1
|
Wannemacher R, Stegmann F, Eikelberg D, Bühler M, Li D, Kohale SK, Asawapattanakul T, Ebbecke T, Raulf MK, Baumgärtner W, Lepenies B, Gerhauser I. Infection of a β-galactosidase-deficient mouse strain with Theiler's murine encephalomyelitis virus reveals limited immunological dysregulations in this lysosomal storage disease. Front Immunol 2025; 16:1467207. [PMID: 40270964 PMCID: PMC12014673 DOI: 10.3389/fimmu.2025.1467207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction A hallmark of many lysosomal storage diseases (LSD) is the alteration of immune responses, often starting before the onset of clinical disease. The present study aimed to investigate how GM1 gangliosidosis impacted the course of an acute central nervous system (CNS) virus infection before the clinical onset of LSD. Methods For this purpose, Glb1 -/- and wildtype control mice (both C57BL/6 background) were intracerebrally infected with the BeAn strain of Theiler's murine encephalomyelitis virus (TMEV) at the age of 5 weeks and sacrificed 4, 7, 14 and 98 days post infection, respectively. Histology, immunohistochemistry, and flow cytometry was used to assess viral load and immune cell activation and infiltration. Results Both wildtype and Glb1 -/- mice were able to clear the virus from the CNS and did not develop any clinical symptoms of TMEV-associated disease, thus indicating no overt alteration in susceptibility to TMEV infection. However, in the early phase post infection, Glb1 -/- mice displayed a slightly delayed T cell response as well as an increase in the number and activation of CNS microglia. Discussion These results suggest that already in the early stage of disease (before clinical onset) GM1 gangliosidosis causes an impaired T cell response and microglial hyperreactivity.
Collapse
Affiliation(s)
- Rouven Wannemacher
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Felix Stegmann
- Institute for Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Deborah Eikelberg
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Melanie Bühler
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Dandan Li
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Sayali Kalidas Kohale
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Thanaporn Asawapattanakul
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Tim Ebbecke
- Institute for Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Marie-Kristin Raulf
- Institute for Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Institute for Parasitology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| | - Bernd Lepenies
- Institute for Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Research Center for Emerging Infections and Zoonoses (RIZ), University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Chair of Biochemistry and Chemistry, Veterinary Faculty, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ingo Gerhauser
- Department of Pathology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
- Center for Systems Neuroscience Hannover, Hannover, Germany
| |
Collapse
|
2
|
Chu W, Chen M, Lv X, Lu S, Wang C, Yin L, Qian L, Shi J. Status and frontiers of Fabre disease. Orphanet J Rare Dis 2025; 20:123. [PMID: 40075521 PMCID: PMC11905648 DOI: 10.1186/s13023-025-03646-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 03/01/2025] [Indexed: 03/14/2025] Open
Abstract
Fabry disease is characterized by an X sex chromosome gene mutation caused by α-galactosidase A deficiency, resulting in the accumulation of globotriaosylceramide and globotriaosylsphingosine in various organs, which induces end-organ lesions. In Fabry disease, enzymes with lost or decreased activity in the body are replaced by exogenous supplementation of normal-function α-galactosidase A. Currently, agalsidase α and agalsidase β are widely used for ERT therapy. However, this therapy has limitations such as high cost, short half-life, and production of neutralizing drug antibodies. The use of Migalastat as chaperone therapy has been approved in many countries, and it plays a therapeutic role by enhancing enzyme activity. However, companion therapy drugs are only suitable for patients with decreased enzyme activity, so the scope of their application is limited. In addition, there are several therapeutic drugs in development, including a new generation of ERT therapies, drugs resistant to neutralizing anti-drug antibody drugs, and substrate reduction therapy drugs. Due to the limitations of existing therapeutic drugs, researchers have begun to explore new therapeutic drugs for Fabry disease, so new pathogenic mechanisms and adjuvant therapeutic drugs have been continuously discovered, and the development of related drugs will contribute to disease control and treatment. This article summarizes the existing and potential drugs for treating Fabry disease to facilitate the selection of suitable and effective drugs for treatment.
Collapse
Affiliation(s)
- Wei Chu
- Department of Pharmacy, The First People's Hospital of Huzhou, The Directly Affiliated Hospital of Huzhou Teachers College, Huzhou, China
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
| | - Min Chen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China
- Department of Pharmacy, The First People's Hospital of Aksu District, Aksu, China
| | - Xiaoqin Lv
- Department of Drug Monitoring and Evaluation, Zhejiang Center for Drug and Cosmetic Evaluation, Hangzhou, China
| | - Sheng Lu
- Department of Pharmacy, The First People's Hospital of Huzhou, The Directly Affiliated Hospital of Huzhou Teachers College, Huzhou, China
| | - Changyan Wang
- Department of Clinical Laboratory, Huzhou Aishan Hospital of Integrated Chinese and Western Medicine, Huzhou, China
| | - Limin Yin
- Department of Pharmacy, First People's Hospital of Wenling, Wenling, China
| | - Linyan Qian
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
- Heart Center, Department of Cardiovascular Medicine, Affiliated People's Hospital, Zhejiang Provincial People's Hospital, Hangzhou Medical College, Hangzhou, China.
| | - Jiana Shi
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, China.
| |
Collapse
|
3
|
Bonacina F, Zhang X, Manel N, Yvan-Charvet L, Razani B, Norata GD. Lysosomes in the immunometabolic reprogramming of immune cells in atherosclerosis. Nat Rev Cardiol 2025; 22:149-164. [PMID: 39304748 PMCID: PMC11835540 DOI: 10.1038/s41569-024-01072-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/08/2024] [Indexed: 09/22/2024]
Abstract
Lysosomes have a central role in the disposal of extracellular and intracellular cargo and also function as metabolic sensors and signalling platforms in the immunometabolic reprogramming of macrophages and other immune cells in atherosclerosis. Lysosomes can rapidly sense the presence of nutrients within immune cells, thereby switching from catabolism of extracellular material to the recycling of intracellular cargo. Such a fine-tuned degradative response supports the generation of metabolic building blocks through effectors such as mTORC1 or TFEB. By coupling nutrients to downstream signalling and metabolism, lysosomes serve as a crucial hub for cellular function in innate and adaptive immune cells. Lysosomal dysfunction is now recognized to be a hallmark of atherogenesis. Perturbations in nutrient-sensing and signalling have profound effects on the capacity of immune cells to handle cholesterol, perform phagocytosis and efferocytosis, and limit the activation of the inflammasome and other inflammatory pathways. Strategies to improve lysosomal function hold promise as novel modulators of the immunoinflammatory response associated with atherosclerosis. In this Review, we describe the crosstalk between lysosomal biology and immune cell function and polarization, with a particular focus on cellular immunometabolic reprogramming in the context of atherosclerosis.
Collapse
Affiliation(s)
- Fabrizia Bonacina
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy
| | - Xiangyu Zhang
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Nicolas Manel
- Immunity and Cancer Department, Institut Curie, PSL Research University, INSERM U932, Paris, France
| | - Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Fédération Hospitalo-Universitaire (FHU), Oncoage, Nice, France
| | - Babak Razani
- Vascular Medicine Institute, Department of Medicine, University of Pittsburgh School of Medicine and UPMC, Pittsburgh, PA, USA
- Pittsburgh VA Medical Center, Pittsburgh, PA, USA
| | - Giuseppe D Norata
- Department of Excellence of Pharmacological and Biomolecular Sciences 'Rodolfo Paoletti', Università degli Studi di Milano, Milan, Italy.
| |
Collapse
|
4
|
Pham V, Tricoli L, Hong X, Wongkittichote P, Castruccio Castracani C, Guerra A, Schlotawa L, Adang LA, Kuhs A, Cassidy MM, Kane O, Tsai E, Presa M, Lutz C, Rivella SB, Ahrens-Nicklas RC. Hematopoietic stem cell gene therapy improves outcomes in a clinically relevant mouse model of multiple sulfatase deficiency. Mol Ther 2024; 32:3829-3846. [PMID: 39169621 PMCID: PMC11573602 DOI: 10.1016/j.ymthe.2024.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
Multiple sulfatase deficiency (MSD) is a severe, lysosomal storage disorder caused by pathogenic variants in the gene SUMF1, encoding the sulfatase modifying factor formylglycine-generating enzyme. Patients with MSD exhibit functional deficiencies in all cellular sulfatases. The inability of sulfatases to break down their substrates leads to progressive and multi-systemic complications in patients, similar to those seen in single-sulfatase disorders such as metachromatic leukodystrophy and mucopolysaccharidoses IIIA. Here, we aimed to determine if hematopoietic stem cell transplantation with ex vivo SUMF1 lentiviral gene therapy could improve outcomes in a clinically relevant mouse model of MSD. We first tested our approach in MSD patient-derived cells and found that our SUMF1 lentiviral vector improved protein expression, sulfatase activities, and glycosaminoglycan accumulation. In vivo, we found that our gene therapy approach rescued biochemical deficits, including sulfatase activity and glycosaminoglycan accumulation, in affected organs of MSD mice treated post-symptom onset. In addition, treated mice demonstrated improved neuroinflammation and neurocognitive function. Together, these findings suggest that SUMF1 HSCT-GT can improve both biochemical and functional disease markers in the MSD mouse.
Collapse
Affiliation(s)
- Vi Pham
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lucas Tricoli
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Xinying Hong
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Parith Wongkittichote
- Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
| | - Carlo Castruccio Castracani
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Amaliris Guerra
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, 37075 Goettingen, Germany; Translational Neuroinflammation and Automated Microscopy, Fraunhofer Institute for Translational Medicine and Pharmacology, 37075 Goettingen, Germany
| | - Laura A Adang
- Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Amanda Kuhs
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Margaret M Cassidy
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Owen Kane
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Emily Tsai
- Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maximiliano Presa
- The Jackson Laboratory, Rare Disease Translational Center, Bar Harbor, ME 04609, USA
| | - Cathleen Lutz
- The Jackson Laboratory, Rare Disease Translational Center, Bar Harbor, ME 04609, USA
| | - Stefano B Rivella
- Department of Pediatrics, Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; RNA Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rebecca C Ahrens-Nicklas
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA.
| |
Collapse
|
5
|
Bohara S, Bhattarai S, Khadka M, Ghimire D, Karki S, Poudel N, Aryal G, Dhakal SS. Non-neuronopathic Gaucher disease (Type I) in an elderly female: a case report. Ann Med Surg (Lond) 2024; 86:6780-6783. [PMID: 39525705 PMCID: PMC11543243 DOI: 10.1097/ms9.0000000000002566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 11/16/2024] Open
Abstract
Introduction and importance Gaucher disease is a rare autosomal recessive lysosomal storage disorder marked by a substantial reduction in beta-glucocerebrosidase activity. Historically, supportive treatments such as splenectomy and orthopedic interventions were employed, whereas recent advances have led to the approval of Enzyme Replacement Therapy (ERT) and Substrate Reduction Therapy (SRT) as therapeutic options. Case presentation The authors present the case of a 61-year-old female with chronic abdominal pain, abdominal fullness, pancytopenia, and hepatosplenomegaly, all indicative of Gaucher's disease, later confirmed by histopathological examination. The patient was informed about newer treatment options like ERT and SRT, as well as the traditional approach of splenectomy. However, due to financial constraints, she opted for splenectomy in conjunction with conservative management. Discussion Gaucher disease is defined by a deficiency of glucocerebrosidase, leading to the accumulation of Gaucher cells (pathognomonic of the disease), particularly in the spleen, liver, bone marrow, and lungs. Type 1 Gaucher disease (GD1) can manifest at any age, from childhood to late adulthood. Definitive diagnosis is confirmed by reduced beta-glucocerebrosidase activity. Traditionally, treatment options for GD1 have been supportive, including splenectomy, blood transfusions, and orthopedic procedures. However, SRT and ERT, though effective, remain prohibitively expensive and often inaccessible in low-resource settings. Conclusion Early diagnosis of Gaucher disease is challenging due to its rarity and should be considered in patients presenting with hepatosplenomegaly, pancytopenia, and low glucocerebrosidase activity.
Collapse
Affiliation(s)
- Sujan Bohara
- Department of Cardiovascular Surgery, Shahid Gangalal National Heart Center, Kathmandu
| | | | - Manoj Khadka
- Department of Internal Medicine, Shree Birendra Hospital, Kathmandu
| | - Deepak Ghimire
- Department of Internal Medicine, Nepal Mediciti, Lalitpur
| | - Samikshya Karki
- Department of Physical Medicine and Rehabilitation, Spinal Injury Rehabilitation Center, Sanga
| | - Nahakul Poudel
- Department of Internal Medicine, Tribhuvan University Teaching Hospital, Kathmandu
| | - Gopi Aryal
- Department of Laboratory Medicine and Pathology, Nepal Mediciti, Lalitpur
| | - Sunil S. Dhakal
- Department of General and Gastrointestinal Surgery, Nepal Mediciti, Lalitpur, Nepal
| |
Collapse
|
6
|
Presa M, Pham V, Ray S, Piec PA, Ryan J, Billings T, Coombs H, Schlotawa L, Lund T, Ahrens-Nicklas RC, Lutz C. Bone marrow transplantation increases sulfatase activity in somatic tissues in a multiple sulfatase deficiency mouse model. COMMUNICATIONS MEDICINE 2024; 4:215. [PMID: 39448727 PMCID: PMC11502872 DOI: 10.1038/s43856-024-00648-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 10/16/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Multiple Sulfatase Deficiency (MSD) is an ultra-rare autosomal recessive disorder characterized by deficient enzymatic activity of all known sulfatases. MSD patients frequently carry two loss of function mutations in the SUMF1 gene, encoding a formylglycine-generating enzyme (FGE) that activates 17 different sulfatases. MSD patients show common features of other lysosomal diseases like mucopolysaccharidosis and metachromatic leukodystrophy, including neurologic impairments, developmental delay, and visceromegaly. There are currently no approved therapies for MSD patients. Hematopoietic stem cell transplant (HSCT) has been applied with success in the treatment of certain lysosomal diseases. In HSCT, donor-derived myeloid cells are a continuous source of active sulfatase enzymes that can be taken up by sulfatase-deficient host cells. Thus, HSCT could be a potential approach for the treatment of MSD. METHODS To test this hypothesis, we used a clinically relevant mouse model for MSD, B6-Sumf1(S153P/S153P) mice, engrafted with bone marrow cells, Sumf1+/+, from B6-PtprcK302E mice (CD45.1 immunoreactive). RESULTS After 10 months post-transplant, flow cytometric analysis shows an average of 90% of circulating leukocytes of donor origin (Sumf1(+/+)). Enzymatic activity for ARSA, ARSB, and SGSH is significantly increased in spleen of B6-Sumf1(S153P/S153P) recipient mice. In non-lymphoid organs, only liver and heart show a significant correction of sulfatase activity and GAG accumulation. Frequency of inflammatory cells and lysosomal pathology is significantly reduced in liver and heart, while no significant improvement is detected in brain. CONCLUSIONS Our results indicate that HSCT could be a suitable approach to treat MSD-pathology affecting peripheral organs, however that benefit to CNS pathology might be limited.
Collapse
Affiliation(s)
- Maximiliano Presa
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Vi Pham
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Human Genetics, Department of Pediatrics, Metabolic Disease Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Somdatta Ray
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - Jennifer Ryan
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Timothy Billings
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Harold Coombs
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA
| | - Lars Schlotawa
- Department of Pediatrics and Adolescent Medicine, University Medical Center Goettingen, Goettingen, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology - Tranlational Neuroinflammation and Automated Microscopy, Goettingen, Germany
| | - Troy Lund
- Division of Hematology-Oncology and Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Rebecca C Ahrens-Nicklas
- Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Division of Human Genetics, Department of Pediatrics, Metabolic Disease Program, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Cathleen Lutz
- Rare Disease Translational Center, The Jackson Laboratory, Bar Harbor, ME, USA.
| |
Collapse
|
7
|
Yoon H, Lee D, Song S, Koo B, Park J, Kim TK, Kim S, Kim S, Hong J, Byun JM, Shin D, Kim I, Koh Y, Yoon S. Unraveling the impact of lysosomal dysfunction on myeloproliferative neoplasm. Cancer Med 2024; 13:e70238. [PMID: 39320136 PMCID: PMC11423461 DOI: 10.1002/cam4.70238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 09/26/2024] Open
Abstract
BACKGROUND Lysosomal dysfunction (LD) impacts cytokine regulation, inflammation, and immune responses, influencing the development and progression of cancer. Inflammation is implicated in the pathogenesis of myeloproliferative neoplasm (MPN). With a hypothesis that LD significantly contributes to MPN carcinogenesis by inducing abnormal inflammation, our objective was to elucidate the pathophysiological mechanisms of MPN arising from an LD background. METHODS Genotyping of the LD background was performed in a cohort of MPN patients (n = 190) and healthy controls (n = 461). Logistic regression modeling, utilizing genotype data, was employed to estimate the correlation between LD and MPN. Whole transcriptome sequencing (WTS) (LD carriers = 8, non-carriers = 6) and single-cell RNA sequencing data (LD carriers = 2, non-carriers = 2, healthy controls = 2) were generated and analyzed. RESULTS A higher variant frequency of LD was observed in MPN compared to healthy controls (healthy, 4.9%; MPN, 7.8%), with the highest frequency seen in polycythemia vera (PV) (odds ratio = 2.33, p = 0.03). WTS revealed that LD carriers exhibited upregulated inflammatory cytokine ligand-receptor genes, pathways, and network modules in MPNs compared to non-carriers. At the single-cell level, there was monocyte expansion and elevation of cytokine ligand-receptor interactions, inflammatory transcription factors, and network modules centered on monocytes. Notably, Oncostatin-M (OSM) consistently emerged as a candidate molecule involved in the pathogenesis of LD-related PV. CONCLUSIONS In summary, an LD background is prevalent in MPN patients and leads to increased cytokine dysregulation and inflammation. OSM, as one of the potential molecules, plays a crucial role in PV pathogenesis by impairing lysosomal function.
Collapse
Affiliation(s)
- Hyundong Yoon
- Cancer Research Institute, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Dohoon Lee
- Bioinformatics Institute, Seoul National UniversitySeoulRepublic of Korea
- BK21 FOUR Intelligence ComputingSeoul National UniversitySeoulRepublic of Korea
| | - Seulki Song
- Cancer Research Institute, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Bonil Koo
- Interdisciplinary Program in BioinformaticsSeoul National UniversitySeoulRepublic of Korea
- Interdisciplinary Program in Artificial IntelligenceSeoul National UniversitySeoulRepublic of Korea
| | - Jihyun Park
- Cancer Research Institute, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Tae Kon Kim
- Division of Hematology/Oncology, Department of MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Sun Kim
- Interdisciplinary Program in BioinformaticsSeoul National UniversitySeoulRepublic of Korea
- Department of Computer Science and EngineeringSeoul National UniversitySeoulRepublic of Korea
- AIGENDRUG Co., LtdSeoulRepublic of Korea
- MOGAM Institute for Biomedical Research, Green Cross CorpYonginRepublic of Korea
| | - Sheehyun Kim
- Department of Genomic MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Junshik Hong
- Cancer Research Institute, Seoul National University College of MedicineSeoulRepublic of Korea
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Ja Min Byun
- Cancer Research Institute, Seoul National University College of MedicineSeoulRepublic of Korea
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Dong‐Yeop Shin
- Cancer Research Institute, Seoul National University College of MedicineSeoulRepublic of Korea
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Inho Kim
- Cancer Research Institute, Seoul National University College of MedicineSeoulRepublic of Korea
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Youngil Koh
- Cancer Research Institute, Seoul National University College of MedicineSeoulRepublic of Korea
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
| | - Sung‐Soo Yoon
- Cancer Research Institute, Seoul National University College of MedicineSeoulRepublic of Korea
- Center for Medical InnovationSeoul National University HospitalSeoulRepublic of Korea
- Department of Internal MedicineSeoul National University HospitalSeoulRepublic of Korea
| |
Collapse
|
8
|
Kurdi H, Lavalle L, Moon JCC, Hughes D. Inflammation in Fabry disease: stages, molecular pathways, and therapeutic implications. Front Cardiovasc Med 2024; 11:1420067. [PMID: 38932991 PMCID: PMC11199868 DOI: 10.3389/fcvm.2024.1420067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/28/2024] [Indexed: 06/28/2024] Open
Abstract
Fabry disease, a multisystem X-linked disorder caused by mutations in the alpha-galactosidase gene. This leads to the accumulation of globotriaosylceramide (Gb3) and globotriaosylsphingosine (Lyso-Gb3), culminating in various clinical signs and symptoms that significantly impact quality of life. Although treatments such as enzyme replacement, oral chaperone, and emerging therapies like gene therapy exist; delayed diagnosis often curtails their effectiveness. Our review highlights the importance of delineating the stages of inflammation in Fabry disease to enhance the timing and efficacy of diagnosis and interventions, particularly before the progression to fibrosis, where treatment options are less effective. Inflammation is emerging as an important aspect of the pathogenesis of Fabry disease. This is thought to be predominantly mediated by the innate immune response, with growing evidence pointing towards the potential involvement of adaptive immune mechanisms that remain poorly understood. Highlighted by the fact that Fabry disease shares immune profiles with systemic autoinflammatory diseases, blurring the distinctions between these disorders and highlighting the need for a nuanced understanding of immune dynamics. This insight is crucial for developing targeted therapies and improving the administration of current treatments like enzyme replacement. Moreover, our review discusses the complex interplay between these inflammatory processes and current treatments, such as the challenges posed by anti-drug antibodies. These antibodies can attenuate the effectiveness of therapies, necessitating more refined approaches to mitigate their impact. By advancing our understanding of the molecular changes, inflammatory mediators and causative factors that drive inflammation in Fabry disease, we aim to clarify their role in the disease's progression. This improved understanding will help us see how these processes fit into the current landscape of Fabry disease. Additionally, it will guide the development of more effective diagnostic and therapeutic approaches, ultimately improving patient care.
Collapse
Affiliation(s)
- Hibba Kurdi
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiovascular Imaging Department, Barts Heart Centre, London, United Kingdom
| | - Lucia Lavalle
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Lysosomal Storage Disorders Unit, The Royal Free Hospital, London, United Kingdom
| | - James C. C. Moon
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Cardiovascular Imaging Department, Barts Heart Centre, London, United Kingdom
| | - Derralynn Hughes
- Institute of Cardiovascular Science, University College London, London, United Kingdom
- Lysosomal Storage Disorders Unit, The Royal Free Hospital, London, United Kingdom
| |
Collapse
|
9
|
Kilic A, Emecen Sanli M, Ozsaydı Aktasoglu E, Gokalp S, Biberoğlu G, Inci A, Okur I, Suheyl Ezgu F, Tumer L. Endocrinological and metabolic profile of Gaucher disease patients treated with enzyme replacement therapy. J Pediatr Endocrinol Metab 2024; 37:413-418. [PMID: 38624096 DOI: 10.1515/jpem-2023-0504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 03/12/2024] [Indexed: 04/17/2024]
Abstract
OBJECTIVES Gaucher disease (GD) is a lysosomal storage disease caused by glucocerebrosidase (GCase) enzyme deficiency. Gaucher cells transformed from the macrophages by progressive sphingolipid accumulation and infiltrate bone marrow, spleen, liver, and other organs. The accumulation of substrate causes inflammation, compromised cellular homeostasis, and disturbed autophagy. It has been hypothesized that this proinflammatory state of GD leads cytokines and chemokines release. As a result of inflammatory process, the cellular dysfunction caused by disruption of cellular signaling, organelle dysfunction, or autoimmune antibodies may affect endocrine profile of GD patients such as hormone levels, lipid profile, and bone mineral density status. METHODS A total of 13 patients confirmed to have GD, 12 non-neuronopathic type and one subacute neuronopathic type, were enrolled in our study. RESULTS The median treatment duration in the enzyme therapy was 13.33 years (9-26 years). At least one endocrinological abnormality was detected in blood tests of nine patients. Hyperinsulinism was the most common finding although fasting blood glucose levels HgbA1c levels were normal in all patients. Two patients had osteopenia, and osteoporosis was detected in two patients. Low HDL levels were detected in six patients, but HDL levels below 23 mg/dL associated with disease severity have been detected in two patients who have not receiving enzyme replacement therapy. None of patients had thyroidal dysfunction. CONCLUSIONS This study had revealed endocrinological abnormalities in GD patients that have not led any severe morbidity in our patients. However, thyroid hormone abnormalities, insulin resistance, or lipid profile abnormalities may cause unpredictable comorbidities. Endocrinological assessment in GD patients in routine follow-up may prevent possible clinical manifestation in long term as well as can define efficacy of ERT on endocrine abnormalities.
Collapse
Affiliation(s)
- Ayse Kilic
- Department of Pediatrics, Department of Inborn Metabolic Diseases, Gazı University Faculty of Medicine, Eminiyet Mahallesi, Yenimahalle/Ankara, Türkiye
| | - Merve Emecen Sanli
- Department of Pediatrics, Department of Inborn Metabolic Diseases, Gazı University Faculty of Medicine, Eminiyet Mahallesi, Yenimahalle/Ankara, Türkiye
| | - Ekin Ozsaydı Aktasoglu
- Department of Pediatrics, Department of Inborn Metabolic Diseases, Gazı University Faculty of Medicine, Eminiyet Mahallesi, Yenimahalle/Ankara, Türkiye
| | - Sabire Gokalp
- Department of Pediatrics, Department of Inborn Metabolic Diseases, Gazı University Faculty of Medicine, Eminiyet Mahallesi, Yenimahalle/Ankara, Türkiye
| | - Gürsel Biberoğlu
- Department of Pediatrics, Department of Inborn Metabolic Diseases, Gazı University Faculty of Medicine, Eminiyet Mahallesi, Yenimahalle/Ankara, Türkiye
| | - Aslı Inci
- Department of Pediatrics, Department of Inborn Metabolic Diseases, Gazı University Faculty of Medicine, Eminiyet Mahallesi, Yenimahalle/Ankara, Türkiye
| | - Ilyas Okur
- Department of Pediatrics, Department of Inborn Metabolic Diseases, Gazı University Faculty of Medicine, Eminiyet Mahallesi, Yenimahalle/Ankara, Türkiye
| | - Fatih Suheyl Ezgu
- Department of Pediatrics, Department of Inborn Metabolic Diseases, Gazı University Faculty of Medicine, Eminiyet Mahallesi, Yenimahalle/Ankara, Türkiye
| | - Leyla Tumer
- Department of Pediatrics, Department of Inborn Metabolic Diseases, Gazı University Faculty of Medicine, Eminiyet Mahallesi, Yenimahalle/Ankara, Türkiye
| |
Collapse
|
10
|
Hämälistö S, Del Valle Batalla F, Yuseff MI, Mattila PK. Endolysosomal vesicles at the center of B cell activation. J Cell Biol 2024; 223:e202307047. [PMID: 38305771 PMCID: PMC10837082 DOI: 10.1083/jcb.202307047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 12/22/2023] [Accepted: 01/17/2024] [Indexed: 02/03/2024] Open
Abstract
The endolysosomal system specializes in degrading cellular components and is crucial to maintaining homeostasis and adapting rapidly to metabolic and environmental cues. Cells of the immune system exploit this network to process antigens or promote cell death by secreting lysosome-related vesicles. In B lymphocytes, lysosomes are harnessed to facilitate the extraction of antigens and to promote their processing into peptides for presentation to T cells, critical steps to mount protective high-affinity antibody responses. Intriguingly, lysosomal vesicles are now considered important signaling units within cells and also display secretory functions by releasing their content to the extracellular space. In this review, we focus on how B cells use pathways involved in the intracellular trafficking, secretion, and function of endolysosomes to promote adaptive immune responses. A basic understanding of such mechanisms poses an interesting frontier for the development of therapeutic strategies in the context of cancer and autoimmune diseases.
Collapse
Affiliation(s)
- Saara Hämälistö
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
- Cancer Research Unit and FICAN West Cancer Centre Laboratory, Turku, Finland
| | - Felipe Del Valle Batalla
- Laboratory of Immune Cell Biology, Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Isabel Yuseff
- Laboratory of Immune Cell Biology, Department of Cellular and Molecular Biology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pieta K. Mattila
- Institute of Biomedicine, and MediCity Research Laboratories, University of Turku, Turku, Finland
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship, University of Turku, Turku, Finland
| |
Collapse
|
11
|
Mishra H, Schlack-Leigers C, Lim EL, Thieck O, Magg T, Raedler J, Wolf C, Klein C, Ewers H, Lee-Kirsch MA, Meierhofer D, Hauck F, Majer O. Disrupted degradative sorting of TLR7 is associated with human lupus. Sci Immunol 2024; 9:eadi9575. [PMID: 38207015 DOI: 10.1126/sciimmunol.adi9575] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
Hyperactive TLR7 signaling has long been appreciated as driver of autoimmune disease in mouse models. Recently, gain-of-function mutations in TLR7 were identified as a monogenic cause of human lupus. TLR7 is an intracellular transmembrane receptor, sensing RNA breakdown products within late endosomes. Here, we show that endosome dysfunction leads to unrestricted TLR7 signaling and is associated with human lupus. The late endosomal BORC complex together with the small GTPase Arl8b controls intracellular TLR7 levels by regulating receptor turnover. This requires a direct interaction between the TLR7-associated trafficking factor Unc93b1 and Arl8b. We identified an UNC93B1 mutation in a patient with childhood-onset lupus, which results in reduced BORC interaction and endosomal TLR7 accumulation. Therefore, a failure to control TLR7 turnover is sufficient to break immunological tolerance to nucleic acids. Our results highlight the importance of an intact endomembrane system in preventing pathological TLR7 signaling and autoimmune disease.
Collapse
Affiliation(s)
- Harshita Mishra
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Claire Schlack-Leigers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Ee Lyn Lim
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Oliver Thieck
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| | - Thomas Magg
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Johannes Raedler
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Christine Wolf
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - Christoph Klein
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Helge Ewers
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany
| | - Min Ae Lee-Kirsch
- Department of Pediatrics, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Dresden 01307, Germany
| | - David Meierhofer
- Max Planck Institute for Molecular Genetics, Berlin 14195, Germany
| | - Fabian Hauck
- Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich 80337, Germany
| | - Olivia Majer
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
| |
Collapse
|
12
|
Yang K, Tang Z, Xing C, Yan N. STING signaling in the brain: Molecular threats, signaling activities, and therapeutic challenges. Neuron 2024; 112:539-557. [PMID: 37944521 PMCID: PMC10922189 DOI: 10.1016/j.neuron.2023.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/12/2023]
Abstract
Stimulator of interferon genes (STING) is an innate immune signaling protein critical to infections, autoimmunity, and cancer. STING signaling is also emerging as an exciting and integral part of many neurological diseases. Here, we discuss recent advances in STING signaling in the brain. We summarize how molecular threats activate STING signaling in the diseased brain and how STING signaling activities in glial and neuronal cells cause neuropathology. We also review human studies of STING neurobiology and consider therapeutic challenges in targeting STING to treat neurological diseases.
Collapse
Affiliation(s)
- Kun Yang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Zhen Tang
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Cong Xing
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Nan Yan
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
13
|
Hamamoto A, Kita N, B. Gowda SG, Takatsu H, Nakayama K, Arita M, Hui SP, Shin HW. Lysosomal membrane integrity in fibroblasts derived from patients with Gaucher disease. Cell Struct Funct 2024; 49:1-10. [PMID: 38072450 PMCID: PMC11496783 DOI: 10.1247/csf.23066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/04/2023] [Indexed: 01/26/2024] Open
Abstract
Gaucher disease (GD) is a recessively inherited lysosomal storage disorder characterized by a deficiency of lysosomal glucocerebrosidase (GBA1). This deficiency results in the accumulation of its substrate, glucosylceramide (GlcCer), within lysosomes. Here, we investigated lysosomal abnormalities in fibroblasts derived from patients with GD. It is noteworthy that the cellular distribution of lysosomes and lysosomal proteolytic activity remained largely unaffected in GD fibroblasts. However, we found that lysosomal membranes of GD fibroblasts were susceptible to damage when exposed to a lysosomotropic agent. Moreover, the susceptibility of lysosomal membranes to a lysosomotropic agent could be partly restored by exogenous expression of wild-type GBA1. Here, we report that the lysosomal membrane integrity is altered in GD fibroblasts, but lysosomal distribution and proteolytic activity is not significantly altered.Key words: glucosylceramide, lysosome, Gaucher disease, lysosomotropic agent.
Collapse
Affiliation(s)
- Asuka Hamamoto
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Natsuki Kita
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Siddabasave Gowda B. Gowda
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
- Graduate School of Global Food Resources, Hokkaido University, Sapporo, Hokkaido 060-0809, Japan
| | - Hiroyuki Takatsu
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Kazuhisa Nakayama
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| | - Makoto Arita
- Laboratory for Metabolomics, RIKEN Center of Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Shu-Ping Hui
- Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido 060-0812, Japan
| | - Hye-Won Shin
- Graduate School of Pharmaceutical Science, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
14
|
Sevin C, Mochel F. Hematopoietic stem cell transplantation in leukodystrophies. HANDBOOK OF CLINICAL NEUROLOGY 2024; 204:355-366. [PMID: 39322389 DOI: 10.1016/b978-0-323-99209-1.00017-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
More than 50 leukodystrophies have been described. This group of inherited disorders affects myelin development and/or maintenance and can manifest from birth to adulthood. Neuroinflammation is a hallmark of some leukodystrophies, explaining in part the therapeutic benefit of hematopoietic stem cell transplantation (HSCT). Indeed, in addition to supplying the CNS with myelomonocyte donor cells expressing the deficient protein or enzyme, HSCT allows the restoration of normal microglia function, which may act on neuroinflammation. In this chapter, we explore the rationale, indication, and outcome of HSCT in Cerebral Adrenoleukodystrophy (CALD), Metachromatic Leukodystrophy (MLD), Krabbe Disease (KD), and Adult-onset Leukoencephalopathy with Axonal Spheroids and Pigmented Glia (ALSP), which are among the most frequent leukodystrophies. For these leukodystrophies, HSCT may modify notably the natural history and improve CNS-related deficits, provided that the procedure is performed early into the disease course. In addition, we discuss the recent development of ex vivo gene therapy for CALD and MLD as a promising alternative to allograft.
Collapse
Affiliation(s)
- Caroline Sevin
- AP-HP, Kremlin-Bicêtre University Hospital, Department of Neuropediatrics, Reference Center for Pediatric Leukodystrophies, Paris, France; INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, ICM, Paris, France
| | - Fanny Mochel
- INSERM U 1127, CNRS UMR 7225, Sorbonne Université, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau, ICM, Paris, France; AP-HP, Pitié-Salpêtrière University Hospital, Department of Medical Genetics, Reference Centers for Adult Neurometabolic Diseases and Adult Leukodystrophies, Paris, France.
| |
Collapse
|
15
|
Ormazabal ME, Pavan E, Vaena E, Ferino D, Biasizzo J, Mucci JM, Serra F, Cifù A, Scarpa M, Rozenfeld PA, Dardis AE. Exploring the Pathophysiologic Cascade Leading to Osteoclastogenic Activation in Gaucher Disease Monocytes Generated via CRISPR/Cas9 Technology. Int J Mol Sci 2023; 24:11204. [PMID: 37446383 DOI: 10.3390/ijms241311204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
Gaucher disease (GD) is caused by biallelic pathogenic variants in the acid β-glucosidase gene (GBA1), leading to a deficiency in the β-glucocerebrosidase (GCase) enzyme activity resulting in the intracellular accumulation of sphingolipids. Skeletal alterations are one of the most disabling features in GD patients. Although both defective bone formation and increased bone resorption due to osteoblast and osteoclast dysfunction contribute to GD bone pathology, the molecular bases are not fully understood, and bone disease is not completely resolved with currently available specific therapies. For this reason, using editing technology, our group has developed a reliable, isogenic, and easy-to-handle cellular model of GD monocytes (GBAKO-THP1) to facilitate GD pathophysiology studies and high-throughput drug screenings. In this work, we further characterized the model showing an increase in proinflammatory cytokines (Interleukin-1β and Tumor Necrosis Factor-α) release and activation of osteoclastogenesis. Furthermore, our data suggest that GD monocytes would display an increased osteoclastogenic potential, independent of their interaction with the GD microenvironment or other GD cells. Both proinflammatory cytokine production and osteoclastogenesis were restored at least, in part, by treating cells with the recombinant human GCase, a substrate synthase inhibitor, a pharmacological chaperone, and an anti-inflammatory compound. Besides confirming that this model would be suitable to perform high-throughput screening of therapeutic molecules that act via different mechanisms and on different phenotypic features, our data provided insights into the pathogenic cascade, leading to osteoclastogenesis exacerbation and its contribution to bone pathology in GD.
Collapse
Affiliation(s)
- Maximiliano Emanuel Ormazabal
- Regional Coordinator Centre for Rare Diseases, Academic Hospital of Udine, 33100 Udine, Italy
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata 1900, Argentina
| | - Eleonora Pavan
- Regional Coordinator Centre for Rare Diseases, Academic Hospital of Udine, 33100 Udine, Italy
| | - Emilio Vaena
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata 1900, Argentina
| | - Dania Ferino
- Institute of Clinical Pathology, Department of Laboratory Medicine, University Hospital of Udine, 33100 Udine, Italy
| | - Jessica Biasizzo
- Institute of Clinical Pathology, Department of Laboratory Medicine, University Hospital of Udine, 33100 Udine, Italy
| | - Juan Marcos Mucci
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata 1900, Argentina
| | - Fabrizio Serra
- Regional Coordinator Centre for Rare Diseases, Academic Hospital of Udine, 33100 Udine, Italy
| | - Adriana Cifù
- Dipartimento di Area Medica, Università degli Studi di Udine, 33100 Udine, Italy
| | - Maurizio Scarpa
- Regional Coordinator Centre for Rare Diseases, Academic Hospital of Udine, 33100 Udine, Italy
| | - Paula Adriana Rozenfeld
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), UNLP, CONICET, Asociado CIC PBA, Facultad de Ciencias Exactas, Departamento de Ciencias Biológicas, La Plata 1900, Argentina
| | - Andrea Elena Dardis
- Regional Coordinator Centre for Rare Diseases, Academic Hospital of Udine, 33100 Udine, Italy
| |
Collapse
|
16
|
Lopes N, Maia ML, Pereira CS, Mondragão-Rodrigues I, Martins E, Ribeiro R, Gaspar A, Aguiar P, Garcia P, Cardoso MT, Rodrigues E, Leão-Teles E, Giugliani R, Coutinho MF, Alves S, Macedo MF. Leukocyte Imbalances in Mucopolysaccharidoses Patients. Biomedicines 2023; 11:1699. [PMID: 37371793 DOI: 10.3390/biomedicines11061699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Mucopolysaccharidoses (MPSs) are rare inherited lysosomal storage diseases (LSDs) caused by deficient activity in one of the enzymes responsible for glycosaminoglycans lysosomal degradation. MPS II is caused by pathogenic mutations in the IDS gene, leading to deficient activity of the enzyme iduronate-2-sulfatase, which causes dermatan and heparan sulfate storage in the lysosomes. In MPS VI, there is dermatan sulfate lysosomal accumulation due to pathogenic mutations in the ARSB gene, leading to arylsulfatase B deficiency. Alterations in the immune system of MPS mouse models have already been described, but data concerning MPSs patients is still scarce. Herein, we study different leukocyte populations in MPS II and VI disease patients. MPS VI, but not MPS II patients, have a decrease percentage of natural killer (NK) cells and monocytes when compared with controls. No alterations were identified in the percentage of T, invariant NKT, and B cells in both groups of MPS disease patients. However, we discovered alterations in the naïve versus memory status of both helper and cytotoxic T cells in MPS VI disease patients compared to control group. Indeed, MPS VI disease patients have a higher frequency of naïve T cells and, consequently, lower memory T cell frequency than control subjects. Altogether, these results reveal MPS VI disease-specific alterations in some leukocyte populations, suggesting that the type of substrate accumulated and/or enzyme deficiency in the lysosome may have a particular effect on the normal cellular composition of the immune system.
Collapse
Affiliation(s)
- Nuno Lopes
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Maria L Maia
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
| | - Cátia S Pereira
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Cell Activation & Gene Expression (CAGE), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Inês Mondragão-Rodrigues
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Cell Activation & Gene Expression (CAGE), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| | - Esmeralda Martins
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar Universitário de Santo António, 4099-001 Porto, Portugal
| | - Rosa Ribeiro
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar Universitário de Santo António, 4099-001 Porto, Portugal
| | - Ana Gaspar
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar e Universitário Lisboa Norte (CHULN), 1649-035 Lisbon, Portugal
| | - Patrício Aguiar
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar e Universitário Lisboa Norte (CHULN), 1649-035 Lisbon, Portugal
- Faculdade de Medicina da Universidade de Lisboa, Universidade de Lisboa, 1649-190 Lisbon, Portugal
| | - Paula Garcia
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar e Universitário de Coimbra, Centro de Desenvolvimento da Criança, 3000-075 Coimbra, Portugal
| | - Maria Teresa Cardoso
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
| | - Esmeralda Rodrigues
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
| | - Elisa Leão-Teles
- Centro de Referência de Doenças Hereditárias do Metabolismo (DHM), Centro Hospitalar Universitário de São João (CHUSJ), 4200-319 Porto, Portugal
| | - Roberto Giugliani
- Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, DASA e Casa dos Raros, Porto Alegre 90610-150, Brazil
| | - Maria F Coutinho
- Research and Development Unit, Department of Genetics, INSA, 4000-055 Porto, Portugal
| | - Sandra Alves
- Research and Development Unit, Department of Genetics, INSA, 4000-055 Porto, Portugal
| | - M Fátima Macedo
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, 4200-135 Porto, Portugal
- Cell Activation & Gene Expression (CAGE), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Ciências Médicas, Universidade de Aveiro, Campus Universitário de Santiago, Agra do Crasto, Edifício 30, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Placci M, Giannotti MI, Muro S. Polymer-based drug delivery systems under investigation for enzyme replacement and other therapies of lysosomal storage disorders. Adv Drug Deliv Rev 2023; 197:114683. [PMID: 36657645 PMCID: PMC10629597 DOI: 10.1016/j.addr.2022.114683] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/30/2022] [Accepted: 12/25/2022] [Indexed: 01/18/2023]
Abstract
Lysosomes play a central role in cellular homeostasis and alterations in this compartment associate with many diseases. The most studied example is that of lysosomal storage disorders (LSDs), a group of 60 + maladies due to genetic mutations affecting lysosomal components, mostly enzymes. This leads to aberrant intracellular storage of macromolecules, altering normal cell function and causing multiorgan syndromes, often fatal within the first years of life. Several treatment modalities are available for a dozen LSDs, mostly consisting of enzyme replacement therapy (ERT) strategies. Yet, poor biodistribution to main targets such as the central nervous system, musculoskeletal tissue, and others, as well as generation of blocking antibodies and adverse effects hinder effective LSD treatment. Drug delivery systems are being studied to surmount these obstacles, including polymeric constructs and nanoparticles that constitute the focus of this article. We provide an overview of the formulations being tested, the diseases they aim to treat, and the results observed from respective in vitro and in vivo studies. We also discuss the advantages and disadvantages of these strategies, the remaining gaps of knowledge regarding their performance, and important items to consider for their clinical translation. Overall, polymeric nanoconstructs hold considerable promise to advance treatment for LSDs.
Collapse
Affiliation(s)
- Marina Placci
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain
| | - Marina I Giannotti
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; CIBER-BBN, ISCIII, Barcelona, Spain; Department of Materials Science and Physical Chemistry, University of Barcelona, Barcelona 08028, Spain
| | - Silvia Muro
- Institute for Bioengineering of Catalonia (IBEC), Barcelona Institute for Science and Technology (BIST), Barcelona 08028, Spain; Institute of Catalonia for Research and Advanced Studies (ICREA), Barcelona 08010, Spain; Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, MD 20742, USA; Department of Chemical and Biomolecular Engineering, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
18
|
Basiri M, Ghaffari ME, Ruan J, Murugesan V, Kleytman N, Belinsky G, Akhavan A, Lischuk A, Guo L, Klinger K, Mistry PK. Osteonecrosis in Gaucher disease in the era of multiple therapies: Biomarker set for risk stratification from a tertiary referral center. eLife 2023; 12:e87537. [PMID: 37249220 PMCID: PMC10317498 DOI: 10.7554/elife.87537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 05/31/2023] Open
Abstract
Background A salutary effect of treatments for Gaucher disease (GD) has been a reduction in the incidence of avascular osteonecrosis (AVN). However, there are reports of AVN in patients receiving enzyme replacement therapy (ERT) , and it is not known whether it is related to individual treatments, GBA genotypes, phenotypes, biomarkers of residual disease activity, or anti-drug antibodies. Prompted by development of AVN in several patients receiving ERT, we aimed to delineate the determinants of AVN in patients receiving ERT or eliglustat substrate reduction therapy (SRT) during 20 years in a tertiary referral center. Methods Longitudinal follow-ups of 155 GD patients between 2001 and 2021 were analyzed for episodes of AVN on therapy, type of therapy, GBA1 genotype, spleen status, biomarkers, and other disease indicators. We applied mixed-effects logistic model to delineate the independent correlates of AVN while receiving treatment. Results The patients received cumulative 1382 years of treatment. There were 16 episodes of AVN in 14 patients, with two episodes, each occurring in two patients. Heteroallelic p.Asn409Ser GD1 patients were 10 times (95% CI, 1.5-67.2) more likely than p.Asn409Ser homozygous patients to develop osteonecrosis during treatment. History of AVN prior to treatment initiation was associated with 4.8-fold increased risk of AVN on treatment (95% CI, 1.5-15.2). The risk of AVN among patients receiving velaglucerase ERT was 4.68 times higher compared to patients receiving imiglucerase ERT (95% CI, 1.67-13). No patient receiving eliglustat SRT suffered AVN. There was a significant correlation between GlcSph levels and AVN. Together, these biomarkers reliably predicted risk of AVN during therapy (ROC AUC 0.894, p<0.001). Conclusions There is a low, but significant risk of AVN in GD in the era of ERT/SRT. We found that increased risk of AVN was related to GBA genotype, history of AVN prior to treatment initiation, residual serum GlcSph level, and the type of ERT. No patient receiving SRT developed AVN. These findings exemplify a new approach to biomarker applications in a rare inborn error of metabolism to evaluate clinical outcomes in comprehensively followed patients and will aid identification of GD patients at higher risk of AVN who will benefit from closer monitoring and treatment optimization. Funding LSD Training Fellowship from Sanofi to MB.
Collapse
Affiliation(s)
- Mohsen Basiri
- Department of Internal Medicine, Yale UniversityNew HavenUnited States
| | - Mohammad E Ghaffari
- Department of ENT, Head and Neck Surgery, Guilan University of Medical SciencesRashtIslamic Republic of Iran
| | - Jiapeng Ruan
- Department of Internal Medicine, Yale UniversityNew HavenUnited States
| | | | | | - Glenn Belinsky
- Department of Internal Medicine, Yale UniversityNew HavenUnited States
| | - Amir Akhavan
- Department of Computer and Information Science, University of Massachusetts DartmouthDartmoutUnited States
| | - Andrew Lischuk
- Department of Radiology and Biomedical Imaging, Yale UniversityNew HavenUnited States
| | - Lilu Guo
- Translational Sciences, SanofiFraminghamUnited States
| | | | - Pramod K Mistry
- Department of Internal Medicine, Yale UniversityNew HavenUnited States
| |
Collapse
|
19
|
de Boer L, Cambi A, Verhagen LM, de Haas P, van Karnebeek CDM, Blau N, Ferreira CR. Clinical and biochemical footprints of inherited metabolic diseases. XII. Immunological defects. Mol Genet Metab 2023; 139:107582. [PMID: 37087816 PMCID: PMC10182388 DOI: 10.1016/j.ymgme.2023.107582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/14/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Immunological problems are increasingly acknowledged manifestations in many inherited metabolic diseases (IMDs), ranging from exaggerated inflammation, autoimmunity and abnormal cell counts to recurrent microbial infections. A subgroup of IMDs, the congenital disorders of glycosylation (CDG), includes CDG types that are even classified as primary immunodeficiencies. Here, we reviewed the list of metabolic disorders reported to be associated with various immunological defects and identified 171 IMDs accompanied by immunological manifestations. Most IMDs are accompanied by immune dysfunctions of which immunodeficiency and infections, innate immune defects, and autoimmunity are the most common abnormalities reported in 144/171 (84%), 44/171 (26%) and 33/171 (19%) of IMDs with immune system involvement, respectively, followed by autoinflammation 17/171 (10%). This article belongs to a series aiming at creating and maintaining a comprehensive list of clinical and metabolic differential diagnoses according to organ system involvement.
Collapse
Affiliation(s)
- Lonneke de Boer
- Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, the Netherlands.
| | - Alessandra Cambi
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Lilly M Verhagen
- Radboud University Medical Center, Amalia Children's Hospital, Nijmegen, the Netherlands; Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Paola de Haas
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Nenad Blau
- Division of Metabolism, University Children's Hospital, Zurich, Switzerland.
| | - Carlos R Ferreira
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States of America.
| |
Collapse
|
20
|
Elsaid HOA, Tjeldnes H, Rivedal M, Serre C, Eikrem Ø, Svarstad E, Tøndel C, Marti HP, Furriol J, Babickova J. Gene Expression Analysis in gla-Mutant Zebrafish Reveals Enhanced Ca 2+ Signaling Similar to Fabry Disease. Int J Mol Sci 2022; 24:358. [PMID: 36613802 PMCID: PMC9820748 DOI: 10.3390/ijms24010358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
Fabry disease (FD) is an X-linked inborn metabolic disorder due to partial or complete lysosomal α-galactosidase A deficiency. FD is characterized by progressive renal insufficiency and cardio- and cerebrovascular involvement. Restricted access on Gb3-independent tissue injury experimental models has limited the understanding of FD pathophysiology and delayed the development of new therapies. Accumulating glycosphingolipids, mainly Gb3 and lysoGb3, are Fabry specific markers used in clinical follow up. However, recent studies suggest there is a need for additional markers to monitor FD clinical course or response to treatment. We used a gla-knockout zebrafish (ZF) to investigate alternative biomarkers in Gb3-free-conditions. RNA sequencing was used to identify transcriptomic signatures in kidney tissues discriminating gla-mutant (M) from wild type (WT) ZF. Gene Ontology (GO) and KEGG pathways analysis showed upregulation of immune system activation and downregulation of oxidative phosphorylation pathways in kidneys from M ZF. In addition, upregulation of the Ca2+ signaling pathway was also detectable in M ZF kidneys. Importantly, disruption of mitochondrial and lysosome-related pathways observed in M ZF was validated by immunohistochemistry. Thus, this ZF model expands the pathophysiological understanding of FD, the Gb3-independent effects of gla mutations could be used to explore new therapeutic targets for FD.
Collapse
Affiliation(s)
- Hassan Osman Alhassan Elsaid
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Håkon Tjeldnes
- Computational Biology Unit, Department of Informatics, University of Bergen, 5021 Bergen, Norway
| | - Mariell Rivedal
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | - Camille Serre
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | - Øystein Eikrem
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Einar Svarstad
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | - Camilla Tøndel
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- Department of Pediatrics, Haukeland University Hospital, 5021 Bergen, Norway
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Jessica Furriol
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Janka Babickova
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
- Institute of Molecular Biomedicine, Faculty of Medicine, Comenius University, 811 08 Bratislava, Slovakia
| |
Collapse
|
21
|
Coenzyme Q10: Role in Less Common Age-Related Disorders. Antioxidants (Basel) 2022; 11:antiox11112293. [DOI: 10.3390/antiox11112293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
In this article we have reviewed the potential role of coenzyme Q10 (CoQ10) in the pathogenesis and treatment of a number of less common age-related disorders, for many of which effective therapies are not currently available. For most of these disorders, mitochondrial dysfunction, oxidative stress and inflammation have been implicated in the disease process, providing a rationale for the potential therapeutic use of CoQ10, because of its key roles in mitochondrial function, as an antioxidant, and as an anti-inflammatory agent. Disorders reviewed in the article include multi system atrophy, progressive supranuclear palsy, sporadic adult onset ataxia, and pulmonary fibrosis, together with late onset versions of Huntington’s disease, Alexander disease, lupus, anti-phospholipid syndrome, lysosomal storage disorders, fibromyalgia, Machado-Joseph disease, acyl-CoA dehydrogenase deficiency, and Leber’s optic neuropathy.
Collapse
|
22
|
Rajan DS, Escolar ML. Evolving therapies in neuronopathic LSDs: opportunities and challenges. Metab Brain Dis 2022; 37:2245-2256. [PMID: 35442005 DOI: 10.1007/s11011-022-00939-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/19/2022] [Indexed: 12/24/2022]
Abstract
Lysosomal storage disorders (LSD) are multisystemic progressive disorders caused by genetic mutations involving lysosomal function. While LSDs are individually considered rare diseases, the overall true prevalence of these disorders is likely higher than our current estimates. More than two third of the LSDs have associated neurodegeneration and the neurological phenotype often defines the course of the disease and treatment outcomes. Addressing the neurological involvement in LSDs has posed a significant challenge in the rapidly evolving field of therapies for these diseases. In this review, we summarize current approaches and clinical trials available for patients with neuronopathic lysosomal storage disorders, exploring the opportunities and challenges that have emerged with each of these.
Collapse
Affiliation(s)
- Deepa S Rajan
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Maria L Escolar
- Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Del Grosso A, Parlanti G, Mezzena R, Cecchini M. Current treatment options and novel nanotechnology-driven enzyme replacement strategies for lysosomal storage disorders. Adv Drug Deliv Rev 2022; 188:114464. [PMID: 35878795 DOI: 10.1016/j.addr.2022.114464] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/26/2022] [Accepted: 07/19/2022] [Indexed: 11/01/2022]
Abstract
Lysosomal storage disorders (LSDs) are a vast group of more than 50 clinically identified metabolic diseases. They are singly rare, but they affect collectively 1 on 5,000 live births. They result in most of the cases from an enzymatic defect within lysosomes, which causes the subsequent augmentation of unwanted substrates. This accumulation process leads to plenty of clinical signs, determined by the specific substrate and accumulation area. The majority of LSDs present a broad organ and tissue engagement. Brain, connective tissues, viscera and bones are usually afflicted. Among them, brain disease is markedly frequent (two-thirds of LSDs). The most clinically employed approach to treat LSDs is enzyme replacement therapy (ERT), which is practiced by administering systemically the missed or defective enzyme. It represents a healthful strategy for 11 LSDs at the moment, but it solves the pathology only in the case of Gaucher disease. This approach, in fact, is not efficacious in the case of LSDs that have an effect on the central nervous system (CNS) due to the existence of the blood-brain barrier (BBB). Additionally, ERT suffers from several other weak points, such as low penetration of the exogenously administered enzyme to poorly vascularized areas, the development of immunogenicity and infusion-associated reactions (IARs), and, last but not least, the very high cost and lifelong needed. To ameliorate these weaknesses lot of efforts have been recently spent around the development of innovative nanotechnology-driven ERT strategies. They may boost the power of ERT and minimize adverse reactions by loading enzymes into biodegradable nanomaterials. Enzyme encapsulation into biocompatible liposomes, micelles, and polymeric nanoparticles, for example, can protect enzymatic activity, eliminating immunologic reactions and premature enzyme degradation. It can also permit a controlled release of the payload, ameliorating pharmacokinetics and pharmacodynamics of the drug. Additionally, the potential to functionalize the surface of the nanocarrier with targeting agents (antibodies or peptides), could promote the passage through biological barriers. In this review we examined the clinically applied ERTs, highlighting limitations that do not allow to completely cure the specific LSD. Later, we critically consider the nanotechnology-based ERT strategies that have beenin-vitroand/orin-vivotested to improve ERT efficacy.
Collapse
Affiliation(s)
- Ambra Del Grosso
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Gabriele Parlanti
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Roberta Mezzena
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| | - Marco Cecchini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Piazza San Silvestro 12, 56127 Pisa, Italy
| |
Collapse
|
24
|
DeFilipp Z, Hefazi M, Chen YB, Blazar BR. Emerging approaches to improve allogeneic hematopoietic cell transplantation outcomes for nonmalignant diseases. Blood 2022; 139:3583-3593. [PMID: 34614174 PMCID: PMC9728560 DOI: 10.1182/blood.2020009014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/04/2021] [Indexed: 12/14/2022] Open
Abstract
Many congenital or acquired nonmalignant diseases (NMDs) of the hematopoietic system can be potentially cured by allogeneic hematopoietic cell transplantation (HCT) with varying types of donor grafts, degrees of HLA matching, and intensity of conditioning regimens. Unique features that distinguish the use of allogeneic HCT in this population include higher rates of graft failure, immune-mediated cytopenias, and the potential to achieve long-term disease-free survival in a mixed chimerism state. Additionally, in contrast to patients with hematologic malignancies, a priority is to completely avoid graft-versus-host disease in patients with NMD because there is no theoretical beneficial graft-versus-leukemia effect that can accompany graft-versus-host responses. In this review, we discuss the current approach to each of these clinical issues and how emerging novel therapeutics hold promise to advance transplant care for patients with NMDs.
Collapse
Affiliation(s)
- Zachariah DeFilipp
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, MA
| | | | - Yi-Bin Chen
- Hematopoietic Cell Transplant and Cellular Therapy Program, Massachusetts General Hospital, Boston, MA
| | - Bruce R. Blazar
- Department of Pediatrics, Division of Blood & Marrow Transplant & Cellular Therapy, University of Minnesota, Minneapolis, MN
| |
Collapse
|
25
|
Napodano C, Pocino K, Gulli F, Rossi E, Rapaccini GL, Marino M, Basile U. Mono/polyclonal free light chains as challenging biomarkers for immunological abnormalities. Adv Clin Chem 2022; 108:155-209. [PMID: 35659060 DOI: 10.1016/bs.acc.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Free light chain (FLC) kappa (k) and lambda (λ) consist of low molecular weight proteins produced in excess during immunoglobulin synthesis and secreted into the circulation. In patients with normal renal function, over 99% of FLCs are filtered and reabsorbed. Thus, the presence of FLCs in the serum is directly related to plasma cell activity and the balance between production and renal clearance. FLCs are bioactive molecules that may exist as monoclonal (m) and polyclonal (p) FLCs. These have been detected in several body fluids and may be key indicators of ongoing damage and/or illness. International guidelines now recommend mFLC for screening, diagnosis and monitoring multiple myeloma and other plasma cell dyscrasias. In current clinical practice, FLCs in urine indicate cast nephropathy and other renal injury, whereas their presence in cerebrospinal fluid is important for identifying central nervous system inflammatory diseases such as multiple sclerosis. Increased pFLCs have also been detected in various conditions characterized by B cell activation, i.e., chronic inflammation, autoimmune disease and HCV infection. Monitoring the coronavirus (COVID-19) pandemic by analysis of salivary FLCs presents a significant opportunity in clinical immunology worthy of scientific pursuit.
Collapse
Affiliation(s)
- Cecilia Napodano
- Dipartimento di Scienze Mediche e Chirurgiche, UOC Gastroenterologia Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Krizia Pocino
- Dipartimento di Scienze Mediche e Chirurgiche, UOC Gastroenterologia Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Francesca Gulli
- Laboratorio di Patologia Clinica, Ospedale Madre Giuseppina Vannini, Rome, Italy
| | - Elena Rossi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gian Ludovico Rapaccini
- Dipartimento di Scienze Mediche e Chirurgiche, UOC Gastroenterologia Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mariapaola Marino
- Dipartimento di Medicina e Chirurgia Traslazionale, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Umberto Basile
- Dipartimento di Scienze di laboratorio e Infettivologiche, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy.
| |
Collapse
|
26
|
Hammerschmidt TG, Donida B, Faverzani JL, Moura AP, Dos Reis BG, Machado AZ, Kessler RG, Sebastião FM, Reinhardt LS, Moura DJ, Vargas CR. Cytokine profile and cholesterol levels in patients with Niemann-Pick type C disease presenting neurological symptoms: The in vivo effect of miglustat and the in vitro effect of N-acetylcysteine and Coenzyme Q10. Exp Cell Res 2022; 416:113175. [PMID: 35487270 DOI: 10.1016/j.yexcr.2022.113175] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 03/22/2022] [Accepted: 04/21/2022] [Indexed: 11/04/2022]
Abstract
Niemann Pick type C is an inborn error of metabolism (IEM), classified as a lysosomal storage disease (LSD) caused by a dysfunction in NPC transport protein, that leads to intracellular accumulation of non-esterified cholesterol and other lipids. Clinical manifestations are ample, with visceral and neurological symptoms. Miglustat, a molecule that reversibly inhibits glucosylceramide synthase is used as treatment for this disorder. Studies demonstrated the influence of oxidative stress and inflammation in IEM, as well in animal model of NP-C disease. Nonetheless, literature lacks data on patients, so our work aimed to investigate if there is influence of chronic inflammation in the pathophysiology of NP-C disease, and the effect of miglustat, N-acetylcysteine (NAC) and Coenzyme Q10 (CoQ10). We evaluated the plasmatic cytokines in NPC patients at diagnosis and during the treatment with miglustat. Additionally, we performed an in vitro study with antioxidants NAC (1 mM and 2.5 mM) and CoQ10 (5 μM and 10 μM), where we could verify its effect on inflammatory parameters, as well as in cholesterol accumulation. Our results showed that NP-C patients have higher plasmatic levels of pro and anti-inflammatory cytokines (IL-6, IL-8, and IL-10) at diagnosis and the treatment with miglustat was able to restore it. In vitro study showed that treatment with antioxidants in higher concentrations significantly decrease cholesterol accumulation, and NAC at 2.5 mM normalized the level of pro-inflammatory cytokines. Although the mechanism is not completely clear, it can be related to restoration in lipid traffic and decrease in oxidative stress caused by antioxidants.
Collapse
Affiliation(s)
- Tatiane G Hammerschmidt
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Bruna Donida
- Grupo Hospitalar Conceição, Porto Alegre, Brazil
| | - Jéssica L Faverzani
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Alana P Moura
- Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | | | | | | | | | - Luiza S Reinhardt
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil; Priority Research Centre for Cancer Research, Innovation and Translation, School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, University of Newcastle, Newcastle, Australia
| | - Dinara J Moura
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Carmen R Vargas
- Programa de Pós-Graduação Em Ciências Farmacêuticas, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Serviço de Genética Médica, HCPA, Porto Alegre, Brazil.
| |
Collapse
|
27
|
De Pasquale V, Scarcella M, Pavone LM. Molecular Mechanisms in Lysosomal Storage Diseases: From Pathogenesis to Therapeutic Strategies. Biomedicines 2022; 10:biomedicines10040922. [PMID: 35453672 PMCID: PMC9031509 DOI: 10.3390/biomedicines10040922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 04/14/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via F. Delpino 1, 80127 Naples, Italy
- Correspondence: (V.D.P.); (L.M.P.)
| | - Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy;
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131 Naples, Italy;
- Correspondence: (V.D.P.); (L.M.P.)
| |
Collapse
|
28
|
Tang MY, Hong YH, Zhou LX, Ni J. Fabry Disease with Aseptic Meningitis: A Case Series and Literature Review of an Underestimated Clinical Presentation. Curr Med Sci 2022; 42:274-279. [PMID: 35419675 DOI: 10.1007/s11596-022-2578-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/19/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Fabry disease (FD) is an X-linked lysosomal storage disease caused by the mutation in the α-galactosidase A gene that leads to a consequently decreased α-galactosidase A enzyme activity and a series of clinical presentations. However, FD accompanied with aseptic meningitis can be relatively scarce and rarely reported, which leads to significant clinical misdiagnosis of this disease. METHODS Sixteen patients diagnosed with FD based on a decreased activity of α-galactosidase A enzyme and/or genetic screening were identified through a 6-year retrospective chart review of a tertiary hospital. Clinical presentations, brain magnetic resonance imaging, cerebrospinal fluid analysis, treatment and outcome data were analyzed in cases of aseptic meningitis associated with FD. RESULTS Three out of 16 cases exhibited aseptic meningitis associated with FD. There was one female and two male patients with a mean age of 33.3 years. A family history of renal failure or hypertrophic cardiomyopathy was found in 3 cases. All cases presented with a persistent or intermittent headache and recurrent ischemic stroke. The cerebrospinal fluid analyses showed mild pleocytosis in 2 patients and an elevated level of protein in all patients. Cerebrospinal fluid cytology revealed activated lymphocytes, suggesting the existence of aseptic meningitis. In the literature review, up to 9 cases presenting with FD and aseptic meningitis were found, which bore a resemblance to our patients in demographic and clinical characteristics. CONCLUSION Our cases suggested that aseptic meningitis in FD might be under-detected and easily misdiagnosed, and should be more thoroughly examined in further cases.
Collapse
Affiliation(s)
- Ming-Yu Tang
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Yue-Hui Hong
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
| | - Li-Xin Zhou
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Ni
- Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| |
Collapse
|
29
|
Chen F, Guo S, Li X, Liu S, Wang L, Zhang VW, Xu H, Huang Z, Ying Y, Shu S. Case Report: Be Aware of “New” Features of Niemann–Pick Disease: Insights From Two Pediatric Cases. Front Genet 2022; 13:845246. [PMID: 35360843 PMCID: PMC8961870 DOI: 10.3389/fgene.2022.845246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 02/15/2022] [Indexed: 11/14/2022] Open
Abstract
Niemann–Pick disease is a relatively common lysosomal storage disease. Cholestatic liver disease is a typical clinical phenotype of Niemann–Pick disease in infancy. The diagnosis is traditionally based on Niemann–Pick cells in bone marrow smears or liver biopsies. Treatment for cholestatic liver disease mainly includes ursodeoxycholic acid and liver protection drugs. Here, we reported two cases of Niemann–Pick disease type C, diagnosed by genetic analysis during early infancy. Besides cholestatic jaundice, the two patients also exhibited signs of immune system hyperactivity, such as elevated immunoglobulins or multiple autoantibodies, which might require the application of glucocorticoids. In addition, three novel missense variants of the NPC1 gene were identified. The findings suggest that immune activation should be considered as a “new” clinical phenotype of lysosomal storage diseases.
Collapse
Affiliation(s)
- Fan Chen
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shan Guo
- Department of Gastroenterology, Wuhan Children’s Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xuesong Li
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shengxuan Liu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Wang
- AmCare Genomics Lab, Guangzhou, China
| | | | - Hui Xu
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhihua Huang
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanqin Ying
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yanqin Ying, ; Sainan Shu,
| | - Sainan Shu
- Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Yanqin Ying, ; Sainan Shu,
| |
Collapse
|
30
|
Peripheral Inflammatory Cytokine Signature Mirrors Motor Deficits in Mucolipidosis IV. Cells 2022; 11:cells11030546. [PMID: 35159355 PMCID: PMC8834097 DOI: 10.3390/cells11030546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Mucolipidosis IV (MLIV) is an autosomal recessive pediatric disease that leads to motor and cognitive deficits and loss of vision. It is caused by a loss of function of the lysosomal channel transient receptor potential mucolipin-1 and is associated with an early pro-inflammatory brain phenotype, including increased cytokine expression. The goal of the current study was to determine whether blood cytokines are linked to motor dysfunction in patients with MLIV and reflect brain inflammatory changes observed in an MLIV mouse model. Methods: To determine the relationship between blood cytokines and motor function, we collected plasma from MLIV patients and parental controls concomitantly with assessment of motor function using the Brief Assessment of Motor Function and Modified Ashworth scales. We then compared these profiles with cytokine profiles in brain and plasma samples collected from the Mcoln1−/− mouse model of MLIV. Results: We found that MLIV patients had prominently increased cytokine levels compared to familial controls and identified profiles of cytokines correlated with motor dysfunction, including IFN-γ, IFN-α2, and IP-10. We found that IP-10 was a key differentiating factor separating MLIV cases from controls based on data from human plasma, mouse plasma, and mouse brain. Conclusions: Our data indicate that MLIV is characterized by increased blood cytokines, which are strongly related to underlying neurological and functional deficits in MLIV patients. Moreover, our data identify the interferon pro-inflammatory axis in both human and mouse signatures, suggesting that interferon signaling is an important aspect of MLIV pathology.
Collapse
|
31
|
Bo RX, Li YY, Zhou TT, Chen NH, Yuan YH. The neuroinflammatory role of glucocerebrosidase in Parkinson's disease. Neuropharmacology 2022; 207:108964. [PMID: 35065083 DOI: 10.1016/j.neuropharm.2022.108964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/10/2022] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
Abstract
The lysosomal enzyme glucocerebrosidase (GCase), encoded by the GBA1 gene, is a membrane-associated protein catalyzing the cleavage of glucosylceramide (GlcCer) and glucosylsphingosine (GlcSph). Homologous GBA1 mutations cause Gaucher disease (GD) and heterologous mutations cause Parkinson's disease (PD). Importantly, heterologous GBA1 mutations are recognized as the second risk factor of PD. The pathological features of PD are Lewy neurites (LNs) and Lewy bodies (LBs) composed of pathological α-synuclein. Oxidative stress, inflammatory response, autophagic impairment, and α-synuclein accumulation play critical roles in PD pathogenic cascades, but the pathogenesis of PD has not yet been fully elucidated. What's more, PD treatment drugs can only relieve symptoms to a certain extent, but cannot alleviate neurodegenerative progression. Therefore, it's urgent to explore new targets that can alleviate the neurodegenerative process. Deficient GCase can cause lysosomal dysfunction, obstructing the metabolism of α-synuclein. Meanwhile, GCase dysfunction causes accumulation of its substrates, leading to lipid metabolism disorders. Subsequently, astrocytes and microglia are activated, releasing amounts of pro-inflammatory mediators and causing extensive neuroinflammation. All these cascades can induce neuron damage and death, eventually promoting PD pathology. This review aims to summarize these points and the potential of GCase as an original target to provide some ideas for elucidating the pathogenesis of PD.
Collapse
Affiliation(s)
- Ru-Xue Bo
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yan-Yan Li
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Tian-Tian Zhou
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica& Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
32
|
Al-Azzawi ZAM, Arfaie S, Gan-Or Z. GBA1 and The Immune System: A Potential Role in Parkinson's Disease? JOURNAL OF PARKINSON'S DISEASE 2022; 12:S53-S64. [PMID: 36057834 PMCID: PMC9535551 DOI: 10.3233/jpd-223423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is clear that the immune system and inflammation have a role in Parkinson's disease (PD), including sporadic PD and some genetic forms such as LRRK2-associated PD. One of the most important genes associated with PD is GBA1, as variants in this gene are found in 5-20% of PD patients in different populations worldwide. Biallelic variants in GBA1 may cause Gaucher disease, a lysosomal storage disorder with involvement of the immune system, and other lines of evidence link GBA1 to the immune system and inflammation. In this review, we discuss these different pieces of evidence and whether the interplay between GBA1 and the immune system may have a role in PD.
Collapse
Affiliation(s)
- Zaid A M Al-Azzawi
- Faculty of Medicine, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Saman Arfaie
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Ziv Gan-Or
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- The Neuro - Montreal Neurological Institute-Hospital, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| |
Collapse
|
33
|
Cabrera-Reyes F, Parra-Ruiz C, Yuseff MI, Zanlungo S. Alterations in Lysosome Homeostasis in Lipid-Related Disorders: Impact on Metabolic Tissues and Immune Cells. Front Cell Dev Biol 2021; 9:790568. [PMID: 34957117 PMCID: PMC8703004 DOI: 10.3389/fcell.2021.790568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Lipid-related disorders, which primarily affect metabolic tissues, including adipose tissue and the liver are associated with alterations in lysosome homeostasis. Obesity is one of the more prevalent diseases, which results in energy imbalance within metabolic tissues and lysosome dysfunction. Less frequent diseases include Niemann-Pick type C (NPC) and Gaucher diseases, both of which are known as Lysosomal Storage Diseases (LSDs), where lysosomal dysfunction within metabolic tissues remains to be fully characterized. Adipocytes and hepatocytes share common pathways involved in the lysosome-autophagic axis, which are regulated by the function of cathepsins and CD36, an immuno-metabolic receptor and display alterations in lipid diseases, and thereby impacting metabolic functions. In addition to intrinsic defects observed in metabolic tissues, cells of the immune system, such as B cells can infiltrate adipose and liver tissues, during metabolic imbalance favoring inflammation. Moreover, B cells rely on lysosomes to promote the processing and presentation of extracellular antigens and thus could also present lysosome dysfunction, consequently affecting such functions. On the other hand, growing evidence suggests that cells accumulating lipids display defective inter-organelle membrane contact sites (MCSs) established by lysosomes and other compartments, which contribute to metabolic dysfunctions at the cellular level. Overall, in this review we will discuss recent findings addressing common mechanisms that are involved in lysosome dysregulation in adipocytes and hepatocytes during obesity, NPC, and Gaucher diseases. We will discuss whether these mechanisms may modulate the function of B cells and how inter-organelle contacts, emerging as relevant cellular mechanisms in the control of lipid homeostasis, have an impact on these diseases.
Collapse
Affiliation(s)
- Fernanda Cabrera-Reyes
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Claudia Parra-Ruiz
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - María Isabel Yuseff
- Department of Cellular and Molecular Biology, Faculty of Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Silvana Zanlungo
- Department of Gastroenterology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
34
|
Hady-Cohen R, Dragoumi P, Barca D, Plecko B, Lerman-Sagie T, Zafeiriou D. Safety and recommendations for vaccinations of children with inborn errors of metabolism. Eur J Paediatr Neurol 2021; 35:93-99. [PMID: 34673402 DOI: 10.1016/j.ejpn.2021.10.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 09/18/2021] [Accepted: 10/02/2021] [Indexed: 12/11/2022]
Abstract
Inborn errors of metabolism (IEM) are genetic disorders due to a defective metabolic pathway. The incidence of each disorder is variable and depends on the respective population. Some disorders such as urea cycle disorders (UCD) and organic acidurias, pose a high risk for a metabolic crisis culminating in a life-threatening event, especially during infections; thus, vaccines may play a crucial role in prevention. However, there are different triggers for decompensations including the notion that vaccines themselves can activate fever and malaise. Additionally, many of the IEM include immunodeficiency, placing the patients at an increased risk for infectious diseases and possibly a weaker response to immunizations. Since metabolic crises and vaccine regimens intersect in the first years of life, the question whether to vaccinate the child occupies parents and medical staff. Many metabolic experts hesitate to vaccinate IEM patients, disregarding the higher risk from the direct infections. In this paper we summarize the published data regarding the safety and recommendations for vaccinations in IEM patients, with reference to the risk for decompensations and to the immunogenic component.
Collapse
Affiliation(s)
- R Hady-Cohen
- Pediatric Neurology Unit and Magen Rare Disease Center, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - P Dragoumi
- 1(st) Department of Pediatrics, Hippokratio General Hospital, Aristotle University, Medical School, Thessaloniki, Greece
| | - D Barca
- Pediatric Neurology Clinic, Alexandru Obregia Hospital Pediatric Neurology Discipline II, Clinical Neurosciences Department, "Carol Davila" University of Medicine, Bucharest, Romania
| | - B Plecko
- Department of Pediatrics and Adolescent Medicine, Medical University of Graz, Graz, Austria
| | - T Lerman-Sagie
- Pediatric Neurology Unit and Magen Rare Disease Center, Wolfson Medical Center, Holon and Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - D Zafeiriou
- 1(st) Department of Pediatrics, Hippokratio General Hospital, Aristotle University, Medical School, Thessaloniki, Greece.
| |
Collapse
|
35
|
Sevin C, Deiva K. Clinical Trials for Gene Therapy in Lysosomal Diseases With CNS Involvement. Front Mol Biosci 2021; 8:624988. [PMID: 34604300 PMCID: PMC8481654 DOI: 10.3389/fmolb.2021.624988] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
There are over 70 known lysosomal storage disorders (LSDs), most caused by mutations in genes encoding lysosomal hydrolases. Central nervous system involvement is a hallmark of the majority of LSDs and, if present, generally determines the prognosis of the disease. Nonetheless, brain disease is currently poorly targeted by available therapies, including systemic enzyme replacement therapy, mostly (but not only) due to the presence of the blood–brain barrier that restricts the access of orally or parenterally administered large molecules into the brain. Thus, one of the greatest and most exciting challenges over coming years will be to succeed in developing effective therapies for the treatment of central nervous system manifestations in LSDs. Over recent years, gene therapy (GT) has emerged as a promising therapeutic strategy for a variety of inherited neurodegenerative diseases. In LSDs, the ability of genetically corrected cells to cross-correct adjacent lysosomal enzyme-deficient cells in the brain after gene transfer might enhance the diffusion of the recombinant enzyme, making this group of diseases a strong candidate for such an approach. Both in vivo (using the administration of recombinant adeno-associated viral vectors) and ex vivo (auto-transplantation of lentiviral vector-modified hematopoietic stem cells-HSCs) strategies are feasible. Promising results have been obtained in an ever-increasing number of preclinical studies in rodents and large animal models of LSDs, and these give great hope of GT successfully correcting neurological defects, once translated to clinical practice. We are now at the stage of treating patients, and various clinical trials are underway, to assess the safety and efficacy of in vivo and ex vivo GT in several neuropathic LSDs. In this review, we summarize different approaches being developed and review the current clinical trials related to neuropathic LSDs, their results (if any), and their limitations. We will also discuss the pitfalls and the remaining challenges.
Collapse
Affiliation(s)
- Caroline Sevin
- Pediatric Neurology Department, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| | - Kumaran Deiva
- Pediatric Neurology Department, Hôpital Bicêtre, Le Kremlin Bicêtre, France
| |
Collapse
|
36
|
Revel-Vilk S, Naamad M, Frydman D, Freund MR, Dinur T, Istaiti M, Becker-Cohen M, Falk R, Broide E, Michelson AD, Frelinger AL, Zimran A. Platelet Activation and Reactivity in a Large Cohort of Patients with Gaucher Disease. Thromb Haemost 2021; 122:951-960. [PMID: 34507369 DOI: 10.1055/a-1642-4206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Patients with Gaucher disease (GD) are at increased risk of bleeding and have varying degrees of thrombocytopenia, making the analysis of platelet function difficult. This study aimed to provide a clinically relevant quantitative assessment of platelet function and determine its relationship with bleeding and GD-related data. METHODS Unstimulated and stimulated platelet function was measured by whole blood flow cytometry of platelet surface-activated αIIbβ3 integrin (detected with monoclonal antibody PAC1), P-selectin (CD62P), and lysosomal-associated membrane protein (LAMP3/CD63) in 149 GD patients. RESULTS GD patients had a higher level of unstimulated CD63 expression than healthy subjects, which was mildly correlated with glucosylsphingosine (lyso-Gb1) levels (r = 0.17, p-value = 0.042). Splenectomized GD patients had a higher level of unstimulated αIIbβ3 integrin and P-selectin expression. Reduced platelet reactivity (-2 standard deviation of reference range) was found in 79 (53%, 95% confidence interval [CI]: 44-61%) patients, of whom 10 (6.7%, 95% CI: 3.3-12%) had more severe platelet dysfunction. In a multivariate model, only lyso-Gb1 levels were associated with the more severe platelet dysfunction. Fifty-four (49%) of 128 adult patients who completed the bleeding tendency questionnaire reported positive bleeding history. In a multivariate logistic model, older age (odds ratio [OR]: 1.05, 95% CI: 1.01-1.1) and low P-selectin reactivity (OR: 2.03, 95% CI: 1.25-3.35) were associated with more than one bleeding manifestation. CONCLUSION Flow cytometry enables the study of platelet function in thrombocytopenic GD patients. A platelet degranulation defect, but not αIIbβ3 integrin activation defect, is associated with clinical bleeding. In vivo increased CD63 expression may be related to GD-related inflammation.
Collapse
Affiliation(s)
- Shoshana Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem, Israel.,Pediatric Hematology/Oncology Unit, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mira Naamad
- Flow Cytometry Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Dafna Frydman
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | - Tama Dinur
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | | | | | - Roni Falk
- Flow Cytometry Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Eti Broide
- Flow Cytometry Unit, Shaare Zedek Medical Center, Jerusalem, Israel
| | - Alan D Michelson
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, United States
| | - Andrew L Frelinger
- Center for Platelet Research Studies, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, United States
| | - Ari Zimran
- Gaucher Unit, Shaare Zedek Medical Center, Jerusalem, Israel.,Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
37
|
Parolo S, Tomasoni D, Bora P, Ramponi A, Kaddi C, Azer K, Domenici E, Neves-Zaph S, Lombardo R. Reconstruction of the Cytokine Signaling in Lysosomal Storage Diseases by Literature Mining and Network Analysis. Front Cell Dev Biol 2021; 9:703489. [PMID: 34490253 PMCID: PMC8417786 DOI: 10.3389/fcell.2021.703489] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Lysosomal storage diseases (LSDs) are characterized by the abnormal accumulation of substrates in tissues due to the deficiency of lysosomal proteins. Among the numerous clinical manifestations, chronic inflammation has been consistently reported for several LSDs. However, the molecular mechanisms involved in the inflammatory response are still not completely understood. In this study, we performed text-mining and systems biology analyses to investigate the inflammatory signals in three LSDs characterized by sphingolipid accumulation: Gaucher disease, Acid Sphingomyelinase Deficiency (ASMD), and Fabry Disease. We first identified the cytokines linked to the LSDs, and then built on the extracted knowledge to investigate the inflammatory signals. We found numerous transcription factors that are putative regulators of cytokine expression in a cell-specific context, such as the signaling axes controlled by STAT2, JUN, and NR4A2 as candidate regulators of the monocyte Gaucher disease cytokine network. Overall, our results suggest the presence of a complex inflammatory signaling in LSDs involving many cellular and molecular players that could be further investigated as putative targets of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Silvia Parolo
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Danilo Tomasoni
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Pranami Bora
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Alan Ramponi
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| | - Chanchala Kaddi
- Data and Data Science - Translational Disease Modeling, Sanofi, Bridgewater, NJ, United States
| | - Karim Azer
- Data and Data Science - Translational Disease Modeling, Sanofi, Bridgewater, NJ, United States
| | - Enrico Domenici
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy.,Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Susana Neves-Zaph
- Data and Data Science - Translational Disease Modeling, Sanofi, Bridgewater, NJ, United States
| | - Rosario Lombardo
- Fondazione the Microsoft Research-University of Trento Centre for Computational and Systems Biology, Rovereto, Italy
| |
Collapse
|
38
|
Köse S, Aerts-Kaya F, Uçkan Çetinkaya D, Korkusuz P. Stem Cell Applications in Lysosomal Storage Disorders: Progress and Ongoing Challenges. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1347:135-162. [PMID: 33977438 DOI: 10.1007/5584_2021_639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Lysosomal storage disorders (LSDs) are rare inborn errors of metabolism caused by defects in lysosomal function. These diseases are characterized by accumulation of completely or partially degraded substrates in the lysosomes leading to cellular dysfunction of the affected cells. Currently, enzyme replacement therapies (ERTs), treatments directed at substrate reduction (SRT), and hematopoietic stem cell (HSC) transplantation are the only treatment options for LSDs, and the effects of these treatments depend strongly on the type of LSD and the time of initiation of treatment. However, some of the LSDs still lack a durable and curative treatment. Therefore, a variety of novel treatments for LSD patients has been developed in the past few years. However, despite significant progress, the efficacy of some of these treatments remains limited because these therapies are often initiated after irreversible organ damage has occurred.Here, we provide an overview of the known effects of LSDs on stem cell function, as well as a synopsis of available stem cell-based cell and gene therapies that have been/are being developed for the treatment of LSDs. We discuss the advantages and disadvantages of use of hematopoietic stem cell (HSC), mesenchymal stem cell (MSC), and induced pluripotent stem cell (iPSC)-related (gene) therapies. An overview of current research data indicates that when stem cell and/or gene therapy applications are used in combination with existing therapies such as ERT, SRT, and chaperone therapies, promising results can be achieved, showing that these treatments may result in alleviation of existing symptoms and/or prevention of progression of the disease. All together, these studies offer some insight in LSD stem cell biology and provide a hopeful perspective for the use of stem cells. Further development and improvement of these stem cell (gene) combination therapies may greatly improve the current treatment options and outcomes of patients with a LSD.
Collapse
Affiliation(s)
- Sevil Köse
- Department of Medical Biology, Faculty of Medicine, Atilim University, Ankara, Turkey
| | - Fatima Aerts-Kaya
- Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey.,Hacettepe University Center for Stem Cell Research and Development (PEDI-STEM), Ankara, Turkey
| | - Duygu Uçkan Çetinkaya
- Hacettepe University Faculty of Medicine, Department of Pediatrics, Division of Hematology, Hacettepe University Center for Stem Cell Research and Development (PEDI-STEM), Ankara, Turkey.,Department of Stem Cell Sciences, Hacettepe University Graduate School of Health Sciences, Ankara, Turkey
| | - Petek Korkusuz
- Department of Histology and Embryology, Hacettepe University Faculty of Medicine, Ankara, Turkey.
| |
Collapse
|
39
|
Kulkarni A, Pandey A, Trainor P, Carlisle S, Chhilar JS, Yu W, Moon A, Xu J. Trained Immunity in Anopheles gambiae: Antibacterial Immunity Is Enhanced by Priming via Sugar Meal Supplemented With a Single Gut Symbiotic Bacterial Strain. Front Microbiol 2021; 12:649213. [PMID: 33995307 PMCID: PMC8121176 DOI: 10.3389/fmicb.2021.649213] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/29/2021] [Indexed: 01/18/2023] Open
Abstract
Mosquitoes have evolved an effective innate immune system. The mosquito gut accommodates various microbes, which play a crucial role in shaping the mosquito immune system during evolution. The resident bacteria in the gut microbiota play an essential role in priming basal immunity. In this study, we show that antibacterial immunity in Anopheles gambiae can be enhanced by priming via a sugar meal supplemented with bacteria. Serratia fonticola S1 and Enterobacter sp. Ag1 are gut bacteria in mosquitoes. The intrathoracic injection of the two bacteria can result in an acute hemocoelic infection in the naïve mosquitoes with mortality of ∼40% at 24 h post-infection. However, the Enterobacter orSerratia primed mosquitoes showed a better 24 h survival upon the bacterial challenge. The priming confers the protection with a certain degree of specificity, the Enterobacter primed mosquitoes had a better survival upon the Enterobacter but not Serratia challenge, and the Serratia primed mosquitoes had a better survival upon the Serratia but not Enterobacter challenge. To understand the priming-mediated immune enhancement, the transcriptomes were characterized in the mosquitoes of priming as well as priming plus challenges. The RNA-seq was conducted to profile 10 transcriptomes including three samples of priming conditions (native microbiota, Serratia priming, and Enterobacter priming), six samples of priming plus challenges with the two bacteria, and one sample of injury control. The three priming regimes resulted in distinctive transcriptomic profiles with about 60% of genes affected by both bacteria. Upon challenges, different primed mosquitoes displayed different transcriptomic patterns in response to different bacteria. When a primed cohort was challenged with a heterogenous bacterium, more responsive genes were observed than when challenged with a homogenous bacterium. As expected, many canonical immune genes were responsive to the priming and challenge, but much more non-immune genes with various functions were also responsive in the contexts, which implies that the prior priming triggers a delicately coordinated systemic regulation that results in an enhanced immunity against the subsequent challenge. Besides the participation of typical immune pathways, the transcriptome data suggest the involvement of lysosome and metabolism in the context. Overall, this study demonstrated a trained immunity via priming with bacteria in diet.
Collapse
Affiliation(s)
- Aditi Kulkarni
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Ashmita Pandey
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Patrick Trainor
- Department of Economics, Applied Statistics and International Business, New Mexico State University, Las Cruces, NM, United States
| | - Samantha Carlisle
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Jainder S. Chhilar
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Wanqin Yu
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Alex Moon
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| | - Jiannong Xu
- Department of Biology, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
40
|
The Uncovered Function of the Drosophila GBA1a-Encoded Protein. Cells 2021; 10:cells10030630. [PMID: 33809074 PMCID: PMC8000066 DOI: 10.3390/cells10030630] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 12/25/2022] Open
Abstract
Human GBA1 encodes lysosomal acid β-glucocerebrosidase (GCase), which hydrolyzes cleavage of the beta-glucosidic linkage of glucosylceramide (GlcCer). Mutations in this gene lead to reduced GCase activity, accumulation of glucosylceramide and glucosylsphingosine, and development of Gaucher disease (GD). Drosophila melanogaster has two GBA1 orthologs. Thus far, GBA1b was documented as a bone fide GCase-encoding gene, while the role of GBA1a encoded protein remained unclear. In the present study, we characterized a mutant variant of the fly GBA1a, which underwent ERAD and mildly activated the UPR machinery. RNA-seq analyses of homozygous mutant flies revealed upregulation of inflammation-associated as well as of cell-cycle related genes and reduction in programmed cell death (PCD)-associated genes, which was confirmed by qRT-PCR. We also observed compromised cell death in the midgut of homozygous larvae and a reduction in pupation. Our results strongly indicated that GBA1a-encoded protein plays a role in midgut maturation during larvae development.
Collapse
|
41
|
Stahl-Meyer J, Stahl-Meyer K, Jäättelä M. Control of mitosis, inflammation, and cell motility by limited leakage of lysosomes. Curr Opin Cell Biol 2021; 71:29-37. [PMID: 33684809 DOI: 10.1016/j.ceb.2021.02.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/29/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023]
Abstract
Lysosomal membrane permeabilization and subsequent leakage of lysosomal hydrolases into the cytosol are considered as the major hallmarks of evolutionarily conserved lysosome-dependent cell death. Contradicting this postulate, new sensitive methods that can detect a minimal lysosomal membrane damage have demonstrated that lysosomal leakage does not necessarily equal cell death. Notably, cells are not only able to survive minor lysosomal membrane permeabilization, but some of their normal functions actually depend on leaked lysosomal hydrolases. Here we discuss emerging data suggesting that spatially and temporally controlled lysosomal leakage delivers lysosomal hydrolases to specific subcellular sites of action and controls at least three essential cellular processes, namely mitotic chromosome segregation, inflammatory signaling, and cellular motility.
Collapse
Affiliation(s)
- Jonathan Stahl-Meyer
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Kamilla Stahl-Meyer
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark; Orphazyme A/S, Copenhagen, Denmark
| | - Marja Jäättelä
- Cell Death and Metabolism, Center for Autophagy, Recycling and Disease, Danish Cancer Society Research Center, Copenhagen, Denmark; Department of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
42
|
The conserved autoimmune-disease risk gene TMEM39A regulates lysosome dynamics. Proc Natl Acad Sci U S A 2021; 118:2011379118. [PMID: 33531362 DOI: 10.1073/pnas.2011379118] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
TMEM39A encodes an evolutionarily conserved transmembrane protein and carries single-nucleotide polymorphisms associated with increased risk of major human autoimmune diseases, including multiple sclerosis. The exact cellular function of TMEM39A remains not well understood. Here, we report that TMEM-39, the sole Caenorhabditis elegans (C. elegans) ortholog of TMEM39A, regulates lysosome distribution and accumulation. Elimination of tmem-39 leads to lysosome tubularization and reduced lysosome mobility, as well as accumulation of the lysosome-associated membrane protein LMP-1. In mammalian cells, loss of TMEM39A leads to redistribution of lysosomes from the perinuclear region to cell periphery. Mechanistically, TMEM39A interacts with the dynein intermediate light chain DYNC1I2 to maintain proper lysosome distribution. Deficiency of tmem-39 or the DYNC1I2 homolog in C. elegans impairs mTOR signaling and activates the downstream TFEB-like transcription factor HLH-30. We propose evolutionarily conserved roles of TMEM39 family proteins in regulating lysosome distribution and lysosome-associated signaling, dysfunction of which in humans may underlie aspects of autoimmune diseases.
Collapse
|
43
|
Lee JY, Marian OC, Don AS. Defective Lysosomal Lipid Catabolism as a Common Pathogenic Mechanism for Dementia. Neuromolecular Med 2021; 23:1-24. [PMID: 33550528 DOI: 10.1007/s12017-021-08644-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 01/11/2021] [Indexed: 02/06/2023]
Abstract
Dementia poses an ever-growing burden to health care and social services as life expectancies have grown across the world and populations age. The most common forms of dementia are Alzheimer's disease (AD), vascular dementia, frontotemporal dementia (FTD), and Lewy body dementia, which includes Parkinson's disease (PD) dementia and dementia with Lewy bodies (DLB). Genomic studies over the past 3 decades have identified variants in genes regulating lipid transporters and endosomal processes as major risk determinants for AD, with the most significant being inheritance of the ε4 allele of the APOE gene, encoding apolipoprotein E. A recent surge in research on lipid handling and metabolism in glia and neurons has established defective lipid clearance from endolysosomes as a central driver of AD pathogenesis. The most prevalent genetic risk factors for DLB are the APOE ε4 allele, and heterozygous loss of function mutations in the GBA gene, encoding the lysosomal catabolic enzyme glucocerebrosidase; whilst heterozygous mutations in the GRN gene, required for lysosomal catabolism of sphingolipids, are responsible for a significant proportion of FTD cases. Homozygous mutations in the GBA or GRN genes produce the lysosomal storage diseases Gaucher disease and neuronal ceroid lipofuscinosis. Research from mouse and cell culture models, and neuropathological evidence from lysosomal storage diseases, has established that impaired cholesterol or sphingolipid catabolism is sufficient to produce the pathological hallmarks of dementia, indicating that defective lipid catabolism is a common mechanism in the etiology of dementia.
Collapse
Affiliation(s)
- Jun Yup Lee
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Oana C Marian
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Anthony S Don
- Centenary Institute, The University of Sydney, Camperdown, NSW, 2006, Australia. .,NHMRC Clinical Trials Centre, The University of Sydney, Camperdown, NSW, 2006, Australia.
| |
Collapse
|
44
|
Consensus opinion on immune-mediated cytopenias after hematopoietic cell transplant for inherited metabolic disorders. Bone Marrow Transplant 2021; 56:1238-1247. [PMID: 33441980 DOI: 10.1038/s41409-020-01179-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/04/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022]
Abstract
Hematopoietic stem cell transplantation (HCT) has been increasingly used for patients with inherited metabolic disorders (IMD). Immune mediated cytopenias (IMCs) after HCT, manifesting as hemolytic anemia, thrombocytopenia, and/or neutropenia, are recognized as a significant complication in this patient population, yet our understanding of the incidence, risk factors, and pathophysiology is currently limited. Review of the published literature demonstrates a higher incidence in younger patients who undergo HCT for a nonmalignant disease indication. However, a few reports suggest that the incidence is even higher among those with IMD (incidence ranging from 10 to 56%). This review summarizes the literature, provides an approach to better understanding of the possible etiology of IMCs, and proposes a diagnostic and management plan for patients with IMD who develop single or multi-lineage cytopenias after HCT.
Collapse
|
45
|
Rosa NS, Bento JCDB, Caparbo VDF, Pereira RMR. Increased Serum Interleukin-6 and Tumor Necrosis Factor Alpha Levels in Fabry Disease: Correlation with Disease Burden. Clinics (Sao Paulo) 2021; 76:e2643. [PMID: 34287477 PMCID: PMC8266164 DOI: 10.6061/clinics/2021/e2643] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/01/2021] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVES Fabry disease (FD) is an X-linked lysosomal disease caused by variants of the GLA gene; the formation of defective alpha-galactosidase A contributes to the accumulation of substrates in several organs. Chronic inflammation is thought to contribute to organ damage in FD patients. METHODS In total, 36 classic FD patients (15 men/21 women) and 25 healthy controls (20 men/8 women) were assessed. The Mainz Severity Score Index (MSSI) was established after conducting interviews with the patients and chart review. Serum IL-6, IL-1β, and TNF-α levels were evaluated in both groups. RESULTS The mean age (years) for FD patients was 43.1±15.4 and that for the controls was 47.4±12.2 (p>0.05). Twenty-two patients (59.5%) were treated with enzyme replacement therapy (ERT). Serum IL-6 and TNF-α levels were significantly higher in FD patients than in the controls. Patients treated with ERT had higher serum IL-6 and TNF-α levels than those not treated with ERT. There was no difference in the serum IL-1β levels between patients treated with ERT and those who were not. The MSSI scores in the patients were correlated with serum levels of IL-6 (r=0.60, p<0.001) and TNF-α (r=0.45, p<0.001). CONCLUSION FD was associated with elevated serum levels of IL-6 and TNF-α in this cohort. The FD patients treated with ERT, particularly, women, exhibited higher levels of serum IL-6 and TNF-α than those not treated with ERT; the serum IL-6 and TNF-α levels were correlated with the MSSI scores reflecting greater disease burden.
Collapse
Affiliation(s)
- Nilton Salles Rosa
- Divisao de Reumatologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
- *Corresponding author. E-mail:
| | | | - Valéria de Falco Caparbo
- Divisao de Reumatologia, Faculdade de Medicina FMUSP, Universidade de Sao Paulo, Sao Paulo, SP, BR
| | | |
Collapse
|
46
|
Li W, He P, Huang Y, Li YF, Lu J, Li M, Kurihara H, Luo Z, Meng T, Onishi M, Ma C, Jiang L, Hu Y, Gong Q, Zhu D, Xu Y, Liu R, Liu L, Yi C, Zhu Y, Ma N, Okamoto K, Xie Z, Liu J, He RR, Feng D. Selective autophagy of intracellular organelles: recent research advances. Theranostics 2021; 11:222-256. [PMID: 33391472 PMCID: PMC7681076 DOI: 10.7150/thno.49860] [Citation(s) in RCA: 282] [Impact Index Per Article: 70.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
Macroautophagy (hereafter called autophagy) is a highly conserved physiological process that degrades over-abundant or damaged organelles, large protein aggregates and invading pathogens via the lysosomal system (the vacuole in plants and yeast). Autophagy is generally induced by stress, such as oxygen-, energy- or amino acid-deprivation, irradiation, drugs, etc. In addition to non-selective bulk degradation, autophagy also occurs in a selective manner, recycling specific organelles, such as mitochondria, peroxisomes, ribosomes, endoplasmic reticulum (ER), lysosomes, nuclei, proteasomes and lipid droplets (LDs). This capability makes selective autophagy a major process in maintaining cellular homeostasis. The dysfunction of selective autophagy is implicated in neurodegenerative diseases (NDDs), tumorigenesis, metabolic disorders, heart failure, etc. Considering the importance of selective autophagy in cell biology, we systemically review the recent advances in our understanding of this process and its regulatory mechanisms. We emphasize the 'cargo-ligand-receptor' model in selective autophagy for specific organelles or cellular components in yeast and mammals, with a focus on mitophagy and ER-phagy, which are finely described as types of selective autophagy. Additionally, we highlight unanswered questions in the field, helping readers focus on the research blind spots that need to be broken.
Collapse
|
47
|
Belarbi K, Cuvelier E, Bonte MA, Desplanque M, Gressier B, Devos D, Chartier-Harlin MC. Glycosphingolipids and neuroinflammation in Parkinson's disease. Mol Neurodegener 2020; 15:59. [PMID: 33069254 PMCID: PMC7568394 DOI: 10.1186/s13024-020-00408-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 10/01/2020] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disease characterized by the loss of dopaminergic neurons of the nigrostriatal pathway and the formation of neuronal inclusions known as Lewy bodies. Chronic neuroinflammation, another hallmark of the disease, is thought to play an important role in the neurodegenerative process. Glycosphingolipids are a well-defined subclass of lipids that regulate crucial aspects of the brain function and recently emerged as potent regulators of the inflammatory process. Deregulation in glycosphingolipid metabolism has been reported in Parkinson's disease. However, the interrelationship between glycosphingolipids and neuroinflammation in Parkinson's disease is not well known. This review provides a thorough overview of the links between glycosphingolipid metabolism and immune-mediated mechanisms involved in neuroinflammation in Parkinson's disease. After a brief presentation of the metabolism and function of glycosphingolipids in the brain, it summarizes the evidences supporting that glycosphingolipids (i.e. glucosylceramides or specific gangliosides) are deregulated in Parkinson's disease. Then, the implications of these deregulations for neuroinflammation, based on data from human inherited lysosomal glycosphingolipid storage disorders and gene-engineered animal studies are outlined. Finally, the key molecular mechanisms by which glycosphingolipids could control neuroinflammation in Parkinson's disease are highlighted. These include inflammasome activation and secretion of pro-inflammatory cytokines, altered calcium homeostasis, changes in the blood-brain barrier permeability, recruitment of peripheral immune cells or production of autoantibodies.
Collapse
Affiliation(s)
- Karim Belarbi
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Elodie Cuvelier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Marie-Amandine Bonte
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
| | - Mazarine Desplanque
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - Bernard Gressier
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie de la Faculté de Pharmacie, Univ. Lille, Lille, France
| | - David Devos
- Univ. Lille, Inserm, CHU-Lille, Lille Neuroscience & Cognition, 1 Place de Verdun, 59006 Lille, France
- Département de Pharmacologie Médicale, I-SITE ULNE, LiCEND, Lille, France
| | | |
Collapse
|
48
|
Alissafi T, Kalafati L, Lazari M, Filia A, Kloukina I, Manifava M, Lim JH, Alexaki VI, Ktistakis NT, Doskas T, Garinis GA, Chavakis T, Boumpas DT, Verginis P. Mitochondrial Oxidative Damage Underlies Regulatory T Cell Defects in Autoimmunity. Cell Metab 2020; 32:591-604.e7. [PMID: 32738205 PMCID: PMC7611060 DOI: 10.1016/j.cmet.2020.07.001] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 05/14/2020] [Accepted: 07/07/2020] [Indexed: 11/22/2022]
Abstract
Regulatory T cells (Tregs) are vital for the maintenance of immune homeostasis, while their dysfunction constitutes a cardinal feature of autoimmunity. Under steady-state conditions, mitochondrial metabolism is critical for Treg function; however, the metabolic adaptations of Tregs during autoimmunity are ill-defined. Herein, we report that elevated mitochondrial oxidative stress and a robust DNA damage response (DDR) associated with cell death occur in Tregs in individuals with autoimmunity. In an experimental autoimmune encephalitis (EAE) mouse model of autoimmunity, we found a Treg dysfunction recapitulating the features of autoimmune Tregs with a prominent mtROS signature. Scavenging of mtROS in Tregs of EAE mice reversed the DDR and prevented Treg death, while attenuating the Th1 and Th17 autoimmune responses. These findings highlight an unrecognized role of mitochondrial oxidative stress in defining Treg fate during autoimmunity, which may facilitate the design of novel immunotherapies for diseases with disturbed immune tolerance.
Collapse
Affiliation(s)
- Themis Alissafi
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece.
| | - Lydia Kalafati
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece; Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden 01307, Germany; National Center for Tumor Diseases (NCT), Partner Site Dresden, Germany, and German Cancer Research Center (DKFZ), Heidelberg 69120, Germany
| | - Maria Lazari
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Anastasia Filia
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Ismini Kloukina
- Center for Basic Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece
| | - Maria Manifava
- Babraham Institute, Signaling Programme, Cambridge CB22 3AT, UK
| | - Jong-Hyung Lim
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden 01307, Germany
| | - Vasileia Ismini Alexaki
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden 01307, Germany
| | | | | | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Hellas, Crete, Heraklion 70013, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden 01307, Germany; Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Dimitrios T Boumpas
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece; Joint Rheumatology Program, 4th Department of Internal Medicine, Attikon University Hospital, National and Kapodistrian University of Athens Medical School, Athens 12462, Greece
| | - Panayotis Verginis
- Center of Clinical, Experimental Surgery & Translational Research, Biomedical Research Foundation Academy of Athens, Athens 11527, Greece; Institute for Clinical Chemistry and Laboratory Medicine, University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Dresden 01307, Germany.
| |
Collapse
|
49
|
Ribeiro H, Rocha MI, Castro H, Macedo MF. Chemical inhibition of β-glucocerebrosidase does not affect phagocytosis and early containment of Leishmania by murine macrophages. Exp Parasitol 2020; 216:107939. [PMID: 32535115 DOI: 10.1016/j.exppara.2020.107939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
Abstract
Gaucher disease is a lysosomal storage disease in which a genetic deficiency in β-glucocerebrosidase leads to the accumulation of glycosphingolipids in lysosomes. Macrophages are amongst the cells most severely affected in Gaucher disease patients. One phenotype associated with Gaucher macrophages is the impaired capacity to fight bacterial infections. Here, we investigate whether inhibition of β-glucocerebrosidase activity affects the capacity of macrophages to phagocytose and act on the early containment of human pathogens of the genus Leishmania. Towards our aim, we performed in vitro infection assays on macrophages derived from the bone marrow of C57BL/6 mice. To mimic Gaucher disease, macrophages were incubated with the β-glucocerebrosidase inhibitor, conduritol B epoxide (CBE), prior to contact with Leishmania. This treatment guaranteed that β-glucocerebrosidase was fully inhibited during the contact of macrophages with Leishmania, its enzymatic activity being progressively recovered along the 48 h that followed removal of the inhibitor. Infections were performed with L. amazonensis, L. infantum, or L. major, so as to explore potential species-specific responses in the context of β-glucocerebrosidase inactivation. Parameters of infection, recorded immediately after phagocytosis, as well as 24 and 48 h later, revealed no noticeable differences in the infection parameters of CBE-treated macrophages relative to non-treated controls. We conclude that blocking β-glucocerebrosidase activity during contact with Leishmania does not interfere with the phagocytic capacity of macrophages and the early onset of leishmanicidal responses.
Collapse
Affiliation(s)
- H Ribeiro
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Departamento de Química, Universidade de Aveiro, Aveiro, Portugal
| | - M I Rocha
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Molecular Parasitology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - H Castro
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Molecular Parasitology Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - M F Macedo
- Cell Activation and Gene Expression Group, Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal; Departamento de Ciências Médicas, Universidade de Aveiro, Aveiro, Portugal.
| |
Collapse
|
50
|
Li D, Tao X, Zhang N, Huo A, Kang H, Xu C, Zhang Y, Peng Y. Do magnetic resonance imaging manifestations of skeletal system improve after treatment of Gaucher disease? Eur J Radiol 2020; 125:108851. [DOI: 10.1016/j.ejrad.2020.108851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/21/2019] [Accepted: 01/23/2020] [Indexed: 02/05/2023]
|