1
|
Tang L, Que H, Wei Y, Yang T, Tong A, Wei X. Replicon RNA vaccines: design, delivery, and immunogenicity in infectious diseases and cancer. J Hematol Oncol 2025; 18:43. [PMID: 40247301 PMCID: PMC12004886 DOI: 10.1186/s13045-025-01694-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Accepted: 03/23/2025] [Indexed: 04/19/2025] Open
Abstract
Replicon RNA (RepRNA) represents a cutting-edge technology in the field of vaccinology, fundamentally transforming vaccine design and development. This innovative approach facilitates the induction of robust immune responses against a range of infectious diseases and cancers. RepRNA vaccines leverage the inherent capabilities of RNA-dependent RNA polymerase associated with self-replicating repRNA, allowing for extreme replication within host cells. This process enhances antigen production and subsequently stimulates adaptive immunity. Additionally, the generation of double-stranded RNA during RNA replication can activate innate immune responses. Numerous studies have demonstrated that repRNA vaccines elicit potent humoral and cellular immune responses that are broader and more durable than those generated by conventional mRNA vaccines. These significant immune responses have been shown to provide protection in various models for infectious diseases and cancers. This article will explore the design and delivery of RepRNA vaccines, the mechanisms of immune activation, preclinical studies addressing infectious diseases and tumors, and related clinical trials that focus on safety and immunogenicity.
Collapse
Affiliation(s)
- Lirui Tang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Haiying Que
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China
| | - Ting Yang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, No. 37 Guo Xue Xiang, Chengdu, 610041, People's Republic of China.
| | - Aiping Tong
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, No. 17, Block 3, Southern Renmin Road, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Brakel KA, Ma Y, Binjawadagi R, Harder O, Watts M, Li J, Binjawadagi B, Niewiesk S. Codon-optimization of the respiratory syncytial virus (RSV) G protein expressed in a vesicular stomatitis virus (VSV) vector improves immune responses in a cotton rat model. Virology 2022; 575:101-110. [PMID: 36096069 DOI: 10.1016/j.virol.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 08/17/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Respiratory syncytial virus is an important cause of pneumonia in children, the elderly, and immunocompromised individuals. The attachment (G) protein of RSV generates neutralizing antibodies in natural RSV infection which correlate with protection against disease. The immune response to RSV is typically short-lived, which may be related to the heavy glycosylation of RSV-G. In order to improve its immunogenicity, we expressed G protein mutants in a vesicular stomatitis virus (VSV) vector system and tested their ability to protect cotton rats from RSV challenge. We found that the most protective construct was codon-optimized RSV-G, followed by wild-type G and membrane-bound G. Constructs which expressed the G protein with reduced glycosylation or the secreted G protein provided either partial or no protection. Our results demonstrate that modifications to the G protein are not advantageous in a VSV vector system, and that an intact, codon-optimized G is a superior vaccine candidate.
Collapse
Affiliation(s)
- Kelsey A Brakel
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Yuanmei Ma
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Rashmi Binjawadagi
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Olivia Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Mauria Watts
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Jianrong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Basavaraj Binjawadagi
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States; Ceva Sante Animale, Lenexa, KS, United States
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States.
| |
Collapse
|
3
|
Brakel KA, Binjawadagi B, French-Kim K, Watts M, Harder O, Ma Y, Li J, Niewiesk S. Coexpression of respiratory syncytial virus (RSV) fusion (F) protein and attachment glycoprotein (G) in a vesicular stomatitis virus (VSV) vector system provides synergistic effects against RSV infection in a cotton rat model. Vaccine 2021; 39:6817-6828. [PMID: 34702618 PMCID: PMC8595748 DOI: 10.1016/j.vaccine.2021.10.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 11/20/2022]
Abstract
Respiratory syncytial virus (RSV) is one of the most important causes of respiratory disease in infants, immunocompromised individuals, and the elderly. Natural infection does not result in long-term immunity, and there is no licensed vaccine. Vesicular stomatitis virus (VSV) is a commonly used vaccine vector platform against infectious diseases, and has been used as a vector for a licensed Ebola vaccine. In this study, we expressed the RSV fusion (F) protein, the RSV F protein stabilized in either a pre-fusion or a post-fusion configuration, the attachment glycoprotein (G), or the G and F proteins of RSV in combination in a VSV vector. Cotton rats were immunized with these recombinants intranasally or subcutaneously to test immunogenicity. RSV F stabilized in either a pre-fusion or a post-fusion configuration proved to be poorly immunogenic and protective when compared to unmodified F. RSV G provided partial protection and moderate levels of neutralizing antibody production, both of which improved with intranasal administration compared to subcutaneous inoculation. The most successful vaccine vector was VSV expressing both the G and F proteins after intranasal inoculation. Immunization with this recombinant induced neutralizing antibodies and provided protection from RSV challenge in the upper and lower respiratory tract for at least 80 days. Our results demonstrate that co-expression of F and G proteins in a VSV vector provides synergistic effects in inducing RSV-specific neutralizing antibodies and protection against RSV infection.
Collapse
Affiliation(s)
- Kelsey A Brakel
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States.
| | - Basavaraj Binjawadagi
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States; Ceva Sante Animale, Lenexa, KS, United States
| | - Kristen French-Kim
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Mauria Watts
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Olivia Harder
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Yuanmei Ma
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Jianrong Li
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| | - Stefan Niewiesk
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
4
|
Mucosal Delivery of Recombinant Vesicular Stomatitis Virus Vectors Expressing Envelope Proteins of Respiratory Syncytial Virus Induces Protective Immunity in Cotton Rats. J Virol 2021; 95:JVI.02345-20. [PMID: 33408176 DOI: 10.1128/jvi.02345-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 12/18/2020] [Indexed: 11/20/2022] Open
Abstract
Respiratory syncytial virus (RSV) is a major cause of lower respiratory tract (LRT) infections, with increased severity in high-risk human populations, such as infants, the immunocompromised, and the elderly. Although the virus was identified more than 60 years ago, there is still no licensed vaccine available. Over the years, several vaccine delivery strategies have been evaluated. In this study, we developed two recombinant vesicular stomatitis virus (rVSV) vector-based vaccine candidates expressing the RSV-G (attachment) protein (rVSV-G) or F (fusion) protein (rVSV-F). All vectors were evaluated in the cotton rat animal model for their in vivo immunogenicity and protective efficacy against an RSV-A2 virus challenge. Intranasal (i.n.) delivery of rVSV-G and rVSV-F together completely protected the lower respiratory tract (lungs) at doses as low as 103 PFU. In contrast, doses greater than 106 PFU were required to protect the upper respiratory tract (URT) completely. Reimmunization of RSV-immune cotton rats was most effective with rVSV-F. In immunized animals, overall antibody responses were sufficient for protection, whereas CD4 and CD8 T cells were not necessary. A prime-boost immunization regimen increased both protection and neutralizing antibody titers. Overall, mucosally delivered rVSV-vector-based RSV vaccine candidates induce protective immunity and therefore represent a promising immunization regimen against RSV infection.IMPORTANCE Even after decades of intensive research efforts, a safe and efficacious RSV vaccine remains elusive. Expression of heterologous antigens from rVSV vectors has demonstrated several practical and safety advantages over other virus vector systems and live attenuated vaccines. In this study, we developed safe and efficacious vaccine candidates by expressing the two major immunogenic RSV surface proteins in rVSV vectors and delivering them mucosally in a prime-boost regimen. The main immune parameter responsible for protection was the antibody response. These vaccine candidates induced complete protection of both the upper and lower respiratory tracts.
Collapse
|
5
|
Scher G, Schnell MJ. Rhabdoviruses as vectors for vaccines and therapeutics. Curr Opin Virol 2020; 44:169-182. [PMID: 33130500 PMCID: PMC8331071 DOI: 10.1016/j.coviro.2020.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 12/24/2022]
Abstract
Appropriate choice of vaccine vector is crucial for effective vaccine development. Rhabdoviral vectors, such as rabies virus and vesicular stomatitis virus, have been used in a variety of vaccine strategies. These viruses have small, easily manipulated genomes that can stably express foreign glycoproteins due to a well-established reverse genetics system for virus recovery. Both viruses have well-described safety profiles and have been demonstrated to be effective vaccine vectors. This review will describe how these Rhabdoviruses can be manipulated for use as vectors, their various applications as vaccines or therapeutics, and the advantages and disadvantages of their use.
Collapse
Affiliation(s)
- Gabrielle Scher
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Matthias J Schnell
- Department of Microbiology and Immunology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA; Jefferson Vaccine Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
6
|
Ogonczyk Makowska D, Hamelin MÈ, Boivin G. Engineering of Live Chimeric Vaccines against Human Metapneumovirus. Pathogens 2020; 9:E135. [PMID: 32093057 PMCID: PMC7168645 DOI: 10.3390/pathogens9020135] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Human metapneumovirus (HMPV) is an important human pathogen that, along with respiratory syncytial virus (RSV), is a major cause of respiratory tract infections in young infants. Development of an effective vaccine against Pneumoviruses has proven to be particularly difficult; despite over 50 years of research in this field, no vaccine against HMPV or RSV is currently available. Recombinant chimeric viruses expressing antigens of other viruses can be generated by reverse genetics and used for simultaneous immunization against more than one pathogen. This approach can result in the development of promising vaccine candidates against HMPV, and several studies have indeed validated viral vectors expressing HMPV antigens. In this review, we summarize current efforts in generating recombinant chimeric vaccines against HMPV, and we discuss their potential optimization based on the correspondence with RSV studies.
Collapse
Affiliation(s)
| | | | - Guy Boivin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC G1V 4G2, Canada; (D.O.M.); (M.-È.H.)
| |
Collapse
|
7
|
Wilmschen S, Schneider S, Peters F, Bayer L, Issmail L, Bánki Z, Grunwald T, von Laer D, Kimpel J. RSV Vaccine Based on Rhabdoviral Vector Protects after Single Immunization. Vaccines (Basel) 2019; 7:E59. [PMID: 31277325 PMCID: PMC6790003 DOI: 10.3390/vaccines7030059] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/15/2022] Open
Abstract
The respiratory syncytial virus (RSV) is one major cause of lower respiratory tract infections in childhood and an effective vaccine is still not available. We previously described a new rhabdoviral vector vaccine, VSV-GP, a variant of the vesicular stomatitis virus (VSV), where the VSV glycoprotein G is exchanged by the glycoprotein GP of the lymphocytic choriomeningitis virus. Here, we evaluated VSV-GP as vaccine vector for RSV with the aim to induce RSV neutralizing antibodies. Wild-type F (Fwt) or a codon optimized version (Fsyn) were introduced at position 5 into the VSV-GP genome. Both F versions were efficiently expressed in VSV-GP-F infected cells and incorporated into VSV-GP particles. In mice, high titers of RSV neutralizing antibodies were induced already after prime and subsequently boosted by a second immunization. After challenge with RSV, viral loads in the lungs of immunized mice were reduced by 2-3 logs with no signs of an enhanced disease induced by the vaccination. Even a single intranasal immunization significantly reduced viral load by a factor of more than 100-fold. RSV neutralizing antibodies were long lasting and mice were still protected when challenged 20 weeks after the boost. Therefore, VSV-GP is a promising candidate for an effective RSV vaccine.
Collapse
Affiliation(s)
- Sarah Wilmschen
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sabrina Schneider
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Felix Peters
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lea Bayer
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Leila Issmail
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Zoltán Bánki
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Thomas Grunwald
- Department of Immunology, Fraunhofer Institute for Cell Therapy and Immunology IZI, 04103 Leipzig, Germany
| | - Dorothee von Laer
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Janine Kimpel
- Division of Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria.
| |
Collapse
|
8
|
Anasir MI, Poh CL. Structural Vaccinology for Viral Vaccine Design. Front Microbiol 2019; 10:738. [PMID: 31040832 PMCID: PMC6476906 DOI: 10.3389/fmicb.2019.00738] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 03/25/2019] [Indexed: 12/12/2022] Open
Abstract
Although vaccines have proven pivotal against arrays of infectious viral diseases, there are still no effective vaccines against many viruses. New structural insights into the viral envelope, protein conformation, and antigenic epitopes can guide the design of novel vaccines against challenging viruses such as human immunodeficiency virus (HIV), hepatitis C virus, enterovirus A71, and dengue virus. Recent studies demonstrated that applications of this structural information can solve some of the vaccine conundrums. This review focuses on recent advances in structure-based vaccine design, or structural vaccinology, for novel and innovative viral vaccine design.
Collapse
Affiliation(s)
- Mohd Ishtiaq Anasir
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
9
|
Use of Recombinant Virus Replicon Particles for Vaccination against Mycobacterium ulcerans Disease. PLoS Negl Trop Dis 2015; 9:e0004011. [PMID: 26275222 PMCID: PMC4537091 DOI: 10.1371/journal.pntd.0004011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/27/2015] [Indexed: 02/05/2023] Open
Abstract
Buruli ulcer, caused by infection with Mycobacterium ulcerans, is a necrotizing disease of the skin and subcutaneous tissue, which is most prevalent in rural regions of West African countries. The majority of clinical presentations seen in patients are ulcers on limbs that can be treated by eight weeks of antibiotic therapy. Nevertheless, scarring and permanent disabilities occur frequently and Buruli ulcer still causes high morbidity. A vaccine against the disease is so far not available but would be of great benefit if used for prophylaxis as well as therapy. In the present study, vesicular stomatitis virus-based RNA replicon particles encoding the M. ulcerans proteins MUL2232 and MUL3720 were generated and the expression of the recombinant antigens characterized in vitro. Immunisation of mice with the recombinant replicon particles elicited antibodies that reacted with the endogenous antigens of M. ulcerans cells. A prime-boost immunization regimen with MUL2232-recombinant replicon particles and recombinant MUL2232 protein induced a strong immune response but only slightly reduced bacterial multiplication in a mouse model of M. ulcerans infection. We conclude that a monovalent vaccine based on the MUL2232 antigen will probably not sufficiently control M. ulcerans infection in humans. Infection with Mycobacterium ulcerans can lead to a slow progressing, ulcerative disease of the skin and underlying soft tissue called Buruli ulcer. The disease is most prevalent in rural African communities with limited access to health care facilities. The most efficient means to prevent the disease, a vaccine against Buruli ulcer is not available to date. In the present study we investigated the immunogenicity and protective potential of a single cycle virus system expressing the two M. ulcerans antigens MUL2232 and MUL3720. Immunization of mice with those vesicular stomatitis virus replicon particles led to the induction of humoral as well as cellular immune responses in the immunized animals. Subsequent challenge experiments in a mouse model of M. ulcerans infection demonstrated only a limited reduction of bacterial burden in mice immunized with a prime-boost approach with MUL2232. Most probably, a vaccine formulation with only one antigen will not be able to provide protection against Buruli ulcer in humans.
Collapse
|
10
|
Lee YN, Hwang HS, Kim MC, Lee YT, Lee JS, Moore ML, Kang SM. Recombinant influenza virus expressing a fusion protein neutralizing epitope of respiratory syncytial virus (RSV) confers protection without vaccine-enhanced RSV disease. Antiviral Res 2015; 115:1-8. [PMID: 25513755 PMCID: PMC4323669 DOI: 10.1016/j.antiviral.2014.12.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 11/24/2014] [Accepted: 12/06/2014] [Indexed: 10/24/2022]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of viral bronchiolitis in both children and the elderly. There is no vaccine available for the prevention of RSV infection. Here, we generated recombinant influenza virus (PR8/RSV.HA-F) expressing an RSV F243-294 neutralizing epitope in the hemagglutinin (HA) as a chimeric protein. Neutralizing antibodies specific for both RSV and influenza virus were induced by a single intranasal immunization of mice with PR8/RSV.HA-F. Mice that were immunized with PR8/RSV.HA-F were protected against RSV infection comparable with live RSV as evidenced by significant reduction of RSV lung viral loads, as well as the absence of lung eosinophilia and RSV-specific cellular immune responses. In contrast, formalin-inactivated RSV-immunized mice showed severe disease and high cellular immune responses in lungs after RSV infection. These findings support a concept that recombinant influenza virus carrying the RSV F243-294 neutralizing epitope can be developed as a promising RSV vaccine candidate which induces protective neutralizing antibodies but avoids lung immunopathology.
Collapse
Affiliation(s)
- Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, South Korea
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jong Seok Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Martin L Moore
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA; Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
11
|
Lee YN, Suk Hwang H, Kim MC, Lee YT, Cho MK, Kwon YM, Seok Lee J, Plemper RK, Kang SM. Recombinant influenza virus carrying the conserved domain of respiratory syncytial virus (RSV) G protein confers protection against RSV without inflammatory disease. Virology 2014; 476:217-225. [PMID: 25553517 DOI: 10.1016/j.virol.2014.12.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/24/2014] [Accepted: 12/02/2014] [Indexed: 11/19/2022]
Abstract
Respiratory syncytial virus (RSV) is one of the most important causes for viral lower respiratory tract disease in humans. There is no licensed RSV vaccine. Here, we generated recombinant influenza viruses (PR8/RSV.HA-G) carrying the chimeric constructs of hemagglutinin (HA) and central conserved-domains of the RSV G protein. PR8/RSV.HA-G virus showed lower pathogenicity without compromising immunogenicity in mice. Single intranasal inoculation of mice with PR8/RSV.HA-G induced IgG2a isotype dominant antibodies and RSV neutralizing activity. Mice with single intranasal inoculation of PR8/RSV.HA-G were protected against RSV infection as evidenced by significant reduction of lung viral loads to a detection limit upon RSV challenge. PR8/RSV.HA-G inoculation of mice did not induce pulmonary eosinophilia and inflammation upon RSV infection. These findings support a concept that recombinant influenza viruses carrying the RSV G conserved-domain can be developed as a promising RSV vaccine candidate without pulmonary disease.
Collapse
Affiliation(s)
- Yu-Na Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| | - Hye Suk Hwang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Chul Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; Animal and Plant Quarantine Agency, Anyang, Gyeonggi-do, South Korea
| | - Young-Tae Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Min-Kyoung Cho
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Young-Man Kwon
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Jong Seok Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA; National Institute of Biological Resources, Incheon, Gyeonggi-do 404-170, South Korea
| | - Richard K Plemper
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA 30303, USA.
| |
Collapse
|
12
|
Singh O, Garg T, Rath G, Goyal AK. Microbicides for the Treatment of Sexually Transmitted HIV Infections. JOURNAL OF PHARMACEUTICS 2014; 2014:352425. [PMID: 26556193 PMCID: PMC4590794 DOI: 10.1155/2014/352425] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/20/2013] [Accepted: 12/26/2013] [Indexed: 12/20/2022]
Abstract
Approximately 34 million people were living with human immunodeficiency virus (HIV-1) at the end of 2011. From the last two decades, researchers are actively involved in the development of an effective HIV-1 treatment, but the results intended are still doubtful about the eradication of HIV. The HIV-1 virus has gone from being an "inherently untreatable" infectious agent to the one liable to be affected by a range of approved therapies. Candidate microbicides have been developed to target specific steps in the process of viral transmission. Microbicides are self-administered agents that can be applied to vaginal or rectal mucosal surfaces with the aim of preventing, or reducing, the transmission of sexually transmitted infections (STIs) including HIV-1. The development of efficient, widely available, and low-cost microbicides to prevent sexually transmitted HIV infections should be given high priority. In this review, we studied the various forms of microbicides, their mechanism of action, and their abundant approaches to control the transmission of sexually transmitted infections (STIs).
Collapse
Affiliation(s)
- Onkar Singh
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Tarun Garg
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Goutam Rath
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| | - Amit K. Goyal
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab 142001, India
| |
Collapse
|
13
|
Mire CE, Versteeg KM, Cross RW, Agans KN, Fenton KA, Whitt MA, Geisbert TW. Single injection recombinant vesicular stomatitis virus vaccines protect ferrets against lethal Nipah virus disease. Virol J 2013; 10:353. [PMID: 24330654 PMCID: PMC3878732 DOI: 10.1186/1743-422x-10-353] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 12/03/2013] [Indexed: 11/10/2022] Open
Abstract
Background Nipah virus (NiV) is a highly pathogenic zoonotic agent in the family Paramyxoviridae that is maintained in nature by bats. Outbreaks have occurred in Malaysia, Singapore, India, and Bangladesh and have been associated with 40 to 75% case fatality rates. There are currently no vaccines or postexposure treatments licensed for combating human NiV infection. Methods and results Four groups of ferrets received a single vaccination with different recombinant vesicular stomatitis virus vectors expressing: Group 1, control with no glycoprotein; Group 2, the NiV fusion protein (F); Group 3, the NiV attachment protein (G); and Group 4, a combination of the NiV F and G proteins. Animals were challenged intranasally with NiV 28 days after vaccination. Control ferrets in Group 1 showed characteristic clinical signs of NiV disease including respiratory distress, neurological disorders, viral load in blood and tissues, and gross lesions and antigen in target tissues; all animals in this group succumbed to infection by day 8. Importantly, all specifically vaccinated ferrets in Groups 2-4 showed no evidence of clinical illness and survived challenged. All animals in these groups developed anti-NiV F and/or G IgG and neutralizing antibody titers. While NiV RNA was detected in blood at day 6 post challenge in animals from Groups 2-4, the levels were orders of magnitude lower than animals from control Group 1. Conclusions These data show protective efficacy against NiV in a relevant model of human infection. Further development of this technology has the potential to yield effective single injection vaccines for NiV infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Thomas W Geisbert
- Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd,, Galveston, TX, USA.
| |
Collapse
|