1
|
Zhang X, Song M, Wang H, Zhang Q, Liu Z, Deng J. Application of a modified multifunctional short peptide in the treatment of periodontitis. Sci Rep 2024; 14:22855. [PMID: 39353971 PMCID: PMC11445488 DOI: 10.1038/s41598-024-69933-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/12/2024] [Indexed: 10/03/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease involving plaque biofilm as a pathogenic factor. Potassium ion plays an important role in cellular homeostasis; a large outflow of potassium may lead to local inflammation progression. In this work, the multifunctional short peptide molecule BmKTX-33 was designed by modifying the BmKTX, a Kv1.3 potassium channel inhibitor. This was to explore its antibacterial properties, capability of maintaining cell ion homeostasis, and bone-forming capacity. The results showed that BmKTX-33 had inhibitory effects on S. gordonii, F. nucleatum, and P. gingivalis. Moreover, BmKTX-33 also inhibited excessive potassium outflow in inflammatory environments. Finally, BmKTX-33 promoted MC3T3-E1 early osteogenesis while suppressing the NLRP3 inflammasome's production. In conclusion, BmKTX-33 not only has antibacterial properties, but also can inhibit the expression of NLRP3 inflammasome and play an anti-inflammatory role.
Collapse
Affiliation(s)
- Xi Zhang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China.
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin, 300070, China.
| | - Meiyan Song
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China
| | - Hongbo Wang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin, 300070, China
| | - Qian Zhang
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin, 300070, China
| | - Zhiyang Liu
- College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Tianjin, 300350, China
| | - Jiayin Deng
- School and Hospital of Stomatology, Tianjin Medical University, 12 Observatory Road, Tianjin, 300070, China.
- Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin, 300070, China.
| |
Collapse
|
2
|
Kim SE, Chung EDS, Vasileva EA, Mishchenko NP, Fedoreyev SA, Stonik VA, Kim HK, Nam JH, Kim SJ. Multiple Effects of Echinochrome A on Selected Ion Channels Implicated in Skin Physiology. Mar Drugs 2023; 21:78. [PMID: 36827119 PMCID: PMC9963876 DOI: 10.3390/md21020078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Echinochrome A (Ech A), a naphthoquinoid pigment from sea urchins, is known to have anti-inflammatory and analgesic effects that have been suggested to be mediated by antioxidant activity and intracellular signaling modulation. In addition to these mechanisms, the ion channels in keratinocytes, immune cells, and nociceptive neurons may be the target for the pharmacological effects. Here, using the patch clamp technique, we investigated the effects of Ech A on the Ca2+-permeable TRPV3, TRPV1 and Orai1 channels and the two-pore domain K+ (K2P) channels (TREK/TRAAK, TASK-1, and TRESK) overexpressed in HEK 293 cells. Ech A inhibited both the TRPV3 and Orai1 currents, with IC50 levels of 2.1 and 2.4 μM, respectively. The capsaicin-activated TRPV1 current was slightly augmented by Ech A. Ech A alone did not change the amplitude of the TREK-2 current (ITREK2), but pretreatments with Ech A markedly facilitated ITREK2 activation by 2-APB, arachidonic acid (AA), and acidic extracellular pH (pHe). Similar facilitation effects of Ech A on TREK-1 and TRAAK were observed when they were stimulated with 2-APB and AA, respectively. On the contrary, Ech A did not affect the TRESK and TASK-1 currents. Interestingly, the ITREK2 maximally activated by the combined application of 2-APB and Ech A was not inhibited by norfluoxetine but was still completely inhibited by ruthenium red. The selective loss of sensitivity to norfluoxetine suggested an altered molecular conformation of TREK-2 by Ech A. We conclude that the Ech A-induced inhibition of the Ca2+-permeable cation channels and the facilitation of the TREK/TRAAK K2P channels may underlie the analgesic and anti-inflammatory effects of Ech A.
Collapse
Affiliation(s)
- Sung Eun Kim
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Elina Da Sol Chung
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Elena A. Vasileva
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Natalia P. Mishchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Sergey A. Fedoreyev
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Valentin A. Stonik
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far-Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia
| | - Hyoung Kyu Kim
- Department of Physiology, College of Medicine, Cardiovascular and Metabolic Disease Center, Smart Marine Therapeutic Center, Department of Health Sciences and Technology, Graduate School, Inje University, Busan 47392, Republic of Korea
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, Goyang-si 10326, Republic of Korea
| | - Sung Joon Kim
- Department of Physiology, and Department of Biomedical Science, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
- Ischemic/Hypoxic Disease Institute, Seoul National University, Seoul 03080, Republic of Korea
| |
Collapse
|
3
|
Sebestyén V, Nagy É, Mocsár G, Volkó J, Szilágyi O, Kenesei Á, Panyi G, Tóth K, Hajdu P, Vámosi G. Role of C-Terminal Domain and Membrane Potential in the Mobility of Kv1.3 Channels in Immune Synapse Forming T Cells. Int J Mol Sci 2022; 23:ijms23063313. [PMID: 35328733 PMCID: PMC8952507 DOI: 10.3390/ijms23063313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Voltage-gated Kv1.3 potassium channels are essential for maintaining negative membrane potential during T-cell activation. They interact with membrane-associated guanylate kinases (MAGUK-s) via their C-terminus and with TCR/CD3, leading to enrichment at the immunological synapse (IS). Molecular interactions and mobility may impact each other and the function of these proteins. We aimed to identify molecular determinants of Kv1.3 mobility, applying fluorescence correlation spectroscopy on human Jurkat T-cells expressing WT, C-terminally truncated (ΔC), and non-conducting mutants of mGFP-Kv1.3. ΔC cannot interact with MAGUK-s and is not enriched at the IS, whereas cells expressing the non-conducting mutant are depolarized. Here, we found that in standalone cells, mobility of ΔC increased relative to the WT, likely due to abrogation of interactions, whereas mobility of the non-conducting mutant decreased, similar to our previous observations on other membrane proteins in depolarized cells. At the IS formed with Raji B-cells, mobility of WT and non-conducting channels, unlike ΔC, was lower than outside the IS. The Kv1.3 variants possessing an intact C-terminus had lower mobility in standalone cells than in IS-engaged cells. This may be related to the observed segregation of F-actin into a ring-like structure at the periphery of the IS, leaving much of the cell almost void of F-actin. Upon depolarizing treatment, mobility of WT and ΔC channels decreased both in standalone and IS-engaged cells, contrary to non-conducting channels, which themselves caused depolarization. Our results support that Kv1.3 is enriched at the IS via its C-terminal region regardless of conductivity, and that depolarization decreases channel mobility.
Collapse
Affiliation(s)
- Veronika Sebestyén
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Éva Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Gábor Mocsár
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Julianna Volkó
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Orsolya Szilágyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Ádám Kenesei
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - György Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
| | - Katalin Tóth
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
- Division Biophysics of Macromolecules, German Cancer Research Center, D-69120 Heidelberg, Germany
| | - Péter Hajdu
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
- Department of Biophysics and Cell Biology, Faculty of Dentistry, University of Debrecen, H-4032 Debrecen, Hungary
- Correspondence: (P.H.); (G.V.)
| | - György Vámosi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (V.S.); (É.N.); (G.M.); (J.V.); (O.S.); (Á.K.); (G.P.); (K.T.)
- Correspondence: (P.H.); (G.V.)
| |
Collapse
|
4
|
Louzao MC, Vilariño N, Vale C, Costas C, Cao A, Raposo-Garcia S, Vieytes MR, Botana LM. Current Trends and New Challenges in Marine Phycotoxins. Mar Drugs 2022; 20:md20030198. [PMID: 35323497 PMCID: PMC8950113 DOI: 10.3390/md20030198] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/04/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phycotoxins are a multiplicity of bioactive compounds which are produced by microalgae and bioaccumulate in the marine food web. Phycotoxins affect the ecosystem, pose a threat to human health, and have important economic effects on aquaculture and tourism worldwide. However, human health and food safety have been the primary concerns when considering the impacts of phycotoxins. Phycotoxins toxicity information, often used to set regulatory limits for these toxins in shellfish, lacks traceability of toxicity values highlighting the need for predefined toxicological criteria. Toxicity data together with adequate detection methods for monitoring procedures are crucial to protect human health. However, despite technological advances, there are still methodological uncertainties and high demand for universal phycotoxin detectors. This review focuses on these topics, including uncertainties of climate change, providing an overview of the current information as well as future perspectives.
Collapse
Affiliation(s)
- Maria Carmen Louzao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| | - Natalia Vilariño
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Carmen Vale
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Celia Costas
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Alejandro Cao
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Sandra Raposo-Garcia
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
| | - Mercedes R. Vieytes
- Departamento de Fisiologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain;
| | - Luis M. Botana
- Departamento de Farmacologia, Facultad de Veterinaria, Universidade de Santiago de Compostela, 27002 Lugo, Spain; (N.V.); (C.V.); (C.C.); (A.C.); (S.R.-G.)
- Correspondence: (M.C.L.); (L.M.B.)
| |
Collapse
|
5
|
The Kv1.3 K + channel in the immune system and its "precision pharmacology" using peptide toxins. Biol Futur 2021; 72:75-83. [PMID: 34554500 DOI: 10.1007/s42977-021-00071-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 01/12/2021] [Indexed: 01/28/2023]
Abstract
Since the discovery of the Kv1.3 voltage-gated K+ channel in human T cells in 1984, ion channels are considered crucial elements of the signal transduction machinery in the immune system. Our knowledge about Kv1.3 and its inhibitors is outstanding, motivated by their potential application in autoimmune diseases mediated by Kv1.3 overexpressing effector memory T cells (e.g., Multiple Sclerosis). High affinity Kv1.3 inhibitors are either small organic molecules (e.g., Pap-1) or peptides isolated from venomous animals. To date, the highest affinity Kv1.3 inhibitors with the best Kv1.3 selectivity are the engineered analogues of the sea anemone peptide ShK (e.g., ShK-186), the engineered scorpion toxin HsTx1[R14A] and the natural scorpion toxin Vm24. These peptides inhibit Kv1.3 in picomolar concentrations and are several thousand-fold selective for Kv1.3 over other biologically critical ion channels. Despite the significant progress in the field of Kv1.3 molecular pharmacology several progressive questions remain to be elucidated and discussed here. These include the conjugation of the peptides to carriers to increase the residency time of the peptides in the circulation (e.g., PEGylation and engineering the peptides into antibodies), use of rational drug design to create novel peptide inhibitors and understanding the potential off-target effects of Kv1.3 inhibition.
Collapse
|
6
|
Singh Y, Salker MS, Lang F. Green Tea Polyphenol-Sensitive Calcium Signaling in Immune T Cell Function. Front Nutr 2021; 7:616934. [PMID: 33585537 PMCID: PMC7876374 DOI: 10.3389/fnut.2020.616934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/17/2020] [Indexed: 12/25/2022] Open
Abstract
Polyphenol compounds found in green tea have a great therapeutic potential to influence multiple human diseases including malignancy and inflammation. In this mini review, we describe effects of green tea and the most important component EGCG in malignancy and inflammation. We focus on cellular mechanisms involved in the modification of T cell function by green tea polyphenol EGCG. The case is made that EGCG downregulates calcium channel activity by influencing miRNAs regulating expression of the channel at the post-transcriptional level.
Collapse
Affiliation(s)
- Yogesh Singh
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | | | - Florian Lang
- Institute of Vegetative and Clinical Physiology, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|
7
|
Tajti G, Wai DCC, Panyi G, Norton RS. The voltage-gated potassium channel K V1.3 as a therapeutic target for venom-derived peptides. Biochem Pharmacol 2020; 181:114146. [PMID: 32653588 DOI: 10.1016/j.bcp.2020.114146] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 02/07/2023]
Abstract
The voltage-gated potassium channel KV1.3 is a well-established therapeutic target for a range of autoimmune diseases, in addition to being the site of action of many venom-derived peptides. Numerous studies have documented the efficacy of venom peptides that target KV1.3, in particular from sea anemones and scorpions, in animal models of autoimmune diseases such as rheumatoid arthritis, psoriasis and multiple sclerosis. Moreover, an analogue of the sea anemone peptide ShK (known as dalazatide) has successfully completed Phase 1 clinical trials in mild-to-moderate plaque psoriasis. In this article we consider other potential therapeutic applications of inhibitors of KV1.3, including in inflammatory bowel disease and neuroinflammatory conditions such as Alzheimer's and Parkinson's diseases, as well as fibrotic diseases. We also summarise strategies for facilitating the entry of peptides to the central nervous system, given that this will be a pre-requisite for the treatment of most neuroinflammatory diseases. Venom-derived peptides that have been reported recently to target KV1.3 are also described. The increasing number of autoimmune and other conditions in which KV1.3 is upregulated and is therefore a potential therapeutic target, combined with the fact that many venom-derived peptides are potent inhibitors of KV1.3, suggests that venoms are likely to continue to serve as a rich source of new pharmacological tools and therapeutic leads targeting this channel.
Collapse
Affiliation(s)
- Gabor Tajti
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary.
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
8
|
Serrano-Albarrás A, Cirera-Rocosa S, Sastre D, Estadella I, Felipe A. Fighting rheumatoid arthritis: Kv1.3 as a therapeutic target. Biochem Pharmacol 2019; 165:214-220. [DOI: 10.1016/j.bcp.2019.03.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 01/18/2023]
|
9
|
Bordoni B, Marelli F, Morabito B, Castagna R. A New Concept of Biotensegrity Incorporating Liquid Tissues: Blood and Lymph. J Evid Based Integr Med 2018; 23:2515690X18792838. [PMID: 30124054 PMCID: PMC6102753 DOI: 10.1177/2515690x18792838] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The definition of fascia includes tissues of mesodermal derivation, considered as
specialized connective tissue: blood and lymph. As water shapes rocks, bodily fluids
modify shapes and functions of bodily structures. Bodily fluids are silent witnesses of
the mechanotransductive information, allowing adaptation and life, transporting
biochemical and hormonal signals. While the solid fascial tissue divides, supports, and
connects the different parts of the body system, the liquid fascial tissue feeds and
transports messages for the solid fascia. The focus of this article is to reconsider the
model of biotensegrity because it does not take into account the liquid fascia, and to try
to integrate the fascial continuum with the lymph and the blood in a new model. The name
given to this new model is RAIN—Rapid Adaptability of Internal Network.
Collapse
Affiliation(s)
- Bruno Bordoni
- 1 Institute of Hospitalization and Care with Scientific Address, Foundation Don Carlo Gnocchi IRCCS, Milan, Italy.,2 CRESO, School of Osteopathic Centre for Research and Studies, Gorla Minore (VA) Piazza XXV Aprile 4, Italy.,3 CRESO, School of Osteopathic Centre for Research and Studies, Via Fanella, Fano (Pesaro Urbino), Italy
| | - Fabiola Marelli
- 2 CRESO, School of Osteopathic Centre for Research and Studies, Gorla Minore (VA) Piazza XXV Aprile 4, Italy.,3 CRESO, School of Osteopathic Centre for Research and Studies, Via Fanella, Fano (Pesaro Urbino), Italy
| | - Bruno Morabito
- 2 CRESO, School of Osteopathic Centre for Research and Studies, Gorla Minore (VA) Piazza XXV Aprile 4, Italy.,3 CRESO, School of Osteopathic Centre for Research and Studies, Via Fanella, Fano (Pesaro Urbino), Italy
| | - Roberto Castagna
- 2 CRESO, School of Osteopathic Centre for Research and Studies, Gorla Minore (VA) Piazza XXV Aprile 4, Italy
| |
Collapse
|
10
|
Bordoni B, Lintonbon D, Morabito B. Meaning of the Solid and Liquid Fascia to Reconsider the Model of Biotensegrity. Cureus 2018; 10:e2922. [PMID: 30197845 PMCID: PMC6126780 DOI: 10.7759/cureus.2922] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The definition of fascia includes tissues of mesodermal derivation considered as specialized connective tissues: the blood and lymph. As water shapes rocks, bodily fluids modify the shape and functioning of bodily structures. Bodily fluids are silent witnesses to mechanotransductive information, allowing adaptation and life, transporting biochemical and hormonal signals. While the solid fascial tissue divides, supports, and connects the different parts of the body system, the liquid fascial tissue feeds and transports messages for the solid fascia. This article reconsiders the model of biotensegrity, by revising the definition of solid and liquid fascia, and tries to integrate the fascial continuum with the lymph and blood in a new model, because in the previous model, these two liquid elements were not taken into consideration. The name given to this new model is Rapid Adaptability of Internal Network (RAIN).
Collapse
Affiliation(s)
- Bruno Bordoni
- Cardiology, Foundation Don Carlo Gnocchi Irccs/department of Cardiology, Institute of Hospitalization and Care, Milano, ITA
| | - David Lintonbon
- Osteopathic Technique, London School of Osteopathy, London, GBR
| | - Bruno Morabito
- Osteopathy, School of Osteopathic Centre for Research and Studies, Rome, ITA
| |
Collapse
|
11
|
Booth MJ, Restrepo Schild V, Downs FG, Bayley H. Functional aqueous droplet networks. MOLECULAR BIOSYSTEMS 2018; 13:1658-1691. [PMID: 28766622 DOI: 10.1039/c7mb00192d] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Droplet interface bilayers (DIBs), comprising individual lipid bilayers between pairs of aqueous droplets in an oil, are proving to be a useful tool for studying membrane proteins. Recently, attention has turned to the elaboration of networks of aqueous droplets, connected through functionalized interface bilayers, with collective properties unachievable in droplet pairs. Small 2D collections of droplets have been formed into soft biodevices, which can act as electronic components, light-sensors and batteries. A substantial breakthrough has been the development of a droplet printer, which can create patterned 3D droplet networks of hundreds to thousands of connected droplets. The 3D networks can change shape, or carry electrical signals through defined pathways, or express proteins in response to patterned illumination. We envisage using functional 3D droplet networks as autonomous synthetic tissues or coupling them with cells to repair or enhance the properties of living tissues.
Collapse
Affiliation(s)
- Michael J Booth
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK.
| | | | | | | |
Collapse
|
12
|
Nishimura-Danjobara Y, Oyama K, Yokoigawa K, Oyama Y. Hyperpolarization by N-(3-oxododecanoyl)-l-homoserine-lactone, a quorum sensing molecule, in rat thymic lymphocytes. Chem Biol Interact 2018; 283:91-96. [PMID: 29427588 DOI: 10.1016/j.cbi.2018.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/22/2018] [Accepted: 02/05/2018] [Indexed: 11/25/2022]
Abstract
To study the adverse effects of N-(3-oxododecanoyl)-l-homoserine-lactone (ODHL), a quorum sensing molecule, on mammalian host cells, its effect on membrane potential was examined in rat thymic lymphocytes using flow cytometric techniques with a voltage-sensitive fluorescent probe. As 3-300 μM ODHL elicited hyperpolarization, it is likely that it increases membrane K+ permeability because hyperpolarization is directly linked to changing K+ gradient across membranes, but not Na+ and Cl- gradients. ODHL did not increase intracellular Ca2+ concentration. ODHL also produced a response in the presence of an intracellular Zn2+ chelator. Thus, it is unlikely that intracellular Ca2+ and Zn2+ are attributed to the response. Quinine, a non-specific K+ channel blocker, greatly reduced hyperpolarization. However, because charybdotoxin, tetraethylammonium chloride, 4-aminopyridine, and glibenclamide did not affect it, it is pharmacologically hypothesized that Ca2+-activated K+ channels, voltage-gated K+ channels, and ATP-sensitive K+ channels are not involved in ODHL-induced hyperpolarization. Although the K+ channels responsible for ODHL-induced hyperpolarization have not been identified, it is suggested that ODHL can elicit hyperpolarization in mammalian host cells, disturbing cellular functions.
Collapse
Affiliation(s)
- Yumiko Nishimura-Danjobara
- Department of Food Science, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Keisuke Oyama
- Department of Food Science, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Kumio Yokoigawa
- Department of Food Science, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Yasuo Oyama
- Department of Food Science, Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.
| |
Collapse
|
13
|
Lowinus T, Bose T, Busse S, Busse M, Reinhold D, Schraven B, Bommhardt UHH. Immunomodulation by memantine in therapy of Alzheimer's disease is mediated through inhibition of Kv1.3 channels and T cell responsiveness. Oncotarget 2018; 7:53797-53807. [PMID: 27462773 PMCID: PMC5288222 DOI: 10.18632/oncotarget.10777] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 07/09/2016] [Indexed: 12/20/2022] Open
Abstract
Memantine is approved for the treatment of advanced Alzheimer's disease (AD) and reduces glutamate-mediated neuronal excitotoxicity by antagonism of N-methyl-D-aspartate receptors. In the pathophysiology of AD immune responses deviate and infectious side effects are observed during memantine therapy. However, the particular effects of memantine on human T lymphocytes are unresolved. Here, we provide evidence that memantine blocks Kv1.3 potassium channels, inhibits CD3-antibody- and alloantigen-induced proliferation and suppresses chemokine-induced migration of peripheral blood T cells of healthy donors. Concurrent with the in vitro data, CD4+ T cells from AD patients receiving therapeutic doses of memantine show a transient decline of Kv1.3 channel activity and a long-lasting reduced proliferative response to alloantigens in mixed lymphocyte reactions. Furthermore, memantine treatment provokes a profound depletion of peripheral blood memory CD45RO+ CD4+ T cells. Thus, standard doses of memantine profoundly reduce T cell responses in treated patients through blockade of Kv1.3 channels. This may normalize deviant immunopathology in AD and contribute to the beneficial effects of memantine, but may also account for the enhanced infection rate.
Collapse
Affiliation(s)
- Theresa Lowinus
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Tanima Bose
- Molecular Physiology, Leibniz Institute for Neurobiology, Magdeburg, Germany.,Current address: Lee Kong Chian School of Medicine, Singapore
| | - Stefan Busse
- Department of Psychiatry, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Mandy Busse
- Department of Pediatric Pulmonology & Allergology, Medical University of Hannover, Hannover, Germany
| | - Dirk Reinhold
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Burkhart Schraven
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany.,Department of Immune Control, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Ursula H H Bommhardt
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| |
Collapse
|
14
|
Takeda M, Oyama K, Kamemura N, Kanemaru K, Yuasa K, Yokoigawa K, Oyama Y. Change in plasma membrane potential of rat thymocytes by tert-butylhydroquinone, a food additive: Possible risk on lymphocytes. Food Chem Toxicol 2017; 109:296-301. [PMID: 28899772 DOI: 10.1016/j.fct.2017.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 08/25/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022]
Abstract
Tertiary butylhydroquinone (TBHQ) is a food additive and has various beneficial actions under in vitro and in vivo experimental conditions. Therefore, it is necessary to collect additional data on the toxicity of TBHQ in order to avoid adverse effects during clinical applications. Changes in plasma membrane potential are associated with changes in physiological functions even in non-excitable cells such as lymphocytes. Thus, compounds that affect membrane potential may modify some lymphocytic functions. The effect of TBHQ on plasma membrane potential was examined in rat thymocytes using flow cytometric techniques. Treatment of rat thymocytes with TBHQ caused hyperpolarization and then depolarization. The TBHQ-induced hyperpolarization was due to the activation of Ca2+-dependent K+ channels. TBHQ elevated intracellular Ca2+ levels. The depolarization by TBHQ was caused by a nonspecific increase in membrane ionic permeability. Both the sustained depolarization and elevation of intracellular Ca2+ level by TBHQ are thought to be adverse for thymocytes because such changes disturb membrane and intracellular signaling. The thymus is most active during neonatal and pre-adolescent periods. If TBHQ exerts adverse actions on thymocytes, it may result in an immunotoxic effect in neonates and adolescents.
Collapse
Affiliation(s)
- Maki Takeda
- Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Japan
| | - Keisuke Oyama
- Osaka University Hospital, Suita, Osaka 565-0871, Japan
| | - Norio Kamemura
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Kaori Kanemaru
- Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Keizo Yuasa
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Kumio Yokoigawa
- Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Yasuo Oyama
- Faculty of Integrated Arts and Sciences, Tokushima University, Tokushima 770-8502, Japan; Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.
| |
Collapse
|
15
|
Sim JH, Kim KS, Park H, Kim KJ, Lin H, Kim TJ, Shin HM, Kim G, Lee DS, Park CW, Lee DH, Kang I, Kim SJ, Cho CH, Doh J, Kim HR. Differentially Expressed Potassium Channels Are Associated with Function of Human Effector Memory CD8 + T Cells. Front Immunol 2017; 8:859. [PMID: 28791017 PMCID: PMC5522836 DOI: 10.3389/fimmu.2017.00859] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 07/07/2017] [Indexed: 12/12/2022] Open
Abstract
The voltage-gated potassium channel, Kv1.3, and the Ca2+-activated potassium channel, KCa3.1, regulate membrane potentials in T cells, thereby controlling T cell activation and cytokine production. However, little is known about the expression and function of potassium channels in human effector memory (EM) CD8+ T cells that can be further divided into functionally distinct subsets based on the expression of the interleukin (IL)-7 receptor alpha (IL-7Rα) chain. Herein, we investigated the functional expression and roles of Kv1.3 and KCa3.1 in EM CD8+ T cells that express high or low levels of the IL-7 receptor alpha chain (IL-7Rαhigh and IL-7Rαlow, respectively). In contrast to the significant activity of Kv1.3 and KCa3.1 in IL-7Rαhigh EM CD8+ T cells, IL-7Rαlow EM CD8+ T cells showed lower expression of Kv1.3 and insignificant expression of KCa3.1. Kv1.3 was involved in the modulation of cell proliferation and IL-2 production, whereas KCa3.1 affected the motility of EM CD8+ T cells. The lower motility of IL-7Rαlow EM CD8+ T cells was demonstrated using transendothelial migration and motility assays with intercellular adhesion molecule 1- and/or chemokine stromal cell-derived factor-1α-coated surfaces. Consistent with the lower migration property, IL-7Rαlow EM CD8+ T cells were found less frequently in human skin. Stimulating IL-7Rαlow EM CD8+ T cells with IL-2 or IL-15 increased their motility and recovery of KCa3.1 activity. Our findings demonstrate that Kv1.3 and KCa3.1 are differentially involved in the functions of EM CD8+ T cells. The weak expression of potassium channels in IL-7Rαlow EM CD8+ T cells can be revived by stimulation with IL-2 or IL-15, which restores the associated functions. This study suggests that IL-7Rαhigh EM CD8+ T cells with functional potassium channels may serve as a reservoir for effector CD8+ T cells during peripheral inflammation.
Collapse
Affiliation(s)
- Ji Hyun Sim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea
| | - Kyung Soo Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyoungjun Park
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Kyung-Jin Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea
| | - Haiyue Lin
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea
| | - Tae-Joo Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Hyun Mu Shin
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Gwanghun Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong-Sup Lee
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea
| | - Chan-Wook Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, South Korea
| | - Dong Hun Lee
- Department of Dermatology, Seoul National University College of Medicine, Seoul, South Korea
| | - Insoo Kang
- Department of Internal Medicine, Section of Rheumatology, Yale University School of Medicine, New Haven, CT, United States
| | - Sung Joon Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Physiology, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Chung-Hyun Cho
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,Department of Pharmacology, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Junsang Doh
- Department of Mechanical Engineering, Pohang University of Science and Technology, Pohang, South Korea
| | - Hang-Rae Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, South Korea.,Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea.,BK21Plus Biomedical Science Project, Seoul National University College of Medicine, Seoul, South Korea.,Medical Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| |
Collapse
|
16
|
|
17
|
Abdollahi E, Momtazi AA, Johnston TP, Sahebkar A. Therapeutic effects of curcumin in inflammatory and immune‐mediated diseases: A nature‐made jack‐of‐all‐trades? J Cell Physiol 2017; 233:830-848. [DOI: 10.1002/jcp.25778] [Citation(s) in RCA: 190] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 01/05/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Elham Abdollahi
- Department of Medical ImmunologySchool of Medicine, Mashhad University of Medical SciencesMashhadIran
- Student Research CommitteeMashhad University of Medical SciencesMashhadIran
| | - Amir Abbas Momtazi
- Student Research Committee, Nanotechnology Research Center, Department of Medical BiotechnologySchool of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Thomas P. Johnston
- Division of Pharmaceutical SciencesSchool of Pharmacy, University of Missouri‐Kansas CityKansas CityMissouri
| | - Amirhossein Sahebkar
- Biotechnology Research CenterMashhad University of Medical SciencesMashhadIran
- Neurogenic Inflammation Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
18
|
Lack of effect of Z-butylidenephthalide on presynaptic N-type Ca²⁺ channels in isolated guinea-pig ileum. Naunyn Schmiedebergs Arch Pharmacol 2016; 389:159-66. [PMID: 26497186 DOI: 10.1007/s00210-015-1183-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/07/2015] [Indexed: 01/23/2023]
Abstract
Z-Butylidenephthalide (Bdph) was reported to more potently inhibit electrically induced twitch responses than acetylcholine-induced tonic contraction in isolated guinea-pig ileum (GPI). The aim of the present study was to investigate the inhibitory effects of Z-Bdph on Ca2+ and K+ channels on GPI. In Locke-Ringer’s solution, both responses were isometrically recorded on a polygraph. Incubation of ω-conotoxin MVIIC, but not Z-Bdph, in the electrically stimulated GPI prior to adding ω-conotoxin GVIA, an irreversible blocker of N-type voltage-dependent Ca2+ channels (VDCCs), protected the binding sites and resulted in the twitch responses reversible by washing, suggesting that Z-Bdph did not bind to the N-type VDCCs. Interestingly, we found Z-Bdph concentration dependently delayed the onsets of K+-induced twitch responses, suggesting that Z-Bdph may be a blocker of K+ channels to interfere extracellular K+ across through the pre-junctional membrane of nerve ending in K+-free medium. Z-Bdph similar to nifedipine non-competitively inhibited cumulative ACh-induced phasic contractions, suggesting that Z-Bdph may bind to L-type of inositol-1,4,5-trisphosphate (IP3)-sensitive Ca2+ channels on the endoplasmic reticulum (ER) membrane. In the presence of verapamil, a L-type Ca2+ channel blocker or Z-Bdph, the twitch inhibitions by either were effectively reversed by exogenous Ca2+, suggesting that they may freely pass through pre-junctional N-type, but not L-type which was blocked at least a part by either, of VDDCs open when each electrical coaxial stimulation (ECS) into intracellular space of cholinergic nerve terminal and trigger release of transmitters. In conclusion, results confirm that Z-Bdph more potently inhibits ECS-induced twitch responses than ACh-induced PCs in GPI and suggest that this effect is not mediated by interaction with presynaptic N-type VDCCs.
Collapse
|
19
|
Solé L, Roig SR, Vallejo-Gracia A, Serrano-Albarrás A, Martínez-Mármol R, Tamkun MM, Felipe A. The C-terminal domain of Kv1.3 regulates functional interactions with the KCNE4 subunit. J Cell Sci 2016; 129:4265-4277. [PMID: 27802162 DOI: 10.1242/jcs.191650] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 09/29/2016] [Indexed: 12/23/2022] Open
Abstract
The voltage-dependent K+ channel Kv1.3 (also known as KCNA3), which plays crucial roles in leukocytes, physically interacts with KCNE4. This interaction inhibits the K+ currents because the channel is retained within intracellular compartments. Thus, KCNE subunits are regulators of K+ channels in the immune system. Although the canonical interactions of KCNE subunits with Kv7 channels are under intensive investigation, the molecular determinants governing the important Kv1.3- KCNE4 association in the immune system are unknown. Our results suggest that the tertiary structure of the C-terminal domain of Kv1.3 is necessary and sufficient for such an interaction. However, this element is apparently not involved in modulating Kv1.3 gating. Furthermore, the KCNE4-dependent intracellular retention of the channel, which negatively affects the activity of Kv1.3, is mediated by two independent and additive mechanisms. First, KCNE4 masks the YMVIEE signature at the C-terminus of Kv1.3, which is crucial for the surface targeting of the channel. Second, we identify a potent endoplasmic reticulum retention motif in KCNE4 that further limits cell surface expression. Our results define specific molecular determinants that play crucial roles in the physiological function of Kv1.3 in leukocytes.
Collapse
Affiliation(s)
- Laura Solé
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain.,Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Sara R Roig
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Albert Vallejo-Gracia
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Antonio Serrano-Albarrás
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| | - Ramón Martínez-Mármol
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain.,Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Michael M Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biomedicina Molecular, Institut de Biomedicina (IBUB), Universitat de Barcelona, Avda. Diagonal 643, Barcelona 08028, Spain
| |
Collapse
|
20
|
Balajthy A, Somodi S, Pethő Z, Péter M, Varga Z, Szabó GP, Paragh G, Vígh L, Panyi G, Hajdu P. 7DHC-induced changes of Kv1.3 operation contributes to modified T cell function in Smith-Lemli-Opitz syndrome. Pflugers Arch 2016; 468:1403-18. [DOI: 10.1007/s00424-016-1851-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 02/06/2023]
|
21
|
Peimine, a main active ingredient of Fritillaria, exhibits anti-inflammatory and pain suppression properties at the cellular level. Fitoterapia 2016; 111:1-6. [DOI: 10.1016/j.fitote.2016.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/22/2016] [Accepted: 03/24/2016] [Indexed: 12/19/2022]
|
22
|
Caveolin interaction governs Kv1.3 lipid raft targeting. Sci Rep 2016; 6:22453. [PMID: 26931497 PMCID: PMC4773814 DOI: 10.1038/srep22453] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/15/2016] [Indexed: 12/22/2022] Open
Abstract
The spatial localization of ion channels at the cell surface is crucial for their functional role. Many channels localize in lipid raft microdomains, which are enriched in cholesterol and sphingolipids. Caveolae, specific lipid rafts which concentrate caveolins, harbor signaling molecules and their targets becoming signaling platforms crucial in cell physiology. However, the molecular mechanisms involved in such spatial localization are under debate. Kv1.3 localizes in lipid rafts and participates in the immunological response. We sought to elucidate the mechanisms of Kv1.3 surface targeting, which govern leukocyte physiology. Kv1 channels share a putative caveolin-binding domain located at the intracellular N-terminal of the channel. This motif, lying close to the S1 transmembrane segment, is situated near the T1 tetramerization domain and the determinants involved in the Kvβ subunit association. The highly hydrophobic domain (FQRQVWLLF) interacts with caveolin 1 targeting Kv1.3 to caveolar rafts. However, subtle variations of this cluster, putative ancillary associations and different structural conformations can impair the caveolin recognition, thereby altering channel’s spatial localization. Our results identify a caveolin-binding domain in Kv1 channels and highlight the mechanisms that govern the regulation of channel surface localization during cellular processes.
Collapse
|
23
|
Petho Z, Balajthy A, Bartok A, Bene K, Somodi S, Szilagyi O, Rajnavolgyi E, Panyi G, Varga Z. The anti-proliferative effect of cation channel blockers in T lymphocytes depends on the strength of mitogenic stimulation. Immunol Lett 2016; 171:60-9. [PMID: 26861999 DOI: 10.1016/j.imlet.2016.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 11/15/2022]
Abstract
Ion channels are crucially important for the activation and proliferation of T lymphocytes, and thus, for the function of the immune system. Previous studies on the effects of channel blockers on T cell proliferation reported variable effectiveness due to differing experimental systems. Therefore our aim was to investigate how the strength of the mitogenic stimulation influences the efficiency of cation channel blockers in inhibiting activation, cytokine secretion and proliferation of T cells under standardized conditions. Human peripheral blood lymphocytes were activated via monoclonal antibodies targeting the TCR-CD3 complex and the co-stimulator CD28. We applied the blockers of Kv1.3 (Anuroctoxin), KCa3.1 (TRAM-34) and CRAC (2-Apb) channels of T cells either alone or in combination with rapamycin, the inhibitor of the mammalian target of rapamycin (mTOR). Five days after the stimulation ELISA and flow cytometric measurements were performed to determine IL-10 and IFN-γ secretion, cellular viability and proliferation. Our results showed that ion channel blockers and rapamycin inhibit IL-10 and IFN-γ secretion and cell division in a dose-dependent manner. Simultaneous application of the blockers for each channel along with rapamycin was the most effective, indicating synergy among the various activation pathways. Upon increasing the extent of mitogenic stimulation the anti-proliferative effect of the ion channel blockers diminished. This phenomenon may be important in understanding the fine-tuning of T cell activation.
Collapse
Affiliation(s)
- Zoltan Petho
- Department of Biophysics and Cell Biology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Andras Balajthy
- Department of Biophysics and Cell Biology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Adam Bartok
- Department of Biophysics and Cell Biology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Krisztian Bene
- Department of Immunology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Sandor Somodi
- 1st Department of Internal Medicine, University of Debrecen, Debrecen, Hungary
| | - Orsolya Szilagyi
- Department of Biophysics and Cell Biology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Eva Rajnavolgyi
- Department of Immunology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary.
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, Faculty of General Medicine, University of Debrecen, Debrecen, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, Debrecen, Egyetem tér 1, H-4032, Hungary
| |
Collapse
|
24
|
D'Ambrosio A, Pontecorvo S, Colasanti T, Zamboni S, Francia A, Margutti P. Peripheral blood biomarkers in multiple sclerosis. Autoimmun Rev 2015; 14:1097-110. [PMID: 26226413 DOI: 10.1016/j.autrev.2015.07.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 07/23/2015] [Indexed: 10/23/2022]
Abstract
Multiple sclerosis is the most common autoimmune disorder affecting the central nervous system. The heterogeneity of pathophysiological processes in MS contributes to the highly variable course of the disease and unpredictable response to therapies. The major focus of the research on MS is the identification of biomarkers in biological fluids, such as cerebrospinal fluid or blood, to guide patient management reliably. Because of the difficulties in obtaining spinal fluid samples and the necessity for lumbar puncture to make a diagnosis has reduced, the research of blood-based biomarkers may provide increasingly important tools for clinical practice. However, currently there are no clearly established MS blood-based biomarkers. The availability of reliable biomarkers could radically alter the management of MS at critical phases of the disease spectrum, allowing for intervention strategies that may prevent evolution to long-term neurological disability. This article provides an overview of this research field and focuses on recent advances in blood-based biomarker research.
Collapse
Affiliation(s)
- Antonella D'Ambrosio
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Simona Pontecorvo
- Multiple Sclerosis Center of Department of Neurology and Psychiatry of "Sapienza" University of Rome, Italy
| | - Tania Colasanti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Silvia Zamboni
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy
| | - Ada Francia
- Multiple Sclerosis Center of Department of Neurology and Psychiatry of "Sapienza" University of Rome, Italy
| | - Paola Margutti
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
25
|
Placing ion channels into a signaling network of T cells: from maturing thymocytes to healthy T lymphocytes or leukemic T lymphoblasts. BIOMED RESEARCH INTERNATIONAL 2015; 2015:750203. [PMID: 25866806 PMCID: PMC4383400 DOI: 10.1155/2015/750203] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/19/2014] [Indexed: 12/20/2022]
Abstract
T leukemogenesis is a multistep process, where the genetic errors during T cell maturation cause the healthy progenitor to convert into the leukemic precursor that lost its ability to differentiate but possesses high potential for proliferation, self-renewal, and migration. A new misdirecting "leukemogenic" signaling network appears, composed by three types of participants which are encoded by (1) genes implicated in determined stages of T cell development but deregulated by translocations or mutations, (2) genes which normally do not participate in T cell development but are upregulated, and (3) nondifferentially expressed genes which become highly interconnected with genes expressed differentially. It appears that each of three groups may contain genes coding ion channels. In T cells, ion channels are implicated in regulation of cell cycle progression, differentiation, activation, migration, and cell death. In the present review we are going to reveal a relationship between different genetic defects, which drive the T cell neoplasias, with calcium signaling and ion channels. We suggest that changes in regulation of various ion channels in different types of the T leukemias may provide the intracellular ion microenvironment favorable to maintain self-renewal capacity, arrest differentiation, induce proliferation, and enhance motility.
Collapse
|
26
|
Hosseinzadeh Z, Warsi J, Elvira B, Almilaji A, Shumilina E, Lang F. Up-regulation of Kv1.3 Channels by Janus Kinase 2. J Membr Biol 2015; 248:309-17. [DOI: 10.1007/s00232-015-9772-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/14/2015] [Indexed: 01/08/2023]
|
27
|
Involvement of potassium channels in the progression of cancer to a more malignant phenotype. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:2477-92. [PMID: 25517985 DOI: 10.1016/j.bbamem.2014.12.008] [Citation(s) in RCA: 95] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/01/2014] [Accepted: 12/08/2014] [Indexed: 12/22/2022]
Abstract
Potassium channels are a diverse group of pore-forming transmembrane proteins that selectively facilitate potassium flow through an electrochemical gradient. They participate in the control of the membrane potential and cell excitability in addition to different cell functions such as cell volume regulation, proliferation, cell migration, angiogenesis as well as apoptosis. Because these physiological processes are essential for the correct cell function, K+ channels have been associated with a growing number of diseases including cancer. In fact, different K+ channel families such as the voltage-gated K+ channels, the ether à-go-go K+ channels, the two pore domain K+ channels and the Ca2+-activated K+ channels have been associated to tumor biology. Potassium channels have a role in neoplastic cell-cycle progression and their expression has been found abnormal in many types of tumors and cancer cells. In addition, the expression and activity of specific K+ channels have shown a significant correlation with the tumor malignancy grade. The aim of this overview is to summarize published data on K+ channels that exhibit oncogenic properties and have been linked to a more malignant cancer phenotype. This article is part of a Special Issue entitled: Membrane channels and transporters in cancers.
Collapse
|
28
|
Potassium currents inhibition by gambierol analogs prevents human T lymphocyte activation. Arch Toxicol 2014; 89:1119-34. [DOI: 10.1007/s00204-014-1299-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 06/17/2014] [Indexed: 01/04/2023]
|
29
|
Bartok A, Toth A, Somodi S, Szanto TG, Hajdu P, Panyi G, Varga Z. Margatoxin is a non-selective inhibitor of human Kv1.3 K+ channels. Toxicon 2014; 87:6-16. [PMID: 24878374 DOI: 10.1016/j.toxicon.2014.05.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/07/2014] [Accepted: 05/12/2014] [Indexed: 11/28/2022]
Abstract
Margatoxin (MgTx), an alpha-KTx scorpion toxin, is considered a selective inhibitor of the Kv1.3K + channel. This peptide is widely used in ion channel research; however, a comprehensive study of its selectivity with electrophysiological methods has not been published yet. The lack of selectivity might lead to undesired side effects upon therapeutic application or may lead to incorrect conclusion regarding the role of a particular ion channel in a physiological or pathophysiological response either in vitro or in vivo. Using the patch-clamp technique we characterized the selectivity profile of MgTx using L929 cells expressing mKv1.1 channels, human peripheral lymphocytes expressing Kv1.3 channels and transiently transfected tsA201 cells expressing hKv1.1, hKv1.2, hKv1.3, hKv1.4-IR, hKv1.5, hKv1.6, hKv1.7, rKv2.1, Shaker-IR, hERG, hKCa1.1, hKCa3.1 and hNav1.5 channels. MgTx is indeed a high affinity inhibitor of Kv1.3 (Kd = 11.7 pM) but is not selective, it inhibits the Kv1.2 channel with similar affinity (Kd = 6.4 pM) and Kv1.1 in the nanomolar range (Kd = 4.2 nM). Based on our comprehensive data MgTX has to be considered a non-selective Kv1.3 inhibitor, and thus, experiments aiming at elucidating the significance of Kv1.3 in in vitro or in vivo physiological responses have to be carefully evaluated.
Collapse
Affiliation(s)
- Adam Bartok
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine, 98 Nagyerdei krt., Debrecen 4032, Hungary.
| | - Agnes Toth
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine, 98 Nagyerdei krt., Debrecen 4032, Hungary.
| | - Sandor Somodi
- Division of Metabolic Diseases, Department of Internal Medicine, University of Debrecen, 98 Nagyerdei krt., Debrecen 4032, Hungary.
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine, 98 Nagyerdei krt., Debrecen 4032, Hungary.
| | - Peter Hajdu
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Dentistry, 98 Nagyerdei krt., Debrecen 4032, Hungary.
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine, 98 Nagyerdei krt., Debrecen 4032, Hungary; MTA-DE Cell Biology and Signaling Research Group, 4032 Debrecen, Egyetem tér 1, Hungary. http://biophys.med.unideb.hu/en/node/311
| | - Zoltan Varga
- Department of Biophysics and Cell Biology, University of Debrecen, Faculty of Medicine, 98 Nagyerdei krt., Debrecen 4032, Hungary.
| |
Collapse
|
30
|
Physiological role of Kv1.3 channel in T lymphocyte cell investigated quantitatively by kinetic modeling. PLoS One 2014; 9:e89975. [PMID: 24594979 PMCID: PMC3940720 DOI: 10.1371/journal.pone.0089975] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Accepted: 01/23/2014] [Indexed: 11/30/2022] Open
Abstract
Kv1.3 channel is a delayed rectifier channel abundant in human T lymphocytes. Chronic inflammatory and autoimmune disorders lead to the over-expression of Kv1.3 in T cells. To quantitatively study the regulatory mechanism and physiological function of Kv1.3 in T cells, it is necessary to have a precise kinetic model of Kv1.3. In this study, we firstly established a kinetic model capable to precisely replicate all the kinetic features for Kv1.3 channels, and then constructed a T-cell model composed of ion channels including Ca2+-release activated calcium (CRAC) channel, intermediate K+ (IK) channel, TASK channel and Kv1.3 channel for quantitatively simulating the changes in membrane potentials and local Ca2+ signaling messengers during activation of T cells. Based on the experimental data from current-clamp recordings, we successfully demonstrated that Kv1.3 dominated the membrane potential of T cells to manipulate the Ca2+ influx via CRAC channel. Our results revealed that the deficient expression of Kv1.3 channel would cause the less Ca2+ signal, leading to the less efficiency in secretion. This was the first successful attempt to simulate membrane potential in non-excitable cells, which laid a solid basis for quantitatively studying the regulatory mechanism and physiological role of channels in non-excitable cells.
Collapse
|
31
|
Panyi G, Beeton C, Felipe A. Ion channels and anti-cancer immunity. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130106. [PMID: 24493754 DOI: 10.1098/rstb.2013.0106] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The outcome of a malignant disease depends on the efficacy of the immune system to destroy cancer cells. Key steps in this process, for example the generation of a proper Ca(2+) signal induced by recognition of a specific antigen, are regulated by various ion channel including voltage-gated Kv1.3 and Ca(2+)-activated KCa3.1 K(+) channels, and the interplay between Orai and STIM to produce the Ca(2+)-release-activated Ca(2+) (CRAC) current required for T-cell proliferation and function. Understanding the immune cell subset-specific expression of ion channels along with their particular function in a given cell type, and the role of cancer tissue-dependent factors in the regulation of operation of these ion channels are emerging questions to be addressed in the fight against cancer disease. Answering these questions might lead to a better understanding of the immunosuppression phenomenon in cancer tissue and the development of drugs aimed at skewing the distribution of immune cell types towards killing of the tumour cells.
Collapse
Affiliation(s)
- Gyorgy Panyi
- Department of Biophysics and Cell Biology, University of Debrecen, , Egyetem ter 1, Life Science Building, Room 2.301, Debrecen, Hungary
| | | | | |
Collapse
|
32
|
Hoang AN, Vo HD, Vo NP, Kudryashova KS, Nekrasova OV, Feofanov AV, Kirpichnikov MP, Andreeva TV, Serebryakova MV, Tsetlin VI, Utkin YN. Vietnamese Heterometrus laoticus scorpion venom: Evidence for analgesic and anti-inflammatory activity and isolation of new polypeptide toxin acting on Kv1.3 potassium channel. Toxicon 2014; 77:40-48. [DOI: 10.1016/j.toxicon.2013.10.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/14/2013] [Accepted: 10/24/2013] [Indexed: 11/18/2022]
|
33
|
Thell K, Hellinger R, Schabbauer G, Gruber CW. Immunosuppressive peptides and their therapeutic applications. Drug Discov Today 2013; 19:645-53. [PMID: 24333193 PMCID: PMC4042018 DOI: 10.1016/j.drudis.2013.12.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 11/12/2013] [Accepted: 12/04/2013] [Indexed: 12/21/2022]
Abstract
T cell signaling has a pivotal role in autoimmunity and immunosuppression. Immunosuppressive pharmaceuticals often exhibit severe side-effects in patients. Gene-encoded peptides have potential as immunosuppressive drug candidates. Cyclotides are stable peptides that offer enhanced oral administration properties.
The immune system is vital for detecting and evading endogenous and exogenous threats to the body. Failure to regulate this homeostasis leads to autoimmunity, which is often associated with malfunctioning T cell signaling. Several medications are available to suppress over-reactive T lymphocytes, but many of the currently marketed drugs produce severe and life-threatening side-effects. Ribosomally synthesized peptides are gaining recognition from the pharmaceutical industry for their enhanced selectivity and decreased toxicity compared with small molecules; in particular, circular peptides exhibit remarkable stability and increased oral administration properties. For example, plant cyclotides effectively inhibit T lymphocyte proliferation. They are composed of a head-to-tail cyclized backbone and a cystine-knot motif, which confers them with remarkable stability, thus making them attractive pharmaceutical tools.
Collapse
Affiliation(s)
- Kathrin Thell
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17, A-1090 Vienna, Austria
| | - Roland Hellinger
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17, A-1090 Vienna, Austria
| | - Gernot Schabbauer
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17, A-1090 Vienna, Austria
| | - Christian W Gruber
- Center for Physiology and Pharmacology, Medical University of Vienna, Schwarzspanierstr. 17, A-1090 Vienna, Austria.
| |
Collapse
|
34
|
Fu XX, Du LL, Zhao N, Dong Q, Liao YH, Du YM. 18β-Glycyrrhetinic acid potently inhibits Kv1.3 potassium channels and T cell activation in human Jurkat T cells. JOURNAL OF ETHNOPHARMACOLOGY 2013; 148:647-54. [PMID: 23707333 DOI: 10.1016/j.jep.2013.05.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 05/08/2013] [Accepted: 05/14/2013] [Indexed: 05/21/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Licorice has been extensively used in traditional medicines for treatment of many diseases, including inflammations and immunological disorders. Recent studies have shown that the anti-inflammatory and immunomodulation activities of licorice have been attributed to its active component, glycyrretinic acid (GA). GA consists of two isoforms, 18α- and 18β-. However, its mechanism remains poorly understood. AIM OF THE STUDY We compared the effects of two isoforms on Kv1.3 channels in Jurkat T cells and further characterized the inhibition of Kv1.3 channels by 18β-GA in CHO cells. In addition, we examined the effects of 18β-GA on Kv1.3 gene expression, Ca(2+) influx, proliferation, as well as IL-2 production in Jurkat T cells. MATERIALS AND METHODS Whole-cell patch-clamp technique was applied to record Kv1.3 currents in Jurkat T or CHO cells. Real-time PCR and Western blotting were used to detect gene expression. Fluo-4, CCK-8 kit and ELISA kit were used to measure Ca(2+) influx, proliferation, and IL-2 secretion in Jurkat T cells, respectively. RESULTS Superfusion of 18β-GA (10-100 µM) blocked Kv1.3 currents in Jurkat T cells, while 18α-GA at the same concentration had no effect. The 18β-GA induced inhibition had a voltage- and concentration-dependent manner with an IC50 of 23.9±1.5 µM at +40 mV in CHO cells. Furthermore, 18β-GA significantly inhibited Kv1.3 gene expression. In addition, paralleling Kv1.3 inhibition, 18β-GA also inhibited Ca(2+) influx, proliferation as well as IL-2 production in Jurkat T cells. CONCLUSION 18β-GA blocks Kv1.3 channels, which probably involves its anti-inflammatory and immunomodulation effects.
Collapse
Affiliation(s)
- Xiao-Xing Fu
- Ion Channelopathy Research Center, Institute of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | | | | | | | | | | |
Collapse
|
35
|
Fluorescent system based on bacterial expression of hybrid KcsA channels designed for Kv1.3 ligand screening and study. Anal Bioanal Chem 2013; 405:2379-89. [DOI: 10.1007/s00216-012-6655-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/22/2012] [Accepted: 12/12/2012] [Indexed: 10/27/2022]
|
36
|
Zhao N, Dong Q, Du LL, Fu XX, Du YM, Liao YH. Potent suppression of Kv1.3 potassium channel and IL-2 secretion by diphenyl phosphine oxide-1 in human T cells. PLoS One 2013; 8:e64629. [PMID: 23717641 PMCID: PMC3661503 DOI: 10.1371/journal.pone.0064629] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/16/2013] [Indexed: 11/18/2022] Open
Abstract
Diphenyl phosphine oxide-1 (DPO-1) is a potent Kv1.5 channel inhibitor that has therapeutic potential for the treatment of atrial fibrillation. Many other Kv1.5 channel blockers also potently inhibit the Kv1.3 channel, but whether DPO-1 blocks Kv1.3 channels has not been investigated. The Kv1.3 channel is highly expressed in activated T cells, which is considered a favorable target for immunomodulation. Accordingly, we hypothesized that DPO-1 may exert immunosuppressive and anti-inflammatory effects by inhibiting Kv1.3 channel activity. In this study, DPO-1 blocked Kv1.3 current in a voltage-dependent and concentration-dependent manner, with IC₅₀ values of 2.58 µM in Jurkat cells and 3.11 µM in human peripheral blood T cells. DPO-1 also accelerated the inactivation rate and negatively shifted steady-state inactivation. Moreover, DPO-1 at 3 µM had no apparent effect on the Ca²⁺ activated potassium channel (K(Ca)) current in both Jurkat cells and human peripheral blood T cells. In Jurkat cells, pre-treatment with DPO-1 for 24 h decreased Kv1.3 current density, and protein expression by 48±6% and 60±9%, at 3 and 10 µM, respectively (both p<0.05). In addition, Ca²⁺ influx to Ca²⁺-depleted cells was blunted and IL-2 production was also reduced in activated Jurkat cells. IL-2 secretion was also inhibited by the Kv1.3 inhibitors margatoxin and charybdotoxin. Our results demonstrate for the first time that that DPO-1, at clinically relevant concentrations, blocks Kv1.3 channels, decreases Kv1.3 channel expression and suppresses IL-2 secretion. Therefore, DPO-1 may be a useful treatment strategy for immunologic disorders.
Collapse
Affiliation(s)
- Ning Zhao
- Research Center of Ion Channelopathy, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Qian Dong
- Research Center of Ion Channelopathy, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Li-Li Du
- Research Center of Ion Channelopathy, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Xiao-Xing Fu
- Research Center of Ion Channelopathy, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Yi-Mei Du
- Research Center of Ion Channelopathy, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- * E-mail: (Y-MD); (Y-HL)
| | - Yu-Hua Liao
- Research Center of Ion Channelopathy, Institute of Cardiovascular Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
- * E-mail: (Y-MD); (Y-HL)
| |
Collapse
|
37
|
Lian YT, Yang XF, Wang ZH, Yang Y, Yang Y, Shu YW, Cheng LX, Liu K. Curcumin serves as a human kv1.3 blocker to inhibit effector memory T lymphocyte activities. Phytother Res 2012; 27:1321-7. [PMID: 23132777 DOI: 10.1002/ptr.4863] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 09/05/2012] [Accepted: 09/27/2012] [Indexed: 12/13/2022]
Abstract
Curcumin, the principal active component of turmeric, has long been used to treat various diseases in India and China. Recent studies show that curcumin can serve as a therapeutic agent for autoimmune diseases via a variety of mechanisms. Effector memory T cells (T(EM), CCR7⁻ CD45RO⁺ T lymphocyte) have been demonstrated to play a crucial role in the pathogenesis of T cell-mediated autoimmune diseases, such as multiple sclerosis (MS) or rheumatoid arthritis (RA). Kv1.3 channels are predominantly expressed in T(EM) cells and control T(EM) activities. In the present study, we examined the effect of curcumin on human Kv1.3 (hKv1.3) channels stably expressed in HEK-293 cells and its ability to inhibit proliferation and cytokine secretion of T(EM) cells isolated from patients with MS or RA. Curcumin exhibited a direct blockage of hKv1.3 channels in a time-dependent and concentration-dependent manner. Moreover, the activation curve was shifted to a more positive potential, which was consistent with an open-channel blockade. Paralleling hKv1.3 inhibition, curcumin significantly inhibited proliferation and interferon-γ secretion of T(EM) cells. Our findings demonstrate that curcumin is able to inhibit proliferation and proinflammatory cytokine secretion of T(EM) cells probably through inhibition of hKv1.3 channels, which contributes to the potency of curcumin for the treatment of autoimmune diseases. This is probably one of pharmacological mechanisms of curcumin used to treat autoimmune diseases.
Collapse
Affiliation(s)
- Yi-Tian Lian
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan 430022, China
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Diego-García E, Peigneur S, Debaveye S, Gheldof E, Tytgat J, Caliskan F. Novel potassium channel blocker venom peptides from Mesobuthus gibbosus (Scorpiones: Buthidae). Toxicon 2012; 61:72-82. [PMID: 23142506 DOI: 10.1016/j.toxicon.2012.10.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 09/27/2012] [Accepted: 10/23/2012] [Indexed: 11/19/2022]
Abstract
In the present study, we report for the first time, the molecular, biochemical and electrophysiological characterization of the components present in the soluble venom from Mesobuthus gibbosus (Brullé, 1832). According to the epidemiological and clinical situation of scorpion envenomation cases M. gibbosus scorpion is one of the most important health-threatening species of Turkey. Despite the medical importance reported for M. gibbosus, there is no additional information on toxin peptides and venom components to clarify the toxic effect of the M. gibbosus sting. Biochemical characterization of the venom was performed using different protocols and techniques following a bioassay-guided strategy (HPLC, mass spectrometry and Edman degradation sequencing). Venom fractions were tested in electrophysiological assays on a panel of six K(+) channels (K(v)1.1-1.6) by using the two-electrode voltage clamp technique. Three new α-KTx peptides were found and called MegKTx1, MegKTx2 and MegKTx3 (M. gibbosus, K(+) channel toxin number 1-3). A cDNA library from the telson was constructed and specific screening of transcripts was performed. Biochemical and molecular characterization of MegKTx peptides and transcripts shows a relation with toxins of three different α-KTx subfamilies (α-KTx3.x, α-KTx9.x and α-KTx16.x).
Collapse
Affiliation(s)
- Elia Diego-García
- Laboratory of Toxicology, University of Leuven (KULeuven), Campus Gasthuisberg, O&N 2, PO Box 922, Herestraat 49, 3000 Leuven, Belgium
| | | | | | | | | | | |
Collapse
|
39
|
Kuras Z, Yun YH, Chimote AA, Neumeier L, Conforti L. KCa3.1 and TRPM7 channels at the uropod regulate migration of activated human T cells. PLoS One 2012; 7:e43859. [PMID: 22952790 PMCID: PMC3428288 DOI: 10.1371/journal.pone.0043859] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 07/30/2012] [Indexed: 11/18/2022] Open
Abstract
The migration of T lymphocytes is an essential part of the adaptive immune response as T cells circulate around the body to carry out immune surveillance. During the migration process T cells polarize, forming a leading edge at the cell front and a uropod at the cell rear. Our interest was in studying the involvement of ion channels in the migration of activated human T lymphocytes as they modulate intracellular Ca(2+) levels. Ca(2+) is a key regulator of cellular motility. To this purpose, we created protein surfaces made of the bio-polymer PNMP and coated with ICAM-1, ligand of LFA-1. The LFA-1 and ICAM-1 interaction facilitates T cell movement from blood into tissues and it is critical in immune surveillance and inflammation. Activated human T lymphocytes polarized and migrated on ICAM-1 surfaces by random walk with a mean velocity of ∼6 µm/min. Confocal microscopy indicated that Kv1.3, CRAC, and TRPM4 channels positioned in the leading-edge, whereas KCa3.1 and TRPM7 channels accumulated in the uropod. The localization of KCa3.1 and TRPM7 at the uropod was associated with oscillations in intracellular Ca(2+) levels that we measured in this cell compartment. Further studies with blockers against Kv1.3 (ShK), KCa3.1 (TRAM-34), CRAC (SKF-96365), TRPM7 (2-APB), and TRPM4 (glibenclamide) indicated that blockade of KCa3.1 and TRPM7, and not Kv1.3, CRAC or TRPM4, inhibits the T cell migration. The involvement of TRPM7 in cell migration was confirmed with siRNAs against TRPM7. Downregulation of TRPM7 significantly reduced the number of migrating T cells and the mean velocity of the migrating T cells. These results indicate that KCa3.1 and TRPM7 selectively localize at the uropod of migrating T lymphocytes and are key components of the T cell migration machinery.
Collapse
Affiliation(s)
- Zerrin Kuras
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Yeo-Heung Yun
- Department of Bioengineering, North Carolina Agricultural and Technical State University, Greensboro, North Carolina, United States of America
| | - Ameet A. Chimote
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Lisa Neumeier
- Department of Internal Medicine, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Laura Conforti
- Department of Molecular and Cellular Physiology, University of Cincinnati, Cincinnati, Ohio, United States of America
| |
Collapse
|
40
|
Martin-Loeches I, Papiol E, Almansa R, López-Campos G, Bermejo-Martin J, Rello J. Intubated patients developing tracheobronchitis or pneumonia have distinctive complement system gene expression signatures in the pre-infection period: A pilot study. Med Intensiva 2012; 36:257-63. [DOI: 10.1016/j.medin.2011.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 10/02/2011] [Accepted: 10/15/2011] [Indexed: 10/14/2022]
|
41
|
Yang XF, Yang Y, Lian YT, Wang ZH, Li XW, Cheng LX, Liu JP, Wang YF, Gao X, Liao YH, Wang M, Zeng QT, Liu K. The antibody targeting the E314 peptide of human Kv1.3 pore region serves as a novel, potent and specific channel blocker. PLoS One 2012; 7:e36379. [PMID: 22558454 PMCID: PMC3338681 DOI: 10.1371/journal.pone.0036379] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 04/04/2012] [Indexed: 01/08/2023] Open
Abstract
Selective blockade of Kv1.3 channels in effector memory T (T(EM)) cells was validated to ameliorate autoimmune or autoimmune-associated diseases. We generated the antibody directed against one peptide of human Kv1.3 (hKv1.3) extracellular loop as a novel and possible Kv1.3 blocker. One peptide of hKv1.3 extracellular loop E3 containing 14 amino acids (E314) was chosen as an antigenic determinant to generate the E314 antibody. The E314 antibody specifically recognized 63.8KD protein stably expressed in hKv1.3-HEK 293 cell lines, whereas it did not recognize or cross-react to human Kv1.1(hKv1.1), Kv1.2(hKv1.2), Kv1.4(hKv1.4), Kv1.5(hKv1.5), KCa3.1(hKCa3.1), HERG, hKCNQ1/hKCNE1, Nav1.5 and Cav1.2 proteins stably expressed in HEK 293 cell lines or in human atrial or ventricular myocytes by Western blotting analysis and immunostaining detection. By the technique of whole-cell patch clamp, the E314 antibody was shown to have a directly inhibitory effect on hKv1.3 currents expressed in HEK 293 or Jurkat T cells and the inhibition showed a concentration-dependence. However, it exerted no significant difference on hKv1.1, hKv1.2, hKv1.4, hKv1.5, hKCa3.1, HERG, hKCNQ1/hKCNE1, L-type Ca(2+) or voltage-gated Na(+) currents. The present study demonstrates that the antibody targeting the E314 peptide of hKv1.3 pore region could be a novel, potent and specific hKv1.3 blocker without affecting a variety of closely related K(v)1 channels, KCa3.1 channels and functional cardiac ion channels underlying central nervous system (CNS) disorders or drug-acquired arrhythmias, which is required as a safe clinic-promising channel blocker.
Collapse
Affiliation(s)
- Xiao-Fang Yang
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Yang
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yi-Tian Lian
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Zhao-Hui Wang
- Department of Geriatrics, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao-Wei Li
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Long-Xian Cheng
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Ping Liu
- Department of Cardiovascular Surgery, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yan-Fu Wang
- Department of Cardiology, Affiliated Hospital, Jining Medical College, Shandong, China
| | - Xiang Gao
- Department of Geriatrics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yu-Hua Liao
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Min Wang
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Qiu-Tang Zeng
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
42
|
Felipe A, Soler C, Comes N. Kv1.5 in the immune system: the good, the bad, or the ugly? Front Physiol 2010; 1:152. [PMID: 21423392 PMCID: PMC3059964 DOI: 10.3389/fphys.2010.00152] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2010] [Accepted: 10/28/2010] [Indexed: 11/13/2022] Open
Abstract
For the last 20 years, knowledge of the physiological role of voltage-dependent potassium channels (Kv) in the immune system has grown exponentially. Leukocytes express a limited repertoire of Kv channels, which contribute to the membrane potential. These proteins are involved in the immune response and are therefore considered good pharmacological targets. Although there is a clear consensus about the physiological relevance of Kv1.3, the expression and the role of Kv1.5 are controversial. However, recent reports indicate that certain heteromeric Kv1.3/Kv1.5 associations may provide insight on Kv1.5. Here, we summarize what is known about this issue and highlight the role of Kv1.5 partnership interactions that could be responsible for this debate. The Kv1.3/Kv1.5 heterotetrameric composition of the channel and their possible differential associations with accessory regulatory proteins warrant further investigation.
Collapse
Affiliation(s)
- Antonio Felipe
- Molecular Physiology Laboratory, Departament de Bioquímica i Biologia Molecular, Institut de Biomedicina, Universitat de Barcelona Barcelona, Spain.
| | | | | |
Collapse
|