1
|
Oliveira LPG, Xavier RG, Nora CCV, Mangueira CLP, Rosseto EA, Aloia T, Gil JZ, Neto AS, Lopes FBTP, Carvalho KI. Exhaustion profile on classical monocytes after LPS stimulation on Crohn's disease patients. Hum Immunol 2025; 86:111257. [PMID: 39952081 DOI: 10.1016/j.humimm.2025.111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/23/2025] [Accepted: 01/31/2025] [Indexed: 02/17/2025]
Abstract
Crohn's disease is a type of inflammatory bowel disease that leads to symptoms such as diarrhea, abdominal pain, weight loss, and increased risk of developing tumors. The immune system plays a vital role in the gastrointestinal tract by maintaining tolerance to commensal antigens and food. However, in Crohn's disease, this tolerance mechanism is disrupted, resulting in chronic inflammatory responses. The involvement of the immune system is central to Crohn's disease, with a wide range of immune cells including monocytes, being affected. Due to the limited understanding of the role of monocytes in Crohn's disease, our study aimed to clarify the cytokine production and activation profile of monocytes subsets in the context of this condition. We used multiparametric flow cytometry to analyze the status of monocyte, quantified gene expression using qPCR, and created a correlation matrix to connect the flow cytometry data with the qPCR results through a bioinformatics approach. Our findings indicate that patients with Crohn's disease show a reduction in all monocyte subsets. Additionally, classical monocytes exhibit an exhaustion profile characterized by increased CD38 expression and reduced IL-1β production following LPS stimulation in patient groups. These results suggest that monocyte subsets play distinct roles in the disease's pathophysiology of Crohn's disease, potentially contributing to chronic inflammation and impairing the resolution of the immune response.
Collapse
Affiliation(s)
| | - Rafaela Gomes Xavier
- Instituto de Ensino e Pesquisa Hospital Israelita Albert Einstein São Paulo Brazil
| | | | | | | | - Thiago Aloia
- Instituto de Ensino e Pesquisa Hospital Israelita Albert Einstein São Paulo Brazil
| | | | | | | | - Karina Inacio Carvalho
- Instituto de Ensino e Pesquisa Hospital Israelita Albert Einstein São Paulo Brazil; Case Comprehensive Cancer Center, Case Western Reserve University Cleveland OH USA.
| |
Collapse
|
2
|
Oguro-Igashira E, Murakami M, Mori R, Kuwahara R, Kihara T, Kohara M, Fujiwara M, Motooka D, Okuzaki D, Arase M, Toyota H, Peng S, Ogino T, Kitabatake Y, Morii E, Hirota S, Ikeuchi H, Umemoto E, Kumanogoh A, Takeda K. The pyruvate-GPR31 axis promotes transepithelial dendrite formation in human intestinal dendritic cells. Proc Natl Acad Sci U S A 2024; 121:e2318767121. [PMID: 39432783 PMCID: PMC11536072 DOI: 10.1073/pnas.2318767121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 08/30/2024] [Indexed: 10/23/2024] Open
Abstract
The intestinal lumen is rich in gut microbial metabolites that serve as signaling molecules for gut immune cells. G-protein-coupled receptors (GPCRs) sense metabolites and can act as key mediators that translate gut luminal signals into host immune responses. However, the impacts of gut microbe-GPCR interactions on human physiology have not been fully elucidated. Here, we show that GPR31, which is activated by the gut bacterial metabolite pyruvate, is specifically expressed on type 1 conventional dendritic cells (cDC1s) in the lamina propria of the human intestine. Using human induced pluripotent stem cell-derived cDC1s and a monolayer human gut organoid coculture system, we show that cDC1s extend their dendrites toward pyruvate on the luminal side, forming transepithelial dendrites (TED). Accordingly, GPR31 activation via pyruvate enhances the fundamental function of cDC1 by allowing efficient uptake of gut luminal antigens, such as dietary compounds and bacterial particles through TED formation. Our results highlight the role of GPCRs in tuning the human gut immune system according to local metabolic cues.
Collapse
Affiliation(s)
- Eri Oguro-Igashira
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Mari Murakami
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
| | - Ryota Mori
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Ryuichi Kuwahara
- Department of Gastroenterological Surgery, Division of Inflammatory Bowel Disease Surgery, Hyogo Medical University, Hyogo663-8501, Japan
| | - Takako Kihara
- Department of Surgical Pathology, Hyogo Medical University, Hyogo663-8501, Japan
| | - Masaharu Kohara
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Daisuke Motooka
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka565-0871, Japan
| | - Daisuke Okuzaki
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
- Department of Infection Metagenomics, Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka565-0871, Japan
- Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Osaka565-0871, Japan
| | - Mitsuru Arase
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
| | - Hironobu Toyota
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Siyun Peng
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
| | - Takayuki Ogino
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Yasuji Kitabatake
- Department of Pediatrics, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Eiichi Morii
- Department of Pathology, Osaka University Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo Medical University, Hyogo663-8501, Japan
| | - Hiroki Ikeuchi
- Department of Gastroenterological Surgery, Division of Inflammatory Bowel Disease Surgery, Hyogo Medical University, Hyogo663-8501, Japan
| | - Eiji Umemoto
- Laboratory of Microbiology and Immunology, School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka422-8526, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka565-0871, Japan
- Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
- Center for Advanced Modalities and Drug Delivery System, Osaka University, Osaka565-0871, Japan
- Department of Immunopathology, World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
| | - Kiyoshi Takeda
- Department of Microbiology and Immunology, Graduate School of Medicine, Osaka University, Osaka565-0871, Japan
- World Premier International Research Center Initiative (WPI) Immunology Frontier Research Center, Osaka University, Osaka565-0871, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka565-0871, Japan
- Division of Microbiology and Immunology, Center for Infectious Disease Education and Research, Osaka University, Osaka565-0871, Japan
| |
Collapse
|
3
|
Leser T, Baker A. Molecular Mechanisms of Lacticaseibacillus rhamnosus, LGG ® Probiotic Function. Microorganisms 2024; 12:794. [PMID: 38674738 PMCID: PMC11051730 DOI: 10.3390/microorganisms12040794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
To advance probiotic research, a comprehensive understanding of bacterial interactions with human physiology at the molecular and cellular levels is fundamental. Lacticaseibacillus rhamnosus LGG® is a bacterial strain that has long been recognized for its beneficial effects on human health. Probiotic effector molecules derived from LGG®, including secreted proteins, surface-anchored proteins, polysaccharides, and lipoteichoic acids, which interact with host physiological processes have been identified. In vitro and animal studies have revealed that specific LGG® effector molecules stimulate epithelial cell survival, preserve intestinal barrier integrity, reduce oxidative stress, mitigate excessive mucosal inflammation, enhance IgA secretion, and provide long-term protection through epigenetic imprinting. Pili on the cell surface of LGG® promote adhesion to the intestinal mucosa and ensure close contact to host cells. Extracellular vesicles produced by LGG® recapitulate many of these effects through their cargo of effector molecules. Collectively, the effector molecules of LGG® exert a significant influence on both the gut mucosa and immune system, which promotes intestinal homeostasis and immune tolerance.
Collapse
Affiliation(s)
- Thomas Leser
- Future Labs, Human Health Biosolutions, Novonesis, Kogle Alle 6, 2970 Hoersholm, Denmark;
| | | |
Collapse
|
4
|
Zhuang Z, Chen Y, Zheng J, Chen S. The role of TRIF protein in regulating the proliferation and antigen presentation ability of myeloid dendritic cells through the ERK1/2 signaling pathway in chronic low-grade inflammation of intestinal mucosa mediated by flagellin-TLR5 complex signal. PeerJ 2024; 12:e16716. [PMID: 38188180 PMCID: PMC10768658 DOI: 10.7717/peerj.16716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/04/2023] [Indexed: 01/09/2024] Open
Abstract
Objective The objective is to explore whether the flagellin-TLR5 complex signal can enhance the antigen presentation ability of myeloid DCs through the TRIF-ERK1/2 pathway, and the correlation between this pathway and intestinal mucosal inflammation response. Methods Mouse bone marrow-derived DC line DC2.4 was divided into four groups: control group (BC) was DC2.4 cells cultured normally; flagellin single signal stimulation group (DC2.4+CBLB502) was DC2.4 cells stimulated with flagellin derivative CBLB502 during culture; TLR5-flagellin complex signal stimulation group (ov-TLR5-DC2.4+CBLB502) was flagellin derivative CBLB502 stimulated ov-TLR5-DC2.4 cells with TLR5 gene overexpression; TRIF signal interference group (ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA) was ov-TLR5-DC2.4 cells with TLR5 gene overexpression stimulated with flagellin derivative CBLB502 and intervened with TRIF-specific inhibitor Pepinh-TRIFTFA. WB was used to detect the expression of TRIF and p-ERK1/2 proteins in each group of cells; CCK8 was used to detect cell proliferation in each group; flow cytometry was used to detect the expression of surface molecules MHCI, MHCII, CD80, 86 in each group of cells; ELISA was used to detect the levels of IL-12 and IL-4 cytokines in each group. Results Compared with the BC group, DC2.4+CBLB502 group, and ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA group, the expression of TRIF protein and p-ERK1/2 protein in ov-TLR5-DC2.4+CBLB502 group was significantly upregulated (TRIF: p = 0.02, = 0.007, = 0.048) (ERK1: p < 0.001, =0.0003, = 0.0004; ERK2:p = 0.0003, = 0.0012, = 0.0022). The cell proliferation activity in ov-TLR5-DC2.4+CBLB502 group was enhanced compared with the other groups (p = 0.0001, p < 0.0001, p = 0.0015); at the same time, the expression of surface molecules MHCI, MHCII, CD80, 86 on DCs was upregulated (p < 0.05); and the secretion of IL-12 and IL-4 cytokines was increased, with significant differences (IL-12: p < 0.0001, p < 0.0001, p = 0.0005; IL-4: p = < 0.0001, p = < 0.0001, p = 0.0001). However, the ov-TLR5-DC2.4+CBLB502+Pepinh-TRIFTFA group, which was treated with TRIF signal interference, showed a decrease in intracellular TRIF protein and p-ERK1/2 protein, as well as a decrease in cell proliferation ability and surface stimulation molecules, and a decrease in the secretion of IL-12 and IL-4 cytokines (p < 0.05). Conclusion After stimulation of flagellin protein-TLR5 complex signal, TRIF protein and p-ERK1/2 protein expression in myeloid dendritic cells were significantly up-regulated, accompanied by increased proliferation activity and maturity of DCs, enhanced antigen presentation function, increased secretion of pro-inflammatory cytokines IL-12 and IL-4. This process can be inhibited by the specific inhibitor of TRIF signal, suggesting that the TLR5-TRIF-ERK1/2 pathway may play an important role in abnormal immune response and mucosal chronic inflammation infiltration mediated by flagellin protein in DCs, which can provide a basis for our subsequent animal experiments.
Collapse
Affiliation(s)
- Zhaomeng Zhuang
- Gastroenterology, Zhejiang Chinese Medical University Affifiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Yi Chen
- Gastroenterology, Zhejiang Chinese Medical University Affifiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Juanhong Zheng
- Gastroenterology, Zhejiang Chinese Medical University Affifiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| | - Shuo Chen
- Gastroenterology, Zhejiang Chinese Medical University Affifiliated Wenzhou Hospital of Integrated Traditional Chinese and Western Medicine, Wenzhou, Zhejiang, China
| |
Collapse
|
5
|
Świrkosz G, Szczygieł A, Logoń K, Wrześniewska M, Gomułka K. The Role of the Microbiome in the Pathogenesis and Treatment of Ulcerative Colitis-A Literature Review. Biomedicines 2023; 11:3144. [PMID: 38137365 PMCID: PMC10740415 DOI: 10.3390/biomedicines11123144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/21/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease affecting the colon and rectum. UC's pathogenesis involves colonic epithelial cell abnormalities and mucosal barrier dysfunction, leading to recurrent mucosal inflammation. The purpose of the article is to show the complex interplay between ulcerative colitis and the microbiome. The literature search was conducted using the PubMed database. After a screening process of studies published before October 2023, a total of 136 articles were selected. It has been discovered that there is a fundamental correlation of a robust intestinal microbiota and the preservation of gastrointestinal health. Dysbiosis poses a grave risk to the host organism. It renders the host susceptible to infections and has been linked to the pathogenesis of chronic diseases, with particular relevance to conditions such as ulcerative colitis. Current therapeutic strategies for UC involve medications such as aminosalicylic acids, glucocorticoids, and immunosuppressive agents, although recent breakthroughs in monoclonal antibody therapies have significantly improved UC treatment. Furthermore, modulating the gut microbiome with specific compounds and probiotics holds potential for inflammation reduction, while fecal microbiota transplantation shows promise for alleviating UC symptoms. This review provides an overview of the gut microbiome's role in UC pathogenesis and treatment, emphasizing areas for further research.
Collapse
Affiliation(s)
- Gabriela Świrkosz
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Aleksandra Szczygieł
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Katarzyna Logoń
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Martyna Wrześniewska
- Student Scientific Group of Adult Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland; (G.Ś.); (K.L.)
| | - Krzysztof Gomułka
- Clinical Department of Internal Medicine, Pneumology and Allergology, Wroclaw Medical University, 50-369 Wrocław, Poland;
| |
Collapse
|
6
|
Qu S, Gao Y, Ma J, Yan Q. Microbiota-derived short-chain fatty acids functions in the biology of B lymphocytes: From differentiation to antibody formation. Biomed Pharmacother 2023; 168:115773. [PMID: 39491858 DOI: 10.1016/j.biopha.2023.115773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 10/15/2023] [Accepted: 10/20/2023] [Indexed: 11/05/2024] Open
Abstract
Gut bacteria produce various metabolites from dietary fiber, the most abundant of which are short-chain fatty acids (SCFAs) such as acetate, propionate, and butyrate. Many biological functions, such as host metabolism and the immune system, are regulated by SCFAs because they act on a wide variety of cell types. A growing body of documents has shown that microbiota SCFAs directly regulate B-cell growth, proliferation, and immunoglobulin (Ig) production. As histone deacetylase (HDAC) inhibitors, SCFAs alter gene expression to enhance the expression of critical regulators of B cell growth. In particular, microbiota SCFAs increase the production of acetyl coenzyme A (acetyl-CoA), adenosine triphosphate (ATP), and fatty acids in B cells, which provide the energy and building blocks needed for the growth of plasma B cells. SCFAs play a significant role in promoting the involvement of B cells in host immunity during both homeostatic conditions and disease states. In this context, SCFAs stimulate B-cell activation and promote the differentiation of plasma B cells in response to B cell receptor (BCR)-activating antigens or co-stimulatory receptor ligands. The result may be increased production of IgA. Microbiota SCFAs were found to lower both overall and antigen-specific IgE levels, indicating their potential to mitigate IgE-related allergic reactions, much like their effect on class-switch recombination (CSR) towards IgG and IgA. Therefore, in the future, the therapeutic advantage should be to use specific and diffusible chemicals, such as SCFAs, which show a strong immunoregulatory function of B cells. This review focuses on the role of microbiota-produced SCFAs in regulating B cell development and antibody production, both in health and diseases.
Collapse
Affiliation(s)
- Shengming Qu
- Department of Dermatology, the Second Hospital of Jilin University, Changchun 130000, China
| | - Yihang Gao
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China.
| | - Jingru Ma
- Department of Clinical Laboratory, the Second Hospital of Jilin University, Changchun 130000, China
| | - Qingzhu Yan
- Department of Ultrasound Medicine, the Second Hospital of Jilin University, Changchun 130000, China
| |
Collapse
|
7
|
Liu Y, Hoang TK, Park ES, Freeborn J, Okeugo B, Tran DQ, Rhoads JM. Probiotic-educated Tregs are more potent than naïve Tregs for immune tolerance in stressed new-born mice. Benef Microbes 2023; 14:73-84. [PMID: 36815493 PMCID: PMC10124588 DOI: 10.3920/bm2022.0095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
When new-born mice are subjected to acute maternal separation stress, cow-milk based formula feeding, and brief recurrent hypoxia with cold stress, they develop gut inflammation similar to the phenotype of neonatal necrotizing enterocolitis, characterised by an increase in gut mucosal effector T (Teffs) and reduced Foxp3+ regulatory T (Tregs) cells. The imbalance can be prevented by probiotic Limosilactobacillus reuteri DSM 17938 (LR 17938). We hypothesised that LR 17938 could potentiate a tolerogenic function of Tregs. To analyse whether LR 17938 can educate Tregs to improve their tolerogenic potency during neonatal stress, we isolated T cells (Tregs and Teffs) from 'donor' mice fed with either LR 17938 (107 cfu) or control media. The cells were adoptively transferred (AT) by intraperitoneal injection (5 × 105 cells/mouse) to new-born (d5) recipient mice. Mice were then separated from their dams, fed formula by gavage, and exposed to hypoxia and cold stress (NeoStress) for 4 days. We analysed the percentage of Tregs in CD4+T helper cells in the intestine (INT) and mesenteric lymph nodes (MLN) of recipient mice. We found that: (1) the percentage of Tregs in the INT and MLN following NeoStress were significantly reduced compared to dam-fed unstressed mice; (2) AT of either naïve Tregs or LR-educated Tregs to mice with Neostress increased the percentage of Tregs in the INT and MLN compared to the percentage in NeoStress mice without Treg treatment; however, LR-educated Tregs increased the Tregs significantly more than naïve Tregs; and (3) AT of LR-educated Tregs reduced pro-inflammatory CD44+Foxp3-NonTregs and inflammatory CX3CR1+ dendritic cells in the intestinal mucosa of NeoStress mice. In conclusion, adoptive transfer of Tregs promotes the generation of and/or migration of endogenous Tregs in the intestinal mucosa of recipient mice. Importantly, probiotic-educated Tregs are more potent than naïve Tregs to enhance immune tolerance following neonatal stress.
Collapse
Affiliation(s)
- Y Liu
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.137, Houston, TX 77030, USA
| | - T K Hoang
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.137, Houston, TX 77030, USA
| | - E S Park
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.137, Houston, TX 77030, USA
| | - J Freeborn
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.137, Houston, TX 77030, USA
| | - B Okeugo
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.137, Houston, TX 77030, USA
| | - D Q Tran
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.137, Houston, TX 77030, USA
| | - J M Rhoads
- Department of Pediatrics, Division of Gastroenterology, McGovern Medical School, University of Texas Health Science Center at Houston, 6431 Fannin Street, MSB 3.137, Houston, TX 77030, USA
| |
Collapse
|
8
|
Koido S, Horiuchi S, Kan S, Bito T, Ito Z, Uchiyama K, Saruta M, Sato N, Ohkusa T. The stimulatory effect of fusobacteria on dendritic cells under aerobic or anaerobic conditions. Sci Rep 2022; 12:10698. [PMID: 35739324 PMCID: PMC9225986 DOI: 10.1038/s41598-022-14934-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 06/15/2022] [Indexed: 11/16/2022] Open
Abstract
Fusobacteria have been suspected to be pathobionts of colon cancer and inflammatory bowel disease. However, the immunomodulatory properties that affect these inflammatory reactions in dendritic cells (DCs) under anaerobic and aerobic conditions have not yet been characterized. We directly assessed the stimulatory effects of anaerobic commensal bacteria, including fusobacteria, on a human DC line through coculture under aerobic or anaerobic conditions. Under aerobic or anaerobic conditions, stimulation of the DC line with all live commensal bacteria examined, except the probiotic Lactobacillus delbrueckii subsp. bulgaricus (L. bulgaricus), significantly increased the geometric mean fluorescent intensity (MFI) of marker proteins (HLA-ABC, HLA-DR, CD80, CD86, CD83, or CCR7) on the DC surface. In particular, both Fusobacterium nucleatum (F. nucleatum) and Escherichia coli (E. coli) significantly increased the expression of DC-associated molecules, except for CD83 under both aerobic and anaerobic conditions. The DC line stimulated with Fusobacterium varium (F. varium) significantly increased only CD80, HLA-ABC, and HLA-DR expression under anaerobic conditions. Moreover, differences in the levels of proinflammatory cytokines, such as IL-6, IL-8, and TNF-α, were detected in the DC line stimulated by all live commensal bacteria under either aerobic or anaerobic conditions. Under aerobic conditions, the DC line stimulated with E. coli produced significantly more IL-6, IL-8, and TNF-α than did the cells stimulated with any of the bacteria examined. When E. coli were used to stimulate the DC line under anaerobic conditions, TNF-α was predominantly produced compared to stimulation with any other bacteria. Compared to the DC line stimulated with any other bacteria, the cells stimulated with F. nucleatum showed significantly increased production of IL-6, IL-8 and TNF-α only under anaerobic conditions. In particular, E. coli, F. nucleatum, and F. varium strongly stimulated the DC line, resulting in significantly increased expression of surface molecules associated with DCs and production of inflammatory cytokines.
Collapse
Affiliation(s)
- Shigeo Koido
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwashita, Kashiwa City, Chiba, 277-8567, Japan.
- Institute of Clinical Medicine and Research, The Jikei University School of Medicine, Kashiwa City, Chiba, Japan.
| | - Sankichi Horiuchi
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwashita, Kashiwa City, Chiba, 277-8567, Japan
- Institute of Clinical Medicine and Research, The Jikei University School of Medicine, Kashiwa City, Chiba, Japan
| | - Shin Kan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwashita, Kashiwa City, Chiba, 277-8567, Japan
- Institute of Clinical Medicine and Research, The Jikei University School of Medicine, Kashiwa City, Chiba, Japan
| | - Tsuuse Bito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwashita, Kashiwa City, Chiba, 277-8567, Japan
- Institute of Clinical Medicine and Research, The Jikei University School of Medicine, Kashiwa City, Chiba, Japan
| | - Zensho Ito
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwashita, Kashiwa City, Chiba, 277-8567, Japan
| | - Kan Uchiyama
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwashita, Kashiwa City, Chiba, 277-8567, Japan
| | - Masayuki Saruta
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuhiro Sato
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Toshifumi Ohkusa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, The Jikei University School of Medicine, Kashiwa Hospital, 163-1 Kashiwashita, Kashiwa City, Chiba, 277-8567, Japan
- Department of Microbiota Research, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Yuan B, Lu XJ, Wu Q. Gut Microbiota and Acute Central Nervous System Injury: A New Target for Therapeutic Intervention. Front Immunol 2022; 12:800796. [PMID: 35003127 PMCID: PMC8740048 DOI: 10.3389/fimmu.2021.800796] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022] Open
Abstract
Acute central nervous system (CNS) injuries, including stroke, traumatic brain injury (TBI), and spinal cord injury (SCI), are the common causes of death or lifelong disabilities. Research into the role of the gut microbiota in modulating CNS function has been rapidly increasing in the past few decades, particularly in animal models. Growing preclinical and clinical evidence suggests that gut microbiota is involved in the modulation of multiple cellular and molecular mechanisms fundamental to the progression of acute CNS injury-induced pathophysiological processes. The altered composition of gut microbiota after acute CNS injury damages the equilibrium of the bidirectional gut-brain axis, aggravating secondary brain injury, cognitive impairments, and motor dysfunctions, which leads to poor prognosis by triggering pro-inflammatory responses in both peripheral circulation and CNS. This review summarizes the studies concerning gut microbiota and acute CNS injuries. Experimental models identify a bidirectional communication between the gut and CNS in post-injury gut dysbiosis, intestinal lymphatic tissue-mediated neuroinflammation, and bacterial-metabolite-associated neurotransmission. Additionally, fecal microbiota transplantation, probiotics, and prebiotics manipulating the gut microbiota can be used as effective therapeutic agents to alleviate secondary brain injury and facilitate functional outcomes. The role of gut microbiota in acute CNS injury would be an exciting frontier in clinical and experimental medicine.
Collapse
Affiliation(s)
- Bin Yuan
- Department of Neurosurgery, The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China
| | - Xiao-Jie Lu
- Department of Neurosurgery, The Affiliated Wuxi No. 2 Hospital of Nanjing Medical University, Wuxi, China.,Department of Neurosurgery, The Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Qi Wu
- Department of Neurosurgery, Jinling Hospital, Nanjing University, School of Medicine, Nanjing, China
| |
Collapse
|
10
|
Milner E, Stevens B, An M, Lam V, Ainsworth M, Dihle P, Stearns J, Dombrowski A, Rego D, Segars K. Utilizing Probiotics for the Prevention and Treatment of Gastrointestinal Diseases. Front Microbiol 2021; 12:689958. [PMID: 34434175 PMCID: PMC8381467 DOI: 10.3389/fmicb.2021.689958] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/05/2021] [Indexed: 12/12/2022] Open
Abstract
Probiotics are heavily advertised to promote a healthy gastrointestinal tract and boost the immune system. This review article summarizes the history and diversity of probiotics, outlines conventional in vitro assays and in vivo models, assesses the pharmacologic effects of probiotic and pharmaceutical co-administration, and the broad impact of clinical probiotic utilization for gastrointestinal disease indications.
Collapse
Affiliation(s)
- Erin Milner
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Benjamin Stevens
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Martino An
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Victoria Lam
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Michael Ainsworth
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Preston Dihle
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Jocelyn Stearns
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Andrew Dombrowski
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Daniel Rego
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Katharine Segars
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| |
Collapse
|
11
|
Durant L, Stentz R, Noble A, Brooks J, Gicheva N, Reddi D, O’Connor MJ, Hoyles L, McCartney AL, Man R, Pring ET, Dilke S, Hendy P, Segal JP, Lim DNF, Misra R, Hart AL, Arebi N, Carding SR, Knight SC. Bacteroides thetaiotaomicron-derived outer membrane vesicles promote regulatory dendritic cell responses in health but not in inflammatory bowel disease. MICROBIOME 2020; 8:88. [PMID: 32513301 PMCID: PMC7282036 DOI: 10.1186/s40168-020-00868-z] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 05/13/2020] [Indexed: 06/09/2023]
Abstract
BACKGROUND Bacteroides thetaiotaomicron (Bt) is a prominent member of the human intestinal microbiota that, like all gram-negative bacteria, naturally generates nanosized outer membrane vesicles (OMVs) which bud off from the cell surface. Importantly, OMVs can cross the intestinal epithelial barrier to mediate microbe-host cell crosstalk involving both epithelial and immune cells to help maintain intestinal homeostasis. Here, we have examined the interaction between Bt OMVs and blood or colonic mucosa-derived dendritic cells (DC) from healthy individuals and patients with Crohn's disease (CD) or ulcerative colitis (UC). RESULTS In healthy individuals, Bt OMVs stimulated significant (p < 0.05) IL-10 expression by colonic DC, whereas in peripheral blood-derived DC they also stimulated significant (p < 0.001 and p < 0.01, respectively) expression of IL-6 and the activation marker CD80. Conversely, in UC Bt OMVs were unable to elicit IL-10 expression by colonic DC. There were also reduced numbers of CD103+ DC in the colon of both UC and CD patients compared to controls, supporting a loss of regulatory DC in both diseases. Furthermore, in CD and UC, Bt OMVs elicited a significantly lower proportion of DC which expressed IL-10 (p < 0.01 and p < 0.001, respectively) in blood compared to controls. These alterations in DC responses to Bt OMVs were seen in patients with inactive disease, and thus are indicative of intrinsic defects in immune responses to this commensal in inflammatory bowel disease (IBD). CONCLUSIONS Overall, our findings suggest a key role for OMVs generated by the commensal gut bacterium Bt in directing a balanced immune response to constituents of the microbiota locally and systemically during health which is altered in IBD patients. Video Abstract.
Collapse
Affiliation(s)
- Lydia Durant
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
| | - Régis Stentz
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ UK
| | - Alistair Noble
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
| | - Johanne Brooks
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ UK
| | - Nadezhda Gicheva
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ UK
| | - Durga Reddi
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
| | - Matthew J. O’Connor
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
| | - Lesley Hoyles
- Department of Biosciences, Nottingham Trent University, Clifton Campus, Nottingham, NG11 8NS UK
| | - Anne L. McCartney
- Food Microbial Sciences Unit, University of Reading, Whiteknights, Reading, RG6 6UR UK
| | - Ripple Man
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - E. Tobias Pring
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Stella Dilke
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Philip Hendy
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Jonathan P. Segal
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Dennis N. F. Lim
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Ravi Misra
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Ailsa L. Hart
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Naila Arebi
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| | - Simon R. Carding
- Gut Microbes and Health Research Programme, Quadram Institute Bioscience, Norwich, NR4 7UQ UK
- Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ UK
| | - Stella C. Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park & St. Mark’s Hospital Campus, Watford Rd, Harrow, Greater London HA1 3UJ UK
- St Mark’s Hospital, London North West University Healthcare NHS Trust, Harrow, Greater London HA1 3UJ UK
| |
Collapse
|
12
|
Chapuy L, Sarfati M. Single-Cell Protein and RNA Expression Analysis of Mononuclear Phagocytes in Intestinal Mucosa and Mesenteric Lymph Nodes of Ulcerative Colitis and Crohn's Disease Patients. Cells 2020; 9:E813. [PMID: 32230977 PMCID: PMC7226791 DOI: 10.3390/cells9040813] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel diseases (IBDs), which include Crohn's disease (CD) and ulcerative colitis (UC), are driven by an abnormal immune response to commensal microbiota in genetically susceptible hosts. In addition to epithelial and stromal cells, innate and adaptive immune systems are both involved in IBD immunopathogenesis. Given the advances driven by single-cell technologies, we here reviewed the immune landscape and function of mononuclear phagocytes in inflamed non-lymphoid and lymphoid tissues of CD and UC patients. Immune cell profiling of IBD tissues using scRNA sequencing combined with multi-color cytometry analysis identifies unique clusters of monocyte-like cells, macrophages, and dendritic cells. These clusters reflect either distinct cell lineages (nature), or distinct or intermediate cell types with identical ontogeny, adapting their phenotype and function to the surrounding milieu (nurture and tissue imprinting). These advanced technologies will provide an unprecedented view of immune cell networks in health and disease, and thus may offer a personalized medicine approach to patients with IBD.
Collapse
Affiliation(s)
| | - Marika Sarfati
- Immunoregulation Laboratory, CRCHUM, Montreal, QC H2X 0A9, Canada;
| |
Collapse
|
13
|
Garshol BF, Aamodt G, Madsen C, Vatn MH, Bengtson MB. The effect of nitrogen dioxide on low birth weight in women with inflammatory bowel disease: a Norwegian pregnancy cohort study (MoBa). Scand J Gastroenterol 2020; 55:272-278. [PMID: 32064969 DOI: 10.1080/00365521.2020.1726446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background: Adverse birth outcomes are more frequent among mothers with inflammatory bowel diseases (IBDs) than non-IBD mothers. In recent studies, air pollution, such as high concentrations of nitrogen dioxide (NO2), is reckoned as a risk factor for preterm birth in the general population. In this study, we investigated whether IBD mothers are at higher risk of preterm birth when exposed to NO2 compared to non-IBD mothers.Methods: We used information from the Norwegian Mother, Father and Child Cohort Study (MoBa). The pregnancy cohort was linked to the Norwegian Medical Birth Registry and air-pollution exposure data available from a subset of the study cohort. The relevant outcome in this study was preterm birth. A total of 16,170 non-IBD and 92 IBD mothers were included in the study.Results: The mean exposure of NO2 during the pregnancy was similar for IBD and non-IBD mothers, 13.7 (6.9) μg/m3 and 13.6 (4.2) μg/m3, respectively.IBD mothers with higher exposure of NO2 in the second and third trimester were at significant risk of preterm birth compared to non-IBD mothers [OR = 1.28 (CI 95%: 1.04-1.59) and OR = 1.23 (95% CI: 1.06-1.43), respectively]. The mean NO2 exposure was significantly higher in IBD mothers with preterm birth than in IBD mothers who delivered at term, at 19.58 (1.57) μg/m3 and 12.89 (6.37) μg/m3, respectively.Conclusions: NO2 exposure influenced the risk of preterm birth in IBD mothers. Higher risk of preterm birth in IBD was associated with higher exposure of NO2, suggesting vulnerability of preterm birth in IBD when exposed to NO2.
Collapse
Affiliation(s)
| | - Geir Aamodt
- Department of Public Health Science, LANDSAM, Norwegian University of Life Sciences, Ås, Norway
| | - Christian Madsen
- Department of Health & Inequality, Norwegian Institute of Public Health, Oslo, Norway
| | - Morten Harald Vatn
- EpiGen Institute, Akershus University Hospital, University of Oslo, Oslo, Norway
| | - May-Bente Bengtson
- EpiGen Institute, Akershus University Hospital, University of Oslo, Oslo, Norway.,Medical Department, Vestfold Hospital Trust, Tønsberg, Norway
| |
Collapse
|
14
|
Chowdhury AH, Cámara M, Verma C, Eremin O, Kulkarni AD, Lobo DN. Modulation of T Regulatory and Dendritic Cell Phenotypes Following Ingestion of Bifidobacterium longum, AHCC ® and Azithromycin in Healthy Individuals. Nutrients 2019; 11:nu11102470. [PMID: 31618905 PMCID: PMC6835407 DOI: 10.3390/nu11102470] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 12/13/2022] Open
Abstract
The probiotic Bifidus BB536 (BB536), which contains Bifidobacterium longum, has been shown to have enhanced probiotic effects when given together with a standardized extract of cultured Lentinula edodes mycelia (AHCC®, Amino Up Co. Ltd., Sapporo, Japan). BB536 and AHCC® may modulate T cell and dendritic cell (DC) phenotypes, and cytokine profiles to favour anti-inflammatory responses following antibiotic ingestion. We tested the hypothesis that orally administered BB536 and/or AHCC®, results in modulation of immune effector cells with polarisation towards anti-inflammatory responses following antibiotic usage. Forty healthy male volunteers divided into 4 equal groups were randomised to receive either placebo, BB536, AHCC® or a combination for 12 days in a double-blind manner. After 7 days volunteers also received 250 mg azithromycin for 5 days. Cytokine profiles from purified CD3+ T cells stimulated with PDB-ionomycin were assessed. CD4+ CD25+ forkhead box P3 (Foxp3) expression and peripheral blood DC subsets were assessed prior to treatment and subsequently at 7 and 13 days. There was no difference in cytokine secretion from stimulated CD3+ T cells between treatment groups. Compared with baseline, Foxp3 expression (0.45 ± 0.1 vs. 1.3 ± 0.4; p = 0.002) and interferon-gamma/interleukin-4 (IFN-γ/IL-4) ratios were increased post-treatment in volunteers receiving BB536 (p = 0.031), although differences between groups were not significant. For volunteers receiving combination BB536 and AHCC®, there was an increase in myeloid dendritic cells (mDC) compared with plasmacytoid DC (pDC) counts (80% vs. 61%; p = 0.006) at post treatment time points. mDC2 phenotypes were more prevalent, compared with baseline, following combination treatment (0.16% vs. 0.05%; p = 0.002). Oral intake of AHCC® and BB536 may modulate T regulatory and DC phenotypes to favour anti-inflammatory responses following antibiotic usage.
Collapse
Affiliation(s)
- Abeed H Chowdhury
- Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | - Miguel Cámara
- School of Life Sciences, Centre for Biomolecular Sciences, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Chandan Verma
- Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | - Oleg Eremin
- Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| | - Anil D Kulkarni
- Department of Surgery, The University of Texas Health Science Center and McGovern Medical School, 6431 Fannin Street, MSB 4022-B, Houston, TX 77030, USA.
| | - Dileep N Lobo
- Gastrointestinal Surgery, Nottingham Digestive Diseases Centre, National Institute for Health Research (NIHR) Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research, School of Life Sciences, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
| |
Collapse
|
15
|
Yang W, Xiao Y, Huang X, Chen F, Sun M, Bilotta AJ, Xu L, Lu Y, Yao S, Zhao Q, Liu Z, Cong Y. Microbiota Metabolite Short-Chain Fatty Acids Facilitate Mucosal Adjuvant Activity of Cholera Toxin through GPR43. THE JOURNAL OF IMMUNOLOGY 2019; 203:282-292. [PMID: 31076530 DOI: 10.4049/jimmunol.1801068] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 04/15/2019] [Indexed: 12/27/2022]
Abstract
The gut microbiota has been shown critical for mucosal adjuvant activity of cholera toxin (CT), a potent mucosal adjuvant. However, the mechanisms involved remain largely unknown. In this study, we report that depletion of gut bacteria significantly decreased mucosal and systemic Ab responses in mice orally immunized with OVA and CT. Feeding mice short-chain fatty acids (SCFAs) promoted Ab responses elicited by CT, and, more importantly, rescued Ab responses in antibiotic-treated mice. In addition, mice deficient in GPR43, a receptor for SCFAs, showed impaired adjuvant activity of CT. Administering CT did not promote SCFA production in the intestines; thus, SCFAs facilitated but did not directly mediate the adjuvant activity of CT. SCFAs promoted B cell Ab production by promoting dendritic cell production of BAFF and ALDH1a2, which induced B cell expression of IFN regulatory factor 4, Blimp1, and XBP1, the plasma B cell differentiation-related genes. Furthermore, when infected with Citrobacter rodentium, GPR43-/- mice exhibited decreased Ab responses and were more susceptible to infection, whereas the administration of SCFAs promoted intestinal Ab responses in wild-type mice. Our study thereby demonstrated a critical role of gut microbiota and their metabolite SCFAs in promoting mucosal adjuvant activity of CT through GPR43.
Collapse
Affiliation(s)
- Wenjing Yang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yi Xiao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Key Laboratory of Animal Disease-Resistance Nutrition, Animal Nutrition Institute, Sichuan Agricultural University, Yaan, Sichuan 611130, China
| | - Xiangsheng Huang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Feidi Chen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Mingming Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Anthony J Bilotta
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Leiqi Xu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555.,Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250012, China; and
| | - Yao Lu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | | | - Zhanju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555; .,Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
16
|
Govea-Alonso DO, Arevalo-Villalobos JI, Márquez-Escobar VA, Vimolmangkang S, Rosales-Mendoza S. An overview of tolerogenic immunotherapies based on plant-made antigens. Expert Opin Biol Ther 2019; 19:587-599. [PMID: 30892096 DOI: 10.1080/14712598.2019.1597048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Over the last two decades, genetically engineered plants became attractive and mature platforms for producing vaccines and other relevant biopharmaceuticals. Autoimmune and inflammatory disorders demand the availability of accessible treatments, and one alternative therapy is based on therapeutic vaccines able to downregulate immune responses that favor pathology progression. AREAS COVERED The current status of plant-made tolerogenic vaccines is presented with emphasis on the candidates under evaluation in test animals. Nowadays, this concept has been assessed in models of food and pollen allergies, autoimmune diabetes, asthma, arthritis, and prevention of blocking antibodies induction against a biopharmaceutical used in replacement therapies. EXPERT OPINION According to the current evidence generated at the preclinical level, plant-made tolerogenic therapies are a promise to treat several immune-related conditions, and the beginning of clinical trials is envisaged for the next decade. Advantages and limitations for this technology are discussed.
Collapse
Affiliation(s)
- Dania O Govea-Alonso
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Jaime I Arevalo-Villalobos
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Verónica A Márquez-Escobar
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| | - Sornkanok Vimolmangkang
- c Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences , Chulalongkorn University , Bangkok , Thailand.,d Research Unit for Plant-Produced Pharmaceuticals , Chulalongkorn University , Bangkok , Thailand
| | - Sergio Rosales-Mendoza
- a Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México.,b Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina , Universidad Autónoma de San Luis Potosí , San Luis Potosí , México
| |
Collapse
|
17
|
Immunotherapeutic advances in gastrointestinal malignancies. NPJ Precis Oncol 2019; 3:4. [PMID: 30729176 PMCID: PMC6363766 DOI: 10.1038/s41698-018-0076-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022] Open
Abstract
Cancer is an important global issue with increasing incidence and mortality, placing a substantial burden on the healthcare system. Colorectal cancer is the third most common cancer diagnosed among men and women in US. It is estimated that in 2018 there will be 319,160 new diagnosis and 160,820 deaths related to cancer of the digestive system including both genders in the United States alone. Considering limited success of chemotherapy, radiotherapy, and surgery in treatment of these cancer patients, new therapeutic avenues are under constant investigation. Therapy options have consistently moved away from typical cytotoxic chemotherapy where patients with a given type and stage of the disease were treated similarly, to an individualized approach where a tumor is defined by its specific tissue characteristics /epigenetic profile, protein expression and genetic mutations. This review takes a deeper look at the immune-biological aspects of cancers in the gastrointestinal tract (entire digestive tract extending from esophagus/stomach to rectum, including pancreatico-biliary apparatus) and discusses the different treatment modalities that are available or being developed to target the immune system for better disease outcome.
Collapse
|
18
|
Protein kinase p38α signaling in dendritic cells regulates colon inflammation and tumorigenesis. Proc Natl Acad Sci U S A 2018; 115:E12313-E12322. [PMID: 30541887 DOI: 10.1073/pnas.1814705115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) play pivotal roles in maintaining intestinal homeostasis, but how the DCs regulate diverse immune networks on homeostasis breakdown remains largely unknown. Here, we report that, in response to epithelial barrier disruption, colonic DCs regulate the differentiation of type 1 regulatory T (Tr1) cells through p38α-dependent IL-27 production to initiate an effective immune response. Deletion of p38α in DCs, but not in T cells, led to increased Tr1 and protected mice from dextran sodium sulfate-induced acute colitis and chronic colitis-associated colorectal cancer. We show that higher levels of IL-27 in p38α-deficient colonic cDC1s, but not cDC2s, were responsible for the increase of Tr1 cells. Moreover, p38α-dependent IL-27 enhanced IL-22 secretion from intestinal group 3 innate lymphoid cells and protected epithelial barrier function. In p38α-deficient DCs, the TAK1-MKK4/7-JNK-c-Jun axis was hyperactivated, leading to high IL-27 levels, and inhibition of the JNK-c-Jun axis suppressed IL-27 expression. ChIP assay revealed direct binding of c-Jun to the promoter of Il27p28, which was further enhanced in p38α-deficient DCs. In summary, here we identify a key role for p38α signaling in DCs in regulating intestinal inflammatory response and tumorigenesis, and our finding may provide targets for the treatment of inflammatory intestinal diseases.
Collapse
|
19
|
Liu Y, Tran DQ, Rhoads JM. Probiotics in Disease Prevention and Treatment. J Clin Pharmacol 2018; 58 Suppl 10:S164-S179. [PMID: 30248200 PMCID: PMC6656559 DOI: 10.1002/jcph.1121] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 02/17/2018] [Indexed: 12/17/2022]
Abstract
Few treatments for human diseases have received as much investigation in the past 20 years as probiotics. In 2017, English-language meta-analyses totaling 52 studies determined the effect of probiotics on conditions ranging from necrotizing enterocolitis and colic in infants to constipation, irritable bowel syndrome, and hepatic encephalopathy in adults. The strongest evidence in favor of probiotics lies in the prevention or treatment of 5 disorders: necrotizing enterocolitis, acute infectious diarrhea, acute respiratory tract infections, antibiotic-associated diarrhea, and infant colic. Probiotic mechanisms of action include the inhibition of bacterial adhesion; enhanced mucosal barrier function; modulation of the innate and adaptive immune systems (including induction of tolerogenic dendritic cells and regulatory T cells); secretion of bioactive metabolites; and regulation of the enteric and central nervous systems. Future research is needed to identify the optimal probiotic and dose for specific diseases, to address whether the addition of prebiotics (to form synbiotics) would enhance activity, and to determine if defined microbial communities would provide benefit exceeding that of single-species probiotics.
Collapse
Affiliation(s)
- Yuying Liu
- Department of Pediatrics, Division of Gastroenterology, and the Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - Dat Q Tran
- Department of Pediatrics, Division of Gastroenterology, and the Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| | - J Marc Rhoads
- Department of Pediatrics, Division of Gastroenterology, and the Pediatric Research Center, The University of Texas Health Science Center at Houston McGovern Medical School, Houston, TX, USA
| |
Collapse
|
20
|
Moser AM, Spindelboeck W, Halwachs B, Strohmaier H, Kump P, Gorkiewicz G, Högenauer C. Effects of an oral synbiotic on the gastrointestinal immune system and microbiota in patients with diarrhea-predominant irritable bowel syndrome. Eur J Nutr 2018; 58:2767-2778. [PMID: 30251020 PMCID: PMC6768888 DOI: 10.1007/s00394-018-1826-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022]
Abstract
Purpose Diarrhea-predominant irritable bowel syndrome (IBS-D) is a common functional gastrointestinal disorder. Probiotics and synbiotics have been shown to improve symptoms of IBS, although mechanisms of action are currently not understood. Methods We investigated the effects of a 4-week oral synbiotic treatment (OMNi-BiOTiC® Stress Repair) in ten IBS-D patients on gastrointestinal mucosal and fecal microbiota, mucosa-associated immune cells, and fecal short-chain fatty acids. The upper and lower gastrointestinal tracts were compared before and after a 4-week synbiotic treatment using endoscopic evaluation to collect mucosal specimens for FACS analysis and mucosal 16S rRNA gene analysis. In stool samples, analysis for fecal SCFAs using GC–MS, fecal zonulin using ELISA, and fecal 16S rRNA gene analysis was performed. Results Synbiotics led to an increased microbial diversity in gastric (p = 0.008) and duodenal (p = 0.025) mucosal specimens. FACS analysis of mucosal immune cells showed a treatment-induced reduction of CD4+ T cells (60 vs. 55%, p = 0.042) in the ascending colon. Short-chain fatty acids (acetate 101 vs. 202 µmol/g; p = 0.007) and butyrate (27 vs. 40 µmol/g; p = 0.037) were elevated in fecal samples after treatment. Furthermore, treatment was accompanied by a reduction of fecal zonulin concentration (67 vs. 36 ng/ml; p = 0.035) and disease severity measured by IBS-SSS (237 vs. 54; p = 0.002). Conclusions Our findings indicate that a short-course oral synbiotic trial may influence the human gastrointestinal tract in IBS-D patients on different levels which are region specific. Electronic supplementary material The online version of this article (10.1007/s00394-018-1826-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Adrian Mathias Moser
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.,Theodor Escherich Laboratory for Microbiome Research, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Walter Spindelboeck
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.,Theodor Escherich Laboratory for Microbiome Research, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Bettina Halwachs
- Theodor Escherich Laboratory for Microbiome Research, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.,Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036, Graz, Austria
| | - Heimo Strohmaier
- Center for Medical Research, Medical University of Graz, Stiftingtalstraße 24, 8010, Graz, Austria
| | - Patrizia Kump
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.,Theodor Escherich Laboratory for Microbiome Research, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria
| | - Gregor Gorkiewicz
- Theodor Escherich Laboratory for Microbiome Research, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.,Institute of Pathology, Medical University of Graz, Auenbruggerplatz 25, 8036, Graz, Austria
| | - Christoph Högenauer
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria. .,Theodor Escherich Laboratory for Microbiome Research, Medical University of Graz, Auenbruggerplatz 15, 8036, Graz, Austria.
| |
Collapse
|
21
|
Loss H, Aschenbach JR, Ebner F, Tedin K, Lodemann U. Effects of a pathogenic ETEC strain and a probiotic Enterococcus faecium strain on the inflammasome response in porcine dendritic cells. Vet Immunol Immunopathol 2018; 203:78-87. [DOI: 10.1016/j.vetimm.2018.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 07/18/2018] [Accepted: 08/12/2018] [Indexed: 01/27/2023]
|
22
|
Nullens S, De Man J, Bridts C, Ebo D, Francque S, De Winter B. Identifying Therapeutic Targets for Sepsis Research: A Characterization Study of the Inflammatory Players in the Cecal Ligation and Puncture Model. Mediators Inflamm 2018; 2018:5130463. [PMID: 30174555 PMCID: PMC6098915 DOI: 10.1155/2018/5130463] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/23/2018] [Accepted: 05/29/2018] [Indexed: 01/04/2023] Open
Abstract
During sepsis, disturbed gastrointestinal motility and increased mucosal permeability can aggravate sepsis due to the increased risk of bacterial translocation. To help identify new therapeutic targets, there is a need for animal models that mimic the immunological changes in the gastrointestinal tract as observed during human sepsis. We therefore characterized in detail the gastrointestinal neuroimmune environment in the cecal ligation and puncture (CLP) model, which is the gold standard animal model of microbial sepsis. Mice were sacrificed at day 2 and day 7, during which gastrointestinal motility was assessed and cytokines were measured in the serum and the colon. In the spleen, lymph nodes, ileum, and colon, subsets of leukocyte populations were identified by flow cytometry. Septic animals displayed an impaired gastrointestinal motility at day 2 and day 7. Two days post-CLP, increased serum and colonic levels of proinflammatory cytokines were measured. Flow cytometry revealed an influx of neutrophils in the colon and ileum, increased numbers of macrophages in the spleen and mesenteric lymph nodes, and an enhanced number of mast cells in all tissues. At day 7 post-CLP, lymphocyte depletion was observed in all tissues coinciding with increased IL-10 and TGF-β levels, as well as increased colonic levels of IL-17A and IFN-γ. Thus, CLP-induced sepsis in mice results in simultaneous activation of pro- and anti-inflammatory players at day 2 and day 7 in different tissues, mimicking human sepsis.
Collapse
Affiliation(s)
- Sara Nullens
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Joris De Man
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| | - Chris Bridts
- Immunology-Allergology-Rheumatology Department, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Didier Ebo
- Immunology-Allergology-Rheumatology Department, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Sven Francque
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Edegem, Belgium
| | - Benedicte De Winter
- Laboratory of Experimental Medicine and Pediatrics, Division of Gastroenterology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
23
|
Hoang TK, He B, Wang T, Tran DQ, Rhoads JM, Liu Y. Protective effect of Lactobacillus reuteri DSM 17938 against experimental necrotizing enterocolitis is mediated by Toll-like receptor 2. Am J Physiol Gastrointest Liver Physiol 2018; 315:G231-G240. [PMID: 29648878 PMCID: PMC6139641 DOI: 10.1152/ajpgi.00084.2017] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 03/23/2018] [Accepted: 04/03/2018] [Indexed: 01/31/2023]
Abstract
Lactobacillus reuteri DSM 17938 (LR 17938) has been shown to reduce the incidence and severity of necrotizing enterocolitis (NEC). It is unclear if preventing NEC by LR 17938 is mediated by Toll-like receptor 2 (TLR2), which is known to mediate proinflammatory responses to bacterial cell wall components. NEC was induced in newborn TLR2-/- or wild-type (WT) mice by the combination of gavage-feeding cow milk-based formula and exposure to hypoxia and cold stress. Treatment groups were administered formula supplemented with LR 17938 or placebo (deMan-Rogosa-Sharpe media). We observed that LR 17938 significantly reduced the incidence of NEC and reduced the percentage of activated effector CD4+T cells, while increasing Foxp3+ regulatory T cells in the intestinal mucosa of WT mice with NEC, but not in TLR2-/- mice. Dendritic cell (DC) activation by LR 17938 was mediated by TLR2. The percentage of tolerogenic DC in the intestine of WT mice was increased by LR 17938 treatment during NEC, a finding not observed in TLR2-/- mice. Furthermore, gut levels of proinflammatory cytokines IL-1β and IFN-γ were decreased after treatment with LR 17938 in WT mice but not in TLR2-/- mice. In conclusion, the combined in vivo and in vitro findings suggest that TLR2 receptors are involved in DC recognition and DC-priming of T cells to protect against NEC after oral administration of LR 17938. Our studies further clarify a major mechanism of probiotic LR 17938 action in preventing NEC by showing that neonatal immune modulation of LR 17938 is mediated by a mechanism requiring TLR2. NEW & NOTEWORTHY Lactobacillus reuteri DSM 17938 (LR 17938) has been shown to protect against necrotizing enterocolitis (NEC) in neonates and in neonatal animal models. The role of Toll-like receptor 2 (TLR2) as a sensor for gram-positive probiotics, activating downstream anti-inflammatory responses is unclear. Our current studies examined TLR2 -/- mice subjected to experimental NEC and demonstrated that the anti-inflammatory effects of LR 17938 are mediated via a mechanism requiring TLR2.
Collapse
Affiliation(s)
- Thomas K Hoang
- Division of Gastroenterology, Department of Pediatrics, The University of Texas Health Science Center at Houston McGovern Medical School , Houston, Texas
| | - Baokun He
- Division of Gastroenterology, Department of Pediatrics, The University of Texas Health Science Center at Houston McGovern Medical School , Houston, Texas
| | - Ting Wang
- Division of Gastroenterology, Department of Pediatrics, The University of Texas Health Science Center at Houston McGovern Medical School , Houston, Texas
| | - Dat Q Tran
- Division of Gastroenterology, Department of Pediatrics, The University of Texas Health Science Center at Houston McGovern Medical School , Houston, Texas
| | - J Marc Rhoads
- Division of Gastroenterology, Department of Pediatrics, The University of Texas Health Science Center at Houston McGovern Medical School , Houston, Texas
| | - Yuying Liu
- Division of Gastroenterology, Department of Pediatrics, The University of Texas Health Science Center at Houston McGovern Medical School , Houston, Texas
| |
Collapse
|
24
|
Zhu X, Jia C, Meng X, Xing M, Yi Y, Gao X. Synthesis, Characterization of Inulin Propionate Ester, and Evaluation of its in Vitro Effect on SCFA Production. STARCH-STARKE 2018. [DOI: 10.1002/star.201800037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiaozhen Zhu
- Key Laboratory of Coastal Biology and Bioresource UtilizationYantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantai264003China
- University of Chinese Academy of SciencesBeijing100049China
| | - Chenchen Jia
- Key Laboratory of Coastal Biology and Bioresource UtilizationYantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantai264003China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xianyao Meng
- Key Laboratory of Coastal Biology and Bioresource UtilizationYantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantai264003China
- University of Chinese Academy of SciencesBeijing100049China
| | - Mengjing Xing
- School of Materials Science and EngineeringHarbin Institute of TechnologyWeihai264209China
| | - Yuetao Yi
- Key Laboratory of Coastal Biology and Bioresource UtilizationYantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantai264003China
| | - Xuelu Gao
- University of Chinese Academy of SciencesBeijing100049China
- CAS Key Laboratory of Coastal Environmental Processes and Ecological RemediationYantai Institute of Coastal Zone ResearchChinese Academy of SciencesYantai264003China
| |
Collapse
|
25
|
Human intestinal pro-inflammatory CD11c highCCR2 +CX3CR1 + macrophages, but not their tolerogenic CD11c -CCR2 -CX3CR1 - counterparts, are expanded in inflammatory bowel disease. Mucosal Immunol 2018; 11:1114-1126. [PMID: 29743615 DOI: 10.1038/s41385-018-0030-7] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 02/07/2023]
Abstract
Although macrophages (Mϕ) maintain intestinal immune homoeostasis, there is not much available information about their subset composition, phenotype and function in the human setting. Human intestinal Mϕ (CD45+HLA-DR+CD14+CD64+) can be divided into subsets based on the expression of CD11c, CCR2 and CX3CR1. Monocyte-like cells can be identified as CD11chighCCR2+CX3CR1+ cells, a phenotype also shared by circulating CD14+ monocytes. On the contrary, their Mϕ-like tissue-resident counterparts display a CD11c-CCR2-CX3CR1- phenotype. CD11chigh monocyte-like cells produced IL-1β, both in resting conditions and after LPS stimulation, while CD11c- Mϕ-like cells produced IL-10. CD11chigh pro-inflammatory monocyte-like cells, but not the others, were increased in the inflamed colon from patients with inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Tolerogenic IL-10-producing CD11c- Mϕ-like cells were generated from monocytes following mucosal conditioning. Finally, the colonic mucosa recruited circulating CD14+ monocytes in a CCR2-dependent manner, being such capacity expanded in IBD. Mϕ subsets represent, therefore, transition stages from newly arrived pro-inflammatory monocyte-like cells (CD11chighCCR2+CX3CR1+) into tolerogenic tissue-resident (CD11c-CCR2-CX3CR1-) Mϕ-like cells as reflected by the mucosal capacity to recruit circulating monocytes and induce CD11c- Mϕ. The process is nevertheless dysregulated in IBD, where there is an increased migration and accumulation of pro-inflammatory CD11chigh monocyte-like cells.
Collapse
|
26
|
Rehal S, Stephens M, Roizes S, Liao S, von der Weid PY. Acute small intestinal inflammation results in persistent lymphatic alterations. Am J Physiol Gastrointest Liver Physiol 2018; 314:G408-G417. [PMID: 29351397 DOI: 10.1152/ajpgi.00340.2017] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD) has a complex pathophysiology with limited treatments. Structural and functional changes in the intestinal lymphatic system have been associated with the disease, with increased risk of IBD occurrence linked to a history of acute intestinal injury. To examine the potential role of the lymphatic system in inflammation recurrence, we evaluated morphological and functional changes in mouse mucosal and mesenteric lymphatic vessels, and within the mesenteric lymph nodes during acute ileitis caused by a 7-day treatment with dextran sodium sulfate (DSS). We monitored whether the changes persisted during a 14-day recovery period and determined their potential consequences on dendritic cell (DC) trafficking between the mucosa and lymphoid tissues. DSS administration was associated with marked lymphatic abnormalities and dysfunctions exemplified by lymphangiectasia and lymphangiogenesis in the ileal mucosa and mesentery, increased mesenteric lymphatic vessel leakage, and lymphadenopathy. Lymphangiogenesis and lymphadenopathy were still evident after recovery from intestinal inflammation and correlated with higher numbers of DCs in mucosal and lymphatic tissues. Specifically, a deficit in CD103+ DCs observed during acute DSS in the lamina propria was reversed and further enhanced during recovery. We concluded that an acute intestinal insult caused alterations of the mesenteric lymphatic system, including lymphangiogenesis, which persisted after resolution of inflammation. These morphological and functional changes could compromise DC function and movement, increasing susceptibility to further gastrointestinal disease. Elucidation of the changes in mesenteric and intestinal lymphatic function should offer key insights for new therapeutic strategies in gastrointestinal disorders such as IBD. NEW & NOTEWORTHY Lymphatic integrity plays a critical role in small intestinal homeostasis. Acute intestinal insult in a mouse model of acute ileitis causes morphological and functional changes in mesenteric and intestinal lymphatic vessels. While some of the changes significantly regressed during inflammation resolution, others persisted, including lymphangiogenesis and altered dendritic cell function and movement, potentially increasing susceptibility to the recurrence of gastrointestinal inflammation.
Collapse
Affiliation(s)
- Sonia Rehal
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Matthew Stephens
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Simon Roizes
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Shan Liao
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| | - Pierre-Yves von der Weid
- Inflammation Research Network and Smooth Muscle Research Group, Snyder Institute for Chronic Diseases, Department of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary , Calgary, Alberta , Canada
| |
Collapse
|
27
|
Bernardo D, Chaparro M, Gisbert JP. Human Intestinal Dendritic Cells in Inflammatory Bowel Diseases. Mol Nutr Food Res 2018; 62:e1700931. [PMID: 29336524 DOI: 10.1002/mnfr.201700931] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/03/2018] [Indexed: 12/21/2022]
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a serious, costly, and persistent health problem with an estimated prevalence in Western countries around 0.5% of the general population; its socioeconomic impact is comparable with that for chronic diseases such as diabetes. Conventional treatment involves escalating drug regimens with concomitant side effects followed, in some cases, by surgical interventions, which are often multiple, mainly in Crohn's disease. The goal of finding a targeted gut-specific immunotherapy for IBD patients is therefore an important unmet need. However, to achieve this goal we first must understand how dendritic cells (DC), the most potent antigen present cells of the immune system, control the immune tolerance in the gastrointestinal tract and how their properties are altered in those patients suffering from IBD. In this review, we summarize the current available information regarding human intestinal DC subsets composition, phenotype, and function in the human gastrointestinal tract describing how, in the IBD mucosa, DC display pro-inflammatory properties, which drive disease progression. A better understanding of the mechanisms inducing DC abnormal profile in IBD may provide us with novel tools to perform tissue specific immunomodulation.
Collapse
Affiliation(s)
- David Bernardo
- Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - María Chaparro
- Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Javier P Gisbert
- Gastroenterology Unit, Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa (IIS-IP), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| |
Collapse
|
28
|
Diversity and functions of intestinal mononuclear phagocytes. Mucosal Immunol 2017; 10:845-864. [PMID: 28378807 DOI: 10.1038/mi.2017.22] [Citation(s) in RCA: 133] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 02/16/2017] [Accepted: 02/22/2017] [Indexed: 02/04/2023]
Abstract
The intestinal lamina propria (LP) contains a diverse array of mononuclear phagocyte (MNP) subsets, including conventional dendritic cells (cDC), monocytes and tissue-resident macrophages (mφ) that collectively play an essential role in mucosal homeostasis, infection and inflammation. In the current review we discuss the function of intestinal cDC and monocyte-derived MNP, highlighting how these subsets play several non-redundant roles in the regulation of intestinal immune responses. While much remains to be learnt, recent findings also underline how the various populations of MNP adapt to deal with the challenges specific to their environment. Understanding these processes should help target individual subsets for 'fine tuning' immunological responses within the intestine, a process that may be of relevance both for the treatment of inflammatory bowel disease (IBD) and for optimized vaccine design.
Collapse
|
29
|
Moser AM, Spindelboeck W, Strohmaier H, Enzinger C, Gattringer T, Fuchs S, Fazekas F, Gorkiewicz G, Wurm P, Högenauer C, Khalil M. Mucosal biopsy shows immunologic changes of the colon in patients with early MS. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017. [PMID: 28638851 PMCID: PMC5471347 DOI: 10.1212/nxi.0000000000000362] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objective: To investigate immune cells of the colonic mucosa and fecal short-chain fatty acids (SCFAs) in treatment-naive patients with a clinically isolated syndrome (CIS) or early relapsing MS. Methods: In this cross-sectional proof-of-concept study, we obtained mucosal specimens during ileocolonoscopy from 15 untreated patients with CIS/MS and 10 controls. Mucosal immune cells were analyzed by FACS, and gas chromatography-mass spectrometry measurements of stool samples served to determine SCFA. Results: The number of total dendritic cells (DCs), CD103+ tolerogenic DCs, and CD4+25+127–regulatory T cells (Tregs) was significantly reduced in the distal colon of patients with CIS/MS compared with controls, whereas we found no differences in the proximal colon. The patients' fecal samples also showed a substantially lower content of SCFA and especially lower levels of butyrate and acetate. Conclusions: Our findings indicate a disturbed homeostasis of colonic DCs and Tregs in patients with MS which could be associated with colonic SCFA depletion. Although not implying causality, these findings confirm parallel abnormalities of the gut in MS and warrant further research if modulation of the colonic SCFA profile or the colonic Treg pool can serve to modify the course of MS.
Collapse
Affiliation(s)
- Adrian Mathias Moser
- Department of Internal Medicine (A.M.M., W.S., C.H.), Division of Gastroenterology and Hepatology, Theodor Escherich Laboratory for Microbiome Research (A.M.M., W.S., G.G., P.W., C.H.), Center for Medical Research (H.S.), Department of Neurology (C.E., T.G., S.F., F.F., M.K.), and Institute of Pathology (G.G., P.W.), Medical University of Graz, Austria
| | - Walter Spindelboeck
- Department of Internal Medicine (A.M.M., W.S., C.H.), Division of Gastroenterology and Hepatology, Theodor Escherich Laboratory for Microbiome Research (A.M.M., W.S., G.G., P.W., C.H.), Center for Medical Research (H.S.), Department of Neurology (C.E., T.G., S.F., F.F., M.K.), and Institute of Pathology (G.G., P.W.), Medical University of Graz, Austria
| | - Heimo Strohmaier
- Department of Internal Medicine (A.M.M., W.S., C.H.), Division of Gastroenterology and Hepatology, Theodor Escherich Laboratory for Microbiome Research (A.M.M., W.S., G.G., P.W., C.H.), Center for Medical Research (H.S.), Department of Neurology (C.E., T.G., S.F., F.F., M.K.), and Institute of Pathology (G.G., P.W.), Medical University of Graz, Austria
| | - Christian Enzinger
- Department of Internal Medicine (A.M.M., W.S., C.H.), Division of Gastroenterology and Hepatology, Theodor Escherich Laboratory for Microbiome Research (A.M.M., W.S., G.G., P.W., C.H.), Center for Medical Research (H.S.), Department of Neurology (C.E., T.G., S.F., F.F., M.K.), and Institute of Pathology (G.G., P.W.), Medical University of Graz, Austria
| | - Thomas Gattringer
- Department of Internal Medicine (A.M.M., W.S., C.H.), Division of Gastroenterology and Hepatology, Theodor Escherich Laboratory for Microbiome Research (A.M.M., W.S., G.G., P.W., C.H.), Center for Medical Research (H.S.), Department of Neurology (C.E., T.G., S.F., F.F., M.K.), and Institute of Pathology (G.G., P.W.), Medical University of Graz, Austria
| | - Siegrid Fuchs
- Department of Internal Medicine (A.M.M., W.S., C.H.), Division of Gastroenterology and Hepatology, Theodor Escherich Laboratory for Microbiome Research (A.M.M., W.S., G.G., P.W., C.H.), Center for Medical Research (H.S.), Department of Neurology (C.E., T.G., S.F., F.F., M.K.), and Institute of Pathology (G.G., P.W.), Medical University of Graz, Austria
| | - Franz Fazekas
- Department of Internal Medicine (A.M.M., W.S., C.H.), Division of Gastroenterology and Hepatology, Theodor Escherich Laboratory for Microbiome Research (A.M.M., W.S., G.G., P.W., C.H.), Center for Medical Research (H.S.), Department of Neurology (C.E., T.G., S.F., F.F., M.K.), and Institute of Pathology (G.G., P.W.), Medical University of Graz, Austria
| | - Gregor Gorkiewicz
- Department of Internal Medicine (A.M.M., W.S., C.H.), Division of Gastroenterology and Hepatology, Theodor Escherich Laboratory for Microbiome Research (A.M.M., W.S., G.G., P.W., C.H.), Center for Medical Research (H.S.), Department of Neurology (C.E., T.G., S.F., F.F., M.K.), and Institute of Pathology (G.G., P.W.), Medical University of Graz, Austria
| | - Philipp Wurm
- Department of Internal Medicine (A.M.M., W.S., C.H.), Division of Gastroenterology and Hepatology, Theodor Escherich Laboratory for Microbiome Research (A.M.M., W.S., G.G., P.W., C.H.), Center for Medical Research (H.S.), Department of Neurology (C.E., T.G., S.F., F.F., M.K.), and Institute of Pathology (G.G., P.W.), Medical University of Graz, Austria
| | - Christoph Högenauer
- Department of Internal Medicine (A.M.M., W.S., C.H.), Division of Gastroenterology and Hepatology, Theodor Escherich Laboratory for Microbiome Research (A.M.M., W.S., G.G., P.W., C.H.), Center for Medical Research (H.S.), Department of Neurology (C.E., T.G., S.F., F.F., M.K.), and Institute of Pathology (G.G., P.W.), Medical University of Graz, Austria
| | - Michael Khalil
- Department of Internal Medicine (A.M.M., W.S., C.H.), Division of Gastroenterology and Hepatology, Theodor Escherich Laboratory for Microbiome Research (A.M.M., W.S., G.G., P.W., C.H.), Center for Medical Research (H.S.), Department of Neurology (C.E., T.G., S.F., F.F., M.K.), and Institute of Pathology (G.G., P.W.), Medical University of Graz, Austria
| |
Collapse
|
30
|
Indrelid S, Kleiveland C, Holst R, Jacobsen M, Lea T. The Soil Bacterium Methylococcus capsulatus Bath Interacts with Human Dendritic Cells to Modulate Immune Function. Front Microbiol 2017; 8:320. [PMID: 28293233 PMCID: PMC5329024 DOI: 10.3389/fmicb.2017.00320] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 02/15/2017] [Indexed: 01/09/2023] Open
Abstract
The prevalence of inflammatory bowel disease (IBD) has increased in Western countries during the course of the twentieth century, and is evolving to be a global disease. Recently we showed that a bacterial meal of a non-commensal, non-pathogenic methanotrophic soil bacterium, Methylococcus capsulatus Bath prevents experimentally induced colitis in a murine model of IBD. The mechanism behind the effect has this far not been identified. Here, for the first time we show that M. capsulatus, a soil bacterium adheres specifically to human dendritic cells, influencing DC maturation, cytokine production, and subsequent T cell activation, proliferation and differentiation. We characterize the immune modulatory properties of M. capsulatus and compare its immunological properties to those of another Gram-negative gammaproteobacterium, the commensal Escherichia coli K12, and the immune modulatory Gram-positive probiotic bacterium, Lactobacillus rhamnosus GG in vitro. M. capsulatus induces intermediate phenotypic and functional DC maturation. In a mixed lymphocyte reaction M. capsulatus-primed monocyte-derived dendritic cells (MoDCs) enhance T cell expression of CD25, the γ-chain of the high affinity IL-2 receptor, supports cell proliferation, and induce a T cell cytokine profile different from both E. coli K12 and Lactobacillus rhamnosus GG. M. capsulatus Bath thus interacts specifically with MoDC, affecting MoDC maturation, cytokine profile, and subsequent MoDC directed T cell polarization.
Collapse
Affiliation(s)
- Stine Indrelid
- Research and Innovation, Østfold Hospital TrustKalnes, Norway; Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life SciencesAas, Norway
| | - Charlotte Kleiveland
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences Aas, Norway
| | - René Holst
- Research and Innovation, Østfold Hospital Trust Kalnes, Norway
| | - Morten Jacobsen
- Research and Innovation, Østfold Hospital TrustKalnes, Norway; Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life SciencesAas, Norway
| | - Tor Lea
- Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences Aas, Norway
| |
Collapse
|
31
|
Graves CL, Li J, LaPato M, Shapiro MR, Glover SC, Wallet MA, Wallet SM. Intestinal Epithelial Cell Regulation of Adaptive Immune Dysfunction in Human Type 1 Diabetes. Front Immunol 2017; 7:679. [PMID: 28119693 PMCID: PMC5222791 DOI: 10.3389/fimmu.2016.00679] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 12/21/2016] [Indexed: 01/29/2023] Open
Abstract
Environmental factors contribute to the initiation, progression, and maintenance of type 1 diabetes (T1D), although a single environmental trigger for disease has not been identified. Studies have documented the contribution of immunity within the gastrointestinal tract (GI) to the expression of autoimmunity at distal sites. Intestinal epithelial cells (IECs) regulate local and systemic immunologic homeostasis through physical and biochemical interactions with innate and adaptive immune populations. We hypothesize that a loss in the tolerance-inducing nature of the GI tract occurs within T1D and is due to altered IECs' innate immune function. As a first step in addressing this hypothesis, we contrasted the global immune microenvironment within the GI tract of individuals with T1D as well as evaluated the IEC-specific effects on adaptive immune cell phenotypes. The soluble and cellular immune microenvironment within the duodenum, the soluble mediator profile of primary IECs derived from the same duodenal tissues, and the effect of the primary IECs' soluble mediator profile on T-cell expansion and polarization were evaluated. Higher levels of IL-17C and beta-defensin 2 (BD-2) mRNA in the T1D-duodenum were observed. Higher frequencies of type 1 innate lymphoid cells (ILC1) and CD8+CXCR3+ T-cells (Tc1) were also observed in T1D-duodenal tissues, concomitant with lower frequencies of type 3 ILC (ILC3) and CD8+CCR6+ T-cells (Tc17). Higher levels of proinflammatory mediators (IL-17C and BD-2) in the absence of similar changes in mediators associated with homeostasis (interleukin 10 and thymic stromal lymphopoietin) were also observed in T1D-derived primary IEC cultures. T1D-derived IEC culture supernatants induced more robust CD8+ T-cell proliferation along with enhanced polarization of Tc1 populations, at the expense of Tc17 polarization, as well as the expansion of CXCR3+CCR6+/- Tregs, indicative of a Th1-like and less regulatory phenotype. These data demonstrate a proinflammatory microenvironment of the T1D-duodenum, whereby IECs have the potential to contribute to the expansion and polarization of innate and adaptive immune cells. Although these data do not discern whether these observations are not simply a consequence of T1D, the data indicate that the T1D-GI tract has the capacity to foster a permissive environment under which autoreactive T-cells could be expanded and polarized.
Collapse
Affiliation(s)
- Christina L. Graves
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| | - Jian Li
- Department of Gastroenterology, Hepatology, and Nutrition, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Melissa LaPato
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| | - Melanie R. Shapiro
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| | - Sarah C. Glover
- Department of Gastroenterology, Hepatology, and Nutrition, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Mark A. Wallet
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida Health Science Center, Gainesville, FL, USA
| | - Shannon M. Wallet
- Department of Oral Biology, College of Dentistry, University of Florida Health Science Center, Gainesville, FL, USA
| |
Collapse
|
32
|
Abstract
By reputation, the parasite is a pariah, an unwelcome guest. Infection with helminth parasites evokes stereotypic immune responses in humans and mice that are dominated by T helper (Th)-2 responses; thus, a hypothesis arises that infection with helminths would limit immunopathology in concomitant inflammatory disease. Although infection with some species of helminths can cause devastating disease and affect the course of microbial infections, analyses of rodent models of inflammatory disease reveal that infection with helminth parasites, or treatment with helminth extracts, can limit the severity of autoinflammatory disease, including colitis. Intriguing, but fewer, studies show that adoptive transfer of myeloid immune cells treated with helminth products/extracts in vitro can suppress inflammation. Herein, 3 facets of helminth therapy are reviewed and critiqued: treatment with viable ova or larvae, treatment with crude extracts of the worm or purified molecules, and cellular immunotherapy. The beneficial effect of helminth therapy often converges on the mobilization of IL-10 and regulatory/alternatively activated macrophages, while there are reports on transforming growth factor (TGF)-β, regulatory T cells and dendritic cells, and recent data suggest that helminth-evoked changes in the microbiota should be considered when defining anticolitic mechanisms. We speculate that if the data from animal models translate to humans, noting the heterogeneity therein, then the choice between use of viable helminth ova, helminth extracts/molecules or antigen-pulsed immune cells could be matched to disease management in defined cohorts of patients with inflammatory bowel disease.
Collapse
|
33
|
Becker KJ. Strain-Related Differences in the Immune Response: Relevance to Human Stroke. Transl Stroke Res 2016; 7:303-12. [PMID: 26860504 PMCID: PMC4929040 DOI: 10.1007/s12975-016-0455-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/31/2016] [Accepted: 02/02/2016] [Indexed: 02/07/2023]
Abstract
There are significant differences in the immune response and in the susceptibility to autoimmune diseases among rodent strains. It would thus be expected that the contribution of the immune response to cerebral ischemic injury would also differ among rodent strains. More importantly, there are significant differences between the immune responses of rodents and humans. All of these factors are likely to impact the successful translation of immunomodulatory therapies from experimental rodent models to patients with stroke.
Collapse
Affiliation(s)
- Kyra J Becker
- Department of Neurology, University of Washington School of Medicine, Harborview Medical Center, 325 9th Ave, Box 359775, Seattle, WA, 98104-2499, USA.
| |
Collapse
|
34
|
Jiang Y, Yang G, Meng F, Yang W, Hu J, Ye L, Shi C, Wang C. Immunological mechanisms involved in probiotic-mediated protection against Citrobacter rodentium-induced colitis. Benef Microbes 2016; 7:397-407. [DOI: 10.3920/bm2015.0119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Inflammatory bowel disease is a group of chronic, incurable inflammatory disorders of the gastrointestinal tract that cause severe diarrhoea, intestinal inflammation, pain, fatigue and weight loss. In this study, we first developed a model of Citrobacter rodentium-induced colitis and then evaluated the protective effects of selected probiotics on inflammation. The results showed that administration of a combination of probiotics including Lactobacillus rhamnosus ATCC 53103, Lactobacillus acidophilus ATCC 4356 and Lactobacillus plantarum A significantly increased the production of CD11c+ dendritic cells in the spleen (3.62% vs phosphate buffered saline (PBS)-treated control, P<0.01) and mesenteric lymph nodes (MLNs). In addition, the presence of probiotics significantly up-regulated the development of CD4+/CD25+/Foxp3+ regulatory T cells in MLNs by approximately 2.07% compared to the effect observed in the PBS-treated control (P<0.01) and down-regulated the expression of inflammatory cytokines, including interleukin-17, tumour necrosis factor-α and interferon-γ, by 0.11, 0.11 and 0.15%, respectively, compared to the effect observed in the PBS-treated control (P<0.01).These effects conferred protection against colitis, as shown by histopathological analyses.
Collapse
Affiliation(s)
- Y. Jiang
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China P.R
| | - G. Yang
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China P.R
| | - F. Meng
- Guangxi Veterinary Research Institute, 51 Aibei Road, Xixiangtang, Nanning, Guangxi, 530001, China P.R
| | - W. Yang
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China P.R
| | - J. Hu
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China P.R
| | - L. Ye
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China P.R
| | - C. Shi
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China P.R
| | - C. Wang
- College of Animal Science and Technology, Jilin Agricultural University, 2888 Xincheng Street, Changchun 130118, China P.R
| |
Collapse
|
35
|
Winek K, Meisel A, Dirnagl U. Gut microbiota impact on stroke outcome: Fad or fact? J Cereb Blood Flow Metab 2016; 36:891-8. [PMID: 26945017 PMCID: PMC4853845 DOI: 10.1177/0271678x16636890] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 01/14/2016] [Indexed: 12/16/2022]
Abstract
Microbiota and its contribution to brain function and diseases has become a hot topic in neuroscience. We discuss the emerging role of commensal bacteria in the course of stroke. Further, we review potential pitfalls in microbiota research and their impact on how we interpret the available evidence, emerging results, and on how we design future studies.
Collapse
Affiliation(s)
- Katarzyna Winek
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany NeuroCure Clinical Research, Charité - Universitätsmedizin Berlin, Berlin, Germany Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Meisel
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany NeuroCure Clinical Research, Charité - Universitätsmedizin Berlin, Berlin, Germany Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Ulrich Dirnagl
- Department of Experimental Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany NeuroCure Clinical Research, Charité - Universitätsmedizin Berlin, Berlin, Germany Center for Stroke Research Berlin, Charité - Universitätsmedizin Berlin, Berlin, Germany Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany German Center for Neurodegeneration Research (DZNE), Berlin, Germany German Center for Cardiovascular Research (DZHK), Berlin, Germany
| |
Collapse
|
36
|
Grieger JA, Clifton VL, Tuck AR, Wooldridge AL, Robertson SA, Gatford KL. In utero Programming of Allergic Susceptibility. Int Arch Allergy Immunol 2016; 169:80-92. [PMID: 27044002 DOI: 10.1159/000443961] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Around 30-40% of the world's population will experience allergy, the most common and earliest-onset noncommunicable disease. With a steady rise in the incidence of allergic disease over recent decades, up to 18% of children will suffer a respiratory, food or skin allergy before their 18th birthday. There is compelling evidence that the risk of developing allergy is influenced by early life events and particularly in utero exposures. METHODS A comprehensive literature review was undertaken which outlines prenatal risk factors and potential mechanisms underlying the development of allergy in childhood. RESULTS Exposures including maternal cigarette smoking, preterm birth and Caesarean delivery are implicated in predisposing infants to the later development of allergy. In contrast, restricted growth in utero, a healthy maternal diet and a larger family size are protective, but the mechanisms here are unclear and require further investigation. CONCLUSION To ameliorate the allergy pandemic in young children, we must define prenatal mechanisms that alter the programming of the fetal immune system and also identify specific targets for antenatal interventions.
Collapse
Affiliation(s)
- Jessica A Grieger
- Robinson Research Institute and School of Medicine, University ofAdelaide, Adelaide, S.A., Australia
| | | | | | | | | | | |
Collapse
|
37
|
Branson JA, McLean DJ, Forsberg NE, Bobe G. Yeast-containing feed additive alters gene expression profiles associated with innate immunity in whole blood of a rodent model. Innate Immun 2016; 22:249-56. [DOI: 10.1177/1753425916640326] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 02/25/2016] [Indexed: 11/16/2022] Open
Abstract
Feeding a yeast-containing additive (YCA; OmniGen-AF) improves immune responses in ruminant livestock and reduces subsequent production losses. The objective was to identify molecular pathways by which dietary YCA may modify immune responses using a rodent model. Thirty-seven healthy, unchallenged CD rats received a diet containing 0 (control; n = 5, only 28 d), 0.5% ( n = 15) or 1% ( n = 17) YCA for 7 ( n = 4/group), 14 ( n = 3 or 4/group), 21 ( n = 3 or 4/group) or 28 ( n = 5/group) d. At the end of the feeding periods, whole blood was collected and the isolated RNA was analyzed for the expression of 84 genes involved in innate and cell-mediated adaptive immune responses. Three bacterial pattern recognition receptors TLR1 (0.5%: + 2.01; 1%: + 2.38), TLR6 (0.5%: + 2.11; 1%: + 2.34) and NOD2 (0.5%: + 2.32; 1%: + 2.23), two APC surface receptors CD1D1 (0.5%: + 1.75; 1%: + 2.33) and CD80 (0.5%: +2.45; 1%: +3.00), and the cell signaling molecule MAPK8 (0.5%: +1.87; 1%: +2.35) were significantly up-regulated by YCA at both inclusion rates. In conclusion, feeding YCA may potentially increase recognition and responses to bacterial pathogens and T-cell activation and differentiation and thereby maintain health and prevent production losses.
Collapse
Affiliation(s)
- Jennifer A Branson
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, USA
- OmniGen Research Laboratory, Phibro Animal Health, Corvallis, OR, USA
| | - Derek J McLean
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, USA
- OmniGen Research Laboratory, Phibro Animal Health, Corvallis, OR, USA
| | - Neil E Forsberg
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, USA
- OmniGen Research Laboratory, Phibro Animal Health, Corvallis, OR, USA
| | - Gerd Bobe
- Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, OR, USA
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
38
|
Mann ER, Bernardo D, English NR, Landy J, Al-Hassi HO, Peake STC, Man R, Elliott TR, Spranger H, Lee GH, Parian A, Brant SR, Lazarev M, Hart AL, Li X, Knight SC. Compartment-specific immunity in the human gut: properties and functions of dendritic cells in the colon versus the ileum. Gut 2016; 65:256-70. [PMID: 25666191 PMCID: PMC4530083 DOI: 10.1136/gutjnl-2014-307916] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 11/27/2014] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Dendritic cells (DC) mediate intestinal immune tolerance. Despite striking differences between the colon and the ileum both in function and bacterial load, few studies distinguish between properties of immune cells in these compartments. Furthermore, information of gut DC in humans is scarce. We aimed to characterise human colonic versus ileal DC. DESIGN Human DC from paired colonic and ileal samples were characterised by flow cytometry, electron microscopy or used to stimulate T cell responses in a mixed leucocyte reaction. RESULTS A lower proportion of colonic DC produced pro-inflammatory cytokines (tumour necrosis factor-α and interleukin (IL)-1β) compared with their ileal counterparts and exhibited an enhanced ability to generate CD4(+)FoxP3(+)IL-10(+) (regulatory) T cells. There were enhanced proportions of CD103(+)Sirpα(-) DC in the colon, with increased proportions of CD103(+)Sirpα(+) DC in the ileum. A greater proportion of colonic DC subsets analysed expressed the lymph-node-homing marker CCR7, alongside enhanced endocytic capacity, which was most striking in CD103(+)Sirpα(+) DC. Expression of the inhibitory receptor ILT3 was enhanced on colonic DC. Interestingly, endocytic capacity was associated with CD103(+) DC, in particular CD103(+)Sirpα(+) DC. However, expression of ILT3 was associated with CD103(-) DC. Colonic and ileal DC differentially expressed skin-homing marker CCR4 and small-bowel-homing marker CCR9, respectively, and this corresponded to their ability to imprint these homing markers on T cells. CONCLUSIONS The regulatory properties of colonic DC may represent an evolutionary adaptation to the greater bacterial load in the colon. The colon and the ileum should be regarded as separate entities, each comprising DC with distinct roles in mucosal immunity and imprinting.
Collapse
Affiliation(s)
- Elizabeth R Mann
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK,Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - David Bernardo
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Nicholas R English
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Jon Landy
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK,St. Mark's Hospital, North West London Hospitals NHS Trust, Harrow, UK
| | - Hafid O Al-Hassi
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Simon TC Peake
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK,St. Mark's Hospital, North West London Hospitals NHS Trust, Harrow, UK
| | - Ripple Man
- St. Mark's Hospital, North West London Hospitals NHS Trust, Harrow, UK
| | - Timothy R Elliott
- St. Mark's Hospital, North West London Hospitals NHS Trust, Harrow, UK
| | - Henning Spranger
- St. Mark's Hospital, North West London Hospitals NHS Trust, Harrow, UK
| | - Gui Han Lee
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| | - Alyssa Parian
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Steven R Brant
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Mark Lazarev
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ailsa L Hart
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK,St. Mark's Hospital, North West London Hospitals NHS Trust, Harrow, UK
| | - Xuhang Li
- Department of Medicine, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stella C Knight
- Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark's Campus, Harrow, UK
| |
Collapse
|
39
|
Oral immune therapy: targeting the systemic immune system via the gut immune system for the treatment of inflammatory bowel disease. Clin Transl Immunology 2016; 5:e60. [PMID: 26900473 PMCID: PMC4735066 DOI: 10.1038/cti.2015.47] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/04/2015] [Accepted: 12/22/2015] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel diseases (IBD) are associated with an altered systemic immune response leading to inflammation-mediated damage to the gut and other organs. Oral immune therapy is a method of systemic immune modulation via alteration of the gut immune system. It uses the inherit ability of the innate system of the gut to redirect the systemic innate and adaptive immune responses. Oral immune therapy is an attractive clinical approach to treat autoimmune and inflammatory disorders. It can induce immune modulation without immune suppression, has minimal toxicity and is easily administered. Targeting the systemic immune system via the gut immune system can serve as an attractive novel therapeutic method for IBD. This review summarizes the current data and discusses several examples of oral immune therapeutic methods for using the gut immune system to generate signals to reset systemic immunity as a treatment for IBD.
Collapse
|
40
|
OKUMURA R, TAKEDA K. Maintenance of gut homeostasis by the mucosal immune system. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2016; 92:423-435. [PMID: 27840390 PMCID: PMC5328791 DOI: 10.2183/pjab.92.423] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Inflammatory bowel diseases (IBD) are represented by ulcerative colitis (UC) and Crohn's disease (CD), both of which involve chronic intestinal inflammation. Recent evidence has indicated that gut immunological homeostasis is maintained by the interaction between host immunity and intestinal microbiota. A variety of innate immune cells promote or suppress T cell differentiation and activation in response to intestinal bacteria or their metabolites. Some commensal bacteria species or bacterial metabolites enhance or repress host immunity by inducing T helper (Th) 17 cells or regulatory T cells. Intestinal epithelial cells between host immune cells and intestinal microbiota contribute to the separation of these populations and modulate host immune responses to intestinal microbiota. Therefore, the imbalance between host immunity and intestinal microbiota caused by host genetic predisposition or abnormal environmental factors promote susceptibility to intestinal inflammation.
Collapse
Affiliation(s)
- Ryu OKUMURA
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Kiyoshi TAKEDA
- Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
- Correspondence should be addressed: K. Takeda, Laboratory of Immune Regulation, Department of Microbiology and Immunology, Graduate School of Medicine, WPI Immunology Frontier Research Center, Osaka University, Suita, Osaka 565-0871, Japan (e-mail: )
| |
Collapse
|
41
|
Moving Beyond the Mouse: Key New Insight Into Human Colonic Dendritic Cells. Cell Mol Gastroenterol Hepatol 2015; 2:3-4. [PMID: 28174700 PMCID: PMC4980740 DOI: 10.1016/j.jcmgh.2015.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
|
42
|
Zhuang X, Deng ZB, Mu J, Zhang L, Yan J, Miller D, Feng W, McClain CJ, Zhang HG. Ginger-derived nanoparticles protect against alcohol-induced liver damage. J Extracell Vesicles 2015; 4:28713. [PMID: 26610593 PMCID: PMC4662062 DOI: 10.3402/jev.v4.28713] [Citation(s) in RCA: 330] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Revised: 10/26/2015] [Accepted: 11/03/2015] [Indexed: 02/07/2023] Open
Abstract
Daily exposure of humans to nanoparticles from edible plants is inevitable, but significant advances are required to determine whether edible plant nanoparticles are beneficial to our health. Additionally, strategies are needed to elucidate the molecular mechanisms underlying any beneficial effects. Here, as a proof of concept, we used a mouse model to show that orally given nanoparticles isolated from ginger extracts using a sucrose gradient centrifugation procedure resulted in protecting mice against alcohol-induced liver damage. The ginger-derived nanoparticle (GDN)–mediated activation of nuclear factor erythroid 2-related factor 2 (Nrf2) led to the expression of a group of liver detoxifying/antioxidant genes and inhibited the production of reactive oxygen species, which partially contributes to the liver protection. Using lipid knock-out and knock-in strategies, we further identified that shogaol in the GDN plays a role in the induction of Nrf2 in a TLR4/TRIF-dependent manner. Given the critical role of Nrf2 in modulating numerous cellular processes, including hepatocyte homeostasis, drug metabolism, antioxidant defenses, and cell-cycle progression of liver, this finding not only opens up a new avenue for investigating GDN as a means to protect against the development of liver-related diseases such as alcohol-induced liver damage but sheds light on studying the cellular and molecular mechanisms underlying interspecies communication in the liver via edible plant–derived nanoparticles.
Collapse
Affiliation(s)
- Xiaoying Zhuang
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Zhong-Bin Deng
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Jingyao Mu
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Lifeng Zhang
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Jun Yan
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Donald Miller
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Wenke Feng
- Division of Gastroenterology, Department of Medicine, University of Louisville, Louisville, KY, USA.,Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA
| | - Craig J McClain
- Division of Gastroenterology, Department of Medicine, University of Louisville, Louisville, KY, USA.,Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY, USA.,Robley Rex Louisville Veterans Administration Medical Center, Louisville, KY, USA
| | - Huang-Ge Zhang
- James Brown Cancer Center, Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA.,Robley Rex Louisville Veterans Administration Medical Center, Louisville, KY, USA;
| |
Collapse
|
43
|
Yu H, Sui Y, Wang Y, Sato N, Frey B, Xia Z, Waldmann TA, Berzofsky J. Interleukin-15 Constrains Mucosal T Helper 17 Cell Generation: Influence of Mononuclear Phagocytes. PLoS One 2015; 10:e0143001. [PMID: 26600079 PMCID: PMC4658142 DOI: 10.1371/journal.pone.0143001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 10/29/2015] [Indexed: 01/09/2023] Open
Abstract
Interleukin (IL)-15 has multiple roles in innate and adaptive immunity, especially regarding CD8+ T cells and natural killer cells. However, the role of IL-15 in regulating differentiation of T helper cell subsets and mononuclear phagocytes (MPs) in different tissues in vivo is unknown. Here we report that IL-15 indirectly regulates Th17 but not other Th subsets in the intestinal lamina propria (LP), apparently through effects on MPs. Th17 cells in the LP were more prevalent in IL-15 KO mice than their wild-type counterparts, and less prevalent in IL-15 transgenic mice than their wild-type littermates, even co-caged. MPs from the LP of these mice were sufficient to mimic the in vivo finding in vitro by skewing of cocultured wild type OVA-specific CD4+ T cells. However, production of IL-15 or lack thereof by these MPs was not sufficient to explain the skewing, as addition or blockade of IL-15 in the cultures had no effect. Rather, a skewing of the relative proportion of CD11b+, CD103+ and double positive LP MP subsets in transgenic and KO could explain the differences in Th17 cells. Thus, IL-15 may influence MP subsets in the gut in a novel way that alters the frequency of LP Th17 cells.
Collapse
Affiliation(s)
- Huifeng Yu
- Vaccine Branch, Center for Cancer Research, National Institute of Health, Bethesda, Maryland, United States of America
| | - Yongjun Sui
- Vaccine Branch, Center for Cancer Research, National Institute of Health, Bethesda, Maryland, United States of America
- * E-mail: (YS); (JB)
| | - Yichuan Wang
- Vaccine Branch, Center for Cancer Research, National Institute of Health, Bethesda, Maryland, United States of America
| | - Noriko Sato
- Molecular Imaging Program, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States of America
| | - Blake Frey
- Vaccine Branch, Center for Cancer Research, National Institute of Health, Bethesda, Maryland, United States of America
| | - Zheng Xia
- Vaccine Branch, Center for Cancer Research, National Institute of Health, Bethesda, Maryland, United States of America
| | - Thomas A. Waldmann
- Metabolism Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, Maryland, United States of America
| | - Jay Berzofsky
- Vaccine Branch, Center for Cancer Research, National Institute of Health, Bethesda, Maryland, United States of America
- * E-mail: (YS); (JB)
| |
Collapse
|
44
|
Noor F. A shift in paradigm towards human biology-based systems for cholestatic-liver diseases. J Physiol 2015; 593:5043-55. [PMID: 26417843 DOI: 10.1113/jp271124] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/16/2015] [Indexed: 12/15/2022] Open
Abstract
Cholestatic-liver diseases (CLDs) arise from diverse causes ranging from genetic factors to drug-induced cholestasis. The so-called diseases of civilization (obesity, diabetes, metabolic disorders, non-alcoholic liver disease, cardiovascular diseases, etc.) are intricately implicated in liver and gall bladder diseases. Although CLDs have been extensively studied, there seem to be important gaps in the understanding of human disease. Despite the fact that many animal models exist and substantial clinical data are available, translation of this knowledge towards therapy has been disappointingly limited. Recent advances in liver cell culture such as in vivo-like 3D cultivation of human primary hepatic cells, human induced pluripotent stem cell-derived hepatocytes; and cutting-edge analytical techniques such as 'omics' technologies and high-content screenings could play a decisive role in deeper mechanistic understanding of CLDs. This Topical Review proposes a roadmap to human biology-based research using omics technologies providing quantitative information on mechanisms in an adverse outcome/disease pathway framework. With modern sensitive tools, a shift in paradigm in human disease research seems timely and even inevitable to overcome species barriers in translation.
Collapse
Affiliation(s)
- Fozia Noor
- Biochemical Engineering Institute, Saarland University, Saarbrücken, Germany
| |
Collapse
|
45
|
Bernardo D, Durant L, Mann ER, Bassity E, Montalvillo E, Man R, Vora R, Reddi D, Bayiroglu F, Fernández-Salazar L, English NR, Peake ST, Landy J, Lee GH, Malietzis G, Siaw YH, Murugananthan AU, Hendy P, Sánchez-Recio E, Phillips RK, Garrote JA, Scott P, Parkhill J, Paulsen M, Hart AL, Al-Hassi HO, Arranz E, Walker AW, Carding SR, Knight SC. Chemokine (C-C Motif) Receptor 2 Mediates Dendritic Cell Recruitment to the Human Colon but Is Not Responsible for Differences Observed in Dendritic Cell Subsets, Phenotype, and Function Between the Proximal and Distal Colon. Cell Mol Gastroenterol Hepatol 2015; 2:22-39.e5. [PMID: 26866054 PMCID: PMC4705905 DOI: 10.1016/j.jcmgh.2015.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 08/21/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND & AIMS Most knowledge about gastrointestinal (GI)-tract dendritic cells (DC) relies on murine studies where CD103+ DC specialize in generating immune tolerance with the functionality of CD11b+/- subsets being unclear. Information about human GI-DC is scarce, especially regarding regional specifications. Here, we characterized human DC properties throughout the human colon. METHODS Paired proximal (right/ascending) and distal (left/descending) human colonic biopsies from 95 healthy subjects were taken; DC were assessed by flow cytometry and microbiota composition assessed by 16S rRNA gene sequencing. RESULTS Colonic DC identified were myeloid (mDC, CD11c+CD123-) and further divided based on CD103 and SIRPα (human analog of murine CD11b) expression. CD103-SIRPα+ DC were the major population and with CD103+SIRPα+ DC were CD1c+ILT3+CCR2+ (although CCR2 was not expressed on all CD103+SIRPα+ DC). CD103+SIRPα- DC constituted a minor subset that were CD141+ILT3-CCR2-. Proximal colon samples had higher total DC counts and fewer CD103+SIRPα+ cells. Proximal colon DC were more mature than distal DC with higher stimulatory capacity for CD4+CD45RA+ T-cells. However, DC and DC-invoked T-cell expression of mucosal homing markers (β7, CCR9) was lower for proximal DC. CCR2 was expressed on circulating CD1c+, but not CD141+ mDC, and mediated DC recruitment by colonic culture supernatants in transwell assays. Proximal colon DC produced higher levels of cytokines. Mucosal microbiota profiling showed a lower microbiota load in the proximal colon, but with no differences in microbiota composition between compartments. CONCLUSIONS Proximal colonic DC subsets differ from those in distal colon and are more mature. Targeted immunotherapy using DC in T-cell mediated GI tract inflammation may therefore need to reflect this immune compartmentalization.
Collapse
Key Words
- AMOVA, analysis of molecular variance
- CCL, chemokine (C-C motif) ligand
- CCR, chemokine (C-C motif) receptor
- CCR2
- CFSE, 5-carboxy fluorescein diacetate succinimidyl ester
- DC, dendritic cells
- DL, detection limit
- Dendritic Cells
- Distal Colon
- FACS, fluorescence-activated cell sorting
- FITC, fluorescein isothiocyanate
- GI, gastrointestinal
- Human Gastrointestinal Tract
- IL, interleukin
- ILT3, Ig-like transcript 3
- LPMC, lamina propria mononuclear cells
- Microbiota
- Mφ, macrophages
- PBMC, peripheral blood mononuclear cells
- PCR, polymerase chain reaction
- Proximal Colon
- RALDH2, retinaldehyde dehydrogenase type 2
- SIRPα, signal regulatory protein α
- SPB, sodium phosphate buffer
- Treg, regulatory T-cells
- mDC, myeloid dendritic cell
- pDC, plasmacytoid dendritic cell
Collapse
Affiliation(s)
- David Bernardo
- Antigen Presentation Research Group, Imperial College London, Harrow, United Kingdom
| | - Lydia Durant
- Antigen Presentation Research Group, Imperial College London, Harrow, United Kingdom
| | - Elizabeth R. Mann
- Antigen Presentation Research Group, Imperial College London, Harrow, United Kingdom,Centre for Immunobiology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Elizabeth Bassity
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich, United Kingdom
| | - Enrique Montalvillo
- Mucosal Immunology Group, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, Valladolid, Spain
| | - Ripple Man
- St. Mark’s Hospital, North West London Hospitals NHS Trust, Harrow, United Kingdom
| | - Rakesh Vora
- Antigen Presentation Research Group, Imperial College London, Harrow, United Kingdom,St. Mark’s Hospital, North West London Hospitals NHS Trust, Harrow, United Kingdom
| | - Durga Reddi
- Antigen Presentation Research Group, Imperial College London, Harrow, United Kingdom
| | - Fahri Bayiroglu
- Department of Physiology, Faculty of Medicine, Yildirim Beyazit University, Ankara, Turkey,Faculty of Farmacy, Agri İbrahim Cecen University, Agri, Turkey
| | - Luis Fernández-Salazar
- Gastroenterology Service, Hospital Clínico Universitario de Valladolid, Valladolid, Spain
| | - Nick R. English
- Antigen Presentation Research Group, Imperial College London, Harrow, United Kingdom
| | - Simon T.C. Peake
- Antigen Presentation Research Group, Imperial College London, Harrow, United Kingdom,St. Mark’s Hospital, North West London Hospitals NHS Trust, Harrow, United Kingdom
| | - Jon Landy
- Antigen Presentation Research Group, Imperial College London, Harrow, United Kingdom,St. Mark’s Hospital, North West London Hospitals NHS Trust, Harrow, United Kingdom
| | - Gui H. Lee
- Antigen Presentation Research Group, Imperial College London, Harrow, United Kingdom,St. Mark’s Hospital, North West London Hospitals NHS Trust, Harrow, United Kingdom
| | - George Malietzis
- Antigen Presentation Research Group, Imperial College London, Harrow, United Kingdom,St. Mark’s Hospital, North West London Hospitals NHS Trust, Harrow, United Kingdom
| | - Yi Harn Siaw
- Antigen Presentation Research Group, Imperial College London, Harrow, United Kingdom,St. Mark’s Hospital, North West London Hospitals NHS Trust, Harrow, United Kingdom
| | - Aravinth U. Murugananthan
- Antigen Presentation Research Group, Imperial College London, Harrow, United Kingdom,St. Mark’s Hospital, North West London Hospitals NHS Trust, Harrow, United Kingdom
| | - Phil Hendy
- Antigen Presentation Research Group, Imperial College London, Harrow, United Kingdom,St. Mark’s Hospital, North West London Hospitals NHS Trust, Harrow, United Kingdom
| | - Eva Sánchez-Recio
- Antigen Presentation Research Group, Imperial College London, Harrow, United Kingdom
| | - Robin K.S. Phillips
- St. Mark’s Hospital, North West London Hospitals NHS Trust, Harrow, United Kingdom
| | - Jose A. Garrote
- Mucosal Immunology Group, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid–CSIC, Valladolid, Spain,Genetics and Molecular Biology Department, Clinical Laboratory Service, Hospital Universitario Rio Hortega, Valladolid, Spain
| | - Paul Scott
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Julian Parkhill
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Malte Paulsen
- National Heart and Lung Institute, Imperial College London, London
| | - Ailsa L. Hart
- St. Mark’s Hospital, North West London Hospitals NHS Trust, Harrow, United Kingdom
| | - Hafid O. Al-Hassi
- Antigen Presentation Research Group, Imperial College London, Harrow, United Kingdom
| | - Eduardo Arranz
- St. Mark’s Hospital, North West London Hospitals NHS Trust, Harrow, United Kingdom
| | - Alan W. Walker
- Pathogen Genomics Group, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom,Microbiology Group, Rowett Institute of Nutrition and Health, University of Aberdeen, Aberdeen, United Kingdom
| | - Simon R. Carding
- Gut Health and Food Safety Programme, Institute of Food Research, Norwich, United Kingdom,Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Stella C. Knight
- Antigen Presentation Research Group, Imperial College London, Harrow, United Kingdom,Correspondence Address correspondence to: Stella C. Knight, PhD, Antigen Presentation Research Group, Imperial College London, Northwick Park and St. Mark’s Campus, Watford Road, Harrow, HA1 3UJ, United Kingdom. fax: +44 (0) 20 8869 3532.Antigen Presentation Research GroupImperial College LondonNorthwick Park and St. Mark’s Campus, Watford RoadHarrowHA1 3UJUnited Kingdom
| |
Collapse
|
46
|
Daft JG, Lorenz RG. Role of the gastrointestinal ecosystem in the development of type 1 diabetes. Pediatr Diabetes 2015; 16:407-18. [PMID: 25952017 PMCID: PMC4534320 DOI: 10.1111/pedi.12282] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 03/15/2015] [Accepted: 03/20/2015] [Indexed: 12/11/2022] Open
Abstract
A new emphasis has been put on the role of the gastrointestinal (GI) ecosystem in autoimmune diseases; however, there is limited knowledge about its role in type 1 diabetes (T1D). Distinct differences have been observed in intestinal permeability, epithelial barrier function, commensal microbiota, and mucosal innate and adaptive immunity of patients and animals with T1D, when compared with healthy controls. The non-obese diabetic (NOD) mouse and the BioBreeding diabetes prone (BBdp) rat are the most commonly used models to study T1D pathogenesis. With the increasing awareness of the importance of the GI ecosystem in systemic disease, it is critical to understand the basics, as well as the similarities and differences between rat and mouse models and human patients. This review examines the current knowledge of the role of the GI ecosystem in T1D and indicates the extensive opportunities for further investigation that could lead to biomarkers and therapeutic interventions for disease prevention and/or modulation.
Collapse
Affiliation(s)
| | - Robin G. Lorenz
- Corresponding Author: Dr. Robin G. Lorenz, Department of Pathology, University of Alabama at Birmingham, 1825 University Blvd., SHEL 602, Birmingham, AL 35294-2182. Phone: 205-934-0676. Fax. 205-996-9113.
| |
Collapse
|
47
|
Srutkova D, Schwarzer M, Hudcovic T, Zakostelska Z, Drab V, Spanova A, Rittich B, Kozakova H, Schabussova I. Bifidobacterium longum CCM 7952 Promotes Epithelial Barrier Function and Prevents Acute DSS-Induced Colitis in Strictly Strain-Specific Manner. PLoS One 2015. [PMID: 26218526 PMCID: PMC4517903 DOI: 10.1371/journal.pone.0134050] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Reduced microbial diversity has been associated with inflammatory bowel disease (IBD) and probiotic bacteria have been proposed for its prevention and/or treatment. Nevertheless, comparative studies of strains of the same subspecies for specific health benefits are scarce. Here we compared two Bifidobacterium longum ssp. longum strains for their capacity to prevent experimental colitis. METHODS Immunomodulatory properties of nine probiotic bifidobacteria were assessed by stimulation of murine splenocytes. The immune responses to B. longum ssp. longum CCM 7952 (Bl 7952) and CCDM 372 (Bl 372) were further characterized by stimulation of bone marrow-derived dendritic cell, HEK293/TLR2 or HEK293/NOD2 cells. A mouse model of dextran sulphate sodium (DSS)-induced colitis was used to compare their beneficial effects in vivo. RESULTS The nine bifidobacteria exhibited strain-specific abilities to induce cytokine production. Bl 372 induced higher levels of both pro- and anti-inflammatory cytokines in spleen and dendritic cell cultures compared to Bl 7952. Both strains engaged TLR2 and contain ligands for NOD2. In a mouse model of DSS-induced colitis, Bl 7952, but not Bl 372, reduced clinical symptoms and preserved expression of tight junction proteins. Importantly, Bl 7952 improved intestinal barrier function as demonstrated by reduced FITC-dextran levels in serum. CONCLUSIONS We have shown that Bl 7952, but not Bl 372, protected mice from the development of experimental colitis. Our data suggest that although some immunomodulatory properties might be widespread among the genus Bifidobacterium, others may be rare and characteristic only for a specific strain. Therefore, careful selection might be crucial in providing beneficial outcome in clinical trials with probiotics in IBD.
Collapse
Affiliation(s)
- Dagmar Srutkova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Novy Hradek, Czech Republic
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Novy Hradek, Czech Republic
| | - Tomas Hudcovic
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Novy Hradek, Czech Republic
| | - Zuzana Zakostelska
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Prague, Czech Republic
| | - Vladimir Drab
- Dairy Research Institute Ltd., Prague, Czech Republic
| | - Alena Spanova
- Brno University of Technology, Faculty of Chemistry, Brno, Czech Republic
| | - Bohuslav Rittich
- Brno University of Technology, Faculty of Chemistry, Brno, Czech Republic
| | - Hana Kozakova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, v.v.i., Novy Hradek, Czech Republic
- * E-mail:
| | - Irma Schabussova
- Institute of Specific Prophylaxis and Tropical Medicine, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
48
|
Koboziev I, Jones-Hall Y, Valentine JF, Webb CR, Furr KL, Grisham MB. Use of Humanized Mice to Study the Pathogenesis of Autoimmune and Inflammatory Diseases. Inflamm Bowel Dis 2015; 21:1652-73. [PMID: 26035036 PMCID: PMC4466023 DOI: 10.1097/mib.0000000000000446] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Animal models of disease have been used extensively by the research community for the past several decades to better understand the pathogenesis of different diseases and assess the efficacy and toxicity of different therapeutic agents. Retrospective analyses of numerous preclinical intervention studies using mouse models of acute and chronic inflammatory diseases reveal a generalized failure to translate promising interventions or therapeutics into clinically effective treatments in patients. Although several possible reasons have been suggested to account for this generalized failure to translate therapeutic efficacy from the laboratory bench to the patient's bedside, it is becoming increasingly apparent that the mouse immune system is substantially different from the human. Indeed, it is well known that >80 major differences exist between mouse and human immunology; all of which contribute to significant differences in immune system development, activation, and responses to challenges in innate and adaptive immunity. This inconvenient reality has prompted investigators to attempt to humanize the mouse immune system to address important human-specific questions that are impossible to study in patients. The successful long-term engraftment of human hematolymphoid cells in mice would provide investigators with a relatively inexpensive small animal model to study clinically relevant mechanisms and facilitate the evaluation of human-specific therapies in vivo. The discovery that targeted mutation of the IL-2 receptor common gamma chain in lymphopenic mice allows for the long-term engraftment of functional human immune cells has advanced greatly our ability to humanize the mouse immune system. The objective of this review is to present a brief overview of the recent advances that have been made in the development and use of humanized mice with special emphasis on autoimmune and chronic inflammatory diseases. In addition, we discuss the use of these unique mouse models to define the human-specific immunopathological mechanisms responsible for the induction and perpetuation of chronic gut inflammation.
Collapse
Affiliation(s)
- Iurii Koboziev
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Yava Jones-Hall
- Department of Comparative Pathobiology, Purdue University College of Veterinary Medicine, West Lafayette, IN 47907-2027
| | - John F. Valentine
- Department of Internal Medicine, Gastroenterology, Hepatology and Nutrition, University of Utah, Salt Lake City, UT 84132-2410
| | - Cynthia Reinoso Webb
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Kathryn L. Furr
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| | - Matthew B. Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, Texas 79430
| |
Collapse
|
49
|
Molina MA, Díaz AM, Hesse C, Ginter W, Gentilini MV, Nuñez GG, Canellada AM, Sparwasser T, Berod L, Castro MS, Manghi MA. Immunostimulatory Effects Triggered by Enterococcus faecalis CECT7121 Probiotic Strain Involve Activation of Dendritic Cells and Interferon-Gamma Production. PLoS One 2015; 10:e0127262. [PMID: 25978357 PMCID: PMC4433276 DOI: 10.1371/journal.pone.0127262] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/14/2015] [Indexed: 12/15/2022] Open
Abstract
Probiotics can modulate the immune system, conferring beneficial effects on the host. Understanding how these microorganisms contribute to improve the health status is still a challenge. Previously, we have demonstrated that Enterococcus faecalis CECT7121 implants itself and persists in the murine gastrointestinal tract, and enhances and skews the profile of cytokines towards the Th1 phenotype in several biological models. Given the importance of dendritic cells (DCs) in the orchestration of immunity, the aim of this work was to elucidate the influence of E. faecalis CECT7121 on DCs and the outcome of the immune responses. In this work we show that E. faecalis CECT7121 induces a strong dose-dependent activation of DCs and secretion of high levels of IL-12, IL-6, TNFα, and IL-10. This stimulation is dependent on TLR signaling, and skews the activation of T cells towards the production of IFNγ. The influence of this activation in the establishment of Th responses in vivo shows the accumulation of specific IFNγ-producing cells. Our findings indicate that the activation exerted by E. faecalis CECT7121 on DCs and its consequence on the cellular adaptive immune response may have broad therapeutic implications in immunomodulation.
Collapse
Affiliation(s)
- Matías Alejandro Molina
- Laboratorio de Modulación de la Respuesta Inmune, IDEHU (CONICET-UBA). Ciudad Autónoma de Buenos Aires, Argentina
| | - Ailén Magalí Díaz
- Laboratorio de Modulación de la Respuesta Inmune, IDEHU (CONICET-UBA). Ciudad Autónoma de Buenos Aires, Argentina
| | - Christina Hesse
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hanover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Wiebke Ginter
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hanover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - María Virginia Gentilini
- Instituto de Inmunología, Genética y Metabolismo, INIGEM (CONICET-UBA). Ciudad Autónoma de Buenos Aires, Argentina
| | - Guillermo Gabriel Nuñez
- Laboratorio de Modulación de la Respuesta Inmune, IDEHU (CONICET-UBA). Ciudad Autónoma de Buenos Aires, Argentina
| | - Andrea Mercedes Canellada
- Laboratorio de Anticuerpos Asimétricos e Inmunología de la Reproducción, IDEHU (CONICET-UBA). Ciudad Autónoma de Buenos Aires, Argentina
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hanover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hanover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Marisa Silvia Castro
- Laboratorio de Modulación de la Respuesta Inmune, IDEHU (CONICET-UBA). Ciudad Autónoma de Buenos Aires, Argentina
| | - Marcela Alejandra Manghi
- Laboratorio de Modulación de la Respuesta Inmune, IDEHU (CONICET-UBA). Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
50
|
Kearney SC, Dziekiewicz M, Feleszko W. Immunoregulatory and immunostimulatory responses of bacterial lysates in respiratory infections and asthma. Ann Allergy Asthma Immunol 2015; 114:364-9. [DOI: 10.1016/j.anai.2015.02.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 01/30/2015] [Accepted: 02/09/2015] [Indexed: 01/22/2023]
|