-cell immunity, allowing rapid clearance of pathogens. Thus, the present study reveals a novel mechanism that may be used by some infectious agents to subvert a first line of the host's immune defense.
Collapse
Affiliation(s)
- Muriel Viau
- Institut National de Sante et de Recherche Medicale (INSERM U 430), Immunopathologie Humaine, 75006 Paris, France, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892-1820, Department of Cell and Molecular Biology, Lund University, SE-22184 Lund, Sweden
| | - Nancy S. Longo
- Institut National de Sante et de Recherche Medicale (INSERM U 430), Immunopathologie Humaine, 75006 Paris, France, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892-1820, Department of Cell and Molecular Biology, Lund University, SE-22184 Lund, Sweden
| | - Peter E. Lipsky
- Institut National de Sante et de Recherche Medicale (INSERM U 430), Immunopathologie Humaine, 75006 Paris, France, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892-1820, Department of Cell and Molecular Biology, Lund University, SE-22184 Lund, Sweden
| | - Lars Björck
- Institut National de Sante et de Recherche Medicale (INSERM U 430), Immunopathologie Humaine, 75006 Paris, France, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892-1820, Department of Cell and Molecular Biology, Lund University, SE-22184 Lund, Sweden
| | - Moncef Zouali
- Institut National de Sante et de Recherche Medicale (INSERM U 430), Immunopathologie Humaine, 75006 Paris, France, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, Maryland 20892-1820, Department of Cell and Molecular Biology, Lund University, SE-22184 Lund, Sweden
- Corresponding author. Mailing address: Immunopathologie Humaine, INSERM U430, 15 rue de l'Ecole de Médecine, 75006 Paris, France. Phone: 33-1-55-42-82-64. Fax: 33-1-45-84-79-62. E-mail:
| |
Collapse
|