1
|
Beenken KE, Smeltzer MS. Staphylococcus aureus Biofilm-Associated Infections: Have We Found a Clinically Relevant Target? Microorganisms 2025; 13:852. [PMID: 40284688 PMCID: PMC12029350 DOI: 10.3390/microorganisms13040852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/26/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025] Open
Abstract
Staphylococcus aureus is one of the most diverse bacterial pathogens. This is reflected in its ability to cause a wide array of infections and in genotypic and phenotypic differences between clinical isolates that extend beyond their antibiotic resistance status. Many S. aureus infections, including those involving indwelling medical devices, are therapeutically defined by the formation of a biofilm. This is reflected in the number of reports focusing on S. aureus biofilm formation and biofilm-associated infections. These infections are characterized by a level of intrinsic resistance that compromises conventional antibiotic therapy irrespective of acquired resistance, suggesting that an inhibitor of biofilm formation would have tremendous clinical value. Many reports have described large-scale screens aimed at identifying compounds that limit S. aureus biofilm formation, but relatively few examined whether the limitation was sufficient to overcome this intrinsic resistance. Similarly, while many of these reports examined the impact of putative inhibitors on S. aureus phenotypes, very few took a focused approach to identify and optimize an effective inhibitor of specific biofilm-associated targets. Such approaches are dependent on validating a target, hopefully one that is not restricted by the diversity of S. aureus as a bacterial pathogen. Rigorous biological validation of such a target would allow investigators to virtually screen vast chemical libraries to identify potential inhibitors that warrant further investigation based on their predicted function. Here, we summarize reports describing S. aureus regulatory loci implicated in biofilm formation to assess whether they are viable targets for the development of an anti-biofilm therapeutic strategy with an emphasis on whether sarA has been sufficiently validated to warrant consideration in this important clinical context.
Collapse
Affiliation(s)
- Karen E. Beenken
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Mark S. Smeltzer
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
- Department of Orthopaedic Surgery, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| |
Collapse
|
2
|
Qerqez AN, Silva RP, Maynard JA. Outsmarting Pathogens with Antibody Engineering. Annu Rev Chem Biomol Eng 2023; 14:217-241. [PMID: 36917814 PMCID: PMC10330301 DOI: 10.1146/annurev-chembioeng-101121-084508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
There is growing interest in identifying antibodies that protect against infectious diseases, especially for high-risk individuals and pathogens for which no vaccine is yet available. However, pathogens that manifest as opportunistic or latent infections express complex arrays of virulence-associated proteins and are adept at avoiding immune responses. Some pathogens have developed strategies to selectively destroy antibodies, whereas others create decoy epitopes that trick the host immune system into generating antibodies that are at best nonprotective and at worst enhance pathogenesis. Antibody engineering strategies can thwart these efforts by accessing conserved neutralizing epitopes, generating Fc domains that resist capture or degradation and even accessing pathogens hidden inside cells. Design of pathogen-resistant antibodies can enhance protection and guide development of vaccine immunogens against these complex pathogens. Here, we discuss general strategies for design of antibodies resistant to specific pathogen defense mechanisms.
Collapse
Affiliation(s)
- Ahlam N Qerqez
- Department of Chemical Engineering, The University of Texas, Austin, Texas, USA;
| | - Rui P Silva
- Department of Molecular Biosciences, The University of Texas, Austin, Texas, USA
| | - Jennifer A Maynard
- Department of Chemical Engineering, The University of Texas, Austin, Texas, USA;
| |
Collapse
|
3
|
Francis D, Bhairaddy A, Joy A, Hari GV, Francis A. Secretory proteins in the orchestration of microbial virulence: The curious case of Staphylococcus aureus. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 133:271-350. [PMID: 36707204 DOI: 10.1016/bs.apcsb.2022.10.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Microbial virulence showcases an excellent model for adaptive changes that enable an organism to survive and proliferate in a hostile environment and exploit host resources to its own benefit. In Staphylococcus aureus, an opportunistic pathogen of the human host, known for the diversity of the disease conditions it inflicts and the rapid evolution of antibiotic resistance, virulence is a consequence of having a highly plastic genome that is amenable to quick reprogramming and the ability to express a diverse arsenal of virulence factors. Virulence factors that are secreted to the host milieu effectively manipulate the host conditions to favor bacterial survival and growth. They assist in colonization, nutrient acquisition, immune evasion, and systemic spread. The structural and functional characteristics of the secreted virulence proteins have been shaped to assist S. aureus in thriving and disseminating effectively within the host environment and exploiting the host resources to its best benefit. With the aim of highlighting the importance of secreted virulence proteins in bacterial virulence, the present chapter provides a comprehensive account of the role of the major secreted proteins of S. aureus in orchestrating its virulence in the human host.
Collapse
Affiliation(s)
- Dileep Francis
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India.
| | - Anusha Bhairaddy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | - Atheene Joy
- Department of Life Sciences, Kristu Jayanti College, Autonomous, Bengaluru, Karnataka, India
| | | | - Ashik Francis
- Rajiv Gandhi Centre for Biotechnology, Trivandrum, Kerala, India
| |
Collapse
|
4
|
Fan X, Yuan Z, Zhao Y, Xiong W, Hsiao HC, Pare R, Ding J, Almosa A, Sun K, Zhang S, Jordan RE, Lee CS, An Z, Zhang N. Impairment of IgG Fc functions promotes tumor progression and suppresses NK cell antitumor actions. Commun Biol 2022; 5:960. [PMID: 36104515 PMCID: PMC9474879 DOI: 10.1038/s42003-022-03931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 09/01/2022] [Indexed: 11/15/2022] Open
Abstract
Natural killer (NK) cells mediate antibody dependent cytotoxic killing of cancer cells via cross-linking FcγR on NK cells with IgG-Fc. Studies have shown that the single-hinge cleaved IgGs (scIgGs) have dysfunctional Fc and failed engagement with FcγRs on immune cells. However, little is known about how scIgGs impact on antitumor immunity in the tumor microenvironment. In this study, we revealed a significant association of tumor scIgGs with tumor progression and poor outcomes of breast cancer patients (n = 547). Using multiple mouse tumor models, we demonstrated that tumor scIgGs reduced NK cell cytotoxic activities and resulted in aggressive tumor progression. We further showed that an anti-hinge specific monoclonal antibody (AHA) rescued the dysfunctional Fc in scIgGs by providing a functional Fc and restored NK cell cytotoxic activity. These findings point to a novel immunotherapeutic strategy to enhance Fc engagement with FcγRs for activation of anticancer immunity.
Collapse
Affiliation(s)
- Xuejun Fan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
| | - Zihao Yuan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
| | - Yueshui Zhao
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Wei Xiong
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
| | - Hao-Ching Hsiao
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
| | - Rahmawati Pare
- School of Medicine, Western Sydney University, Department of Anatomical Pathology, Liverpool Hospital, Cancer Pathology Laboratory, Ingham Institute for Applied Medical Research, Liverpool BC, NSW, 1871, Australia
- Medicine & Health Sciences, University Malaysia Sabah, Jalan UMS, 88400, Kota Kinabalu, Sabah, Malaysia
| | - Jianmin Ding
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Ahmad Almosa
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Kai Sun
- Center for Metabolic and Degenerative Diseases, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
| | - Songlin Zhang
- Department of Pathology and Laboratory Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Robert E Jordan
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA
| | - Cheok Song Lee
- School of Medicine, Western Sydney University, Department of Anatomical Pathology, Liverpool Hospital, Cancer Pathology Laboratory, Ingham Institute for Applied Medical Research, Liverpool BC, NSW, 1871, Australia
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA.
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center at Houston, 1825 Pressler St., Houston, TX, 77030, USA.
| |
Collapse
|
5
|
Singh V, Phukan UJ. Interaction of host and Staphylococcus aureus protease-system regulates virulence and pathogenicity. Med Microbiol Immunol 2019; 208:585-607. [PMID: 30483863 DOI: 10.1007/s00430-018-0573-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/22/2018] [Indexed: 02/06/2023]
Abstract
Staphylococcus aureus causes various health care- and community-associated infections as well as certain chronic TH2 driven inflammatory diseases. It is a potent pathogen with serious virulence and associated high morbidity. Severe pathogenicity is accredited to the S. aureus secreted virulence factors such as proteases and host protease modulators. These virulence factors promote adhesion and invasion of bacteria through damage of tight junction barrier and keratinocytes. They inhibit activation and transmigration of various immune cells such as neutrophils (and neutrophil proteases) to evade opsono-phagocytosis and intracellular bacterial killing. Additionally, they protect the bacteria from extracellular killing by disrupting integrity of extracellular matrix. Platelet activation and agglutination is also impaired by these factors. They also block the classical as well as alternative pathways of complement activation and assist in spread of infection through blood and tissue. As these factors are exquisite factors of S. aureus mediated disease development, we have focused on review of diversification of various protease-system associated virulence factors, their structural building, diverse role in disease development and available therapeutic counter measures. This review summarises the role of protease-associated virulence factors during invasion and progression of disease.
Collapse
Affiliation(s)
- Vigyasa Singh
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, P.O. CIMAP, Lucknow, 226015, India
| | - Ujjal Jyoti Phukan
- School of Life Science, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
6
|
Jordan RE, Fan X, Salazar G, Zhang N, An Z. Proteinase-nicked IgGs: an unanticipated target for tumor immunotherapy. Oncoimmunology 2018; 7:e1480300. [PMID: 30228951 PMCID: PMC6140550 DOI: 10.1080/2162402x.2018.1480300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 12/28/2022] Open
Abstract
The host immune system adopts multiple mechanisms involving antibodies to confront cancer cells. Accordingly, anti-tumor mAbs have become mainstays in cancer treatment. However, neither host immunity nor mAb therapies appear capable of controlling tumor growth in all cases. Structural instability of IgG was overlooked as a factor contributing to immunosuppression in the tumor microenvironment. Recently, physiological proteinases were identified that disable IgG immune effector functions. Evidence shows that these proteinases cause localized IgG impairment by selective cleavage of a single IgG peptide bond in the hinge-region. The recognition of IgG cleavage in the tumor microenvironment provides alternatives for tumor immunotherapy.
Collapse
Affiliation(s)
- Robert E Jordan
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, University of Texas Medical School at Houston, Texas, USA
| | - Xuejun Fan
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, University of Texas Medical School at Houston, Texas, USA
| | - Georgina Salazar
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, University of Texas Medical School at Houston, Texas, USA
| | - Ningyan Zhang
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, University of Texas Medical School at Houston, Texas, USA
| | - Zhiqiang An
- The Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, Health Science Center, University of Texas Medical School at Houston, Texas, USA
| |
Collapse
|
7
|
Huang T, Mathieu M, Lee S, Wang X, Kee YS, Bevers JJ, Ciferri C, Estavez A, Wong M, Chiang NY, Nakamura G, Brezski RJ. Molecular characterization of human anti-hinge antibodies derived from single-cell cloning of normal human B cells. J Biol Chem 2017; 293:906-919. [PMID: 29191832 DOI: 10.1074/jbc.ra117.000165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/20/2017] [Indexed: 01/04/2023] Open
Abstract
Anti-hinge antibodies (AHAs) are an autoantibody subclass that, following proteolytic cleavage, recognize cryptic epitopes exposed in the hinge regions of immunoglobulins (Igs) and do not bind to the intact Ig counterpart. AHAs have been postulated to exacerbate chronic inflammatory disorders such as inflammatory bowel disease and rheumatoid arthritis. On the other hand, AHAs may protect against invasive microbial pathogens and cancer. However, despite more than 50 years of study, the origin and specific B cell compartments that express AHAs remain elusive. Recent research on serum AHAs suggests that they arise during an active immune response, in contrast to previous proposals that they derive from the preexisting immune repertoire in the absence of antigenic stimuli. We report here the isolation and characterization of AHAs from memory B cells, although anti-hinge-reactive B cells were also detected in the naive B cell compartment. IgG AHAs cloned from a single human donor exhibited restricted specificity for protease-cleaved F(ab')2 fragments and did not bind the intact IgG counterpart. The cloned IgG-specific AHA-variable regions were mutated from germ line-derived sequences and displayed a high sequence variability, confirming that these AHAs underwent class-switch recombination and somatic hypermutation. Consistent with previous studies of serum AHAs, several of these clones recognized a linear, peptide-like epitope, but one clone was unique in recognizing a conformational epitope. All cloned AHAs could restore immune effector functions to proteolytically generated F(ab')2 fragments. Our results confirm that a diverse set of epitope-specific AHAs can be isolated from a single human donor.
Collapse
Affiliation(s)
- Tao Huang
- From the Antibody Engineering Department and
| | | | - Sophia Lee
- From the Antibody Engineering Department and
| | - Xinhua Wang
- From the Antibody Engineering Department and
| | | | | | - Claudio Ciferri
- Structural Biology Department-Cryo-EM Unit, Genentech, South San Francisco, California 94080
| | - Alberto Estavez
- Structural Biology Department-Cryo-EM Unit, Genentech, South San Francisco, California 94080
| | - Manda Wong
- Structural Biology Department-Cryo-EM Unit, Genentech, South San Francisco, California 94080
| | | | | | | |
Collapse
|
8
|
Immunoglobulins and their receptors, and subversion of their protective roles by bacterial pathogens. Biochem Soc Trans 2017; 44:1651-1658. [PMID: 27913674 DOI: 10.1042/bst20160246] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 09/07/2016] [Accepted: 09/12/2016] [Indexed: 12/16/2022]
Abstract
Immunoglobulins (Igs) play critical roles in immune defence against infectious disease. They elicit potent elimination processes such as triggering complement activation and engaging specific Fc receptors present on immune cells, resulting in phagocytosis and other killing mechanisms. Many important pathogens have evolved mechanisms to subvert or evade Ig-mediated defence. One such mechanism used by several pathogenic bacteria features proteins that bind the Ig Fc region and compromise engagement of host effector molecules. Examples include different IgA-binding proteins produced by Staphylococcus aureus, Streptococcus pyogenes, and group B streptococci, all of which interact with the same interdomain region on IgA Fc. Since this region also forms the interaction site for the major human IgA-specific Fc receptor CD89, the bacteria are able to evade CD89-mediated clearance mechanisms. Similar disruption of Ig effector function by pathogen Ig-binding proteins is evident in other species. Remarkably, all the Ig-binding proteins studied in detail to date are seen to target the CH2-CH3 domain interface in the Ig Fc region, suggesting a common mode of immune evasion. A second Ig subversion mechanism that has evolved independently in numerous pathogens involves proteases that cleave Ig molecules within their hinge regions, uncoupling the antigen recognition capability of the Fab region from clearance mechanisms elicited by the Fc region. The emerging understanding of the structural basis for the recognition of Igs as substrates for these proteases and as interaction partners for Ig-binding proteins may open up new avenues for treatment or vaccination.
Collapse
|
9
|
From Immunologically Archaic to Neoteric Glycovaccines. Vaccines (Basel) 2017; 5:vaccines5010004. [PMID: 28134792 PMCID: PMC5371740 DOI: 10.3390/vaccines5010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/14/2016] [Accepted: 01/22/2017] [Indexed: 12/13/2022] Open
Abstract
Polysaccharides (PS) are present in the outermost surface of bacteria and readily come in contact with immune cells. They interact with specific antibodies, which in turn confer protection from infections. Vaccines with PS from pneumococci, meningococci, Haemophilus influenzae type b, and Salmonella typhi may be protective, although with the important constraint of failing to generate permanent immunological memory. This limitation has in part been circumvented by conjugating glycovaccines to proteins that stimulate T helper cells and facilitate the establishment of immunological memory. Currently, protection evoked by conjugated PS vaccines lasts for a few years. The same approach failed with PS from staphylococci, Streptococcus agalactiae, and Klebsiella. All those germs cause severe infections in humans and often develop resistance to antibiotic therapy. Thereby, prevention is of increasing importance to better control outbreaks. As only 23 of more than 90 pneumococcal serotypes and 4 of 13 clinically relevant Neisseria meningitidis serogroups are covered by available vaccines there is still tremendous clinical need for PS vaccines. This review focuses on glycovaccines and the immunological mechanisms for their success or failure. We discuss recent advances that may facilitate generation of high affinity anti-PS antibodies and confer specific immunity and long-lasting protection.
Collapse
|