1
|
Li Y, Lv X, Lin J, Li S, Lin G, Huang Z, Chen D, Han L, Zhan L, Lv X. Examination of the causal role of immune cells in non-alcoholic fatty liver disease by a bidirectional Mendelian randomization study. Open Med (Wars) 2025; 20:20251154. [PMID: 39989616 PMCID: PMC11843165 DOI: 10.1515/med-2025-1154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/25/2025] Open
Abstract
Background Non-alcoholic fatty liver disease (NAFLD) is a globally widespread disease. Recent investigations have highlighted a close association between immunity and NAFLD, but the causality between them has not been thoroughly examined. Methods A total of 731 immunological traits and NAFLD cohorts were derived from genome-wide association study summary data, and single nucleotide polymorphisms significantly associated with immune traits were identified as instrumental variables. Moreover, 731 phenotypes include absolute cell counts, median fluorescence intensity (MFI), morphological parameters, and relative cell counts. The bidirectional two-sample Mendelian randomization (MR) was performed primarily using the inverse-variance weighted methods, and sensitivity analysis was carried out simultaneously. Results Four immunophenotypes were identified to exert a protective effect against NAFLD, including HLA-DR+ CD4+ %lymphocytes, SSC-A on CD4+, CD24 MFI on IgD-CD38-, and CD8 MFI on CD28-CD8br. Seven immunophenotypes were identified to be hazardous, including CD28+ CD45RA+ CD8dim%CD8dim, CD127 MFI on CD28+ DN (CD4-CD8-), CD20 MFI on IgD+ CD38br, CD20 MFI on transitional, IgD MFI on transitional, CD3 MFI on central memory CD8br, and CD45 MFI on CD33brHLA-DR+ CD14-. However, reverse MR showed NAFLD had no causal effect on immunophenotypes. Conclusion The study demonstrated a potential causal link between several immunophenotypes and NAFLD, which contributes to advancing research and treatment of NAFLD based on immune-mediated mechanisms.
Collapse
Affiliation(s)
- Yu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Xiaodan Lv
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jianing Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Shiquan Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Guangfu Lin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhixi Huang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Deyi Chen
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lichun Han
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Lingling Zhan
- Department of Clinical Experimental Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiaoping Lv
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| |
Collapse
|
2
|
Luo Z, Tong C, Cong P, Mao S, Xu Y, Hou M, Liu Y. Silencing CD28 attenuated chest blast exposure-induced traumatic brain injury through the PI3K/AKT/NF-κB signaling pathway in male mice. Brain Res Bull 2024; 214:110987. [PMID: 38830487 DOI: 10.1016/j.brainresbull.2024.110987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 05/16/2024] [Accepted: 05/25/2024] [Indexed: 06/05/2024]
Abstract
In modern war or daily life, blast-induced traumatic brain injury (bTBI) is a growing health concern. Our previous studies demonstrated that inflammation was one of the main features of bTBI, and CD28-activated T cells play a central role in inflammation. However, the mechanism of CD28 in bTBI remains to be elucidated. In this study, traumatic brain injury model induced by chest blast exposure in male mice was established, and the mechanism of CD28 in bTBI was studied by elisa, immunofluorescence staining, flow cytometry analysis and western blot. After exposure to chest shock wave, the inflammatory factors IL-4, IL-6 and HMGB1 in serum were increased, and CD3+ T cells, CD4+ and CD8+ T cell subsets in the lung were activated. In addition, chest blast exposure resulted in impaired spatial learning and memory ability, disruption of the blood-brain barrier (BBB), and the expression of Tau, p-tau, S100β and choline acetyltransferase were increased. The results indicated that genetic knockdown of CD28 could inhibit inflammatory cell infiltration, as well as the activation of CD3+ T cells, CD4+ and CD8+ T cell subsets in the lung, improve spatial learning and memory ability, and ameliorate BBB disruption and hippocampal neuron damage. Moreover, genetic knockdown of CD28 could reduce the expression of p-PI3K, p-AKT and NF-κB. In conclusion, chest blast exposure could lead to bTBI, and attenuate bTBI via the PI3K/AKT/NF-κB signaling pathway in male mice. This study provides new targets for the prevention and treatment of veterans with bTBI.
Collapse
Affiliation(s)
- Zhonghua Luo
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Changci Tong
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Peifang Cong
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Shun Mao
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Ying Xu
- Department of Tumor Radiotherapy, the General Hospital of Northern Theater Command, No. 83 Road, Shenhe District, Shenyang l10016, China.
| | - Mingxiao Hou
- The Second Affiliated Hospital of Shenyang Medical College, The Veterans General Hospital of Liaoning Province, No. 20 Beijiu Road, Heping District, Shenyang 110001, China.
| | - Yunen Liu
- Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China.
| |
Collapse
|
3
|
Yang ML, Lam TT, Kanyo J, Kang I, Zhou ZS, Clarke SG, Mamula MJ. Natural isoaspartyl protein modification of ZAP70 alters T cell responses in lupus. Autoimmunity 2023; 56:2282945. [PMID: 37994408 PMCID: PMC10897934 DOI: 10.1080/08916934.2023.2282945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/08/2023] [Indexed: 11/24/2023]
Abstract
Protein posttranslational modifications (PTMs) arise in a number of normal cellular biological pathways and in response to pathology caused by inflammation and/or infection. Indeed, a number of PTMs have been identified and linked to specific autoimmune responses and metabolic pathways. One particular PTM, termed isoaspartyl (isoAsp or isoD) modification, is among the most common spontaneous PTM occurring at physiological pH and temperature. Herein, we demonstrate that isoAsp modifications arise within the ZAP70 protein tyrosine kinase upon T-cell antigen receptor (TCR) engagement. The enzyme protein L-isoaspartate O-methyltransferase (PCMT1, or PIMT, EC 2.1.1.77) evolved to repair isoaspartyl modifications in cells. In this regard, we observe that increased levels of isoAsp modification that arise under oxidative stress are correlated with reduced PIMT activity in patients with systemic lupus erythematosus (SLE). PIMT deficiency leads to T cell hyper-proliferation and hyper-phosphorylation through ZAP70 signaling. We demonstrate that inducing the overexpression of PIMT can correct the hyper-responsive phenotype in lupus T cells. Our studies reveal a phenotypic role of isoAsp modification and phosphorylation of ZAP70 in lupus T cell autoimmunity and provide a potential therapeutic target through the repair of isoAsp modification.
Collapse
Affiliation(s)
- Mei-Ling Yang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - TuKiet T. Lam
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
- Department of Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Jean Kanyo
- Keck MS & Proteomics Resource, WM Keck Foundation Biotechnology Resource Laboratory, New Haven, CT, USA
| | - Insoo Kang
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Zhaohui Sunny Zhou
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Steven G. Clarke
- Department of Chemistry and Biochemistry, Molecular Biology Institute, UCLA, Los Angeles, CA, USA
| | - Mark J. Mamula
- Section of Rheumatology, Allergy and Immunology, Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
4
|
Revu SK, Yang W, Rajasundaram D, Brady A, Majumder S, Gaffen SL, Hawse W, Xia Z, McGeachy MJ. Human IL-17A protein production is controlled through a PIP5K1α-dependent translational checkpoint. Sci Signal 2023; 16:eabo6555. [PMID: 37874883 PMCID: PMC10880140 DOI: 10.1126/scisignal.abo6555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
The cytokine interleukin-17 (IL-17) is secreted by T helper 17 (TH17) cells and is beneficial for microbial control; however, it also causes inflammation and pathological tissue remodeling in autoimmunity. Hence, TH17 cell differentiation and IL-17 production must be tightly regulated, but, to date, this has been defined only in terms of transcriptional control. Phosphatidylinositols are second messengers produced during T cell activation that transduce signals from the T cell receptor (TCR) and costimulatory receptors at the plasma membrane. Here, we found that phosphatidylinositol 4,5-bisphosphate (PIP2) was enriched in the nuclei of human TH17 cells, which depended on the kinase PIP5K1α, and that inhibition of PIP5K1α impaired IL-17A production. In contrast, nuclear PIP2 enrichment was not observed in TH1 or TH2 cells, and these cells did not require PIP5K1α for cytokine production. In T cells from people with multiple sclerosis, IL-17 production elicited by myelin basic protein was blocked by PIP5K1α inhibition. IL-17 protein was affected without altering either the abundance or stability of IL17A mRNA in TH17 cells. Instead, analysis of PIP5K1α-associating proteins revealed that PIP5K1α interacted with ARS2, a nuclear cap-binding complex scaffold protein, to facilitate its binding to IL17A mRNA and subsequent IL-17A protein production. These findings highlight a transcription-independent, translation-dependent mechanism for regulating IL-17A protein production that might be relevant to other cytokines.
Collapse
Affiliation(s)
- Shankar K. Revu
- Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Wenjuan Yang
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | | | - Alexander Brady
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Saikat Majumder
- Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Sarah L. Gaffen
- Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - William Hawse
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Zongqi Xia
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15261 USA
| | - Mandy J. McGeachy
- Division of Rheumatology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| |
Collapse
|
5
|
Kunkl M, Amormino C, Spallotta F, Caristi S, Fiorillo MT, Paiardini A, Kaempfer R, Tuosto L. Bivalent binding of staphylococcal superantigens to the TCR and CD28 triggers inflammatory signals independently of antigen presenting cells. Front Immunol 2023; 14:1170821. [PMID: 37207220 PMCID: PMC10189049 DOI: 10.3389/fimmu.2023.1170821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/21/2023] [Indexed: 05/21/2023] Open
Abstract
Staphylococcus aureus superantigens (SAgs) such as staphylococcal enterotoxin A (SEA) and B (SEB) are potent toxins stimulating T cells to produce high levels of inflammatory cytokines, thus causing toxic shock and sepsis. Here we used a recently released artificial intelligence-based algorithm to better elucidate the interaction between staphylococcal SAgs and their ligands on T cells, the TCR and CD28. The obtained computational models together with functional data show that SEB and SEA are able to bind to the TCR and CD28 stimulating T cells to activate inflammatory signals independently of MHC class II- and B7-expressing antigen presenting cells. These data reveal a novel mode of action of staphylococcal SAgs. By binding to the TCR and CD28 in a bivalent way, staphylococcal SAgs trigger both the early and late signalling events, which lead to massive inflammatory cytokine secretion.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Francesco Spallotta
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Silvana Caristi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University of Rome, Rome, Italy
| | - Raymond Kaempfer
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Loretta Tuosto
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
6
|
Burke JE, Triscott J, Emerling BM, Hammond GRV. Beyond PI3Ks: targeting phosphoinositide kinases in disease. Nat Rev Drug Discov 2023; 22:357-386. [PMID: 36376561 PMCID: PMC9663198 DOI: 10.1038/s41573-022-00582-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2022] [Indexed: 11/16/2022]
Abstract
Lipid phosphoinositides are master regulators of almost all aspects of a cell's life and death and are generated by the tightly regulated activity of phosphoinositide kinases. Although extensive efforts have focused on drugging class I phosphoinositide 3-kinases (PI3Ks), recent years have revealed opportunities for targeting almost all phosphoinositide kinases in human diseases, including cancer, immunodeficiencies, viral infection and neurodegenerative disease. This has led to widespread efforts in the clinical development of potent and selective inhibitors of phosphoinositide kinases. This Review summarizes our current understanding of the molecular basis for the involvement of phosphoinositide kinases in disease and assesses the preclinical and clinical development of phosphoinositide kinase inhibitors.
Collapse
Affiliation(s)
- John E Burke
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
- Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, British Columbia, Canada.
| | - Joanna Triscott
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Azimzadeh M, Möhn N, Ghane Ezabadi S, Moghimi Esfandabadi Z, Soleimani A, Ranjbar E, Jahromi M, Seyedebrahimi R, Skripuletz T, Moharrami Kasmaie F. The Immunological Therapeutic Strategies for Controlling Multiple Sclerosis: Considerations during the COVID-19 Pandemic. Biomolecules 2021; 11:1372. [PMID: 34572585 PMCID: PMC8470206 DOI: 10.3390/biom11091372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/31/2021] [Accepted: 09/13/2021] [Indexed: 11/16/2022] Open
Abstract
A growing body of evidence initially suggested that patients with multiple sclerosis (MS) might be more susceptible to coronavirus disease 2019 (COVID-19). Moreover, it was speculated that patients with MS treated with immunosuppressive drugs might be at risk to develop a severe diseases course after infection with the severe acute respiratory syndrome coronavirus type 2 (SARS-CoV2). However, the recently published data have shown that MS patients do not have a higher risk for severe COVID-19. Although there is no indication that patients with MS and immunomodulatory/immunosuppressive therapy are generally at a higher risk of severe COVID-19, it is currently being emphasized that the hazards of poorly treated MS may outweigh the putative COVID-19 dangers. In this review, we discuss the challenges and considerations for MS patients in the COVID-19 pandemic.
Collapse
Affiliation(s)
- Maryam Azimzadeh
- Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran;
| | - Nora Möhn
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Sajjad Ghane Ezabadi
- Multiple Sclerosis Research Center, Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran;
| | | | - Alireza Soleimani
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Rafsanjan University of Medical Sciences, Rafsanjan, Iran;
| | - Elaheh Ranjbar
- Department of Paramedical Sciences, Gonabad University of Medical Sciences, Gonabad, Iran;
| | - Maliheh Jahromi
- Department of Anatomical Science, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran;
| | - Reihaneh Seyedebrahimi
- Department of Anatomical Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran;
| | - Thomas Skripuletz
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany;
| | - Farshad Moharrami Kasmaie
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran;
| |
Collapse
|
8
|
Kunkl M, Amormino C, Caristi S, Tedeschi V, Fiorillo MT, Levy R, Popugailo A, Kaempfer R, Tuosto L. Binding of Staphylococcal Enterotoxin B (SEB) to B7 Receptors Triggers TCR- and CD28-Mediated Inflammatory Signals in the Absence of MHC Class II Molecules. Front Immunol 2021; 12:723689. [PMID: 34489975 PMCID: PMC8418141 DOI: 10.3389/fimmu.2021.723689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/02/2021] [Indexed: 01/19/2023] Open
Abstract
The inflammatory activity of staphylococcal enterotoxin B (SEB) relies on its capacity to trigger polyclonal T-cell activation by binding both T-cell receptor (TCR) and costimulatory receptor CD28 on T cells and MHC class II and B7 molecules on antigen presenting cells (APC). Previous studies highlighted that SEB may bind TCR and CD28 molecules independently of MHC class II, yet the relative contribution of these interactions to the pro-inflammatory function of SEB remained unclear. Here, we show that binding to MHC class II is dispensable for the inflammatory activity of SEB, whereas binding to TCR, CD28 and B7 molecules is pivotal, in both human primary T cells and Jurkat T cell lines. In particular, our finding is that binding of SEB to B7 molecules suffices to trigger both TCR- and CD28-mediated inflammatory signalling. We also provide evidence that, by strengthening the interaction between CD28 and B7, SEB favours the recruitment of the TCR into the immunological synapse, thus inducing lethal inflammatory signalling.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Silvana Caristi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Valentina Tedeschi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Revital Levy
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Andrey Popugailo
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Raymond Kaempfer
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
9
|
Xue ZX, Gao YS, Wu XL. Suppression of the CD28/B7 pathway reduces the occurrence and development of myasthenia gravis and cytokine levels. Int J Neurosci 2021; 131:854-863. [PMID: 32419569 DOI: 10.1080/00207454.2020.1759587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 12/23/2019] [Accepted: 04/01/2020] [Indexed: 10/24/2022]
Abstract
BACKGROUND Myasthenia gravis (MG) is an antibody-mediated, autoimmune neuromuscular disease. Reports have indicated that the CD28/B7 ligand interactions play a crucial role during primary immune responses. Hence, the aim of the present study was to investigate the possible effects of the CD28/B7 pathway on the occurrence and development of MG and its associated cytokine factors. METHODS An experimental autoimmune myasthenia gravis (EAMG) was initially established by immunization of Lewis rats with acetylcholine receptor (AChR) α97-116 peptide. Then the rats were treated with dexamethasone and CTLA4-Ig (used for inhibiting the CD28/B7 pathway). Serum levels of AChR IgG and AChR IgG2b were then detected using ELISA. The clinical features, muscle contraction function, AChR content, expression of CD28, CTLA4, B7.1 and B7.2 in mononuclear cells of peripheral blood and the secretion of cytokines (INF-γ, IL-2, IL-10 and IL-12) in serum of rats were measured. Finally, lymphocyte proliferation upon CTLA4 IgG treatment was examined in vitro. RESULTS Inhibition of the CD28/B7 pathway and dexamethasone were found to significantly improve clinical symptoms of EAMG rats, reduce serum levels of AChR IgG, AChR IgG2b, INF-γ, IL-2, IL-10 and IL-12, the expression of CD28, CTLA4, B7.1 and B7.2 in mononuclear cells of peripheral blood, and enhance muscle contraction function and AChR content in the muscle in vivo. Meanwhile, CTLA4 IgG could abolish the increased lymphocyte proliferation following AChR stimulation in vitro. CONCLUSION Overall, the suppression of the CD28/B7 pathway by CTLA4-Ig can have the potential to retard the occurrence and development of MG.
Collapse
Affiliation(s)
- Zhan-Xia Xue
- Hebei Key Laboratory of Neuropharmacology, Department of Pharmacology, Hebei North University, Zhangjiakou, P. R. China
| | - Yong-Shan Gao
- Department of Thoracic-Cardiac Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, P. R. China
| | - Xue-Liang Wu
- Department of Vascular Surgery, The First Affiliated Hospital of Hebei North University, Zhangjiakou, P. R. China
| |
Collapse
|
10
|
Xu F, Tanabe N, Vasilescu DM, McDonough JE, Coxson HO, Ikezoe K, Kinose D, Ng KW, Verleden SE, Wuyts WA, Vanaudenaerde BM, Verschakelen J, Cooper JD, Lenburg ME, Morshead KB, Abbas AR, Arron JR, Spira A, Hackett TL, Colby TV, Ryerson CJ, Ng RT, Hogg JC. The transition from normal lung anatomy to minimal and established fibrosis in idiopathic pulmonary fibrosis (IPF). EBioMedicine 2021; 66:103325. [PMID: 33862585 PMCID: PMC8054143 DOI: 10.1016/j.ebiom.2021.103325] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 03/12/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The transition from normal lung anatomy to minimal and established fibrosis is an important feature of the pathology of idiopathic pulmonary fibrosis (IPF). The purpose of this report is to examine the molecular and cellular mechanisms associated with this transition. METHODS Pre-operative thoracic Multidetector Computed Tomography (MDCT) scans of patients with severe IPF (n = 9) were used to identify regions of minimal(n = 27) and established fibrosis(n = 27). MDCT, Micro-CT, quantitative histology, and next-generation sequencing were used to compare 24 samples from donor controls (n = 4) to minimal and established fibrosis samples. FINDINGS The present results extended earlier reports about the transition from normal lung anatomy to minimal and established fibrosis by showing that there are activations of TGFBI, T cell co-stimulatory genes, and the down-regulation of inhibitory immune-checkpoint genes compared to controls. The expression patterns of these genes indicated activation of a field immune response, which is further supported by the increased infiltration of inflammatory immune cells dominated by lymphocytes that are capable of forming lymphoid follicles. Moreover, fibrosis pathways, mucin secretion, surfactant, TLRs, and cytokine storm-related genes also participate in the transitions from normal lung anatomy to minimal and established fibrosis. INTERPRETATION The transition from normal lung anatomy to minimal and established fibrosis is associated with genes that are involved in the tissue repair processes, the activation of immune responses as well as the increased infiltration of CD4, CD8, B cell lymphocytes, and macrophages. These molecular and cellular events correlate with the development of structural abnormality of IPF and probably contribute to its pathogenesis.
Collapse
Affiliation(s)
- Feng Xu
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - Naoya Tanabe
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada; Department of Respiratory Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dragos M Vasilescu
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - John E McDonough
- Leuven Lung Transplant Unit, KU Leuven and UZ Gasthuisberg, Leuven, Belgium
| | - Harvey O Coxson
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - Kohei Ikezoe
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - Daisuke Kinose
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada; Division of Respiratory Medicine, Department of Medicine, Shiga University of Medical Science, Shiga, Japan
| | | | - Stijn E Verleden
- Laboratory of Respiratory Diseases, BREATHE, Department of CHROMETA, KU Leuven, Leuven, Belgium
| | - Wim A Wuyts
- Leuven Lung Transplant Unit, KU Leuven and UZ Gasthuisberg, Leuven, Belgium
| | | | - Johny Verschakelen
- Leuven Lung Transplant Unit, KU Leuven and UZ Gasthuisberg, Leuven, Belgium
| | - Joel D Cooper
- Division of Thoracic Surgery, University of Pennsylvania, USA
| | | | | | | | | | - Avrum Spira
- Boston University Medical Center, Boston, MA, USA
| | - Tillie-Louise Hackett
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| | - Thomas V Colby
- Department of Pathology and Laboratory Medicine, Mayo Clinic Arizona, USA
| | - Christopher J Ryerson
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada; Department of Medicine, The University of British Columbia, Vancouver, Canada
| | - Raymond T Ng
- Department of Computer Science, The University of British Columbia, Vancouver, Canada
| | - James C Hogg
- Center for Heart Lung Innovation, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
11
|
Fathimath Muneesa M, Shaikh SB, Jeena TM, Bhandary YP. Inflammatory mediators in various molecular pathways involved in the development of pulmonary fibrosis. Int Immunopharmacol 2021; 96:107608. [PMID: 33857801 DOI: 10.1016/j.intimp.2021.107608] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/23/2021] [Accepted: 03/21/2021] [Indexed: 12/15/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a type of interstitial lung disease (ILD) that is marked by scarring of lung tissue, ultimately leading to respiratory failure. The survival rate of IPF is disappointing and to date demonstrates a clinical quandary. The exact etiology of the disease remains under discussion. According to the recent hypothesis, inflammatory mediators cause severe damage to the alveolar epithelium leading to the impairment of the alveolar structure. The role of inflammation in the development of the IPF has been controversial for years. There are two schools of thought regarding the role of inflammation. One group of researchers claims that cell death and fibroblast dysfunction are the primary causes and inflammation is just a secondary cause of IPF. The other group claims inflammation to be the primary cause. Studies using human subjects have also reported inflammation as a critical element in IPF. Inflammatory cytokinesserve amajor rolein commencing theinflammatoryresponse in the lungs. Several cytokines are reported to be involved in different molecular mechanisms underlying IPF, someof which alsocontribute additionally by acting as growth factors. The present review addressed to explore the contribution of various inflammatory cytokines, growth factors, and various other inflammatory molecules activating the major molecular pathways involved during the development of IPF.
Collapse
Affiliation(s)
- M Fathimath Muneesa
- Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore 575018, Karnataka, India
| | - Sadiya B Shaikh
- Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore 575018, Karnataka, India
| | - T M Jeena
- Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore 575018, Karnataka, India
| | - Yashodhar P Bhandary
- Yenepoya Research Centre, Yenepoya University, Deralakatte, Mangalore 575018, Karnataka, India.
| |
Collapse
|
12
|
Hu Q, Shi J, Zhang J, Wang Y, Guo Y, Zhang Z. Progress and Prospects of Regulatory Functions Mediated by Nitric Oxide on Immunity and Immunotherapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qian Hu
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Jingyu Shi
- Liyuan Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430077 China
| | - Jiao Zhang
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Yi Wang
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Yuanyuan Guo
- Liyuan Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430077 China
| | - Zhiping Zhang
- Tongji School of Pharmacy, National Engineering Research Centre for Nanomedicine, Hubei Engineering Research Centre for Novel Drug Delivery System Huazhong University of Science and Technology Wuhan Hubei 430030 China
| |
Collapse
|
13
|
Ghafouri-Fard S, Honarmand K, Taheri M. A comprehensive review on the role of chemokines in the pathogenesis of multiple sclerosis. Metab Brain Dis 2021; 36:375-406. [PMID: 33404937 DOI: 10.1007/s11011-020-00648-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) as a chronic inflammatory disorder of the central nervous system (CNS) is thought to be caused by the abnormal induction of immune responses. Chemokines as molecules that can engage leukocytes into the location of inflammation, actively participate in the pathogenesis of MS. Several members of this family of chemo attractants have been shown to be dysregulated in the peripheral blood, cerebrospinal fluid or CNS lesions of MS patients. Studies in animal models of MS particularly experimental autoimmune encephalomyelitis have indicated the critical roles of chemokines in the pathophysiology of MS. In the current review, we summarize the data regarding the role of CCL2, CCL3, CCL4, CCL11, CCL20, CXCL1, CXCL2, CXCL8, CXCL10, CXCL12 and CXCL13 in the pathogenesis of MS.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kasra Honarmand
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Urogenital Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Kunkl M, Amormino C, Frascolla S, Sambucci M, De Bardi M, Caristi S, Arcieri S, Battistini L, Tuosto L. CD28 Autonomous Signaling Orchestrates IL-22 Expression and IL-22-Regulated Epithelial Barrier Functions in Human T Lymphocytes. Front Immunol 2020; 11:590964. [PMID: 33178223 PMCID: PMC7592429 DOI: 10.3389/fimmu.2020.590964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/22/2020] [Indexed: 12/21/2022] Open
Abstract
IL-22 is a member of the IL-10 cytokine family involved in host protection against extracellular pathogens, by promoting epithelial cell regeneration and barrier functions. Dysregulation of IL-22 production has also frequently been observed in acute respiratory distress syndrome (ARDS) and several chronic inflammatory and autoimmune diseases. We have previously described that human CD28, a crucial co-stimulatory receptor necessary for full T cell activation, is also able to act as a TCR independent signaling receptor and to induce the expression of IL-17A and inflammatory cytokines related to Th17 cells, which together with Th22 cells represent the main cellular source of IL-22. Here we characterized the role of CD28 autonomous signaling in regulating IL-22 expression in human CD4+ T cells. We show that CD28 stimulation in the absence of TCR strongly up-regulates IL-22 gene expression and secretion. As recently observed for IL-17A, we also found that CD28-mediated regulation of IL-22 transcription requires the cooperative activities of both IL-6-activated STAT3 and RelA/NF-κB transcription factors. CD28-mediated IL-22 production also promotes the barrier functions of epithelial cells by inducing mucin and metalloproteases expression. Finally, by using specific inhibitory drugs, we also identified CD28-associated class 1A phosphatidylinositol 3-kinase (PI3K) as a pivotal mediator of CD28-mediated IL-22 expression and IL-22-dependent epithelial cell barrier functions.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Simone Frascolla
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| | - Manolo Sambucci
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marco De Bardi
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Silvana Caristi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Stefano Arcieri
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy
| |
Collapse
|
15
|
Kunkl M, Frascolla S, Amormino C, Volpe E, Tuosto L. T Helper Cells: The Modulators of Inflammation in Multiple Sclerosis. Cells 2020; 9:cells9020482. [PMID: 32093011 PMCID: PMC7072830 DOI: 10.3390/cells9020482] [Citation(s) in RCA: 153] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 02/06/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neurodegenerative disease characterized by the progressive loss of axonal myelin in several areas of the central nervous system (CNS) that is responsible for clinical symptoms such as muscle spasms, optic neuritis, and paralysis. The progress made in more than one decade of research in animal models of MS for clarifying the pathophysiology of MS disease validated the concept that MS is an autoimmune inflammatory disorder caused by the recruitment in the CNS of self-reactive lymphocytes, mainly CD4+ T cells. Indeed, high levels of T helper (Th) cells and related cytokines and chemokines have been found in CNS lesions and in cerebrospinal fluid (CSF) of MS patients, thus contributing to the breakdown of the blood-brain barrier (BBB), the activation of resident astrocytes and microglia, and finally the outcome of neuroinflammation. To date, several types of Th cells have been discovered and designated according to the secreted lineage-defining cytokines. Interestingly, Th1, Th17, Th1-like Th17, Th9, and Th22 have been associated with MS. In this review, we discuss the role and interplay of different Th cell subpopulations and their lineage-defining cytokines in modulating the inflammatory responses in MS and the approved as well as the novel therapeutic approaches targeting T lymphocytes in the treatment of the disease.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Simone Frascolla
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| | - Elisabetta Volpe
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00143 Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy
- Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
16
|
Kunkl M, Sambucci M, Ruggieri S, Amormino C, Tortorella C, Gasperini C, Battistini L, Tuosto L. CD28 Autonomous Signaling Up-Regulates C-Myc Expression and Promotes Glycolysis Enabling Inflammatory T Cell Responses in Multiple Sclerosis. Cells 2019; 8:cells8060575. [PMID: 31212712 PMCID: PMC6628233 DOI: 10.3390/cells8060575] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/05/2019] [Accepted: 06/07/2019] [Indexed: 02/06/2023] Open
Abstract
The immunopathogenesis of multiple sclerosis (MS) depend on the expansion of specific inflammatory T cell subsets, which are key effectors of tissue damage and demyelination. Emerging studies evidence that a reprogramming of T cell metabolism may occur in MS, thus the identification of stimulatory molecules and associated signaling pathways coordinating the metabolic processes that amplify T cell inflammation in MS is pivotal. Here, we characterized the involvement of the cluster of differentiation (CD)28 and associated signaling mediators in the modulation of the metabolic programs regulating pro-inflammatory T cell functions in relapsing-remitting MS (RRMS) patients. We show that CD28 up-regulates glycolysis independent of the T cell receptor (TCR) engagement by promoting the increase of c-myc and the glucose transporter, Glut1, in RRMS CD4+ T cells. The increase of glycolysis induced by CD28 was important for the expression of inflammatory cytokines related to T helper (Th)17 cells, as demonstrated by the strong inhibition exerted by impairing the glycolytic pathway. Finally, we identified the class 1A phosphatidylinositol 3-kinase (PI3K) as the critical signaling mediator of CD28 that regulates cell metabolism and amplify specific inflammatory T cell phenotypes in MS.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy.
| | - Manolo Sambucci
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00185 Rome, Italy.
| | - Serena Ruggieri
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Carola Amormino
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
| | - Carla Tortorella
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Claudio Gasperini
- Department of Neurosciences, S. Camillo/Forlanini Hospital, 00185 Rome, Italy.
| | - Luca Battistini
- Neuroimmunology Unit, IRCCS Santa Lucia Foundation, 00185 Rome, Italy.
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
- Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Sapienza University, 00185 Rome, Italy.
| |
Collapse
|
17
|
Capone A, Bianco M, Ruocco G, De Bardi M, Battistini L, Ruggieri S, Gasperini C, Centonze D, Sette C, Volpe E. Distinct Expression of Inflammatory Features in T Helper 17 Cells from Multiple Sclerosis Patients. Cells 2019; 8:E533. [PMID: 31167379 PMCID: PMC6628300 DOI: 10.3390/cells8060533] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 01/20/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous system (CNS). T helper (Th) 17 lymphocytes play a role in the pathogenesis of MS. Indeed, Th17 cells are abundant in the cerebrospinal fluid and peripheral blood of MS patients and promote pathogenesis in the mouse model of MS. To gain insight into the function of Th17 cells in MS, we tested whether Th17 cells polarized from naïve CD4 T cells of healthy donors and MS patients display different features. To this end, we analysed several parameters that typify the Th17 profile during the differentiation process of naïve CD4 T cells obtained from relapsing-remitting (RR)-MS patients (n = 31) and healthy donors (HD) (n = 28). Analysis of an array of cytokines produced by Th17 cells revealed that expression of interleukin (IL)-21, tumour necrosis factor (TNF)-β, IL-2 and IL-1R1 is significantly increased in Th17 cells derived from MS patients compared to healthy donor-derived cells. Interestingly, IL-1R1 expression is also increased in Th17 cells circulating in the blood of MS patients compared to healthy donors. Since IL-2, IL-21, TNF-β, and IL-1R1 play a crucial role in the activation of immune cells, our data indicate that high expression of these molecules in Th17 cells from MS patients could be related to their high inflammatory status.
Collapse
Affiliation(s)
- Alessia Capone
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy.
| | - Manuela Bianco
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Gabriella Ruocco
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Marco De Bardi
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Luca Battistini
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
| | - Serena Ruggieri
- Department of Neuroscience "Lancisi", San Camillo Hospital, 00152 Rome, Italy.
| | - Claudio Gasperini
- Department of Neuroscience "Lancisi", San Camillo Hospital, 00152 Rome, Italy.
| | - Diego Centonze
- Unit of Neurology, IRCCS Neuromed, 86077 Pozzilli (IS), Italy.
| | - Claudio Sette
- Institute of Human Anatomy and Cell Biology, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Elisabetta Volpe
- Neuroimmunology Unit, IRCSS Fondazione Santa Lucia, 00143 Rome, Italy.
| |
Collapse
|
18
|
Kunkl M, Mastrogiovanni M, Porciello N, Caristi S, Monteleone E, Arcieri S, Tuosto L. CD28 Individual Signaling Up-regulates Human IL-17A Expression by Promoting the Recruitment of RelA/NF-κB and STAT3 Transcription Factors on the Proximal Promoter. Front Immunol 2019; 10:864. [PMID: 31068940 PMCID: PMC6491678 DOI: 10.3389/fimmu.2019.00864] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 04/04/2019] [Indexed: 01/22/2023] Open
Abstract
CD28 is an important co-stimulatory receptor for T lymphocytes that, in humans, delivers TCR-independent signal leading to the up-regulation of pro-inflammatory cytokines. We have recently reported that CD28 autonomous signaling induces the expression of IL-17A in peripheral CD4+ T lymphocytes from healthy donors, multiple sclerosis, and type 1 diabetes patients. Due to the relevance of IL-17A in the pathophysiology of several inflammatory and autoimmune diseases, we characterized the mechanisms and signaling mediators responsible for CD28-induced IL-17A expression. Here we show that CD28-mediated up-regulation of IL-17A gene expression depends on RelA/NF-κB and IL-6-associated STAT3 transcriptions factors. In particular, we found that CD28-activated RelA/NF-κB induces the expression of IL-6 that, in a positive feedback loop, mediates the activation and nuclear translocation of tyrosine phosphorylated STAT3 (pSTAT3). pSTAT3 in turn cooperates with RelA/NF-κB by binding specific sequences within the proximal promoter of human IL-17A gene, thus inducing its expression. Finally, by using specific inhibitory drugs, we also identified class 1A phosphatidylinositol 3-kinase (PI3K) as a critical upstream regulator of CD28-mediated RelA/NF-κB and STAT3 recruitments and trans-activation of IL-17A promoter. Our findings reveal a novel mechanism by which human CD28 may amplify IL-17A expression in human T lymphocytes and provide biological bases for immunotherapeutic approaches targeting CD28-associated class 1A PI3K to dampen IL-17A-mediated inflammatory response in autoimmune/inflammatory disorders.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Marta Mastrogiovanni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy.,Lymphocyte Cell Biology Unit, INSERM U1221, Department of Immunology, Pasteur Institute, Paris, France
| | - Nicla Porciello
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Silvana Caristi
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Emanuele Monteleone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Stefano Arcieri
- Department of Surgical Sciences, Sapienza University of Rome, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| |
Collapse
|
19
|
Hashemi R, Morshedi M, Asghari Jafarabadi M, Altafi D, Saeed Hosseini-Asl S, Rafie-Arefhosseini S. Anti-inflammatory effects of dietary vitamin D 3 in patients with multiple sclerosis. NEUROLOGY-GENETICS 2018; 4:e278. [PMID: 30533524 PMCID: PMC6244020 DOI: 10.1212/nxg.0000000000000278] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 07/09/2018] [Indexed: 12/22/2022]
Abstract
Objective To assess the effects of dietary vitamin D3 on proinflammatory (interleukin-17A [IL-17A] and IL-6) and anti-inflammatory (IL-10) cytokines. Methods Our study was conducted on 75 participants who were divided into 3 groups: multiple sclerosis participants (MSPs, n = 25), first-degree relative participants (FDRPs, n = 25), and healthy participants (HPs, n = 25). All groups received 50,000 IU vitamin D3/wk for 8 weeks. Serum 25-(OH) vitamin D3 levels and messenger RNA (mRNA) expression levels of ILs were determined using electrochemiluminescence assay and real-time PCR, respectively. Results Vitamin D3 affected the levels of IL-17A, IL-10, and IL-6 among the 3 groups (p < 0.001 for all). Levels of IL-17A (MSPs: fold change [FC] = 5.9, p = 0.014; FDRPs: FC = 5.2, p = 0.006; HPs: FC = 4.2, p = 0.012) and IL-6 (MSPs: FC = 5.6, p = 0.003; FDRPs: FC = 5.5, p = 0.002; HPs: FC = 5.1, p < 0.001) were downregulated after vitamin D3 treatment. In addition, levels of IL-10 (MSPs: FC = 6.2, p = 0.005; FDRPs: FC = 4.6, p < 0.001; HPs: FC = 5.2, p < 0.001) were upregulated after 8 weeks. Conclusions Although supplementation with vitamin D3 reduced the mRNA expression levels of IL-17A and IL-6, it increased the mRNA expression level of IL-10 in all groups. However, these effects were more considerable in the MSP group than in the other groups. Of interest, in a deficiency state of serum vitamin D3, IL-17A expression had a positive feedback effect on the expression of IL-6. Conversely, in the sufficient state, IL-10 expression had a negative feedback effect on the expression of IL-17A and IL-6.
Collapse
Affiliation(s)
- Reza Hashemi
- School of Nutrition and Food Sciences (R.H., M.M), Tabriz University of Medical Sciences; Road Traffic Injury Research Center (M.A.-J), Tabriz University of Medical Sciences; Ardabil Province (D.A.); Department of Genetics (S.S.H.-A.), School of Medicine, Ardabil University of Medical Sciences; Department of Biochemistry and Diet Therapy (S.R.-A.), School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Iran
| | - Mohammad Morshedi
- School of Nutrition and Food Sciences (R.H., M.M), Tabriz University of Medical Sciences; Road Traffic Injury Research Center (M.A.-J), Tabriz University of Medical Sciences; Ardabil Province (D.A.); Department of Genetics (S.S.H.-A.), School of Medicine, Ardabil University of Medical Sciences; Department of Biochemistry and Diet Therapy (S.R.-A.), School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Iran
| | - Mohammad Asghari Jafarabadi
- School of Nutrition and Food Sciences (R.H., M.M), Tabriz University of Medical Sciences; Road Traffic Injury Research Center (M.A.-J), Tabriz University of Medical Sciences; Ardabil Province (D.A.); Department of Genetics (S.S.H.-A.), School of Medicine, Ardabil University of Medical Sciences; Department of Biochemistry and Diet Therapy (S.R.-A.), School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Iran
| | - Davar Altafi
- School of Nutrition and Food Sciences (R.H., M.M), Tabriz University of Medical Sciences; Road Traffic Injury Research Center (M.A.-J), Tabriz University of Medical Sciences; Ardabil Province (D.A.); Department of Genetics (S.S.H.-A.), School of Medicine, Ardabil University of Medical Sciences; Department of Biochemistry and Diet Therapy (S.R.-A.), School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Iran
| | - Seyed Saeed Hosseini-Asl
- School of Nutrition and Food Sciences (R.H., M.M), Tabriz University of Medical Sciences; Road Traffic Injury Research Center (M.A.-J), Tabriz University of Medical Sciences; Ardabil Province (D.A.); Department of Genetics (S.S.H.-A.), School of Medicine, Ardabil University of Medical Sciences; Department of Biochemistry and Diet Therapy (S.R.-A.), School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Iran
| | - Seyed Rafie-Arefhosseini
- School of Nutrition and Food Sciences (R.H., M.M), Tabriz University of Medical Sciences; Road Traffic Injury Research Center (M.A.-J), Tabriz University of Medical Sciences; Ardabil Province (D.A.); Department of Genetics (S.S.H.-A.), School of Medicine, Ardabil University of Medical Sciences; Department of Biochemistry and Diet Therapy (S.R.-A.), School of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Iran
| |
Collapse
|
20
|
Abstract
Regulation of immune responses is critical for ensuring pathogen clearance and for preventing reaction against self-antigens. Failure or breakdown of immunological tolerance results in autoimmunity. CD28 is an important co-stimulatory receptor expressed on T cells that, upon specific ligand binding, delivers signals essential for full T-cell activation and for the development and homeostasis of suppressive regulatory T cells. Many
in vivo mouse models have been used for understanding the role of CD28 in the maintenance of immune homeostasis, thus leading to the development of CD28 signaling modulators that have been approved for the treatment of some autoimmune diseases. Despite all of this progress, a deeper understanding of the differences between the mouse and human receptor is required to allow a safe translation of pre-clinical studies in efficient therapies. In this review, we discuss the role of CD28 in tolerance and autoimmunity and the clinical efficacy of drugs that block or enhance CD28 signaling, by highlighting the success and failure of pre-clinical studies, when translated to humans.
Collapse
Affiliation(s)
- Nicla Porciello
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Rome, Italy
| |
Collapse
|
21
|
Abstract
CD28 superagonistic antibodies (CD28SAb) can preferentially activate and expand immunosuppressive regulatory T cells (Treg) in mice. However, pre-clinical trials assessing CD28SAbs for the therapy of autoimmune diseases reveal severe systemic inflammatory response syndrome in humans, thereby implying the existence of distinct signalling abilities between human and mouse CD28. Here, we show that a single amino acid variant within the C-terminal proline-rich motif of human and mouse CD28 (P212 in human vs. A210 in mouse) regulates CD28-induced NF-κB activation and pro-inflammatory cytokine gene expression. Moreover, this Y209APP212 sequence in humans is crucial for the association of CD28 with the Nck adaptor protein for actin cytoskeleton reorganisation events necessary for CD28 autonomous signalling. This study thus unveils different outcomes between human and mouse CD28 signalling to underscore the importance of species difference when transferring results from preclinical models to the bedside. CD28 transmits co-stimulatory signals for the activation of both mouse and human T cells, but in vivo hyperactivation of CD28 has opposite effects on system immunity. Here, the authors show that a single amino acid difference between mouse and human CD28 dictates this function distinction via differential recruitment of Nck.
Collapse
|
22
|
Sambucci M, Gargano F, De Rosa V, De Bardi M, Picozza M, Placido R, Ruggieri S, Capone A, Gasperini C, Matarese G, Battistini L, Borsellino G. FoxP3 isoforms and PD-1 expression by T regulatory cells in multiple sclerosis. Sci Rep 2018; 8:3674. [PMID: 29487369 PMCID: PMC5829149 DOI: 10.1038/s41598-018-21861-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 02/07/2018] [Indexed: 01/04/2023] Open
Abstract
Forkhead box P3 (FoxP3)+ regulatory T cells (Treg) are powerful mediators of immune regulation and immune homeostasis. In humans, Tregs are a heterogeneous population expressing surface markers which define phenotypically and functionally distinct subsets. Moreover, it is now clear that intracellular staining for FoxP3 does not unequivocally identify “true” suppressor cells, since several FoxP3 isoforms exist, and different reagents for FoxP3 detection are available. Here, we propose a strategy to identify potentially functional and suppressive Treg cells in an autoimmune disease like multiple sclerosis, and we suggest that in patients affected by this disease these cells are both reduced in number and functionally exhausted.
Collapse
Affiliation(s)
- Manolo Sambucci
- Laboratory of Neuroimmunology, Fondazione Santa Lucia, Rome, 00143, Italy.,Institute of Experimental Oncology and Endocrinology, National Research Council (IEOS-CNR), Treg Cell Lab, Naples, 80131, Italy
| | - Francesca Gargano
- Laboratory of Neuroimmunology, Fondazione Santa Lucia, Rome, 00143, Italy
| | - Veronica De Rosa
- Institute of Experimental Oncology and Endocrinology, National Research Council (IEOS-CNR), Treg Cell Lab, Naples, 80131, Italy
| | - Marco De Bardi
- Laboratory of Neuroimmunology, Fondazione Santa Lucia, Rome, 00143, Italy
| | - Mario Picozza
- Laboratory of Neuroimmunology, Fondazione Santa Lucia, Rome, 00143, Italy
| | - Roberta Placido
- Laboratory of Neuroimmunology, Fondazione Santa Lucia, Rome, 00143, Italy
| | - Serena Ruggieri
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, 00152, Italy.,Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, 00189, Italy
| | - Alessia Capone
- Laboratory of Neuroimmunology, Fondazione Santa Lucia, Rome, 00143, Italy.,Laboratory of Neuroembryology, Fondazione Santa Lucia, Rome, 00143, Italy
| | - Claudio Gasperini
- Department of Neurosciences, San Camillo Forlanini Hospital, Rome, 00152, Italy
| | - Giuseppe Matarese
- Institute of Experimental Oncology and Endocrinology, National Research Council (IEOS-CNR), Treg Cell Lab, Naples, 80131, Italy.,Department of Molecular Medicine and Biotechnologies, University of Naples "Federico II", Naples, 80131, Italy
| | - Luca Battistini
- Laboratory of Neuroimmunology, Fondazione Santa Lucia, Rome, 00143, Italy.
| | | |
Collapse
|
23
|
Dynamic regulation of CD28 conformation and signaling by charged lipids and ions. Nat Struct Mol Biol 2017; 24:1081-1092. [PMID: 29058713 DOI: 10.1038/nsmb.3489] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/21/2017] [Indexed: 12/21/2022]
Abstract
CD28 provides an essential costimulatory signal for T cell activation, and its function is critical in antitumor immunity. However, the molecular mechanism of CD28 transmembrane signaling remains elusive. Here we show that the conformation and signaling of CD28 are regulated by two counteractive charged factors, acidic phospholipids and Ca2+ ions. NMR spectroscopy analyses showed that acidic phospholipids can sequester CD28 signaling motifs within the membrane, thereby limiting CD28 basal signaling. T cell receptor (TCR) activation induced an increase in the local Ca2+ concentration around CD28, and Ca2+ directly disrupted CD28-lipid interaction, leading to opening and signaling of CD28. We observed that the TCR, Ca2+, and CD28 together form a dual-positive-feedback circuit that substantially amplifies T cell signaling and thus increases antigen sensitivity. This work unravels a new regulatory mechanism for CD28 signaling and thus contributes to the understanding of the dependence of costimulation signaling on TCR signaling and the high sensitivity of T cells.
Collapse
|
24
|
Kunkl M, Porciello N, Mastrogiovanni M, Capuano C, Lucantoni F, Moretti C, Persson JL, Galandrini R, Buzzetti R, Tuosto L. ISA-2011B, a Phosphatidylinositol 4-Phosphate 5-Kinase α Inhibitor, Impairs CD28-Dependent Costimulatory and Pro-inflammatory Signals in Human T Lymphocytes. Front Immunol 2017; 8:502. [PMID: 28491063 PMCID: PMC5405084 DOI: 10.3389/fimmu.2017.00502] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 04/12/2017] [Indexed: 12/16/2022] Open
Abstract
Phosphatidylinositol 4,5-biphosphate (PIP2) is a membrane phospholipid that controls the activity of several proteins regulating cytoskeleton reorganization, cytokine gene expression, T cell survival, proliferation, and differentiation. Phosphatidylinositol 4-phosphate 5-kinases (PIP5Ks) are the main enzymes involved in PIP2 biosynthesis by phosphorylating phosphatidylinositol 4-monophosphate (PI4P) at the D5 position of the inositol ring. In human T lymphocytes, we recently found that CD28 costimulatory molecule is pivotal for PIP2 turnover by recruiting and activating PIP5Kα. We also found that PIP5Kα is the main regulator of both CD28 costimulatory signals integrating those delivered by TCR as well as CD28 autonomous signals regulating the expression of pro-inflammatory genes. Given emerging studies linking alterations of PIP2 metabolism to immune-based diseases, PIP5Kα may represent a promising target to modulate immunity and inflammation. Herewith, we characterized a recently discovered inhibitor of PIP5Kα, ISA-2011B, for its inhibitory effects on T lymphocyte functions. We found that the inhibition of PIP5Kα lipid-kinase activity by ISA-2011B significantly impaired CD28 costimulatory signals necessary for TCR-mediated Ca2+ influx, NF-AT transcriptional activity, and IL-2 gene expression as well as CD28 autonomous signals regulating the activation of NF-κB and the transcription of pro-inflammatory cytokine and chemokine genes. Moreover, our data on the inhibitory effects of ISA-2011B on CD28-mediated upregulation of inflammatory cytokines related to Th17 cell phenotype in type 1 diabetes patients suggest ISA-2011B as a promising anti-inflammatory drug.
Collapse
Affiliation(s)
- Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Nicla Porciello
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Marta Mastrogiovanni
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| | - Cristina Capuano
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Chiara Moretti
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Jenny L Persson
- Division of Experimental Cancer Research, Department of Laboratory Medicine, Clinical Research Center, Lund University, Malmö, Sweden.,Department of Molecular Biology, Umeå University, Umeå, Sweden
| | | | | | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Sapienza University, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Rome, Italy
| |
Collapse
|
25
|
Novel CD28 antagonist mPEG PV1-Fab' mitigates experimental autoimmune uveitis by suppressing CD4+ T lymphocyte activation and IFN-γ production. PLoS One 2017; 12:e0171822. [PMID: 28248972 PMCID: PMC5331984 DOI: 10.1371/journal.pone.0171822] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 01/26/2017] [Indexed: 12/22/2022] Open
Abstract
Autoimmune Uveitis is an important chronic inflammatory disease and a leading cause of impaired vision and blindness. This ocular autoimmune disorder is mainly mediated by T CD4+ lymphocytes poising a TH1 phenotype. Costimulatory molecules are known to play an important role on T cell activation and therefore represent interesting therapeutical targets for autoimmune disorders. CD28 is the prototypical costimulatory molecule for T lymphocytes, and plays a crucial role in the initiation, and maintenance of immune responses. However, previous attempts to use this molecule in clinical practice achieved no success. Thus, we evaluated the efficacy of mPEG PV1-Fab’ (PV1), a novel selective CD28 antagonist monovalent Fab fragment in the treatment of Experimental Autoimmune Uveitis (EAU). Here, we showed that PV1 treatment decreases both average disease score and incidence of EAU. A decrease in the activation profile of both T CD4+ and T CD8+ eye-infiltrating lymphocytes was evidenced. In the periphery, T CD4+ cells from PV1-treated mice also showed a decrease in their activation status, with reduced expression of CD69, CD25, and PD-1 molecules. This suppression was not dependent on Treg cells, as both their frequency and absolute number were lower in PV1-treated mice. In addition, frequency of CD4+IFN-γ+ T cells was significantly lower in PV1-treated group, but not of IL-17-producing T cells. Moreover, after specific restimulation, PV1 blockade selectively blocked IFN-γ production by CD4+ lymphocytes Taken together, our data suggest that mPEG PV1-Fab’ acts mainly on IFN-γ-producing CD4+ T cells and emphasize that this specific CD28 blockade strategy is a potential specific and alternative tool for the treatment of autoimmune disorders in the eye.
Collapse
|
26
|
Bhise V, Dhib-Jalbut S. Further understanding of the immunopathology of multiple sclerosis: impact on future treatments. Expert Rev Clin Immunol 2016; 12:1069-89. [PMID: 27191526 DOI: 10.1080/1744666x.2016.1191351] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The understanding of the immunopathogenesis of multiple sclerosis (MS) has expanded with more research into T-cell subtypes, cytokine contributors, B-cell participation, mitochondrial dysfunction, and more. Treatment options have rapidly expanded with three relatively recent oral therapy alternatives entering the arena. AREAS COVERED In the following review, we discuss current mechanisms of immune dysregulation in MS, how they relate to current treatments, and the impact these findings will have on the future of therapy. Expert commentary: The efficacy of these medications and understanding their mechanisms of actions validates the immunopathogenic mechanisms thought to underlie MS. Further research has exposed new targets, while new promising therapies have shed light on new aspects into the pathophysiology of MS.
Collapse
Affiliation(s)
- Vikram Bhise
- a Rutgers Biomedical and Health Sciences - Departments of Pediatrics , Robert Wood Johnson Medical School , New Brunswick , NJ , USA
| | - Suhayl Dhib-Jalbut
- b Rutgers Biomedical and Health Sciences - Departments of Neurology , Robert Wood Johnson Medical School , New Brunswick , NJ , USA
| |
Collapse
|
27
|
Porciello N, Kunkl M, Viola A, Tuosto L. Phosphatidylinositol 4-Phosphate 5-Kinases in the Regulation of T Cell Activation. Front Immunol 2016; 7:186. [PMID: 27242793 PMCID: PMC4865508 DOI: 10.3389/fimmu.2016.00186] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 05/02/2016] [Indexed: 11/21/2022] Open
Abstract
Phosphatidylinositol 4,5-biphosphate kinases (PIP5Ks) are critical regulators of T cell activation being the main enzymes involved in the synthesis of phosphatidylinositol 4,5-biphosphate (PIP2). PIP2 is indeed a pivotal regulator of the actin cytoskeleton, thus controlling T cell polarization and migration, stable adhesion to antigen-presenting cells, spatial organization of the immunological synapse, and co-stimulation. Moreover, PIP2 also serves as a precursor for the second messengers inositol triphosphate, diacylglycerol, and phosphatidylinositol 3,4,5-triphosphate, which are essential for the activation of signaling pathways regulating cytokine production, cell cycle progression, survival, metabolism, and differentiation. Here, we discuss the impact of PIP5Ks on several T lymphocyte functions with a specific focus on the role of CD28 co-stimulation in PIP5K compartimentalization and activation.
Collapse
Affiliation(s)
- Nicla Porciello
- Department of Biology and Biotechnology Charles Darwin, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University , Rome , Italy
| | - Martina Kunkl
- Department of Biology and Biotechnology Charles Darwin, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, Rome, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua, Padua, Italy; Venetian Institute of Molecular Medicine (VIMM), Padua, Italy
| | - Loretta Tuosto
- Department of Biology and Biotechnology Charles Darwin, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University , Rome , Italy
| |
Collapse
|
28
|
Porciello N, Tuosto L. CD28 costimulatory signals in T lymphocyte activation: Emerging functions beyond a qualitative and quantitative support to TCR signalling. Cytokine Growth Factor Rev 2016; 28:11-9. [PMID: 26970725 DOI: 10.1016/j.cytogfr.2016.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 02/22/2016] [Indexed: 01/22/2023]
Abstract
CD28 is one of the most important co-stimulatory receptors necessary for full T lymphocyte activation. By binding its cognate ligands, B7.1/CD80 or B7.2/CD86, expressed on the surface of professional antigen presenting cells (APC), CD28 initiates several signalling cascades, which qualitatively and quantitatively support T cell receptor (TCR) signalling. More recent data evidenced that human CD28 can also act as a TCR-independent signalling unit, by delivering specific signals, which regulate the expression of pro-inflammatory cytokine/chemokines. Despite the enormous progresses made in identifying the mechanisms and molecules involved in CD28 signalling properties, much remains to be elucidated, especially in the light of the functional differences observed between human and mouse CD28. In this review we provide an overview of the current mechanisms and molecules through which CD28 support TCR signalling and highlight recent findings on the specific signalling motifs that regulate the unique pro-inflammatory activity of human CD28.
Collapse
Affiliation(s)
- Nicla Porciello
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy
| | - Loretta Tuosto
- Istituto Pasteur-Fondazione Cenci Bolognetti, Department of Biology and Biotechnology Charles Darwin, Sapienza University of Rome, 00185 Rome, Italy.
| |
Collapse
|
29
|
Lycopene acts through inhibition of IκB kinase to suppress NF-κB signaling in human prostate and breast cancer cells. Tumour Biol 2016; 37:9375-85. [PMID: 26779636 DOI: 10.1007/s13277-016-4798-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/06/2016] [Indexed: 01/03/2023] Open
Abstract
We studied the effect of the potent dietary antioxidant lycopene on multiple points along the nuclear factor kappa B (NF-κB) signaling pathway in prostate and breast cancer cells. Lycopene significantly inhibited prostate and breast cancer cell growth at physiologically relevant concentrations of ≥1.25 μM. Similar concentrations also caused a 30-40 % reduction in inhibitor of kappa B (IκB) phosphorylation in the cells, as determined by western blotting. Furthermore, the same degree of inhibition by lycopene was observed for NF-κB transcriptional activity, as determined by reporter gene assay. Concomitant with this, immunofluorescence staining of lycopene-treated cells showed a significant suppression (≥25 %) of TNF-induced NF-κB p65 subunit nuclear translocation. Further probing of lycopene's effects on upstream elements of the NF-κB pathway showed a 25 % inhibition of both activity of recombinant IκB kinase β (IKKβ) kinase in a cell-free in vitro assay, as well as activity of IKKβ immunoprecipitated from MDA-MB-231 cells treated with lycopene. In conclusion, the anticancer properties of lycopene may occur through inhibition of the NF-κB signaling pathway, beginning at the early stage of cytoplasmic IKK kinase activity, which then leads to reduced NF-κB-responsive gene regulation. Furthermore, these effects in cancer cells were observed at concentrations of lycopene that are relevant and achievable in vivo.
Collapse
|
30
|
Abstract
PURPOSE OF REVIEW Recent studies indicate a role for immune dysregulation in the pathogenesis of multiple sclerosis, an inflammatory demyelinating and degenerative disease of the central nervous system. This review addresses the current mechanisms of immune dysregulation in the development of multiple sclerosis, including the impact of environmental risk factors on immunity in both multiple sclerosis and its animal models. RECENT FINDINGS CD4 T-helper (Th) cells have long been implicated as the main drivers of pathogenesis of multiple sclerosis. However, current studies indicate that multiple sclerosis is largely a heterogeneous disease process, which involves both innate and adaptive immune-mediated inflammatory mechanisms that ultimately contribute to demyelination and neurodegeneration. Therefore, B cells, CD8 T cells, and microglia/macrophages can also play an important role in the immunopathogenesis of multiple sclerosis apart from proinflammatory CD4 Th1/Th17 cell subsets. Furthermore, increasing evidence indicates that environmental risk factors, such as Vitamin D deficiency, Epstein-Barr virus, smoking, Western diet, and the commensal microbiota, influence the development of multiple sclerosis through interactions with genetic variants of multiple sclerosis, thus leading to the dysregulation of immune responses. SUMMARY A better understanding of immune-mediated mechanisms in the pathogenesis of multiple sclerosis and the contribution of environmental risk factors toward the development of multiple sclerosis will help further improve therapeutic approaches to prevent disease progression.
Collapse
|
31
|
Kallikourdis M, Trovato AE, Roselli G, Muscolini M, Porciello N, Tuosto L, Viola A. Phosphatidylinositol 4-Phosphate 5-Kinase β Controls Recruitment of Lipid Rafts into the Immunological Synapse. THE JOURNAL OF IMMUNOLOGY 2016; 196:1955-63. [PMID: 26773155 DOI: 10.4049/jimmunol.1501788] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 12/17/2015] [Indexed: 11/19/2022]
Abstract
Phosphatidylinositol 4,5-biphosphate (PIP2) is critical for T lymphocyte activation serving as a substrate for the generation of second messengers and the remodeling of actin cytoskeleton necessary for the clustering of lipid rafts, TCR, and costimulatory receptors toward the T:APC interface. Spatiotemporal analysis of PIP2 synthesis in T lymphocytes suggested that distinct isoforms of the main PIP2-generating enzyme, phosphatidylinositol 4-phosphate 5-kinase (PIP5K), play a differential role on the basis of their distinct localization. In this study, we analyze the contribution of PIP5Kβ to T cell activation and show that CD28 induces the recruitment of PIP5Kβ to the immunological synapse, where it regulates filamin A and lipid raft accumulation, as well as T cell activation, in a nonredundant manner. Finally, we found that Vav1 and the C-terminal 83 aa of PIP5Kβ are pivotal for the PIP5Kβ regulatory functions in response to CD28 stimulation.
Collapse
Affiliation(s)
- Marinos Kallikourdis
- Humanitas University, Rozzano, Milan 20089, Italy; Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Anna Elisa Trovato
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Giuliana Roselli
- Adaptive Immunity Laboratory, Humanitas Clinical and Research Center, Rozzano, Milan 20089, Italy
| | - Michela Muscolini
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy; and
| | - Nicla Porciello
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy; and
| | - Loretta Tuosto
- Pasteur Institute-Cenci Bolognetti Foundation, Department of Biology and Biotechnology Charles Darwin, Sapienza University, 00185 Rome, Italy; and
| | - Antonella Viola
- Department of Biomedical Sciences, University of Padua and Venetian Institute of Molecular Medicine, 35131 Padua, Italy
| |
Collapse
|
32
|
Misra R, Shah S, Fowell D, Wang H, Scheible K, Misra S, Huyck H, Wyman C, Ryan RM, Reynolds AM, Mariani T, Katzman PJ, Pryhuber GS. Preterm cord blood CD4⁺ T cells exhibit increased IL-6 production in chorioamnionitis and decreased CD4⁺ T cells in bronchopulmonary dysplasia. Hum Immunol 2015; 76:329-338. [PMID: 25797206 DOI: 10.1016/j.humimm.2015.03.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 02/09/2015] [Accepted: 03/11/2015] [Indexed: 12/16/2022]
Abstract
BACKGROUND Chorioamnionitis (CA) is associated with premature delivery and bronchopulmonary dysplasia (BPD). We hypothesize that preterm infants exposed to CA have reduced suppressive regulatory T cells (Treg) and increased non-regulatory T cell pro-inflammatory cytokines, increasing risk for BPD. OBJECTIVE To evaluate cord blood CD4(+) T cell regulatory phenotype and pro-inflammatory cytokine production in CA and BPD groups. STUDY DESIGN Cord blood mononuclear cells from infants (GA ⩽32 weeks), with or without placental histological evidence of CA (hChorio), were analyzed by flow cytometry. Clinical information was collected by retrospective chart review. Numbers of putative Treg (CD4(+)FoxP3(+)CD25(+)CD127Dim), CD4(+) non-Tregs, and CD4(+) T cell intracellular cytokine content following in vitro stimulation were compared with CA status and oxygen requirement at 36weeks postmenstrual age. RESULT Absolute Treg numbers were not different in CA and non-CA exposed samples. However, the infants who developed BPD had a significant decrease in Treg and non-regulatory T cell numbers. Greater IL-6 production was observed in hCA group. CONCLUSION A pro-inflammatory CD4(+) T cell status is noted in CA and BPD but the later disease is also associated with decrease in Tregs, suggesting that the development of BPD is marked by distinct inflammatory changes from those of CA exposed infants.
Collapse
Affiliation(s)
- Ravi Misra
- Department of Pediatrics, Neonatology Division, Golisano Children's Hospital
| | - Syed Shah
- Department of Pediatrics, Neonatology Division, Golisano Children's Hospital
| | - Deborah Fowell
- Department of Microbiology and Immunology, Center for Vaccine Biology and Immunology
| | - Hongyue Wang
- Department of Biostatistics and Computational Biology
| | - Kristin Scheible
- Department of Pediatrics, Neonatology Division, Golisano Children's Hospital
| | - Sara Misra
- Department of Pediatrics, Neonatology Division, Golisano Children's Hospital
| | - Heidie Huyck
- Department of Pediatrics, Neonatology Division, Golisano Children's Hospital
| | - Claire Wyman
- Department of Pediatrics, Neonatology Division, Golisano Children's Hospital
| | - Rita M Ryan
- Department of Pediatrics, Medical University of South Carolina, Charleston, SC29425
| | - Anne Marie Reynolds
- Department of Pediatrics, University at Buffalo, Buffalo, NY, 14222, United States
| | - Tom Mariani
- Department of Pediatrics, Neonatology Division, Golisano Children's Hospital.,Pediatric Molecular and Personalized Medicine Program
| | - Philip J Katzman
- Department of Pathology and Laboratory Medicine University of Rochester Medical Center (URMC), Rochester, NY 14642
| | - Gloria S Pryhuber
- Department of Pediatrics, Neonatology Division, Golisano Children's Hospital
| |
Collapse
|
33
|
Muscolini M, Camperio C, Porciello N, Caristi S, Capuano C, Viola A, Galandrini R, Tuosto L. Phosphatidylinositol 4–Phosphate 5–Kinase α and Vav1 Mutual Cooperation in CD28-Mediated Actin Remodeling and Signaling Functions. THE JOURNAL OF IMMUNOLOGY 2015; 194:1323-1333. [DOI: 10.4049/jimmunol.1401643] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Abstract
Phosphatidylinositol 4,5–biphosphate (PIP2) is a cell membrane phosphoinositide crucial for cell signaling and activation. Indeed, PIP2 is a pivotal source for second messenger generation and controlling the activity of several proteins regulating cytoskeleton reorganization. Despite its critical role in T cell activation, the molecular mechanisms regulating PIP2 turnover remain largely unknown. In human primary CD4+ T lymphocytes, we have recently demonstrated that CD28 costimulatory receptor is crucial for regulating PIP2 turnover by allowing the recruitment and activation of the lipid kinase phosphatidylinositol 4–phosphate 5–kinase (PIP5Kα). We also identified PIP5Kα as a key modulator of CD28 costimulatory signals leading to the efficient T cell activation. In this study, we extend these data by demonstrating that PIP5Kα recruitment and activation is essential for CD28-mediated cytoskeleton rearrangement necessary for organizing a complete signaling compartment leading to downstream signaling functions. We also identified Vav1 as the linker molecule that couples the C-terminal proline-rich motif of CD28 to the recruitment and activation of PIP5Kα, which in turn cooperates with Vav1 in regulating actin polymerization and CD28 signaling functions.
Collapse
Affiliation(s)
- Michela Muscolini
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Cristina Camperio
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Nicla Porciello
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Silvana Caristi
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| | - Cristina Capuano
- †Department of Experimental Medicine, Sapienza University, 00185 Rome, Italy
| | - Antonella Viola
- ‡The Venetian Institute of Molecular Medicine, Padova 35129, Italy; and
- §Department of Biomedical Sciences, University of Padova, Padova 35121, Italy
| | | | - Loretta Tuosto
- *Department of Biology and Biotechnology “Charles Darwin,” Pasteur Institute–Cenci Bolognetti Foundation, Sapienza University, 00185 Rome, Italy
| |
Collapse
|