1
|
Sun Z, Gu M, Yang Z, Shi L, Zhao L, Zheng M, Wang Y, Zhang W, Han K, Tang N. Application of humanized mice in the safety experiments of antibody drugs. Animal Model Exp Med 2025. [PMID: 39981754 DOI: 10.1002/ame2.12562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 01/06/2025] [Indexed: 02/22/2025] Open
Abstract
Therapeutic antibodies are valued for their high specificity and selectivity in immunotherapy. However, the potential toxicity they may elicit underscores the necessity of assessing their preclinical efficacy and safety using suitable animal models. In this context, we review the various categories and applications of humanized mice, which have been engrafted with human cells or tissues to mimic the human immune system. These models are extensively utilized in the nonclinical assessment and development of various antibody drugs, acting as a conduit to clinical research. However, several challenges remain, including the limited lifespan of humanized mice, inadequate engraftment of human cells, and the rudimentary nature of the immune environment in these models. The development of humanized immune system models in mice presents both opportunities and challenges, potentially leading to new insights into the evolution and application of antibody therapeutics.
Collapse
Affiliation(s)
- Zhimin Sun
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- InnoStar Bio-Tech Nantong Co., Ltd., Nantong, China
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, China
| | - Mengyun Gu
- China State Institute of Pharmaceutical Industry, Shanghai Innostar Bio-Technology Co., Ltd., Shanghai, China
| | - Zixuan Yang
- China State Institute of Pharmaceutical Industry, Shanghai Innostar Bio-Technology Co., Ltd., Shanghai, China
| | - Lei Shi
- China State Institute of Pharmaceutical Industry, Shanghai Innostar Bio-Technology Co., Ltd., Shanghai, China
| | - Liyuan Zhao
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- InnoStar Bio-Tech Nantong Co., Ltd., Nantong, China
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, China
| | - Minhui Zheng
- China State Institute of Pharmaceutical Industry, Shanghai Innostar Bio-Technology Co., Ltd., Shanghai, China
| | - Yan Wang
- InnoStar Bio-Tech Nantong Co., Ltd., Nantong, China
- China State Institute of Pharmaceutical Industry, Shanghai Innostar Bio-Technology Co., Ltd., Shanghai, China
| | - Wei Zhang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- InnoStar Bio-Tech Nantong Co., Ltd., Nantong, China
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, China
| | - Kexin Han
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, China
- InnoStar Bio-Tech Nantong Co., Ltd., Nantong, China
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, China
| | - Naping Tang
- Yangtze Delta Drug Advanced Research Institute, Yangtze Delta Pharmaceutical College, Nantong, China
- China State Institute of Pharmaceutical Industry, Shanghai Innostar Bio-Technology Co., Ltd., Shanghai, China
| |
Collapse
|
2
|
Jeong SY, Park D, Park T, Han JS, Lee J, Choi CH, Jo M, Lee YB, Kyun ML, Choi M, Park D, Moon KS. Interspecies transcriptome profiles of human T cell activation and liver inflammation in a xenogeneic graft-versus-host disease model. Heliyon 2024; 10:e40559. [PMID: 39687194 PMCID: PMC11648781 DOI: 10.1016/j.heliyon.2024.e40559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/18/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
Background Xenogeneic transplantation induces acute graft-versus-host disease (aGvHD) and subsequent vital organ damage. Herein, we aimed to examine hepatic damage associated with aGvHD using histopathology and gene expression profiles. Methods A xenografic GvHD model was established by engrafting human peripheral blood mononuclear cells (PBMCs) into immunodeficient NOD-scid IL2Rγnull (NSG) mice after busulfan conditioning. NSG mice were assigned to groups treated with saline (S group) or a combination of busulfan and PBMCs (BP group). Histological lesions and RNA sequencing analysis of gene profiles in the BP group (GvHD model) were compared with those in the P group. Results Predominant T cell subsets (95 %) in the blood of the BP group were identified as cytotoxic CD8+ T cells (56 %) and helper CD4+ T cells (31 %). Symptoms of aGvHD, including hepatocyte necrosis, bile duct hyperplasia, and human T cell infiltration, were observed. Gene expression analysis revealed upregulation of Th1 and Th2 cell differentiation (STAT4, IL4R, and NFACT1), T cell receptor signaling pathway (CD226 and GBP1), IL-1 pathway (CCL3, NAIP, and IRAK4), cell cycle (CDCA5, CDCA8, MCM5, KNL1, BUB1B, FBXO5, and CENPE) in human cells. In mouse cells, Il1a, Ifngr, Tnfrsf, and Il6ra genes (cytokines or their receptors) and Icam, Vcam, and Endra genes (adhesion molecules) were upregulated, whereas genes related to chromosome condensation (H2ac and H2bc) and fatty acid/steroid metabolism (Fasn, Rdh, and Scd) were downregulated. Interspecies gene network analysis revealed that activated human T cells are associated with liver damage through inflammatory and metabolic pathways, accompanied by increased mouse cell adhesion molecules and cytokines. Conclusion Our findings offer valuable insights into the pathophysiology and biomarkers of aGvHD and may contribute to the development of novel therapeutics.
Collapse
Affiliation(s)
- Seo Yule Jeong
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Duhyeon Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Tamina Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Ji-Seok Han
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Jungyun Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Chang Hoon Choi
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Minseong Jo
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Yu Bin Lee
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Mi-lang Kyun
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Myeongjin Choi
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| | - Kyoung-Sik Moon
- Department of Advanced Toxicology Research, Korea Institute of Toxicology, Daejeon, 34114, Republic of Korea
| |
Collapse
|
3
|
Kametani Y, Ito R, Manabe Y, Kulski JK, Seki T, Ishimoto H, Shiina T. PBMC-engrafted humanized mice models for evaluating immune-related and anticancer drug delivery systems. Front Mol Biosci 2024; 11:1447315. [PMID: 39228913 PMCID: PMC11368775 DOI: 10.3389/fmolb.2024.1447315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/07/2024] [Indexed: 09/05/2024] Open
Abstract
Immune-related drug delivery systems (DDSs) in humanized mouse models are at the forefront of cancer research and serve as bridges between preclinical studies and clinical applications. These systems offer unique platforms for exploring new therapies and understanding their interactions with human cells and the immune system. Here, we focus on a DDS and a peripheral blood mononuclear cell (PBMC)-engrafted humanized mouse model that we recently developed, and consider some of the key components, challenges, and applications to advance these systems towards better cancer treatment on the basis of a better understanding of the immune response. Our DDS is unique and has a dual function, an anticancer effect and a capacity to fine-tune the immune reaction. The PBL-NOG-hIL-4-Tg mouse system is superior to other available humanized mouse systems for the development of such multifunctional DDSs because it supports the rapid reconstruction of an individual donor's immunity and avoids the onset of graft-versus-host disease.
Collapse
Affiliation(s)
- Yoshie Kametani
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Advanced Biosciences, Tokai University, Hiratsuka, Japan
| | - Ryoji Ito
- Central Institute for Experimental Medicine and Life Science (CIEM), Kawasaki, Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Osaka, Japan
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Faculty of Health and Medical Sciences, School of Biomedical Science, The University of Western Australia, Crawley, WA, Australia
| | - Toshiro Seki
- Department of Internal Medicine, Division of Nephrology, Endocrinology, and Metabolism, Tokai University School of Medicine, Isehara, Japan
| | - Hitoshi Ishimoto
- Department of Obstetrics and Gynecology, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Division of Basic Medical Science, Tokai University School of Medicine, Isehara, Japan
- Institute of Advanced Biosciences, Tokai University, Hiratsuka, Japan
| |
Collapse
|
4
|
Matsumoto R, Enzhi Y, Takeda K, Morimoto K, Yogo K, Harada M, Tokushige K, Maehara Y, Hirota S, Kojima Y, Ito M, Sougawa N, Miyagawa S, Sawa Y, Okumura K, Uchida K. CD8 + T cell-mediated rejection of allogenic human-induced pluripotent stem cell-derived cardiomyocyte sheets in human PBMC-transferred NOG MHC double knockout mice. J Heart Lung Transplant 2024; 43:1348-1357. [PMID: 38657776 DOI: 10.1016/j.healun.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/28/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Transplantation of human-induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) has emerged as a promising therapy to treat end-stage heart failure. However, the immunogenicity of hiPS-CMs in transplanted patients has not been fully elucidated. Thus, in vivo models are required to estimate immune responses against hiPS-CMs in transplant recipients. METHODS We transferred human peripheral blood mononuclear cells (hPBMCs) into NOD/Shi-scid IL-2rgnull (NOG) MHC class I/II double knockout (NOG-ΔMHC) mice, which were reported to accept hPBMCs without xenogeneic-graft-versus-host disease (xeno-GVHD). Then, hiPS-CM sheets generated from the hiPS cell line 201B7 harboring a luciferase transgene were transplanted into the subcutaneous space of NOG-ΔMHC mice. Graft survival was monitored by bioluminescent images using a Xenogen In Vivo Imaging System. RESULTS The human immune cells were engrafted for more than 3 months in NOG-ΔMHC mice without lethal xeno-GVHD. The hiPS-CMs expressed a moderate level of human leukocyte antigen (HLA)-class I, but not HLA-class II, molecules even after interferon-gamma (IFN-γ) stimulation. Consistently, the allogenic IFN-γ-treated hiPS-CMs induced weak CD8+ but not CD4+ T cell responses in vitro. hiPS-CM sheets disappeared approximately 17 to 24 days after transplantation in hPBMC-transferred NOG-ΔMHC mice, and CD8+ T cell depletion significantly prolonged graft survival, similar to what was observed following tacrolimus treatment. CONCLUSIONS hiPS-CMs are less immunogenic in vitro but induce sufficient CD8+ T cell-mediated immune responses for graft rejection in vivo.
Collapse
Affiliation(s)
- Ryu Matsumoto
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yin Enzhi
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kazuyoshi Takeda
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan; Laboratory of Cell Biology, Research Support Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kodai Morimoto
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kyoko Yogo
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Masaki Harada
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Tokushige
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yui Maehara
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Saori Hirota
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuko Kojima
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mamoru Ito
- Liver Engineering Laboratory, Department of Applied Research for Laboratory Animals, Central Institute for Experimental Animals, Kanagawa, Japan
| | - Nagako Sougawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan; Department of Physiology, Osaka Dental University, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ko Okumura
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan; Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo, Japan; Atopy (Allergy) Research Center, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Koichiro Uchida
- Center for Immune Therapeutics and Diagnosis, Juntendo University Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
5
|
Wang W, Li Y, Lin K, Wang X, Tu Y, Zhuo Z. Progress in building clinically relevant patient-derived tumor xenograft models for cancer research. Animal Model Exp Med 2023; 6:381-398. [PMID: 37679891 PMCID: PMC10614132 DOI: 10.1002/ame2.12349] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/03/2023] [Indexed: 09/09/2023] Open
Abstract
Patient-derived tumor xenograft (PDX) models, a method involving the surgical extraction of tumor tissues from cancer patients and subsequent transplantation into immunodeficient mice, have emerged as a pivotal approach in translational research, particularly in advancing precision medicine. As the first stage of PDX development, the patient-derived orthotopic xenograft (PDOX) models implant tumor tissue in mice in the corresponding anatomical locations of the patient. The PDOX models have several advantages, including high fidelity to the original tumor, heightened drug sensitivity, and an elevated rate of successful transplantation. However, the PDOX models present significant challenges, requiring advanced surgical techniques and resource-intensive imaging technologies, which limit its application. And then, the humanized mouse models, as well as the zebrafish models, were developed. Humanized mouse models contain a human immune environment resembling the tumor and immune system interplay. The humanized mouse models are a hot topic in PDX model research. Regarding zebrafish patient-derived tumor xenografts (zPDX) and patient-derived organoids (PDO) as promising models for studying cancer and drug discovery, zPDX models are used to transplant tumors into zebrafish as novel personalized medical animal models with the advantage of reducing patient waiting time. PDO models provide a cost-effective approach for drug testing that replicates the in vivo environment and preserves important tumor-related information for patients. The present review highlights the functional characteristics of each new phase of PDX and provides insights into the challenges and prospective developments in this rapidly evolving field.
Collapse
Affiliation(s)
- Weijing Wang
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Yongshu Li
- College of Life SciencesHubei Normal UniversityHuangshiChina
- Shenzhen Institute for Technology InnovationNational Institute of MetrologyShenzhenChina
| | - Kaida Lin
- Department of Clinical MedicineShantou University Medical CollegeShantouChina
| | - Xiaokang Wang
- Department of PharmacyShenzhen Longhua District Central HospitalShenzhenChina
| | - Yanyang Tu
- Research Center, Huizhou Central People's HospitalGuangdong Medical UniversityHuizhou CityChina
| | - Zhenjian Zhuo
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
- Laboratory Animal Center, School of Chemical Biology and BiotechnologyPeking University Shenzhen Graduate SchoolShenzhenChina
| |
Collapse
|
6
|
Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, Ishikawa F, Shultz LD, Brehm MA. Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol 2023; 20:192-206. [PMID: 36635480 PMCID: PMC10593256 DOI: 10.1038/s41571-022-00721-2] [Citation(s) in RCA: 164] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2022] [Indexed: 01/14/2023]
Abstract
Immunotherapy has emerged as a promising treatment paradigm for many malignancies and is transforming the drug development landscape. Although immunotherapeutic agents have demonstrated clinical efficacy, they are associated with variable clinical responses, and substantial gaps remain in our understanding of their mechanisms of action and specific biomarkers of response. Currently, the number of preclinical models that faithfully recapitulate interactions between the human immune system and tumours and enable evaluation of human-specific immunotherapies in vivo is limited. Humanized mice, a term that refers to immunodeficient mice co-engrafted with human tumours and immune components, provide several advantages for immuno-oncology research. In this Review, we discuss the benefits and challenges of the currently available humanized mice, including specific interactions between engrafted human tumours and immune components, the development and survival of human innate immune populations in these mice, and approaches to study mice engrafted with matched patient tumours and immune cells. We highlight the latest advances in the generation of humanized mouse models, with the aim of providing a guide for their application to immuno-oncology studies with potential for clinical translation.
Collapse
Affiliation(s)
- Jane Chuprin
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Molecular, Cell and Cancer Biology, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Hannah Buettner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Surgery, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Mina O Seedhom
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Dale L Greiner
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA
| | | | | | | | - Michael A Brehm
- Program in Molecular Medicine, The University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
7
|
Monteiro CJ, Heery DM, Whitchurch JB. Modern Approaches to Mouse Genome Editing Using the CRISPR-Cas Toolbox and Their Applications in Functional Genomics and Translational Research. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1429:13-40. [PMID: 37486514 DOI: 10.1007/978-3-031-33325-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Mice have been used in biological research for over a century, and their immense contribution to scientific breakthroughs can be seen across all research disciplines, with some of the main beneficiaries being the fields of medicine and life sciences. Genetically engineered mouse models (GEMMs), along with other model organisms, are fundamentally important research tools frequently utilised to enhance our understanding of pathophysiology and biological mechanisms behind disease. In the 1980s, it became possible to precisely edit the mouse genome to create gene knockout and knock-in mice, although with low efficacy. Recent advances utilising CRISPR-Cas technologies have considerably improved our ability to do this with ease and precision, while also allowing the generation of desired genetic variants from single nucleotide substitutions to large insertions/deletions. It is now quick and relatively easy to genetically edit somatic cells which were previously more recalcitrant to traditional approaches. Further refinements have created a 'CRISPR toolkit' that has expanded the use of CRISPR-Cas beyond gene knock-ins and knockouts. In this chapter, we review some of the latest applications of CRISPR-Cas technologies in GEMMs, including nuclease-dead Cas9 systems for activation or repression of gene expression, base editing and prime editing. We also discuss improvements in Cas9 specificity, targeting efficacy and delivery methods in mice. Throughout, we provide examples wherein CRISPR-Cas technologies have been applied to target clinically relevant genes in preclinical GEMMs, both to generate humanised models and for experimental gene therapy research.
Collapse
Affiliation(s)
- Cintia J Monteiro
- Department of Genetics, Molecular Immunogenetics Group, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - David M Heery
- School of Pharmacy, University of Nottingham, Nottingham, UK
| | | |
Collapse
|
8
|
A novel preclinical model of mucopolysaccharidosis type II for developing human hematopoietic stem cell gene therapy. Gene Ther 2022; 30:288-296. [PMID: 35835952 DOI: 10.1038/s41434-022-00357-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 06/22/2022] [Accepted: 06/30/2022] [Indexed: 11/08/2022]
Abstract
A hematopoietic stem cell (HSC) gene therapy (GT) using lentiviral vectors has attracted interest as a promising treatment approach for neuropathic lysosomal storage diseases. To proceed with the clinical development of HSC-GT, evaluation of the therapeutic potential of gene-transduced human CD34+ (hCD34+) cells in vivo is one of the key issues before human trials. Here, we established an immunodeficient murine model of mucopolysaccharidosis type II (MPS II), which are transplantable human cells, and demonstrated the application of those mice in evaluating the therapeutic efficacy of gene-modified hCD34+ cells. NOG/MPS II mice, which were generated using CRISPR/Cas9, exhibited a reduction of disease-causing enzyme iduronate-2-sulfatatase (IDS) activity and the accumulation of glycosaminoglycans in their tissues. When we transplanted hCD34+ cells transduced with a lentiviral vector carrying the IDS gene into NOG/MPS II mice, a significant amelioration of biochemical pathophenotypes was observed in the visceral and neuronal tissues of those mice. In addition, grafted cells in the NOG/MPS II mice showed the oligoclonal integration pattern of the vector, but no obvious clonal dominance was detected in the mice. Our findings indicate the promising application of NOG/MPS II mice to preclinical study of HSC-GT for MPS II using human cells.
Collapse
|
9
|
Jin KT, Du WL, Lan HR, Liu YY, Mao CS, Du JL, Mou XZ. Development of humanized mouse with patient-derived xenografts for cancer immunotherapy studies: A comprehensive review. Cancer Sci 2021; 112:2592-2606. [PMID: 33938090 PMCID: PMC8253285 DOI: 10.1111/cas.14934] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/22/2021] [Accepted: 04/24/2021] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has revolutionized cancer treatment, however, not all tumor types and patients are completely responsive to this approach. Establishing predictive pre-clinical models would allow for more accurate and practical immunotherapeutic drug development. Mouse models are extensively used as in vivo system for biomedical research. However, due to the significant differences between rodents and human, it is impossible to translate most of the findings from mouse models to human. Pharmacological development and advancing personalized medicine using patient-derived xenografts relies on producing mouse models in which murine cells and genes are substituted with their human equivalent. Humanized mice (HM) provide a suitable platform to evaluate xenograft growth in the context of a human immune system. In this review, we discussed recent advances in the generation and application of HM models. We also reviewed new insights into the basic mechanisms, pre-clinical evaluation of onco-immunotherapies, current limitations in the application of these models as well as available improvement strategies. Finally, we pointed out some issues for future studies.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Wen-Lin Du
- Key Laboratory of Gastroenterology of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yu-Yao Liu
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Chun-Sen Mao
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jin-Lin Du
- Department of Colorectal Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Xiao-Zhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
10
|
Kurogi H, Takahashi A, Isogai M, Sakumoto M, Takijiri T, Hori A, Furuno T, Koike T, Yamada T, Nagamura-Inoue T, Sakaki-Yumoto M. Umbilical cord derived mesenchymal stromal cells in microcarrier based industrial scale culture sustain the immune regulatory functions. Biotechnol J 2021; 16:e2000558. [PMID: 33545746 DOI: 10.1002/biot.202000558] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 12/22/2022]
Abstract
Mesenchymal stromal cells (MSCs) have been isolated from numerous sources and are potentially therapeutic against various diseases. Umbilical cord-derived MSCs (UC-MSCs) are considered superior to other tissue-derived MSCs since they have a higher proliferation rate and can be procured using less invasive surgical procedures. However, it has been recently reported that 2D culture systems, using conventional cell culture flasks, limit the mass production of MSCs for cell therapy. Therefore, the development of alternative technologies, including microcarrier-based cell culture in bioreactors, is required for the large-scale production and industrialization of MSC therapy. In this study, we aimed to optimize the culture conditions for UC-MSCs by using a good manufacturing practice (GMP)-compatible serum-free medium, developed in-house, and a small-scale (30 mL) bioreactor, which was later scaled up to 500 mL. UC-MSCs cultured in microcarrier-based bioreactors (MC-UC-MSCs) showed characteristics equivalent to those cultured statically in conventional cell culture flasks (ST-UC-MSCs), fulfilling the minimum International Society for Cellular Therapy criteria for MSCs. Additionally, we report, for the first time, the equivalent therapeutic effect of MC-UC-MSCs and ST-UC-MSCs in immunodeficient mice (graft-versus-host disease model). Lastly, we developed a semi-automated cell dispensing system, without bag-to-bag variation in the filled volume or cell concentration. In summary, our results show that the combination of our GMP-compatible serum-free and microcarrier-based culture systems is suitable for the mass production of MSCs at an industrial scale. Further improvements in this microcarrier-based cell culture system can contribute to lowering the cost of therapy and satisfying several unmet medical needs.
Collapse
Affiliation(s)
- Hikari Kurogi
- Regenerative Medicine Research & Planning Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Atsuko Takahashi
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Maya Isogai
- Regenerative Medicine Research & Planning Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Marimu Sakumoto
- Regenerative Medicine Research & Planning Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Takashi Takijiri
- Regenerative Medicine Research & Planning Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Akiko Hori
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Tetsuo Furuno
- Regenerative Medicine Research & Planning Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Tetsuo Koike
- Regenerative Medicine Research & Planning Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Tetsumasa Yamada
- Regenerative Medicine Research & Planning Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| | - Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Masayo Sakaki-Yumoto
- Regenerative Medicine Research & Planning Division, Rohto Pharmaceutical Co., Ltd., Osaka, Japan
| |
Collapse
|