1
|
Manjunath J, Bao A, Gonzalez W, Vojvoda E, D'Amiano AJ, Patel S, Liao V, Sivaloganathan D, Bhatt S, Ahmadi M, Kwatra SG. Comprehensive plasma cytokine profiling reveals a distinct endotype of type 2 inflammation in chronic pruritus of unknown origin. J Am Acad Dermatol 2025; 92:1365-1367. [PMID: 39832680 DOI: 10.1016/j.jaad.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Affiliation(s)
- Jaya Manjunath
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Aaron Bao
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wilce Gonzalez
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth Vojvoda
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anjali J D'Amiano
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shivam Patel
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Viviane Liao
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Darshan Sivaloganathan
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shrey Bhatt
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Michael Ahmadi
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Shawn G Kwatra
- Department of Dermatology, University of Maryland School of Medicine, Baltimore, Maryland; Maryland Itch Center, University of Maryland School of Medicine, Baltimore, Maryland.
| |
Collapse
|
2
|
Li J, Fan T, Wang D, Xiao C, Deng Z, Cai W, Ji Y, Li C, He J. SLAMF receptors: key regulators of tumor progression and emerging targets for cancer immunotherapy. Mol Cancer 2025; 24:145. [PMID: 40382610 PMCID: PMC12084948 DOI: 10.1186/s12943-025-02308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/18/2025] [Indexed: 05/20/2025] Open
Abstract
The signaling lymphocytic activation molecule family (SLAMF) consists of nine distinct cell surface receptors predominantly expressed on immune cells, each characterized by unique structural features, expression patterns, downstream signaling pathways, and biological functions. These receptors play critical roles in modulating various immune cell activities within the tumor microenvironment, thereby shaping immune responses in cancer. Although accumulating evidence demonstrates their value as therapeutic targets for developing cancer immunotherapies, the full spectrum of SLAMF receptors in cancer remains incompletely understood. This review aims to provide a comprehensive overview of the molecular characteristics and immunomodulatory functions of each SLAMF receptor, underscoring their pivotal contributions to cancer progression. Furthermore, we also highlight their potential as promising targets for advancing cancer immunotherapeutic strategies. Finally, we discuss clinical trials evaluating the efficacy and safety of SLAMF receptor-based immunotherapies, emphasizing their translational relevance in the development of cancer treatments.
Collapse
Affiliation(s)
- Jia Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Di Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Ziqin Deng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wenpeng Cai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu Ji
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
3
|
Toskov V, Werner D, Furlan I, Erlacher M, Friedrich C, Schulz A, Reimann C, Madadi-Sanjani O, Radner M, Benckendorff J, Schwarz-Furlan S, Beier R, Ehl S, Strahm B, Yoshimi A. Aplastic Anemia as a Rare Manifestation of SAP Deficiency. Pediatr Blood Cancer 2025; 72:e31625. [PMID: 39994840 DOI: 10.1002/pbc.31625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/12/2025] [Indexed: 02/26/2025]
Affiliation(s)
- Vasil Toskov
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Children's Hospital, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Damaris Werner
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Ingrid Furlan
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Miriam Erlacher
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Children's Hospital, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Carsten Friedrich
- Department of Pediatrics and Pediatric Hematology/Oncology, University Children's Hospital, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Ansgar Schulz
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | - Christian Reimann
- Department of Pediatrics and Adolescent Medicine, University Medical Center Ulm, Ulm, Germany
| | | | - Martin Radner
- Department of Pathology, Hannover Medical School, Hannover, Germany
| | | | - Stephan Schwarz-Furlan
- Institute of Pathology, Klinikum Kaufbeuren-Ravensburg, Kaufbeuren, Germany
- Institute of Pathology, University Hospital Erlangen, Erlangen, Germany
| | - Rita Beier
- Department of Pediatric Hematology and Oncology, Hannover Medical School, Hannover, Germany
| | - Stephan Ehl
- Center for Chronic Immunodeficiency, Institute for Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brigitte Strahm
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Children's Hospital, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ayami Yoshimi
- Department of Pediatric Hematology, Oncology and Stem Cell Transplantation, Children's Hospital, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
4
|
Khan M, Alteneder M, Reiter W, Krausgruber T, Dobnikar L, Madern M, Waldherr M, Bock C, Hartl M, Ellmeier W, Henriksson J, Boucheron N. Single-cell and chromatin accessibility profiling reveals regulatory programs of pathogenic Th2 cells in allergic asthma. Nat Commun 2025; 16:2565. [PMID: 40089475 PMCID: PMC11910648 DOI: 10.1038/s41467-025-57590-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 02/26/2025] [Indexed: 03/17/2025] Open
Abstract
Lung pathogenic T helper type 2 (pTh2) cells are important in mediating allergic asthma, but fundamental questions remain regarding their heterogeneity and epigenetic regulation. Here we investigate immune regulation in allergic asthma by single-cell RNA sequencing in mice challenged with house dust mite, in the presence and absence of histone deacetylase 1 (HDAC1) function. Our analyses indicate two distinct highly proinflammatory subsets of lung pTh2 cells and pinpoint thymic stromal lymphopoietin (TSLP) and Tumour Necrosis Factor Receptor Superfamily (TNFRSF) members as important drivers to generate pTh2 cells in vitro. Using our in vitro model, we uncover how signalling via TSLP and a TNFRSF member shapes chromatin accessibility at the type 2 cytokine gene loci by modulating HDAC1 repressive function. In summary, we have generated insights into pTh2 cell biology and establish an in vitro model for investigating pTh2 cells that proves useful for discovering molecular mechanisms involved in pTh2-mediated allergic asthma.
Collapse
Affiliation(s)
- Matarr Khan
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Marlis Alteneder
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Wolfgang Reiter
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Center for Medical Data Science, Institute of Artificial Intelligence, Vienna, Austria
| | - Lina Dobnikar
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Moritz Madern
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Monika Waldherr
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
- FH Campus Wien, Department of Applied Life Sciences/Bioengineering/Bioinformatics, Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
- Medical University of Vienna, Center for Medical Data Science, Institute of Artificial Intelligence, Vienna, Austria
| | - Markus Hartl
- Max Perutz Labs, Mass Spectrometry Facility, Vienna Biocenter Campus (VBC), Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Biochemistry and Cell Biology, Vienna, Austria
| | - Wilfried Ellmeier
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria
| | - Johan Henriksson
- Umeå University, Umeå Centre for Microbial Research (UCMR), Integrated Science Lab (Icelab), Department of Molecular Biology, Umeå, Sweden
| | - Nicole Boucheron
- Medical University of Vienna, Center of Pathophysiology, Infectiology and Immunology, Institute of Immunology, Division of Immunobiology, Vienna, Austria.
| |
Collapse
|
5
|
Wang Y, Li D, Liu Y, Chen S, Dong Z. Adaptive immune cells antagonize ILC2 homeostasis via SLAMF3 and SLAMF5. SCIENCE ADVANCES 2025; 11:eadp9894. [PMID: 39792675 PMCID: PMC11721569 DOI: 10.1126/sciadv.adp9894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 12/05/2024] [Indexed: 01/12/2025]
Abstract
Type 2 innate lymphoid cells (ILC2s) mainly reside in tissues with few lymphoid cells. How their tissue residency is regulated remains poorly understood. This study explores the inhibitory role of SLAM-family receptors (SFRs) on adaptive immune cells in ILC2 maintenance. We observed an increase in the population of ILC2s in Rag1-deficient mice. Homotypic engagement of SFRs between ILC2s and adaptive immune cells was identified as a potential mechanism. SFR deficiency led to an increase in ILC2s. Conditional deletion of SFRs on T and/or B cells led to an increased ILC2 abundance. Mechanistically, as ILC precursors differentiate into ILC2s, SFRs, primarily SLAMF3 and SLAMF5, are inhibitory, which impair IL-7-induced PI3K activation and enhance apoptosis via SHP-1. These findings reveal a mechanism by which adaptive immune cells negatively regulate the homeostasis of ILC2s and contribute to our understanding of the complex interplay between innate and adaptive immune cells in the regulation of immune responses.
Collapse
Affiliation(s)
- Yuande Wang
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Dan Li
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Yehai Liu
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China
| | - Shasha Chen
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei 230032, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei 230032, China
| | - Zhongjun Dong
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei 230032, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing 100084, China
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei 230032, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
6
|
Wang Y, Quan Y, He J, Chen S, Dong Z. SLAM-family receptors promote resolution of ILC2-mediated inflammation. Nat Commun 2024; 15:5056. [PMID: 38871792 DOI: 10.1038/s41467-024-49466-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Type 2 innate lymphoid cells (ILC2) initiate early allergic inflammation in the lung, but the factors that promote subsequent resolution of type 2 inflammation and prevent prolonged ILC2 activation are not fully known. Here we show that SLAM-family receptors (SFR) play essential roles in this process. We demonstrate dynamic expression of several SFRs on ILC2s during papain-induced type 2 immunity in mice. SFR deficiency exacerbates ILC2-driven eosinophil infiltration in the lung, and results in a significant increase in IL-13 production by ILC2s exclusively in mediastinal lymph nodes (MLN), leading to increased dendritic cell (DC) and TH2 cell numbers. In MLNs, we observe more frequent interaction between ILC2s and bystander T cells, with T cell-expressed SFRs (especially SLAMF3 and SLAMF5) acting as self-ligands to suppress IL-13 production by ILC2s. Mechanistically, homotypic engagement of SFRs at the interface between ILC2s and T cells delivers inhibitory signaling primarily mediated by SHIP-1. This prevents activation of NF-κB, driven by IL-7 and IL-33, two major drivers of ILC2-mediated type 2 immunity. Thus, our study shows that an ILC2-DC-TH2 regulatory axis may promote the resolution of pulmonary type 2 immune responses, and highlights SLAMF3/SLAMF5 as potential therapeutic targets for ameliorating type 2 immunity.
Collapse
Affiliation(s)
- Yuande Wang
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yuhe Quan
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Junming He
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Shasha Chen
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China.
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, 230032, China.
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| | - Zhongjun Dong
- Department of Allergy, the First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, 230032, China.
- State Key Laboratory of Membrane Biology, School of Medicine and Institute for Immunology, Tsinghua University, Beijing, 100084, China.
- Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, 230032, China.
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Hefei, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
7
|
Kazanietz MG, Cooke M. Protein kinase C signaling "in" and "to" the nucleus: Master kinases in transcriptional regulation. J Biol Chem 2024; 300:105692. [PMID: 38301892 PMCID: PMC10907189 DOI: 10.1016/j.jbc.2024.105692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/08/2024] [Accepted: 01/09/2024] [Indexed: 02/03/2024] Open
Abstract
PKC is a multifunctional family of Ser-Thr kinases widely implicated in the regulation of fundamental cellular functions, including proliferation, polarity, motility, and differentiation. Notwithstanding their primary cytoplasmic localization and stringent activation by cell surface receptors, PKC isozymes impel prominent nuclear signaling ultimately impacting gene expression. While transcriptional regulation may be wielded by nuclear PKCs, it most often relies on cytoplasmic phosphorylation events that result in nuclear shuttling of PKC downstream effectors, including transcription factors. As expected from the unique coupling of PKC isozymes to signaling effector pathways, glaring disparities in gene activation/repression are observed upon targeting individual PKC family members. Notably, specific PKCs control the expression and activation of transcription factors implicated in cell cycle/mitogenesis, epithelial-to-mesenchymal transition and immune function. Additionally, PKCs isozymes tightly regulate transcription factors involved in stepwise differentiation of pluripotent stem cells toward specific epithelial, mesenchymal, and hematopoietic cell lineages. Aberrant PKC expression and/or activation in pathological conditions, such as in cancer, leads to profound alterations in gene expression, leading to an extensive rewiring of transcriptional networks associated with mitogenesis, invasiveness, stemness, and tumor microenvironment dysregulation. In this review, we outline the current understanding of PKC signaling "in" and "to" the nucleus, with significant focus on established paradigms of PKC-mediated transcriptional control. Dissecting these complexities would allow the identification of relevant molecular targets implicated in a wide spectrum of diseases.
Collapse
Affiliation(s)
- Marcelo G Kazanietz
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| | - Mariana Cooke
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
8
|
Choe U, Pham Q, Kim YS, Yu L, Wang TTY. Identification and elucidation of cross talk between SLAM Family Member 7 (SLAMF7) and Toll-like receptor (TLR) pathways in monocytes and macrophages. Sci Rep 2023; 13:11007. [PMID: 37420084 PMCID: PMC10329007 DOI: 10.1038/s41598-023-37040-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/14/2023] [Indexed: 07/09/2023] Open
Abstract
To further elucidate the expression, regulation and function of Signaling Lymphocytic Activation Molecule Family (SLAMF) protein members in human monocytes and macrophages. Un-differentiated monocytic THP-1 cell (u-THP-1) and differentiated THP-1 macrophage (d-THP-1) were used as culture models in the study. Responses of cells to the differentiation agents phorbol ester (25 ng/ml) and TLR (Toll-like receptor) ligands were assessed. RT-PCR and Western blot analysis were used to determine mRNA and protein level. Pro-inflammatory cytokine mRNA expression levels and phagocytosis were used as functional markers. Data analyzed using t-test, one-way or two-way ANOVA followed by post hoc test. SLAMFs were differentially expressed in THP-1 cells. Differentiation of u-THP-1 to d-THP-1 led to significantly higher SLAMF7 mRNA and protein levels than other SLAMF. In addition, TLR stimuli increased SLAMF7 mRNA expression but not protein expression. Importantly, SLAMF7 agonist antibody and TLR ligands synergistically increased the mRNA expression levels of IL-1β, IL-6 and TNF-α, but had no effect on phagocytosis. SLAMF7 knocked-down in d-THP-1 significantly lowered TLR-induced mRNA expressions of pro-inflammatory markers. SLAM family proteins are differentially regulated by differentiation and TLRs. SLAMF7 enhanced TLR-mediated induction of pro-inflammatory cytokines in monocytes and macrophages but not phagocytosis.
Collapse
Affiliation(s)
- Uyory Choe
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Quynhchi Pham
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, 20705, USA
| | - Young S Kim
- Cancer Prevention Science Branch, Division of Cancer Prevention, NCI, Rockville, MD, 20850, USA
| | - Liangli Yu
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Thomas T Y Wang
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics and Immunology Laboratory, Beltsville, MD, 20705, USA.
| |
Collapse
|
9
|
Farhangnia P, Ghomi SM, Mollazadehghomi S, Nickho H, Akbarpour M, Delbandi AA. SLAM-family receptors come of age as a potential molecular target in cancer immunotherapy. Front Immunol 2023; 14:1174138. [PMID: 37251372 PMCID: PMC10213746 DOI: 10.3389/fimmu.2023.1174138] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 05/02/2023] [Indexed: 05/31/2023] Open
Abstract
The signaling lymphocytic activation molecule (SLAM) family receptors were discovered in immune cells for the first time. The SLAM-family receptors are a significant player in cytotoxicity, humoral immune responses, autoimmune diseases, lymphocyte development, cell survival, and cell adhesion. There is growing evidence that SLAM-family receptors have been involved in cancer progression and heralded as a novel immune checkpoint on T cells. Previous studies have reported the role of SLAMs in tumor immunity in various cancers, including chronic lymphocytic leukemia, lymphoma, multiple myeloma, acute myeloid leukemia, hepatocellular carcinoma, head and neck squamous cell carcinoma, pancreas, lung, and melanoma. Evidence has deciphered that the SLAM-family receptors may be targeted for cancer immunotherapy. However, our understanding in this regard is not complete. This review will discuss the role of SLAM-family receptors in cancer immunotherapy. It will also provide an update on recent advances in SLAM-based targeted immunotherapies.
Collapse
Affiliation(s)
- Pooya Farhangnia
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shamim Mollazadeh Ghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Shabnam Mollazadehghomi
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hamid Nickho
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahzad Akbarpour
- Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Advanced Cellular Therapeutics Facility (ACTF), Hematopoietic Cellular Therapy Program, Section of Hematology & Oncology, Department of Medicine, University of Chicago Medical Center, Chicago, IL, United States
| | - Ali-Akbar Delbandi
- Immunology Research Center, Institute of Immunology and Infectious Disease, Iran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
DeVore SB, Khurana Hershey GK. The role of the CBM complex in allergic inflammation and disease. J Allergy Clin Immunol 2022; 150:1011-1030. [PMID: 35981904 PMCID: PMC9643607 DOI: 10.1016/j.jaci.2022.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/15/2022] [Accepted: 06/30/2022] [Indexed: 10/15/2022]
Abstract
The caspase activation and recruitment domain-coiled-coil (CARD-CC) family of proteins-CARD9, CARD10, CARD11, and CARD14-is collectively expressed across nearly all tissues of the body and is a crucial mediator of immunologic signaling as part of the CARD-B-cell lymphoma/leukemia 10-mucosa-associated lymphoid tissue lymphoma translocation protein 1 (CBM) complex. Dysfunction or dysregulation of CBM proteins has been linked to numerous clinical manifestations known as "CBM-opathies." The CBM-opathy spectrum encompasses diseases ranging from mucocutaneous fungal infections and psoriasis to combined immunodeficiency and lymphoproliferative diseases; however, there is accumulating evidence that the CARD-CC family members also contribute to the pathogenesis and progression of allergic inflammation and allergic diseases. Here, we review the 4 CARD-CC paralogs, as well as B-cell lymphoma/leukemia 10 and mucosa-associated lymphoid tissue lymphoma translocation protein 1, and their individual and collective roles in the pathogenesis and progression of allergic inflammation and 4 major allergic diseases (allergic asthma, atopic dermatitis, food allergy, and allergic rhinitis).
Collapse
Affiliation(s)
- Stanley B DeVore
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio
| | - Gurjit K Khurana Hershey
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio; Division of Asthma Research, Cincinnati Children's Hospital Medical Center, Cincinnati, Cincinnati, Ohio.
| |
Collapse
|
11
|
Are Viral Infections Key Inducers of Autoimmune Diseases? Focus on Epstein–Barr Virus. Viruses 2022; 14:v14091900. [PMID: 36146707 PMCID: PMC9506567 DOI: 10.3390/v14091900] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/13/2022] [Accepted: 08/19/2022] [Indexed: 12/26/2022] Open
Abstract
It is generally accepted that certain viral infections can trigger the development of autoimmune diseases. However, the exact mechanisms by which these viruses induce autoimmunity are still not understood. In this review, we first describe hypothetical mechanisms by which viruses induce some representative autoimmune diseases. Then, we focus on Epstein–Barr virus (EBV) and discuss its role in the pathogenesis of rheumatoid arthritis (RA). The discussion is mainly based on our own previous findings that (A) EBV DNA and its products EBV-encoded small RNA (EBER) and latent membrane protein 1 (LMP1) are present in the synovial lesions of RA, (B) mRNA expression of the signaling lymphocytic activation molecule-associated protein (SAP)/SH2D1A gene that plays a critical role in cellular immune responses to EBV is reduced in the peripheral T cells of patients with RA, and (C) EBV infection of mice reconstituted with human immune system components (humanized mice) induced erosive arthritis that is pathologically similar to RA. Additionally, environmental factors may contribute to EBV reactivation as follows: Porphyromonas gingivalis peptidylarginine deiminase (PAD), an enzyme required for citrullination, engenders antigens leading to the production of citrullinated peptides both in the gingiva and synovium. Anti-citrullinated peptides autoantibody is an important marker for diagnosis and disease activity of RA. These findings, as well as various results obtained by other researchers, strongly suggest that EBV is directly involved in the pathogenesis of RA, a typical autoimmune disease.
Collapse
|
12
|
CD4+ Cytotoxic T Cells Involved in the Development of EBV-Associated Diseases. Pathogens 2022; 11:pathogens11080831. [PMID: 35894054 PMCID: PMC9330826 DOI: 10.3390/pathogens11080831] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/17/2022] [Accepted: 07/22/2022] [Indexed: 11/17/2022] Open
Abstract
Activated cytotoxic CD4 T cells (HLA-DR+) play an important role in the control of EBV infection, especially in cells with latency I (EBNA-1). One of the evasion mechanisms of these latency cells is generated by gp42, which, via peripherally binding to the β1 domain of the β chain of MHC class II (HLA-DQ, -DR, and -DP) of the infected B lymphocyte, can block/alter the HLA class II/T-cell receptor (TCR) interaction, and confer an increased level of susceptibility towards the development of EBV-associated autoimmune diseases or cancer in genetically predisposed individuals (HLA-DRB1* and DQB1* alleles). The main developments predisposing the factors of these diseases are: EBV infection; HLA class II risk alleles; sex; and tissue that is infiltrated with EBV-latent cells, forming ectopic lymphoid structures. Therefore, there is a need to identify treatments for eliminating cells with EBV latency, because the current treatments (e.g., antivirals and rituximab) are ineffective.
Collapse
|
13
|
Wang Y, Tian Q, Ye L. The Differentiation and Maintenance of SARS-CoV-2-Specific Follicular Helper T Cells. Front Cell Infect Microbiol 2022; 12:953022. [PMID: 35909969 PMCID: PMC9329515 DOI: 10.3389/fcimb.2022.953022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 06/20/2022] [Indexed: 12/24/2022] Open
Abstract
Upon acute viral infection, virus-specific CD4+ T cells differentiate into either TH1 cells or follicular helper T (TFH) cells. The molecular pathways governing such bimodal cell fate commitment remain elusive. Additionally, effector virus-specific TFH cells further differentiate into corresponding memory population, which confer long-term protection against re-infection of same viruses by providing immediate help to virus-specific memory B cells. Currently, the molecular mechanisms underlying the long-term maintenance of memory TFH cells are largely unknown. In this review, we discuss current understanding of early differentiation of virus-specific effector TFH cells and long-term maintenance of virus-specific memory TFH cells in mouse models of viral infection and patients of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.
Collapse
Affiliation(s)
- Yifei Wang
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Qin Tian
- Dermatology Hospital, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Guangdong Provincial Key Laboratory of Immune Regulation and Immunotherapy, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
- Institute of Immunology, The People’s Liberation Army (PLA), Third Military Medical University, Chongqing, China
- *Correspondence: Lilin Ye,
| |
Collapse
|
14
|
Kohn EM, Dos Santos Dias L, Dobson HE, He X, Wang H, Klein BS, Wüthrich M. SLAMF1 Is Dispensable for Vaccine-Induced T Cell Development but Required for Resistance to Fungal Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1417-1423. [PMID: 35217584 DOI: 10.4049/jimmunol.2100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/10/2022] [Indexed: 11/19/2022]
Abstract
Homotypic signaling lymphocyte activation molecule (SLAM) receptor-ligand cell surface interactions between myeloid and lymphoid cells regulate innate and adaptive immune responses. In this article, we report that SLAMF1 is indispensable for host resistance to primary and vaccine-induced protection against fungal infection. Because vaccine immunity is dependent on cell-mediated immunity, we investigated the development of Ag-specific T cells. We studied the T cell-intrinsic and -extrinsic role of SLAMF1. We generated SLAMF1-/- TCR transgenic mice and analyzed the responses of adoptively transferred T cells. We also tracked endogenous Ag-specific T cells by using a tetramer. Intrinsic and extrinsic SLAMF1 signaling was dispensable for the development of antifungal Th1 and Th17 cells, which are requisite for the acquisition of vaccine-induced immunity. Despite intact T cell development, vaccinated SLAMF1-/- mice failed to control fungal infection. Failed accumulation of Ag-specific T cells in the lung on infection of vaccinated mice was due to uncontrolled early infection and inflammation, revealing a role for SLAMF1 in innate host immunity.
Collapse
Affiliation(s)
- Elaine M Kohn
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Lucas Dos Santos Dias
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Hannah E Dobson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Xin He
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Huafeng Wang
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Bruce S Klein
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI.,Department of Internal Medicine, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI; and.,Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Marcel Wüthrich
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI;
| |
Collapse
|
15
|
Schluck M, Eggermont LJ, Weiden J, Popelier C, Weiss L, Pilzecker B, Kolder S, Heinemans A, Rodriguez Mogeda C, Verdoes M, Figdor CG, Hammink R. Dictating Phenotype, Function, and Fate of Human T Cells with Co‐Stimulatory Antibodies Presented by Filamentous Immune Cell Mimics. ADVANCED THERAPEUTICS 2022. [DOI: 10.1002/adtp.202200019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Marjolein Schluck
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Loek J. Eggermont
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Jorieke Weiden
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Carlijn Popelier
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Lea Weiss
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Bas Pilzecker
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Sigrid Kolder
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Anne Heinemans
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Carla Rodriguez Mogeda
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Martijn Verdoes
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Carl G. Figdor
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| | - Roel Hammink
- Department of Tumor Immunology Radboud Institute for Molecular Life Sciences Radboud University Medical Center Geert Grooteplein 26 Nijmegen GA 6525 The Netherlands
| |
Collapse
|
16
|
Meng Q, Duan X, Yang Q, Xue D, Liu Z, Li Y, Jin Q, Guo F, Jia S, Wang Z, Yan W, Chang X, Sun P. SLAMF6/Ly108 promotes the development of hepatocellular carcinoma via facilitating macrophage M2 polarization. Oncol Lett 2022; 23:83. [PMID: 35126725 PMCID: PMC8805185 DOI: 10.3892/ol.2022.13203] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Tumor-associated macrophages (TAMs) are capable of worsening hepatocellular carcinoma (HCC) prognosis by accelerating tumor growth and progression. Signaling lymphocyte activation molecule family member 6 (SLAMF6; Ly108 in mice) is an immune regulator that is involved in numerous diseases. However, whether SLAMF6 might affect macrophage function in HCC has not yet been reported. Therefore, the present study aimed to determine the relationship between SLAMF6 expression on macrophages and HCC progression. In the present study, the expression of SLAMF6 in human blood samples and mice was analyzed by flow cytometry. Furthermore, macrophage-related polarization markers were detected via reverse transcription quantitative PCR. Clonogenic formation and Transwell assay were performed to determine the proliferation, migration and invasion of HCC cells. In addition, a murine HCC model was established to detect the function of SLAMF6 in vivo. The results demonstrated that SLAMF6 expression was increased in CD14+ cells obtained from patients with HCC. It was also determined that this increase was associated with a positive hepatitis B virus DNA status and high levels of α-fetoprotein. Polarized TAMs from THP-1 cells, murine peritoneal macrophages and murine bone marrow-derived macrophages all exhibited higher levels of SLAMF6 compared with M1 cells. Furthermore, an increased expression of Ly108 was detected in macrophages obtained from mice tumor tissues, indicating that the tumor microenvironment may promote Ly108 expression and macrophage M2 polarization. Ly108 small interfering RNA was applied to macrophages, which resulted in the suppression of M2 polarization. Ly108-silenced macrophages attenuated HCC cell migration and invasion and prevented tumor growth by inhibiting the nuclear factor-κB pathway. Altogether, the results from the present study suggested that SLAMF6/Ly108 was upregulated in TAMs, which may in turn accelerate the development of HCC.
Collapse
Affiliation(s)
- Qi Meng
- School of Cheeloo Clinical Medicine, Shandong University, Jinan, Shandong 250102, P.R. China
| | - Xiuyun Duan
- School of Cheeloo Clinical Medicine, Shandong University, Jinan, Shandong 250102, P.R. China
| | - Qingchao Yang
- School of Cheeloo Clinical Medicine, Shandong University, Jinan, Shandong 250102, P.R. China
| | - Dewen Xue
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zihao Liu
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Yuanyuan Li
- Head and Neck Radiation Oncology Ward II, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Qingyan Jin
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Fang Guo
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Shijie Jia
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Zhaofeng Wang
- Surgical Department, Jinan Jiyang District Hospital of Traditional Chinese Medicine, Jinan, Shandong 251499, P.R. China
| | - Wenjiang Yan
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xu Chang
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| | - Peng Sun
- Department of Intervention Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, P.R. China
| |
Collapse
|
17
|
Cannons JL, Villarino AV, Kapnick SM, Preite S, Shih HY, Gomez-Rodriguez J, Kaul Z, Shibata H, Reilley JM, Huang B, Handon R, McBain IT, Gossa S, Wu T, Su HC, McGavern DB, O'Shea JJ, McGuire PJ, Uzel G, Schwartzberg PL. PI3Kδ coordinates transcriptional, chromatin, and metabolic changes to promote effector CD8 + T cells at the expense of central memory. Cell Rep 2021; 37:109804. [PMID: 34644563 PMCID: PMC8582080 DOI: 10.1016/j.celrep.2021.109804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 07/15/2021] [Accepted: 09/16/2021] [Indexed: 01/05/2023] Open
Abstract
Patients with activated phosphatidylinositol 3-kinase delta (PI3Kδ) syndrome (APDS) present with sinopulmonary infections, lymphadenopathy, and cytomegalvirus (CMV) and/or Epstein-Barr virus (EBV) viremia, yet why patients fail to clear certain chronic viral infections remains incompletely understood. Using patient samples and a mouse model (Pik3cdE1020K/+ mice), we demonstrate that, upon activation, Pik3cdE1020K/+ CD8+ T cells exhibit exaggerated features of effector populations both in vitro and after viral infection that are associated with increased Fas-mediated apoptosis due to sustained FoxO1 phosphorylation and Fasl derepression, enhanced mTORC1 and c-Myc signatures, metabolic perturbations, and an altered chromatin landscape. Conversely, Pik3cdE1020K/+ CD8+ cells fail to sustain expression of proteins critical for central memory, including TCF1. Strikingly, activated Pik3cdE1020K/+ CD8+ cells exhibit altered transcriptional and epigenetic circuits characterized by pronounced interleukin-2 (IL-2)/STAT5 signatures and heightened IL-2 responses that prevent differentiation to memory-like cells in IL-15. Our data position PI3Kδ as integrating multiple signaling nodes that promote CD8+ T cell effector differentiation, providing insight into phenotypes of patients with APDS.
Collapse
Affiliation(s)
- Jennifer L Cannons
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.
| | - Alejandro V Villarino
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA; Department of Microbiology & Immunology and Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136, USA
| | - Senta M Kapnick
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; Fischell Department of Bioengineering, University of Maryland, College Park, MD 20742, USA
| | - Silvia Preite
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Han-Yu Shih
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA; National Eye Institute, NIH, Bethesda, MD 20892, USA
| | - Julio Gomez-Rodriguez
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; TCR2 Therapeutics, Cambridge, MA 02142, USA
| | - Zenia Kaul
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Hirofumi Shibata
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Julie M Reilley
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Bonnie Huang
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Robin Handon
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Ian T McBain
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Selamawit Gossa
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - Tuoqi Wu
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA; University of Colorado, Department of Immunology, Denver, CO 80204, USA; Department of Immunology and Harold C. Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, TX 75390
| | - Helen C Su
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Dorian B McGavern
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD 20892, USA
| | - John J O'Shea
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, MD 20892, USA
| | - Peter J McGuire
- National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA
| | - Gulbu Uzel
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA
| | - Pamela L Schwartzberg
- National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD 20892, USA; National Human Genome Research Institute, NIH, Bethesda, MD 20892, USA.
| |
Collapse
|
18
|
Cengiz M, Ozenirler S. Serum Peptidyl-prolyl Cis-trans Isomerase NIMA-interacted 1 (Pin1) as a Non-invasive Marker for Liver Fibrosis due to Chronic Hepatitis C Virus. HEPATITIS MONTHLY 2021; 21. [DOI: 10.5812/hepatmon.116687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Background: Hepatitis C virus (HCV) may remain asymptomatic or cause liver fibrosis and cirrhosis. Objectives: We aimed to assess the relationship between serum peptidyl-prolyl cis-trans isomerase NIMA-interacted 1 (Pin1) levels and liver fibrosis due to HCV. Methods: Serum samples of successive patients with HCV genotype 1b and healthy volunteers were collected, and Pin1 levels were measured using ELISA kits. Liver fibrosis stages were calculated by the Ishak Scoring System and subdivided into two groups; stage < 3 (mild fibrosis) and ≥ 3 (advanced fibrosis). Correlation and area under receiver operating characteristics (AUROC) analysis were used to investigate the relationship between Pin1 and clinical and histopathological properties of HCV infection. Results: Ninety-four patients with HCV and 47 age- and sex-matched volunteers were included. The median age of the participants was 52, and 55% of whom were females. The mean (SD) of Pin1 serum level was significantly higher in the HCV group compared with healthy volunteers (33.94 (21.15) vs. 26.82 (8.85) pg/mL, respectively, P = 0.007). Seventy-seven (82%) and 17 (18%) of the participants showed mild and advanced fibrosis, respectively. Pin1 serum levels were significantly lower in the mild compared with advanced fibrosis group (29 (17.88) vs. 43.59 (7.98) pg/mL, respectively, P < 0.001). We found a significantly positive correlation between Pin1 serum level and liver fibrosis stage (r = 0.71, P < 0.001). The cut off of 33.04 pg/mL of Pin1 serum level showed the best sensitivity (100%) and specificity (68.4%) (AUROC = 0.81 [95% confidence interval: 0.72 - 0.90], P < 0.001) for distinguishing advanced from mild liver fibrosis. Conclusions: Serum Pin1 level may be a relevant marker for predicting liver fibrosis in HCV infected patients.
Collapse
|
19
|
Diacylglycerol Kinase alpha in X Linked Lymphoproliferative Disease Type 1. Int J Mol Sci 2021; 22:ijms22115816. [PMID: 34072296 PMCID: PMC8198409 DOI: 10.3390/ijms22115816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022] Open
Abstract
Diacylglycerol kinases are intracellular enzymes that control the balance between the secondary messengers diacylglycerol and phosphatidic acid. DGKα and DGKζ are the prominent isoforms that restrain the intensity of T cell receptor signalling by metabolizing PLCγ generated diacylglycerol. Thus, their activity must be tightly controlled to grant cellular homeostasis and refine immune responses. DGKα is specifically inhibited by strong T cell activating signals to allow for full diacylglycerol signalling which mediates T cell response. In X-linked lymphoproliferative disease 1, deficiency of the adaptor protein SAP results in altered T cell receptor signalling, due in part to persistent DGKα activity. This activity constrains diacylglycerol levels, attenuating downstream pathways such as PKCθ and Ras/MAPK and decreasing T cell restimulation induced cell death. This is a form of apoptosis triggered by prolonged T cell activation that is indeed defective in CD8+ cells of X-linked lymphoproliferative disease type 1 patients. Accordingly, inhibition or downregulation of DGKα activity restores in vitro a correct diacylglycerol dependent signal transduction, cytokines production and restimulation induced apoptosis. In animal disease models, DGKα inhibitors limit CD8+ expansion and immune-mediated tissue damage, suggesting the possibility of using inhibitors of diacylglycerol kinase as a new therapeutic approach.
Collapse
|
20
|
Yang J, Geng L, Ma Y, Tang X, Peng H, Tian J, Xu H, Wang S. SLAMs Negatively Regulate IL-21 Production in Tfh-Like Cells from Allergic Rhinitis Patients. J Asthma Allergy 2021; 14:361-369. [PMID: 33880041 PMCID: PMC8053523 DOI: 10.2147/jaa.s291879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Background Allergic rhinitis (AR) is characterized by type I hypersensitivity that is mediated by IgE-induced humoral responses. Follicular helper T cells (Tfh) comprise the key helper T cell (Th) subset that promotes antibody production. Signaling lymphocytic activation molecules (SLAMs) participate in regulation of the differentiation and function of Tfh cells, but whether this regulation is involved in the pathogenesis of AR is unknown. Methods CD4+CXCR5+ Tfh-like cells from peripheral blood were detected by flow cytometry. The IL-21 and IgE levels in serum were measured by an ELISA. Blood CD4+CXCR5+ Tfh-like cells were sorted and cultured with anti-SLAM mAb in vitro. Results The frequencies of circulating CD4+CXCR5+ Tfh-like cells appeared virtually unchanged in AR patients, but the expression of SLAMs and SLAM-associated protein (SAP) on circulating Tfh-like cells was significantly decreased. Meanwhile, the level of serum IL-21 was increased in AR patients, and a negative correlation was found between the IL-21 level and SLAM or SAP expression on CD4+CXCR5+ T cells. Treatment with anti-SLAM mAb resulted in reduced IL-21 production by Tfh-like cells in vitro. Additionally, SLAM expression on B cells was significantly decreased, although the percentages of B cells were increased in AR patients. Conclusion SLAMs negatively regulate IL-21 production in CD4+CXCR5+ Tfh-like cells, which contributes to the pathogenesis of AR.
Collapse
Affiliation(s)
- Jun Yang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, People's Republic of China
| | - Lina Geng
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, People's Republic of China
| | - Yongmin Ma
- Department of Otorhinolaryngology-Head Surgery, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xinyi Tang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, People's Republic of China
| | - Huiyong Peng
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jie Tian
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, People's Republic of China
| | - Huaxi Xu
- Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, People's Republic of China
| | - Shengjun Wang
- Department of Laboratory Medicine, The Affiliated People's Hospital, Jiangsu University, Zhenjiang, People's Republic of China.,Institute of Laboratory Medicine, Jiangsu Key Laboratory for Laboratory Medicine, Jiangsu University School of Medicine, Zhenjiang, People's Republic of China
| |
Collapse
|
21
|
Ceramide Synthase 2 Null Mice Are Protected from Ovalbumin-Induced Asthma with Higher T Cell Receptor Signal Strength in CD4+ T Cells. Int J Mol Sci 2021; 22:ijms22052713. [PMID: 33800208 PMCID: PMC7962461 DOI: 10.3390/ijms22052713] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/22/2022] Open
Abstract
(1) Background: six mammalian ceramide synthases (CerS1–6) determine the acyl chain length of sphingolipids (SLs). Although ceramide levels are increased in murine allergic asthma models and in asthmatic patients, the precise role of SLs with specific chain lengths is still unclear. The role of CerS2, which mainly synthesizes C22–C24 ceramides, was investigated in immune responses elicited by airway inflammation using CerS2 null mice. (2) Methods: asthma was induced in wild type (WT) and CerS2 null mice with ovalbumin (OVA), and inflammatory cytokines and CD4 (cluster of differentiation 4)+ T helper (Th) cell profiles were analyzed. We also compared the functional capacity of CD4+ T cells isolated from WT and CerS2 null mice. (3) Results: CerS2 null mice exhibited milder symptoms and lower Th2 responses than WT mice after OVA exposure. CerS2 null CD4+ T cells showed impaired Th2 and increased Th17 responses with concomitant higher T cell receptor (TCR) signal strength after TCR stimulation. Notably, increased Th17 responses of CerS2 null CD4+ T cells appeared only in TCR-mediated, but not in TCR-independent, treatment. (4) Conclusions: altered Th2/Th17 immune response with higher TCR signal strength was observed in CerS2 null CD4+ T cells upon TCR stimulation. CerS2 and very-long chain SLs may be therapeutic targets for Th2-related diseases such as asthma.
Collapse
|
22
|
Qi H. New twists in humoral immune regulation by SLAM family receptors. J Exp Med 2021; 218:e20202300. [PMID: 33570568 PMCID: PMC7879578 DOI: 10.1084/jem.20202300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
SLAM family receptors are involved in humoral immune regulation. In this issue of JEM, Zhong et al. (2021. J. Exp. Med.https://doi.org/10.1084/jem.20200756) provide evidence that these receptors collectively suppress germinal center reaction but promote production of antigen-specific antibodies.
Collapse
|
23
|
Immune Functions of Signaling Lymphocytic Activation Molecule Family Molecules in Multiple Myeloma. Cancers (Basel) 2021; 13:cancers13020279. [PMID: 33451089 PMCID: PMC7828503 DOI: 10.3390/cancers13020279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 01/11/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Multiple myeloma (MM) is an incurable hematological malignancy characterized by an increase in abnormal plasma cells. Disease progression, drug resistance, and immunosuppression in MM are associated with immune-related molecules, such as immune checkpoint and co-stimulatory molecules, present in the tumor microenvironment. Novel agents targeting these cell-surface molecules are currently under development, including monoclonal antibodies, bispecific monoclonal antibodies, and chimera antigen receptor T-cell therapies. In this review, we focus on the signaling lymphocytic activation molecule family receptors and provide an overview of their biological functions and novel therapies in MM. Abstract The signaling lymphocytic activation molecule (SLAM) family receptors are expressed on various immune cells and malignant plasma cells in multiple myeloma (MM) patients. In immune cells, most SLAM family molecules bind to themselves to transmit co-stimulatory signals through the recruiting adaptor proteins SLAM-associated protein (SAP) or Ewing’s sarcoma-associated transcript 2 (EAT-2), which target immunoreceptor tyrosine-based switch motifs in the cytoplasmic regions of the receptors. Notably, SLAMF2, SLAMF3, SLAMF6, and SLAMF7 are strongly and constitutively expressed on MM cells that do not express the adaptor proteins SAP and EAT-2. This review summarizes recent studies on the expression and biological functions of SLAM family receptors during the malignant progression of MM and the resulting preclinical and clinical research involving four SLAM family receptors. A better understanding of the relationship between SLAM family receptors and MM disease progression may lead to the development of novel immunotherapies for relapse prevention.
Collapse
|
24
|
Bonami RH, Nyhoff LE, McNitt DH, Hulbert C, Felton JL, Kendall PL, Thomas JW. T-B Lymphocyte Interactions Promote Type 1 Diabetes Independently of SLAM-Associated Protein. THE JOURNAL OF IMMUNOLOGY 2020; 205:3263-3276. [PMID: 33199538 DOI: 10.4049/jimmunol.1900464] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 10/15/2020] [Indexed: 01/05/2023]
Abstract
Signaling lymphocytic activation molecule-associated protein (SAP), a critical intracellular signaling molecule for T-B lymphocyte interactions, drives T follicular helper (Tfh) cell development in germinal centers (GCs). High-affinity islet autoantibodies predict type 1 diabetes (T1D) but do not cause β cell destruction. This paradox intimates Tfh cells as key pathologic effectors, consistent with an observed Tfh signature in T1D. To understand how fully developed Tfh (GC Tfh) contribute to different autoimmune processes, we investigated the role of SAP in T1D and autoantibody-mediated arthritis. Whereas spontaneous arthritis depended on SAP in the autoantibody-mediated K/BxN model, organized insulitis and diabetes onset were unabated, despite a blocked anti-insulin vaccine response in SAP-deficient NOD mice. GC Tfh and GC B cell development were blocked by loss of SAP in K/BxN mice. In contrast, although GC B cell formation was markedly reduced in SAP-deficient NOD mice, T cells with a GC Tfh phenotype were found at disease sites. CXCR3+ CCR6- (Tfh1) subset bias was observed among GC Tfh cells infiltrating the pancreas of NOD mice, which was enhanced by loss of SAP NOD T cells override SAP requirement to undergo activation and proliferation in response to Ag presentation, demonstrating the potential for productive cognate T-B lymphocyte interactions in T1D-prone mice. We find that SAP is essential when autoantibody-driven immune complexes promote inflammation but is not required for effective organ-specific autoimmune attack. Thus, Tfh induced in classic GC reactions are dispensable for T1D, but the autoimmune process in the NOD model retains pathogenic Tfh without SAP.
Collapse
Affiliation(s)
- Rachel H Bonami
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; .,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Lindsay E Nyhoff
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232.,Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - Dudley H McNitt
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Chrys Hulbert
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Jamie L Felton
- Division of Pediatric Endocrinology and Diabetes, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232
| | - Peggy L Kendall
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232.,Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; and
| | - James W Thomas
- Division of Rheumatology and Immunology, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232; .,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232
| |
Collapse
|
25
|
Ishibashi M, Takahashi R, Tsubota A, Sasaki M, Handa H, Imai Y, Tanaka N, Tsukune Y, Tanosaki S, Ito S, Asayama T, Sunakawa M, Kaito Y, Kuribayashi-Hamada Y, Onodera A, Moriya K, Komatsu N, Tanaka J, Odajima T, Sugimori H, Inokuchi K, Tamura H. SLAMF3-Mediated Signaling via ERK Pathway Activation Promotes Aggressive Phenotypic Behaviors in Multiple Myeloma. Mol Cancer Res 2020; 18:632-643. [PMID: 31974290 DOI: 10.1158/1541-7786.mcr-19-0391] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2019] [Revised: 12/03/2019] [Accepted: 01/16/2020] [Indexed: 11/16/2022]
Abstract
The signaling lymphocytic activation molecule family 3 (SLAMF3) is a member of the immunoglobulin superfamily expressed on T, B, and natural killer cells and modulates the activation and cytotoxicity of these cells. SLAMF3 is also expressed on plasma cells from patients with multiple myeloma (MM), although its role in MM pathogenesis remains unclear. This study found that SLAMF3 is highly and constitutively expressed on MM cells regardless of disease stage and that SLAMF3 knockdown/knockout suppresses proliferative potential and increases drug-induced apoptosis with decreased levels of phosphorylated ERK protein in MM cells. SLAMF3-overexpressing MM cells promote aggressive myeloma behavior in comparison with cytoplasmic domain-truncated SLAMF3 (ΔSLAMF3) cells. SLAMF3 interacts directly with adaptor proteins SH2 domain-containing phosphatase 2 (SHP2) and growth factor receptor bound 2 (GRB2), which also interact with each other. SLAMF3 knockdown, knockout, ΔSLAMF3, and SHP2 inhibitor-treated MM cells decreased phosphorylated ERK protein levels. Finally, serum soluble SLAMF3 (sSLAMF3) levels were markedly increased in advanced MM. Patients with high levels of sSLAMF3 progressed to the advanced stage significantly more often and had shorter progression-free survival times than those with low levels. This study revealed that SLAMF3 molecules consistently expressed on MM cells transmit MAPK/ERK signals mediated via the complex of SHP2 and GRB2 by self-ligand interaction between MM cells and induce a high malignant potential in MM. Furthermore, high levels of serum sSLAMF3 may reflect MM disease progression and be a useful prognostic factor. IMPLICATIONS: SLAMF3 may be a new therapeutic target for immunotherapy and novel agents such as small-molecule inhibitors.
Collapse
Affiliation(s)
- Mariko Ishibashi
- Department of Hematology, Nippon Medical School, Tokyo, Japan.,Department of Microbiology and Immunology, Nippon Medical School, Tokyo, Japan
| | - Risa Takahashi
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Asako Tsubota
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Makoto Sasaki
- Division of Hematology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiroshi Handa
- Department of Hematology, Gunma University, Gunma, Japan
| | - Yoichi Imai
- Department of Hematology and Oncology, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Norina Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Yutaka Tsukune
- Division of Hematology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Sakae Tanosaki
- Department of Hematology, The Fraternity Memorial Hospital, Tokyo, Japan
| | - Shigeki Ito
- Department of Hematology/Oncology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Toshio Asayama
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Mika Sunakawa
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Yuta Kaito
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | | | - Asaka Onodera
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Keiichi Moriya
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Norio Komatsu
- Division of Hematology, Department of Internal Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Junji Tanaka
- Department of Hematology, Tokyo Women's Medical University, Tokyo, Japan
| | - Takeshi Odajima
- Faculty of Health Science, Daito Bunka University School of Sports and Health Science, Saitama, Japan
| | - Hiroki Sugimori
- Department of Preventive Medicine, Daito Bunka University Graduate School of Sports and Health Science, Saitama, Japan
| | - Koiti Inokuchi
- Department of Hematology, Nippon Medical School, Tokyo, Japan
| | - Hideto Tamura
- Department of Hematology, Nippon Medical School, Tokyo, Japan.
| |
Collapse
|
26
|
Pan Y, Deng W, Xie J, Zhang S, Wan ECK, Li L, Tao H, Hu Z, Chen Y, Ma L, Gao J, Zhong XP. Graded diacylglycerol kinases α and ζ activities ensure mucosal-associated invariant T-cell development in mice. Eur J Immunol 2019; 50:192-204. [PMID: 31710099 DOI: 10.1002/eji.201948289] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/27/2019] [Accepted: 11/07/2019] [Indexed: 01/22/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells participate in both protective immunity and pathogenesis of diseases. Most murine MAIT cells express an invariant TCRVα19-Jα33 (iVα19) TCR, which triggers signals crucial for their development. However, signal pathways downstream of the iVα19TCR and their regulation in MAIT cells are unknown. Diacylglycerol (DAG) is a critical second messenger that relays the TCR signal to multiple downstream signaling cascades. DAG is terminated by DAG kinase (DGK)-mediated phosphorylation and conversion to phosphatidic acid. We have demonstrated here that downregulation of DAG caused by enhanced DGK activity impairs late-stage MAIT cell maturation in both thymus and spleen. Moreover, deficiency of DGKζ but not DGKα by itself causes modest decreases in MAIT cells, and deficiency of both DGKα and ζ results in severe reductions of MAIT cells in an autonomous manner. Our studies have revealed that DAG signaling is not only critical but also must be tightly regulated by DGKs for MAIT cell development and that both DGKα and, more prominently, DGKζ contribute to the overall DGK activity for MAIT cell development.
Collapse
Affiliation(s)
- Yun Pan
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Wenhai Deng
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jinhai Xie
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Shimeng Zhang
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Edwin C K Wan
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Department of Microbiology, Immunology, & Cell Biology and Department of Neuroscience, West Virginia University, Morgantown, WV
| | - Lei Li
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Department of Breast and Thyroid Surgery and Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huishan Tao
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Department of Gynecology and Obstetrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiming Hu
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yongping Chen
- Department of Infectious Diseases, the First Affiliated Hospital of Wenzhou Medical University and Wenzhou Key Laboratory of Hepatology, Hepatology Institute of Wenzhou Medical University, Wenzhou, China
| | - Li Ma
- Institute of Molecular Immunology, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Jimin Gao
- School of Laboratory Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiao-Ping Zhong
- Department of Pediatrics-Allergy and Immunology, Duke University Medical Center, Durham, NC.,Department of Immunology and Duke Cancer Institute, Duke University Medical Center, Durham, NC.,Duke Cancer Institute, Duke University Medical Center, Durham, NC
| |
Collapse
|
27
|
Tripathi JK, Sharma A, Gupta K, Abdelrahman H, Chauhan P, Mishra BB, Sharma J. Function of SLAM-Associated Protein (SAP) in Acute Pneumoseptic Bacterial Infection. J Mol Biol 2019; 431:4345-4353. [PMID: 31295456 PMCID: PMC11126331 DOI: 10.1016/j.jmb.2019.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 06/19/2019] [Accepted: 07/02/2019] [Indexed: 02/06/2023]
Abstract
Sepsis resulting from acute pneumonic infections by Gram-negative bacteria is often characterized by dysfunction of innate immune components. Here we report a previously unrecognized innate protective function of SAP, an adaptor protein primarily reported in T cells, NK cells, and NKT cells, during acute pneumonic infection with Klebsiella pneumoniae (KPn). SAP-deficient mice were highly susceptible to this infection with elevated systemic bacterial spread and increased lung damage. While the overall influx of infiltrating cells in the lungs remained largely intact, increased mortality of SAP-deficient mice correlated with increased accumulation of large NK1.1+ cells harboring bacteria and an impairment of neutrophil extracellular trap formation in vivo during KPn pneumonia, which likely facilitated bacterial outgrowth. Neutrophils were found to express SAP; however, adoptive transfer experiment supported a neutrophil-extrinsic function of SAP in neutrophil extracellular trap formation. Collectively, these data present the first report depicting innate protective function of SAP in an acute pulmonary infection.
Collapse
Affiliation(s)
- Jitendra K Tripathi
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Atul Sharma
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Kuldeep Gupta
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Houda Abdelrahman
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Pooja Chauhan
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Bibhuti B Mishra
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA
| | - Jyotika Sharma
- Department of Biomedical Sciences, The University of North Dakota School of Medicine and Health Sciences, 1301 N Columbia Road, Grand Forks, ND 58202-9037, USA.
| |
Collapse
|
28
|
SLAM-SAP-Fyn: Old Players with New Roles in iNKT Cell Development and Function. Int J Mol Sci 2019; 20:ijms20194797. [PMID: 31569599 PMCID: PMC6801923 DOI: 10.3390/ijms20194797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/23/2019] [Accepted: 09/24/2019] [Indexed: 12/25/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are a unique T cell lineage that develop in the thymus and emerge with a memory-like phenotype. Accordingly, following antigenic stimulation, they can rapidly produce copious amounts of Th1 and Th2 cytokines and mediate activation of several immune cells. Thus, it is not surprising that iNKT cells play diverse roles in a broad range of diseases. Given their pivotal roles in host immunity, it is crucial that we understand the mechanisms that govern iNKT cell development and effector functions. Over the last two decades, several studies have contributed to the current knowledge of iNKT cell biology and activity. Collectively, these studies reveal that the thymic development of iNKT cells, their lineage expansion, and functional properties are tightly regulated by a complex network of transcription factors and signaling molecules. While prior studies have clearly established the importance of the SLAM-SAP-Fyn signaling axis in iNKT cell ontogenesis, recent studies provide exciting mechanistic insights into the role of this signaling cascade in iNKT cell development, lineage fate decisions, and functions. Here we summarize the previous literature and discuss the more recent studies that guide our understanding of iNKT cell development and functional responses.
Collapse
|
29
|
León B, Lund FE. Compartmentalization of dendritic cell and T-cell interactions in the lymph node: Anatomy of T-cell fate decisions. Immunol Rev 2019; 289:84-100. [PMID: 30977197 PMCID: PMC6464380 DOI: 10.1111/imr.12758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
Upon receiving cognate and co-stimulatory priming signals from antigen (Ag)-presenting dendritic cells (DCs) in secondary lymphoid tissues, naïve CD4+ T cells differentiate into distinct effector and memory populations. These alternate cell fate decisions, which ultimately control the T-cell functional attributes, are dictated by programming signals provided by Ag-bearing DCs and by other cells that are present in the microenvironment in which T-cell priming occurs. We know that DCs can be subdivided into multiple populations and that the various DC subsets exhibit differential capacities to initiate development of the different CD4+ T-helper populations. What is less well understood is why different subanatomic regions of secondary lymphoid tissues are colonized by distinct populations of Ag-presenting DCs and how the location of these DCs influences the type of T-cell response that will be generated. Here we review how chemokine receptors and their ligands, which position allergen and nematode-activated DCs within different microdomains of secondary lymphoid tissues, contribute to the establishment of IL-4 committed follicular helper T and type 2 helper cell responses.
Collapse
Affiliation(s)
- Beatriz León
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Frances E. Lund
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
30
|
Iqbal J, Amador C, McKeithan TW, Chan WC. Molecular and Genomic Landscape of Peripheral T-Cell Lymphoma. Cancer Treat Res 2019; 176:31-68. [PMID: 30596212 DOI: 10.1007/978-3-319-99716-2_2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peripheral T-cell lymphoma (PTCL) is an uncommon group of lymphoma covering a diverse spectrum of entities. Little was known regarding the molecular and genomic landscapes of these diseases until recently but the knowledge is still quite spotty with many rarer types of PTCL remain largely unexplored. In this chapter, the recent findings from gene expression profiling (GEP) studies, including profiling data on microRNA, where available, will be presented with emphasis on the implication on molecular diagnosis, prognostication, and the identification of new entities (PTCL-GATA3 and PTCL-TBX21) in the PTCL-NOS group. Recent studies using next-generation sequencing have unraveled the mutational landscape in a number of PTCL entities leading to a marked improvement in the understanding of their pathogenesis and biology. While many mutations are shared among PTCL entities, the frequency varies and certain mutations are quite unique to a specific entity. For example, TET2 is often mutated but this is particularly frequent (70-80%) in angioimmunoblastic T-cell lymphoma (AITL) and IDH2 R172 mutations appear to be unique for AITL. In general, chromatin modifiers and molecular components in the CD28/T-cell receptor signaling pathways are frequently mutated. The major findings will be summarized in this chapter correlating with GEP data and clinical features where appropriate. The mutational landscape of cutaneous T-cell lymphoma, specifically on mycosis fungoides and Sezary syndrome, will also be discussed.
Collapse
Affiliation(s)
- Javeed Iqbal
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Catalina Amador
- Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Timothy W McKeithan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA
| | - Wing C Chan
- Department of Pathology, City of Hope National Medical Center, Duarte, CA, USA.
| |
Collapse
|
31
|
Gordiienko I, Shlapatska L, Kovalevska L, Sidorenko SP. SLAMF1/CD150 in hematologic malignancies: Silent marker or active player? Clin Immunol 2018; 204:14-22. [PMID: 30616923 DOI: 10.1016/j.clim.2018.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/12/2022]
Abstract
SLAMF1/CD150 receptor is a founder of signaling lymphocyte activation molecule (SLAM) family of cell-surface receptors. It is widely expressed on cells within hematopoietic system. In hematologic malignancies CD150 cell surface expression is restricted to cutaneous T-cell lymphomas, few types of B-cell non-Hodgkin's lymphoma, near half of cases of chronic lymphocytic leukemia, Hodgkin's lymphoma, and multiple myeloma. Differential expression among various types of hematological malignancies allows considering CD150 as diagnostical and potential prognostic marker. Moreover, CD150 may be a target for antibody-based or measles virus oncolytic therapy. Due to CD150 signaling properties it is involved in regulation of malignant cell fate decision and tumor microenvironment in Hodgkin's lymphoma and chronic lymphocytic leukemia. This review summarizes evidence for the important role of CD150 in pathogenesis of hematologic malignancies.
Collapse
Affiliation(s)
- Inna Gordiienko
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine.
| | - Larysa Shlapatska
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Larysa Kovalevska
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Svetlana P Sidorenko
- Department of Molecular and Cellular Pathobiology, R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
32
|
Yigit B, Wang N, Herzog RW, Terhorst C. SLAMF6 in health and disease: Implications for therapeutic targeting. Clin Immunol 2018; 204:3-13. [PMID: 30366106 DOI: 10.1016/j.clim.2018.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/22/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Burcu Yigit
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| | - Ninghai Wang
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
33
|
Dragovich MA, Mor A. The SLAM family receptors: Potential therapeutic targets for inflammatory and autoimmune diseases. Autoimmun Rev 2018; 17:674-682. [PMID: 29729453 DOI: 10.1016/j.autrev.2018.01.018] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/18/2018] [Indexed: 12/20/2022]
Abstract
The signaling lymphocytic activation molecule (SLAM) family is comprised of nine distinct receptors (SLAMF1 through SLAMF9) that are expressed on hematopoietic cells. All of these receptors, with the exception of SLAMF4, are homotypic by nature as downstream signaling occurs when hematopoietic cells that express the same SLAM receptor interact. The SLAM family receptor function is largely controlled via SLAM associated protein (SAP) family adaptors. The SAP family adaptors consist of SAP, Ewing sarcoma associated transcript (EAT)-2, and EAT-2-related transducer (ERT). These adaptors associate with the cytoplasmic domain of the SLAM family receptors through phosphorylated tyrosines. Defects in SLAM family members and SAP adaptors have been implicated in causing immune deficiencies. This is exemplified in patients with X-linked lymphoproliferative (XLP) disease, where SAP undergoes a loss of function mutation. Furthermore, evidence has been accumulating that SLAM family members are potential targets for inflammatory and autoimmune diseases. This review will discuss the structure and function of the SLAM family receptors and SAP family adaptors, their role in immune regulation, and potential approaches to target this family of receptors therapeutically.
Collapse
Affiliation(s)
- Matthew A Dragovich
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Adam Mor
- Department of Medicine, Division of Rheumatology, NYU School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA.
| |
Collapse
|
34
|
Karim ZA, Hensch NR, Qasim H, Alshbool FZ, Khasawneh FT. Role of IκB kinase β in regulating the remodeling of the CARMA1-Bcl10-MALT1 complex. Biochem Biophys Res Commun 2018; 500:268-274. [PMID: 29649481 DOI: 10.1016/j.bbrc.2018.04.057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 01/26/2023]
Abstract
The current work investigates the notion that inducible clustering of signaling mediators of the IKK pathway is important for platelet activation. Thus, while the CARMA1, Bcl10, and MALT1 (CBM) complex is essential for triggering IKK/NF-κB activation upon platelet stimulation, the signals that elicit its formation and downstream effector activation remain elusive. We demonstrate herein that IKKβ is involved in membrane fusion, and serves as a critical protein kinase required for initial formation and the regulation of the CARMA1/MALT1/Bcl10/CBM complex in platelets. We also show that IKKβ regulates these processes via modulation of phosphorylation of Bcl10 and IKKγ polyubiquitination. Collectively, our data demonstrate that IKKβ regulates membrane fusion and the remodeling of the CBM complex formation.
Collapse
Affiliation(s)
- Zubair A Karim
- 1101 N. Campbell St, Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA.
| | - Nicole R Hensch
- The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Hanan Qasim
- 1101 N. Campbell St, Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA
| | - Fatima Z Alshbool
- 1101 N. Campbell St, Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA
| | - Fadi T Khasawneh
- 1101 N. Campbell St, Pharmaceutical Sciences, School of Pharmacy, The University of Texas El Paso, El Paso, TX 79902, USA
| |
Collapse
|
35
|
Kumar A, Suryadevara N, Hill TM, Bezbradica JS, Van Kaer L, Joyce S. Natural Killer T Cells: An Ecological Evolutionary Developmental Biology Perspective. Front Immunol 2017; 8:1858. [PMID: 29312339 PMCID: PMC5743650 DOI: 10.3389/fimmu.2017.01858] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
Type I natural killer T (NKT) cells are innate-like T lymphocytes that recognize glycolipid antigens presented by the MHC class I-like protein CD1d. Agonistic activation of NKT cells leads to rapid pro-inflammatory and immune modulatory cytokine and chemokine responses. This property of NKT cells, in conjunction with their interactions with antigen-presenting cells, controls downstream innate and adaptive immune responses against cancers and infectious diseases, as well as in several inflammatory disorders. NKT cell properties are acquired during development in the thymus and by interactions with the host microbial consortium in the gut, the nature of which can be influenced by NKT cells. This latter property, together with the role of the host microbiota in cancer therapy, necessitates a new perspective. Hence, this review provides an initial approach to understanding NKT cells from an ecological evolutionary developmental biology (eco-evo-devo) perspective.
Collapse
Affiliation(s)
- Amrendra Kumar
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Naveenchandra Suryadevara
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Timothy M Hill
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Chemistry and Life Science, United States Military Academy, West Point, NY, United States
| | - Jelena S Bezbradica
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Sebastian Joyce
- Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
36
|
Kumar A, Gordy LE, Bezbradica JS, Stanic AK, Hill TM, Boothby MR, Van Kaer L, Joyce S. NF-κB Protects NKT Cells from Tumor Necrosis Factor Receptor 1-induced Death. Sci Rep 2017; 7:15594. [PMID: 29142275 PMCID: PMC5688132 DOI: 10.1038/s41598-017-15461-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/18/2017] [Indexed: 01/19/2023] Open
Abstract
Semi-invariant natural killer T (NKT) cells are innate-like lymphocytes with immunoregulatory properties. NKT cell survival during development requires signal processing by activated RelA/NF-κB. Nonetheless, the upstream signal(s) integrated by NF-κB in developing NKT cells remains incompletely defined. We show that the introgression of Bcl-xL-coding Bcl2l1 transgene into NF-κB signalling-deficient IκBΔN transgenic mouse rescues NKT cell development and differentiation in this mouse model. We reasoned that NF-κB activation was protecting developing NKT cells from death signals emanating either from high affinity agonist recognition by the T cell receptor (TCR) or from a death receptor, such as tumor necrosis factor receptor 1 (TNFR1) or Fas. Surprisingly, the single and combined deficiency in PKC-θ or CARMA-1-the two signal transducers at the NKT TCR proximal signalling node-only partially recapitulated the NKT cell deficiency observed in IκBΔN tg mouse. Accordingly, introgression of the Bcl2l1 transgene into PKC-θ null mouse failed to rescue NKT cell development. Instead, TNFR1-deficiency, but not the Fas-deficiency, rescued NKT cell development in IκBΔN tg mice. Consistent with this finding, treatment of thymocytes with an antagonist of the inhibitor of κB kinase -which blocks downstream NF-κB activation- sensitized NKT cells to TNF-α-induced cell death in vitro. Hence, we conclude that signal integration by NF-κB protects developing NKT cells from death signals emanating from TNFR1, but not from the NKT TCR or Fas.
Collapse
Affiliation(s)
- Amrendra Kumar
- Veterans Administration Tennessee Valley Healthcare System, Nashville, USA
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Laura E Gordy
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Jelena S Bezbradica
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Aleksandar K Stanic
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Obstetrics and Gynecology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy M Hill
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY, 10996, USA
| | - Mark R Boothby
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Luc Van Kaer
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Sebastian Joyce
- Veterans Administration Tennessee Valley Healthcare System, Nashville, USA.
- Department of Pathology, Microbiology & Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.
| |
Collapse
|
37
|
Kumar V, Ahmad A. Role of MAIT cells in the immunopathogenesis of inflammatory diseases: New players in old game. Int Rev Immunol 2017; 37:90-110. [PMID: 29106304 DOI: 10.1080/08830185.2017.1380199] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Current advances in immunology have led to the identification of a population of novel innate immune T cells, called mucosa-associated invariant T (MAIT) cells. The cells in humans express an invariant TCRα chain (Vα7.2-Jα33) paired with a limited subset of TCRβ chains (Vβ2, 13 and 22), are restricted by the MHC class I (MH1)-related (MR)-1, and recognize molecules that are produced in the bacterial riboflavin (vitamin B2) biosynthetic pathway. They are present in the circulation, liver and at various mucosal sites (i.e. intestine, lungs and female reproductive tract, etc.). They kill host cells infected with bacteria and yeast, and secrete soluble mediators such as TNF-α, IFN-γ, IL-17, etc. The cells regulate immune responses and inflammation associated with a wide spectrum of acute and chronic diseases in humans. Since their discovery in 1993, significant advances have been made in understanding biology of MAIT cells and the potential role of these cells in the pathogenesis of autoimmune, inflammatory and infectious diseases as well as cancer in humans. The purpose of this review is to provide a current state of our knowledge about MAIT cell biology and delineate their role in autoimmune and inflammatory diseases (sterile or caused by infectious agents) and cancer in humans. A better understanding of the role of MAIT cells in human diseases may lead to novel ways of immunotherapies.
Collapse
Affiliation(s)
- Vijay Kumar
- a Department of Paediatrics and Child Care , Children's Health Queensland Clinical unit School of Medicine, Mater Research, Faculty of Medicine and Biomedical Sciences, University of Queensland , ST Lucia, Brisbane , Queensland , Australia
| | - Ali Ahmad
- b Laboratory of Innate Immunity, CHU Ste-Justine/Department of Microbiology , Infectious Diseases & Immunology, University of Montreal , Montreal , Quebec , Canada
| |
Collapse
|
38
|
Meininger I, Krappmann D. Lymphocyte signaling and activation by the CARMA1-BCL10-MALT1 signalosome. Biol Chem 2017; 397:1315-1333. [PMID: 27420898 DOI: 10.1515/hsz-2016-0216] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Accepted: 07/10/2016] [Indexed: 12/16/2022]
Abstract
The CARMA1-BCL10-MALT1 (CBM) signalosome triggers canonical NF-κB signaling and lymphocyte activation upon antigen-receptor stimulation. Genetic studies in mice and the analysis of human immune pathologies unveiled a critical role of the CBM complex in adaptive immune responses. Great progress has been made in elucidating the fundamental mechanisms that dictate CBM assembly and disassembly. By bridging proximal antigen-receptor signaling to downstream signaling pathways, the CBM complex exerts a crucial scaffolding function. Moreover, the MALT1 subunit confers a unique proteolytic activity that is key for lymphocyte activation. Deregulated 'chronic' CBM signaling drives constitutive NF-κB signaling and MALT1 activation, which contribute to the development of autoimmune and inflammatory diseases as well as lymphomagenesis. Thus, the processes that govern CBM activation and function are promising targets for the treatment of immune disorders. Here, we summarize the current knowledge on the functions and mechanisms of CBM signaling in lymphocytes and how CBM deregulations contribute to aberrant signaling in malignant lymphomas.
Collapse
|
39
|
Vitales-Noyola M, Ramos-Levi AM, Serrano-Somavilla A, Martínez-Hernández R, Sampedro-Nuñez M, Di Pasquale C, González-Amaro R, Marazuela M. Expression and Function of the Costimulatory Receptor SLAMF1 Is Altered in Lymphocytes From Patients With Autoimmune Thyroiditis. J Clin Endocrinol Metab 2017; 102:672-680. [PMID: 27854550 DOI: 10.1210/jc.2016-2322] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 11/16/2016] [Indexed: 02/13/2023]
Abstract
CONTEXT Signaling lymphocytic activation molecule family 1 (SLAMF1) is a costimulatory receptor expressed by most immune cells. Its role in autoimmune thyroid disease (AITD) is not well known. OBJECTIVE To analyze the expression and function of the costimulatory receptor SLAMF1 in lymphocytes of patients with AITD. DESIGN Cross-sectional, prospective, single-center study. SETTING Department of Endocrinology, Hospital Universitario de la Princesa, Madrid. PATIENTS Twenty-eight patients with AITD (17 with Graves disease and 11 with Hashimoto thyroiditis) and 21 controls. INTERVENTION Multiparametric flow cytometry and immunofluorescence techniques to analyze the expression of SLAMF1 in peripheral blood (n = 28) and thyroid tissue (n = 5) mononuclear cells. Assay of inhibition of cellular proliferation to study the function of SLAMF1 in CD4+CD25+ T regulatory (Treg) cells. MAIN OUTCOME MEASURE Expression levels and the function of SLAMF1 in lymphocytes in AITD patients and controls. RESULTS Expression of SLAMF1 was significantly increased in peripheral blood CD4+, T helper 17, and CD19+ B cells from AITD patients. Immunofluorescence microscopy detected the presence of SLAMF1+ lymphocytes in thyroid inflammatory cell infiltrate. Functional studies showed that SLAMF1 engagement in Treg cells increased their suppressive function in healthy controls but not in AITD patients. CONCLUSIONS The altered expression of SLAMF1, as well as its defective function observed in patients with AITD, may have a relevant role in the defective immune-regulatory function observed in this condition.
Collapse
Affiliation(s)
| | - Ana M Ramos-Levi
- Services of Endocrinology, Immunology and Molecular Biology Unit, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; and
| | - Ana Serrano-Somavilla
- Services of Endocrinology, Immunology and Molecular Biology Unit, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; and
| | - Rebeca Martínez-Hernández
- Services of Endocrinology, Immunology and Molecular Biology Unit, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; and
| | - Miguel Sampedro-Nuñez
- Services of Endocrinology, Immunology and Molecular Biology Unit, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; and
| | - Carmelina Di Pasquale
- Section of Endocrinology and Internal Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Roberto González-Amaro
- Department of Immunology, School of Medicine and
- Research Center of Health Sciences and Biomedicine, Universidad Autónoma de San Luis Potosí, 78210 S.L.P., Mexico
| | - Mónica Marazuela
- Services of Endocrinology, Immunology and Molecular Biology Unit, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, 28006 Madrid, Spain; and
| |
Collapse
|
40
|
Chen S, Cai C, Li Z, Liu G, Wang Y, Blonska M, Li D, Du J, Lin X, Yang M, Dong Z. Dissection of SAP-dependent and SAP-independent SLAM family signaling in NKT cell development and humoral immunity. J Exp Med 2017; 214:475-489. [PMID: 28049627 PMCID: PMC5294859 DOI: 10.1084/jem.20161312] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 11/29/2016] [Accepted: 12/12/2016] [Indexed: 12/27/2022] Open
Abstract
Chen et al. dissect SAP-dependent and SAP-independent SLAM family signaling in the regulation of NKT cell development and follicular T helper cell differentiation using a novel mouse model lacking all seven SLAM family receptors. Signaling lymphocytic activation molecule (SLAM)–associated protein (SAP) mutations in X-linked lymphoproliferative disease (XLP) lead to defective NKT cell development and impaired humoral immunity. Because of the redundancy of SLAM family receptors (SFRs) and the complexity of SAP actions, how SFRs and SAP mediate these processes remains elusive. Here, we examined NKT cell development and humoral immunity in mice completely deficient in SFR. We found that SFR deficiency severely impaired NKT cell development. In contrast to SAP deficiency, SFR deficiency caused no apparent defect in follicular helper T (TFH) cell differentiation. Intriguingly, the deletion of SFRs completely rescued the severe defect in TFH cell generation caused by SAP deficiency, whereas SFR deletion had a minimal effect on the defective NKT cell development in SAP-deficient mice. These findings suggest that SAP-dependent activating SFR signaling is essential for NKT cell selection; however, SFR signaling is inhibitory in SAP-deficient TFH cells. Thus, our current study revises our understanding of the mechanisms underlying T cell defects in patients with XLP.
Collapse
Affiliation(s)
- Shasha Chen
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Chenxu Cai
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Zehua Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Guangao Liu
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Yuande Wang
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Marzenna Blonska
- Department of Medicine, Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Dan Li
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Juan Du
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Xin Lin
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| | - Meixiang Yang
- Biomedical Translational Research Institute, Jinan University, Guangzhou 510632, China
| | - Zhongjun Dong
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100086, China
| |
Collapse
|
41
|
Ruffo E, Malacarne V, Larsen SE, Das R, Patrussi L, Wülfing C, Biskup C, Kapnick SM, Verbist K, Tedrick P, Schwartzberg PL, Baldari CT, Rubio I, Nichols KE, Snow AL, Baldanzi G, Graziani A. Inhibition of diacylglycerol kinase α restores restimulation-induced cell death and reduces immunopathology in XLP-1. Sci Transl Med 2016; 8:321ra7. [PMID: 26764158 DOI: 10.1126/scitranslmed.aad1565] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
X-linked lymphoproliferative disease (XLP-1) is an often-fatal primary immunodeficiency associated with the exuberant expansion of activated CD8(+) T cells after Epstein-Barr virus (EBV) infection. XLP-1 is caused by defects in signaling lymphocytic activation molecule (SLAM)-associated protein (SAP), an adaptor protein that modulates T cell receptor (TCR)-induced signaling. SAP-deficient T cells exhibit impaired TCR restimulation-induced cell death (RICD) and diminished TCR-induced inhibition of diacylglycerol kinase α (DGKα), leading to increased diacylglycerol metabolism and decreased signaling through Ras and PKCθ (protein kinase Cθ). We show that down-regulation of DGKα activity in SAP-deficient T cells restores diacylglycerol signaling at the immune synapse and rescues RICD via induction of the proapoptotic proteins NUR77 and NOR1. Pharmacological inhibition of DGKα prevents the excessive CD8(+) T cell expansion and interferon-γ production that occur in SAP-deficient mice after lymphocytic choriomeningitis virus infection without impairing lytic activity. Collectively, these data highlight DGKα as a viable therapeutic target to reverse the life-threatening EBV-associated immunopathology that occurs in XLP-1 patients.
Collapse
Affiliation(s)
- Elisa Ruffo
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Valeria Malacarne
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Sasha E Larsen
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Rupali Das
- Department of Physiology, Michigan State University, East Lansing, MI 48824, USA
| | - Laura Patrussi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, BS8 1TH Bristol, UK
| | - Christoph Biskup
- Biomolecular Photonics Group, Jena University Hospital, D 07740 Jena, Germany
| | - Senta M Kapnick
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Katherine Verbist
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Paige Tedrick
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Pamela L Schwartzberg
- Genetic Disease Research Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cosima T Baldari
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Ignacio Rubio
- Integrated Research and Treatment Center, Center for Sepsis Control and Care and Institute of Molecular Cell Biology, Center for Molecular Biomedicine, Jena University Hospital, D-07745 Jena, Germany
| | - Kim E Nichols
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrew L Snow
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Gianluca Baldanzi
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy
| | - Andrea Graziani
- Department of Translational Medicine and Institute for Research and Cure of Autoimmune Diseases, University of Piemonte Orientale, 28100 Novara, Italy. School of Medicine, University Vita e Salute San Raffaele, 20132 Milan, Italy.
| |
Collapse
|
42
|
Baldanzi G, Bettio V, Malacarne V, Graziani A. Diacylglycerol Kinases: Shaping Diacylglycerol and Phosphatidic Acid Gradients to Control Cell Polarity. Front Cell Dev Biol 2016; 4:140. [PMID: 27965956 PMCID: PMC5126041 DOI: 10.3389/fcell.2016.00140] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 11/14/2016] [Indexed: 12/24/2022] Open
Abstract
Diacylglycerol kinases (DGKs) terminate diacylglycerol (DAG) signaling and promote phosphatidic acid (PA) production. Isoform specific regulation of DGKs activity and localization allows DGKs to shape the DAG and PA gradients. The capacity of DGKs to constrain the areas of DAG signaling is exemplified by their role in defining the contact interface between T cells and antigen presenting cells: the immune synapse. Upon T cell receptor engagement, both DGK α and ζ metabolize DAG at the immune synapse thus constraining DAG signaling. Interestingly, their activity and localization are not fully redundant because DGKζ activity metabolizes the bulk of DAG in the cell, whereas DGKα limits the DAG signaling area localizing specifically at the periphery of the immune synapse. When DGKs terminate DAG signaling, the local PA production defines a new signaling domain, where PA recruits and activates a second wave of effector proteins. The best-characterized example is the role of DGKs in protrusion elongation and cell migration. Indeed, upon growth factor stimulation, several DGK isoforms, such as α, ζ, and γ, are recruited and activated at the plasma membrane. Here, local PA production controls cell migration by finely modulating cytoskeletal remodeling and integrin recycling. Interestingly, DGK-produced PA also controls the localization and activity of key players in cell polarity such as aPKC, Par3, and integrin β1. Thus, T cell polarization and directional migration may be just two instances of the general contribution of DGKs to the definition of cell polarity by local specification of membrane identity signaling.
Collapse
Affiliation(s)
- Gianluca Baldanzi
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Institute for Research and Cure of Autoimmune DiseasesNovara, Italy
| | - Valentina Bettio
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Institute for Research and Cure of Autoimmune DiseasesNovara, Italy
| | - Valeria Malacarne
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Division of Experimental Oncology, School of Medicine, University Vita e Salute San RaffaeleMilan, Italy
| | - Andrea Graziani
- Department of Translational Medicine, University of Piemonte OrientaleNovara, Italy; Division of Experimental Oncology, School of Medicine, University Vita e Salute San RaffaeleMilan, Italy
| |
Collapse
|
43
|
Chen SS, Hu Z, Zhong XP. Diacylglycerol Kinases in T Cell Tolerance and Effector Function. Front Cell Dev Biol 2016; 4:130. [PMID: 27891502 PMCID: PMC5103287 DOI: 10.3389/fcell.2016.00130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/27/2016] [Indexed: 12/21/2022] Open
Abstract
Diacylglycerol kinases (DGKs) are a family of enzymes that regulate the relative levels of diacylglycerol (DAG) and phosphatidic acid (PA) in cells by phosphorylating DAG to produce PA. Both DAG and PA are important second messengers cascading T cell receptor (TCR) signal by recruiting multiple effector molecules, such as RasGRP1, PKCθ, and mTOR. Studies have revealed important physiological functions of DGKs in the regulation of receptor signaling and the development and activation of immune cells. In this review, we will focus on recent progresses in our understanding of two DGK isoforms, α and ζ, in CD8 T effector and memory cell differentiation, regulatory T cell development and function, and invariant NKT cell development and effector lineage differentiation.
Collapse
Affiliation(s)
- Shelley S Chen
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical Center Durham, NC, USA
| | - Zhiming Hu
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical CenterDurham, NC, USA; Institute of Biotherapy, School of Biotechnology, Southern Medical UniversityGuangzhou, China
| | - Xiao-Ping Zhong
- Division of Allergy and Immunology, Department of Pediatrics, Duke University Medical CenterDurham, NC, USA; Department of Immunology, Duke University Medical CenterDurham, NC, USA; Hematologic Malignancies and Cellular Therapies Program, Duke Cancer Institute, Duke University Medical CenterDurham, NC, USA
| |
Collapse
|
44
|
Down-regulation of MicroRNA-31 in CD4+ T Cells Contributes to Immunosuppression in Human Sepsis by Promoting TH2 Skewing. Anesthesiology 2016; 124:908-22. [PMID: 26978146 DOI: 10.1097/aln.0000000000001031] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
BACKGROUND Immunosuppression has been recognized as a major cause of sepsis-related mortality. Currently, there is much interest in identifying central hubs controlling septic immunoparalysis. In this context, in this study, the authors investigate the role of microRNA-31 (miR-31) as a regulator of T cell functions. METHODS Primary human T cells were separated from healthy volunteers (n = 16) and from sepsis patients by magnetic beads (n = 23). Expression of mRNA/microRNA (miRNA) was determined by real-time polymerase chain reaction. Gene silencing was performed by small interfering RNA transfection, and miRNA-binding sites were validated by reporter gene assays. Effects of miR-31 or anti-miR-31 transfection were analyzed by real-time polymerase chain reaction, Western blotting, and flow cytometry. RESULTS Overexpression of miR-31 in stimulated CD4 T cells promoted a proinflammatory phenotype with increased levels of interferon-γ (1.63 ± 0.43; P = 0.001; means ± SD) and reduced expression of interleukin (IL)-2 (0.66 ± 0.19; P = 0.005) and IL-4 (0.80 ± 0.2; P = 0.0001). In contrast, transfection of anti-miR-31 directed cells toward a TH2 phenotype. Effects on IL-2 and IL-4 were mediated by targeting of nuclear factor-kappa B-inducing kinase and factor-inhibiting hypoxia-inducible factor-1α. Interferon-γ, however, was influenced via control of signaling lymphocytic activation molecule (SLAM)-associated protein, an essential adaptor molecule of immunomodulatory SLAM receptor signaling, which was identified as a novel target gene of miR-31. In sepsis patients, an epigenetically driven down-regulation of miR-31 was found (0.44 ± 0.25; P = 0.0001), associated with increased nuclear factor-kappa B-inducing kinase, factor-inhibiting hypoxia-inducible factor-1α, SLAM-associated protein expression, and a cytokine shift toward TH2. CONCLUSIONS In this study, the authors provide novel evidence of miR-31 as an emerging key posttranscriptional regulator of sepsis-associated immunosuppression. The study results contribute to a further understanding of septic immunoparalysis and provide new perspectives on miRNA-based diagnostic approaches.
Collapse
|
45
|
Michel ML, Lenoir C, Massot B, Diem S, Pasquier B, Sawa S, Rignault-Bricard R, Lehuen A, Eberl G, Veillette A, Leite-de-Moraes M, Latour S. SLAM-associated protein favors the development of iNKT2 over iNKT17 cells. Eur J Immunol 2016; 46:2162-74. [PMID: 27338553 DOI: 10.1002/eji.201646313] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 05/11/2016] [Accepted: 06/20/2016] [Indexed: 11/09/2022]
Abstract
Invariant NKT (iNKT) cells differentiate in the thymus into three distinct lineages defined by their cytokine and transcription factor expression. Signaling lymphocyte activation molecule (SLAM)-associated protein (SAP) is essential for early stages of iNKT cell development, but its role during terminal differentiation of iNKT1, iNKT2, or iNKT17 cells remains unclear. Taking advantage of SAP-deficient mice expressing a Vα14-Jα18 TCRα transgene, we found that SAP is critical not only for IL-4 production but also for the terminal differentiation of IL-4-producing iNKT2 cells. Furthermore, without SAP, the IL-17 producing subset is expanded, while IFN-γ-producing iNKT1 differentiation is only moderately compromised. Lack of SAP reduced the expression of the transcription factors GATA-3 and promyelocytic leukemia zinc finger, but enhanced the levels of retinoic acid receptor-related orphan receptor γt. In the absence of SAP, lineage commitment was actually shifted toward the emergence of iNKT17 over iNKT2 cells. Collectively, our data unveil a new critical regulatory function for SAP in thymic iNKT cell fate decisions.
Collapse
Affiliation(s)
- Marie-Laure Michel
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Christelle Lenoir
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Institut des Maladies Génétiques, Hôpital Necker-Enfants Malades, Paris, France
| | - Bérangère Massot
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Séverine Diem
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Benoit Pasquier
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Institut des Maladies Génétiques, Hôpital Necker-Enfants Malades, Paris, France
| | - Shinichiro Sawa
- Lymphoid Tissue Development Unit, Institut Pasteur, Paris, France
| | - Rachel Rignault-Bricard
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Agnès Lehuen
- Hôpital Cochin-St. Vincent de Paul, INSERM UMR 986, Paris, France
| | - Gérard Eberl
- Lymphoid Tissue Development Unit, Institut Pasteur, Paris, France
| | - André Veillette
- Laboratory of Molecular Oncology, Clinical Research Institute of Montréal, Québec, Canada
| | - Maria Leite-de-Moraes
- Laboratory of Immunoregulation and Immunopathology, Institut Necker-Enfants Malades, CNRS UMR 8253 and INSERM UMR 1151, Paris, France.,Université Paris Descartes Sorbonne Paris Cité, Paris, France
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and EBV Susceptibility, INSERM UMR 1163, Institut des Maladies Génétiques, Hôpital Necker-Enfants Malades, Paris, France. .,Institut Imagine, Université Paris Descartes Sorbonne Paris Cité, Paris, France.
| |
Collapse
|
46
|
Huang B, Gomez-Rodriguez J, Preite S, Garrett LJ, Harper UL, Schwartzberg PL. CRISPR-Mediated Triple Knockout of SLAMF1, SLAMF5 and SLAMF6 Supports Positive Signaling Roles in NKT Cell Development. PLoS One 2016; 11:e0156072. [PMID: 27258160 PMCID: PMC4892526 DOI: 10.1371/journal.pone.0156072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 04/08/2016] [Indexed: 01/04/2023] Open
Abstract
The SLAM family receptors contribute to diverse aspects of lymphocyte biology and signal via the small adaptor molecule SAP. Mutations affecting SAP lead to X-linked lymphoproliferative syndrome Type 1, a severe immunodysregulation characterized by fulminant mononucleosis, dysgammaglobulinemia, and lymphoproliferation/lymphomas. Patients and mice having mutations affecting SAP also lack germinal centers due to a defect in T:B cell interactions and are devoid of invariant NKT (iNKT) cells. However, which and how SLAM family members contribute to these phenotypes remains uncertain. Three SLAM family members: SLAMF1, SLAMF5 and SLAMF6, are highly expressed on T follicular helper cells and germinal center B cells. SLAMF1 and SLAMF6 are also implicated in iNKT development. Although individual receptor knockout mice have limited iNKT and germinal center phenotypes compared to SAP knockout mice, the generation of multi-receptor knockout mice has been challenging, due to the genomic linkage of the genes encoding SLAM family members. Here, we used Cas9/CRISPR-based mutagenesis to generate mutations simultaneously in Slamf1, Slamf5 and Slamf6. Genetic disruption of all three receptors in triple-knockout mice (TKO) did not grossly affect conventional T or B cell development and led to mild defects in germinal center formation post-immunization. However, the TKO worsened defects in iNKT cells development seen in SLAMF6 single gene-targeted mice, supporting data on positive signaling and potential redundancy between these receptors.
Collapse
Affiliation(s)
- Bonnie Huang
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Julio Gomez-Rodriguez
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Silvia Preite
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Lisa J. Garrett
- Embryonic Stem Cell and Transgenic Mouse Core, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Ursula L. Harper
- Genomics Core, National Human Genome Research Institute, National Human Genome Research Institute, Bethesda, Maryland, United States of America
| | - Pamela L. Schwartzberg
- Genetic Disease Research Branch, National Human Genome Research Institute, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
47
|
Karampetsou MP, Comte D, Kis-Toth K, Terhorst C, Kyttaris VC, Tsokos GC. Decreased SAP Expression in T Cells from Patients with Systemic Lupus Erythematosus Contributes to Early Signaling Abnormalities and Reduced IL-2 Production. THE JOURNAL OF IMMUNOLOGY 2016; 196:4915-24. [PMID: 27183584 DOI: 10.4049/jimmunol.1501523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 04/06/2016] [Indexed: 11/19/2022]
Abstract
T cells from patients with systemic lupus erythematosus (SLE) display a number of abnormalities, including increased early signaling events following engagement of the TCR. Signaling lymphocytic activation molecule family cell surface receptors and the X-chromosome-defined signaling lymphocytic activation molecule-associated protein (SAP) adaptor are important in the development of several immunocyte lineages and modulating the immune response. We present evidence that SAP protein levels are decreased in T cells and in their main subsets isolated from 32 women and three men with SLE, independent of disease activity. In SLE T cells, SAP protein is also subject to increased degradation by caspase-3. Forced expression of SAP in SLE T cells normalized IL-2 production, calcium (Ca(2+)) responses, and tyrosine phosphorylation of a number of proteins. Exposure of normal T cells to SLE serum IgG, known to contain anti-CD3/TCR Abs, resulted in SAP downregulation. We conclude that SLE T cells display reduced levels of the adaptor protein SAP, probably as a result of continuous T cell activation and degradation by caspase-3. Restoration of SAP levels in SLE T cells corrects the overexcitable lupus T cell phenotype.
Collapse
Affiliation(s)
- Maria P Karampetsou
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Denis Comte
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215; Service d'Immunologie et Allergie, Centre Hospitalier Universitaire Vaudois, CH 1011 Lausanne, Switzerland; and
| | - Katalin Kis-Toth
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - Vasileios C Kyttaris
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215
| | - George C Tsokos
- Division of Rheumatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215;
| |
Collapse
|
48
|
van Panhuys N. TCR Signal Strength Alters T-DC Activation and Interaction Times and Directs the Outcome of Differentiation. Front Immunol 2016; 7:6. [PMID: 26834747 PMCID: PMC4725058 DOI: 10.3389/fimmu.2016.00006] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 01/08/2016] [Indexed: 12/13/2022] Open
Abstract
The ability of CD4+ T cells to differentiate into effector subsets underpins their ability to shape the immune response and mediate host protection. During T cell receptor-induced activation of CD4+ T cells, both the quality and quantity of specific activatory peptide/MHC ligands have been shown to control the polarization of naive CD4+ T cells in addition to co-stimulatory and cytokine-based signals. Recently, advances in two--photon microscopy and tetramer-based cell tracking methods have allowed investigators to greatly extend the study of the role of TCR signaling in effector differentiation under in vivo conditions. In this review, we consider data from recent in vivo studies analyzing the role of TCR signal strength in controlling the outcome of CD4+ T cell differentiation and discuss the role of TCR in controlling the critical nature of CD4+ T cell interactions with dendritic cells during activation. We further propose a model whereby TCR signal strength controls the temporal aspects of T-DC interactions and the implications for this in mediating the downstream signaling events, which influence the transcriptional and epigenetic regulation of effector differentiation.
Collapse
Affiliation(s)
- Nicholas van Panhuys
- Division of Experimental Biology, Sidra Medical and Research Center , Doha , Qatar
| |
Collapse
|
49
|
van Driel BJ, Liao G, Engel P, Terhorst C. Responses to Microbial Challenges by SLAMF Receptors. Front Immunol 2016; 7:4. [PMID: 26834746 PMCID: PMC4718992 DOI: 10.3389/fimmu.2016.00004] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/06/2016] [Indexed: 12/24/2022] Open
Abstract
The SLAMF family (SLAMF) of cell surface glycoproteins is comprised of nine glycoproteins and while SLAMF1, 3, 5, 6, 7, 8, and 9 are self-ligand receptors, SLAMF2 and SLAMF4 interact with each other. Their interactions induce signal transduction networks in trans, thereby shaping immune cell-cell communications. Collectively, these receptors modulate a wide range of functions, such as myeloid cell and lymphocyte development, and T and B cell responses to microbes and parasites. In addition, several SLAMF receptors serve as microbial sensors, which either positively or negatively modulate the function of macrophages, dendritic cells, neutrophils, and NK cells in response to microbial challenges. The SLAMF receptor-microbe interactions contribute both to intracellular microbicidal activity as well as to migration of phagocytes to the site of inflammation. In this review, we describe the current knowledge on how the SLAMF receptors and their specific adapters SLAM-associated protein and EAT-2 regulate innate and adaptive immune responses to microbes.
Collapse
Affiliation(s)
- Boaz Job van Driel
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Gongxian Liao
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Pablo Engel
- Immunology Unit, Department of Cell Biology, Immunology and Neurosciences, Medical School, University of Barcelona , Barcelona , Spain
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
50
|
Adair P, Kim YC, Pratt KP, Scott DW. Avidity of human T cell receptor engineered CD4(+) T cells drives T-helper differentiation fate. Cell Immunol 2015; 299:30-41. [PMID: 26653006 DOI: 10.1016/j.cellimm.2015.10.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2015] [Revised: 10/17/2015] [Accepted: 10/21/2015] [Indexed: 12/18/2022]
Abstract
The role of the T cell receptor (TCR) in antigen recognition and activation of T lymphocytes is well established. However, how the TCR affects T-helper differentiation/skewing is less well understood, particularly for human CD4(+) (CD4) T cell subsets. Here we investigate the role of TCR specific antigen avidity in differentiation and maintenance of human Th1, Th2 and Th17 subsets. Two human TCRs, both specific for the same peptide antigen but with different avidities, were cloned and expressed in human CD4 T cells. These TCR engineered cells were then stimulated with specific antigen in unskewed and T-helper skewed conditions. We show that TCR avidity can control the percentage of IL-4 and IFN-γ co-expression in unskewed TCR engineered cells, that effector function can be maintained in a TCR avidity-dependent manner in skewed TCR engineered cells, and that increased TCR avidity can accelerate Th1 skewing of TCR engineered cells.
Collapse
Affiliation(s)
- Patrick Adair
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 21201, USA; Molecular Medicine Program, University of Maryland School of Medicine, Baltimore, MD 20814, USA
| | - Yong Chan Kim
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 21201, USA
| | - Kathleen P Pratt
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 21201, USA
| | - David W Scott
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 21201, USA
| |
Collapse
|