1
|
Naik AK, Dauphars DJ, Corbett E, Simpson L, Schatz DG, Krangel MS. RORγt up-regulates RAG gene expression in DP thymocytes to expand the Tcra repertoire. Sci Immunol 2024; 9:eadh5318. [PMID: 38489350 PMCID: PMC11005092 DOI: 10.1126/sciimmunol.adh5318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 02/21/2024] [Indexed: 03/17/2024]
Abstract
Recombination activating gene (RAG) expression increases as thymocytes transition from the CD4-CD8- double-negative (DN) to the CD4+CD8+ double-positive (DP) stage, but the physiological importance and mechanism of transcriptional up-regulation are unknown. Here, we show that a DP-specific component of the recombination activating genes antisilencer (DPASE) provokes elevated RAG expression in DP thymocytes. Mouse DP thymocytes lacking the DPASE display RAG expression equivalent to that in DN thymocytes, but this supports only a partial Tcra repertoire due to inefficient secondary Vα-Jα rearrangement. These data indicate that RAG up-regulation is required for a replete Tcra repertoire and that RAG expression is fine-tuned during lymphocyte development to meet the requirements of distinct antigen receptor loci. We further show that transcription factor RORγt directs RAG up-regulation in DP thymocytes by binding to the DPASE and that RORγt influences the Tcra repertoire by binding to the Tcra enhancer. These data, together with prior work showing RORγt to control Tcra rearrangement by regulating DP thymocyte proliferation and survival, reveal RORγt to orchestrate multiple pathways that support formation of the Tcra repertoire.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Danielle J Dauphars
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - Elizabeth Corbett
- Department of Immunobiology and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Lunden Simpson
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| | - David G Schatz
- Department of Immunobiology and Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, CT, USA
| | - Michael S Krangel
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
2
|
Florova M, Abreu-Mota T, Paesen GC, Beetschen AS, Cornille K, Marx AF, Narr K, Sahin M, Dimitrova M, Swarnalekha N, Beil-Wagner J, Savic N, Pelczar P, Buch T, King CG, Bowden TA, Pinschewer DD. Central tolerance shapes the neutralizing B cell repertoire against a persisting virus in its natural host. Proc Natl Acad Sci U S A 2024; 121:e2318657121. [PMID: 38446855 PMCID: PMC10945855 DOI: 10.1073/pnas.2318657121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Viral mimicry of host cell structures has been postulated to curtail the B cell receptor (BCR) repertoire against persisting viruses through tolerance mechanisms. This concept awaits, however, experimental testing in a setting of natural virus-host relationship. We engineered mouse models expressing a monoclonal BCR specific for the envelope glycoprotein of lymphocytic choriomeningitis virus (LCMV), a naturally persisting mouse pathogen. When the heavy chain of the LCMV-neutralizing antibody KL25 was paired with its unmutated ancestor light chain, most B cells underwent receptor editing, a behavior reminiscent of autoreactive clones. In contrast, monoclonal B cells expressing the same heavy chain in conjunction with the hypermutated KL25 light chain did not undergo receptor editing but exhibited low levels of surface IgM, suggesting that light chain hypermutation had lessened KL25 autoreactivity. Upon viral challenge, these IgMlow cells were not anergic but up-regulated IgM, participated in germinal center reactions, produced antiviral antibodies, and underwent immunoglobulin class switch as well as further affinity maturation. These studies on a persisting virus in its natural host species suggest that central tolerance mechanisms prune the protective antiviral B cell repertoire.
Collapse
Affiliation(s)
- Marianna Florova
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Tiago Abreu-Mota
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Guido C. Paesen
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Anna Sophia Beetschen
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Karen Cornille
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Anna-Friederike Marx
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Kerstin Narr
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Mehmet Sahin
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Mirela Dimitrova
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| | - Nivedya Swarnalekha
- Department of Biomedicine, Immune Cell Biology Laboratory, University Hospital Basel, Basel4031, Switzerland
| | - Jane Beil-Wagner
- Institute of Laboratory Animal Science, University of Zurich, Zurich8093, Switzerland
| | - Natasa Savic
- ETH Phenomics Center, ETH Zürich, Zürich8093, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, Basel4001, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich8093, Switzerland
| | - Carolyn G. King
- Department of Biomedicine, Immune Cell Biology Laboratory, University Hospital Basel, Basel4031, Switzerland
| | - Thomas A. Bowden
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, United Kingdom
| | - Daniel D. Pinschewer
- Division of Experimental Virology, Department of Biomedicine, University of Basel, Basel4009, Switzerland
| |
Collapse
|
3
|
Schaffer AM, Fiala GJ, Hils M, Natali E, Babrak L, Herr LA, Romero-Mulero MC, Cabezas-Wallscheid N, Rizzi M, Miho E, Schamel WWA, Minguet S. Kidins220 regulates the development of B cells bearing the λ light chain. eLife 2024; 13:e83943. [PMID: 38271217 PMCID: PMC10810608 DOI: 10.7554/elife.83943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/27/2023] [Indexed: 01/27/2024] Open
Abstract
The ratio between κ and λ light chain (LC)-expressing B cells varies considerably between species. We recently identified Kinase D-interacting substrate of 220 kDa (Kidins220) as an interaction partner of the BCR. In vivo ablation of Kidins220 in B cells resulted in a marked reduction of λLC-expressing B cells. Kidins220 knockout B cells fail to open and recombine the genes of the Igl locus, even in genetic scenarios where the Igk genes cannot be rearranged or where the κLC confers autoreactivity. Igk gene recombination and expression in Kidins220-deficient B cells is normal. Kidins220 regulates the development of λLC B cells by enhancing the survival of developing B cells and thereby extending the time-window in which the Igl locus opens and the genes are rearranged and transcribed. Further, our data suggest that Kidins220 guarantees optimal pre-BCR and BCR signaling to induce Igl locus opening and gene recombination during B cell development and receptor editing.
Collapse
Affiliation(s)
- Anna-Maria Schaffer
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| | - Gina Jasmin Fiala
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| | - Miriam Hils
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
- Department of Dermatology and Allergy Biederstein, School of Medicine, Technical University of MunichMunichGermany
| | - Eriberto Natali
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW 15 University of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| | - Lmar Babrak
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW 15 University of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
| | - Laurenz Alexander Herr
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| | - Mari Carmen Romero-Mulero
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
| | - Nina Cabezas-Wallscheid
- Max Planck Institute of Immunobiology and EpigeneticsFreiburgGermany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
| | - Marta Rizzi
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
- CIBSS – Centre for Integrative Biological Signalling Studies, University of FreiburgFreiburgGermany
- Division of Clinical and Experimental Immunology, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
- Department of Rheumatology and Clinical Immunology, University Medical Center Freiburg, Faculty of Medicine, University of FreiburgFreiburgGermany
| | - Enkelejda Miho
- Institute of Medical Engineering and Medical Informatics, School of Life Sciences, FHNW 15 University of Applied Sciences and Arts Northwestern SwitzerlandMuttenzSwitzerland
- aiNET GmbHBaselSwitzerland
- SIB Swiss Institute of BioinformaticsLausanneSwitzerland
| | - Wolfgang WA Schamel
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| | - Susana Minguet
- Faculty of Biology, Albert-Ludwigs-University of FreiburgFreiburgGermany
- Signalling Research Centers BIOSS and CIBSS, University of FreiburgFreiburgGermany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical FacultyFreiburgGermany
| |
Collapse
|
4
|
Allen D, Knop O, Itkowitz B, Kalter N, Rosenberg M, Iancu O, Beider K, Lee YN, Nagler A, Somech R, Hendel A. CRISPR-Cas9 engineering of the RAG2 locus via complete coding sequence replacement for therapeutic applications. Nat Commun 2023; 14:6771. [PMID: 37891182 PMCID: PMC10611791 DOI: 10.1038/s41467-023-42036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
RAG2-SCID is a primary immunodeficiency caused by mutations in Recombination-activating gene 2 (RAG2), a gene intimately involved in the process of lymphocyte maturation and function. ex-vivo manipulation of a patient's own hematopoietic stem and progenitor cells (HSPCs) using CRISPR-Cas9/rAAV6 gene editing could provide a therapeutic alternative to the only current treatment, allogeneic hematopoietic stem cell transplantation (HSCT). Here we show an innovative RAG2 correction strategy that replaces the entire endogenous coding sequence (CDS) for the purpose of preserving the critical endogenous spatiotemporal gene regulation and locus architecture. Expression of the corrective transgene leads to successful development into CD3+TCRαβ+ and CD3+TCRγδ+ T cells and promotes the establishment of highly diverse TRB and TRG repertoires in an in-vitro T-cell differentiation platform. Thus, our proof-of-concept study holds promise for safer gene therapy techniques of tightly regulated genes.
Collapse
Affiliation(s)
- Daniel Allen
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Orli Knop
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Bryan Itkowitz
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Nechama Kalter
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Michael Rosenberg
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Ortal Iancu
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel
| | - Katia Beider
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
| | - Yu Nee Lee
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Arnon Nagler
- The Division of Hematology and Bone Marrow Transplantation, Chaim Sheba Medical Center, Tel-Hashomer, Ramat Gan, 5266202, Israel
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
| | - Raz Somech
- Sackler Faculty of Medicine, Tel Aviv University, 6997801, Tel Aviv, Israel
- Pediatric Department A and the Immunology Service, Jeffrey Modell Foundation Center, Edmond and Lily Safra Children's Hospital, Sheba Medical Center, Ramat Gan, 5266202, Israel
| | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|
5
|
McCaleb MR, Miranda AM, Ratliff KC, Torres RM, Pelanda R. CD19 Is Internalized Together with IgM in Proportion to B Cell Receptor Stimulation and Is Modulated by Phosphatidylinositol 3-Kinase in Bone Marrow Immature B Cells. Immunohorizons 2023; 7:49-63. [PMID: 36637517 PMCID: PMC10074640 DOI: 10.4049/immunohorizons.2200092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 01/14/2023] Open
Abstract
Newly generated immature B cells that bind self-antigen with high avidity arrest in differentiation and undergo central tolerance via receptor editing and clonal deletion. These autoreactive immature B cells also express low surface levels of the coreceptor CD19, a key activator of the PI3K pathway. Signals emanating from both CD19 and PI3K are known to be critical for attenuating receptor editing and selecting immature B cells into the periphery. However, the mechanisms that modulate CD19 expression at this stage of B cell development have not yet been resolved. Using in vivo and in vitro models, we demonstrate that Cd19 de novo gene transcription and translation do not significantly contribute to the differences in CD19 surface expression in mouse autoreactive and nonautoreactive immature B cells. Instead, CD19 downregulation is induced by BCR stimulation in proportion to BCR engagement, and the remaining surface IgM and CD19 molecules promote intracellular PI3K-AKT activity in proportion to their level of expression. The internalized CD19 is degraded with IgM by the lysosome, but inhibiting lysosome-mediated protein degradation only slightly improves surface CD19. In fact, CD19 is restored only upon Ag removal. Our data also reveal that the PI3K-AKT pathway positively modulates CD19 surface expression in immature B cells via a mechanism that is independent of inhibition of FOXO1 and its role on Cd19 gene transcription while is dependent on mTORC1.
Collapse
Affiliation(s)
- Megan R. McCaleb
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; and
| | - Anjelica M. Miranda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; and
| | - Kaysie C. Ratliff
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; and
| | - Raul M. Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; and
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO; and
- Department of Immunology and Genomic Medicine, National Jewish Health, Denver, CO
| |
Collapse
|
6
|
Okoreeh MK, Kennedy DE, Emmanuel AO, Veselits M, Moshin A, Ladd RH, Erickson S, McLean KC, Madrigal B, Nemazee D, Maienschein-Cline M, Mandal M, Clark MR. Asymmetrical forward and reverse developmental trajectories determine molecular programs of B cell antigen receptor editing. Sci Immunol 2022; 7:eabm1664. [PMID: 35930652 PMCID: PMC9636592 DOI: 10.1126/sciimmunol.abm1664] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
During B lymphopoiesis, B cell progenitors progress through alternating and mutually exclusive stages of clonal expansion and immunoglobulin (Ig) gene rearrangements. Great diversity is generated through the stochastic recombination of Ig gene segments encoding heavy and light chain variable domains. However, this commonly generates autoreactivity. Receptor editing is the predominant tolerance mechanism for self-reactive B cells in the bone marrow (BM). B cell receptor editing rescues autoreactive B cells from negative selection through renewed light chain recombination first at Igκ then Igλ loci. Receptor editing depends on BM microenvironment cues and key transcription factors such as NF-κB, FOXO, and E2A. The specific BM factor required for receptor editing is unknown. Furthermore, how transcription factors coordinate these developmental programs to promote usage of the λ chain remains poorly defined. Therefore, we used two mouse models that recapitulate pathways by which Igλ light chain-positive B cells develop. The first has deleted J kappa (Jκ) genes and hence models Igλ expression resulting from failed Igκ recombination (Igκdel). The second models autoreactivity by ubiquitous expression of a single-chain chimeric anti-Igκ antibody (κ-mac). Here, we demonstrated that autoreactive B cells transit asymmetric forward and reverse developmental trajectories. This imparted a unique epigenetic landscape on small pre-B cells, which opened chromatin to transcription factors essential for Igλ recombination. The consequences of this asymmetric developmental path were both amplified and complemented by CXCR4 signaling. These findings reveal how intrinsic molecular programs integrate with extrinsic signals to drive receptor editing.
Collapse
Affiliation(s)
- Michael K. Okoreeh
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
- Growth, Development, Disabilities Training program (GDDTP), Pritzker School of Medicine, University of Chicago, IL, 60637, USA
| | - Domenick E. Kennedy
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
- Present Address: Drug Discovery Science and Technology, Discovery Platform Technologies, Chemical Biology and Emerging Therapeutics, AbbVie, North Chicago, IL, United States
| | - Akinola Olumide Emmanuel
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| | - Margaret Veselits
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| | - Azam Moshin
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| | - Robert H. Ladd
- Cytometry and Antibody Technologies Facility, University of Chicago, Chicago, IL, 60637, USA
| | - Steven Erickson
- Department of Pathology, University of Chicago, Chicago, IL, 60637, USA
| | - Kaitlin C. McLean
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| | - Brianna Madrigal
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
| | - David Nemazee
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Malay Mandal
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| | - Marcus R. Clark
- Department of Medicine, Section of Rheumatology, University of Chicago, Chicago, IL, 60637, USA
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, 60637, USA
| |
Collapse
|
7
|
Greaves SA, Peterson JN, Strauch P, Torres RM, Pelanda R. Active PI3K abrogates central tolerance in high-avidity autoreactive B cells. J Exp Med 2019; 216:1135-1153. [PMID: 30948496 PMCID: PMC6504226 DOI: 10.1084/jem.20181652] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 01/23/2019] [Accepted: 03/22/2019] [Indexed: 01/02/2023] Open
Abstract
High-avidity autoreactive B cells are typically removed by central tolerance mechanisms in the bone marrow. Greaves et al. demonstrate that B cell–intrinsic expression of active PI3Kα prevents central tolerance and effectively promotes differentiation and activation of high-avidity autoreactive B cells in the periphery. Autoreactive B cells that bind self-antigen with high avidity in the bone marrow undergo mechanisms of central tolerance that prevent their entry into the peripheral B cell population. These mechanisms are breached in many autoimmune patients, increasing their risk of B cell–mediated autoimmune diseases. Resolving the molecular pathways that can break central B cell tolerance could therefore provide avenues to diminish autoimmunity. Here, we show that B cell–intrinsic expression of a constitutively active form of PI3K-P110α by high-avidity autoreactive B cells of mice completely abrogates central B cell tolerance and further promotes these cells to escape from the bone marrow, differentiate in peripheral tissue, and undergo activation in response to self-antigen. Upon stimulation with T cell help factors, these B cells secrete antibodies in vitro but remain unable to secrete autoantibodies in vivo. Overall, our data demonstrate that activation of the PI3K pathway leads high-avidity autoreactive B cells to breach central, but not late, stages of peripheral tolerance.
Collapse
Affiliation(s)
- Sarah A Greaves
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO
| | - Jacob N Peterson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO
| | - Pamela Strauch
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO.,Department of Biomedical Research, National Jewish Health, Denver, CO
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Anschutz Medical Campus, Aurora, CO .,Department of Biomedical Research, National Jewish Health, Denver, CO
| |
Collapse
|
8
|
Naik AK, Byrd AT, Lucander ACK, Krangel MS. Hierarchical assembly and disassembly of a transcriptionally active RAG locus in CD4 +CD8 + thymocytes. J Exp Med 2018; 216:231-243. [PMID: 30545902 PMCID: PMC6314527 DOI: 10.1084/jem.20181402] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/29/2018] [Accepted: 11/21/2018] [Indexed: 01/17/2023] Open
Abstract
Naik et al. show that GATA3, Runx1, and E2A are essential for hierarchical assembly of a transcriptionally active RAG locus chromatin hub in CD4+CD8+ thymocytes. Signal-dependent down-regulation of RAG expression is associated with hub disassembly and depends on Ikaros. Expression of Rag1 and Rag2 is tightly regulated in developing T cells to mediate TCR gene assembly. Here we have investigated the molecular mechanisms governing the assembly and disassembly of a transcriptionally active RAG locus chromatin hub in CD4+CD8+ thymocytes. Rag1 and Rag2 gene expression in CD4+CD8+ thymocytes depends on Rag1 and Rag2 promoter activation by a distant antisilencer element (ASE). We identify GATA3 and E2A as critical regulators of the ASE, and Runx1 and E2A as critical regulators of the Rag1 promoter. We reveal hierarchical assembly of a transcriptionally active chromatin hub containing the ASE and RAG promoters, with Rag2 recruitment and expression dependent on assembly of a functional ASE–Rag1 framework. Finally, we show that signal-dependent down-regulation of RAG gene expression in CD4+CD8+ thymocytes depends on Ikaros and occurs with disassembly of the RAG locus chromatin hub. Our results provide important new insights into the molecular mechanisms that orchestrate RAG gene expression in developing T cells.
Collapse
Affiliation(s)
- Abani Kanta Naik
- Department of Immunology, Duke University Medical Center, Durham, NC
| | - Aaron T Byrd
- Department of Immunology, Duke University Medical Center, Durham, NC
| | | | - Michael S Krangel
- Department of Immunology, Duke University Medical Center, Durham, NC
| |
Collapse
|
9
|
Schabla NM, Perry GA, Palmer VL, Swanson PC. VprBP (DCAF1) Regulates RAG1 Expression Independently of Dicer by Mediating RAG1 Degradation. THE JOURNAL OF IMMUNOLOGY 2018; 201:930-939. [PMID: 29925675 DOI: 10.4049/jimmunol.1800054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 06/03/2018] [Indexed: 12/21/2022]
Abstract
The assembly of Ig genes in developing B lymphocytes by V(D)J recombination is initiated by the RAG1-RAG2 endonuclease complex. We previously identified an interaction between RAG1 and viral protein R binding protein (VprBP) (also known as DNA damage binding protein 1 cullin 4-associated factor 1 [DCAF1]), a substrate receptor for the cullin 4-really interesting new gene (RING) E3 ubiquitin ligase (CRL4). We report in this article that in mice, B cell-intrinsic loss of VprBP increases RAG1 protein levels and disrupts expression of the endoribonuclease Dicer, which is essential for microRNA maturation. Rag1/2 transcription is known to be derepressed by loss of microRNA-mediated suppression of phosphatase and tensin homolog, raising the possibility that the elevated level of RAG1 observed in VprBP-deficient B cells is caused indirectly by the loss of Dicer. However, we show that VprBP restrains RAG1 expression posttranscriptionally and independently of Dicer. Specifically, loss of VprBP stabilizes RAG1 protein, which we show is normally degraded via a mechanism requiring both 20S proteasome and cullin-RING E3 ubiquitin ligase activity. Furthermore, we show that RAG1 stabilization through small molecule inhibition of cullin-RING E3 ubiquitin ligase activation promotes V(D)J recombination in a murine pre-B cell line. Thus, in addition to identifying a role for VprBP in maintaining Dicer levels in B cells, our findings reveal the basis for RAG1 turnover and provide evidence that the CRL4VprBP(DCAF1) complex functions to maintain physiological levels of V(D)J recombination.
Collapse
Affiliation(s)
- N Max Schabla
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| | - Greg A Perry
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| | - Victoria L Palmer
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| | - Patrick C Swanson
- Department of Medical Microbiology and Immunology, Creighton University, Omaha, NE 68178
| |
Collapse
|
10
|
Greaves SA, Peterson JN, Torres RM, Pelanda R. Activation of the MEK-ERK Pathway Is Necessary but Not Sufficient for Breaking Central B Cell Tolerance. Front Immunol 2018; 9:707. [PMID: 29686680 PMCID: PMC5900439 DOI: 10.3389/fimmu.2018.00707] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 03/22/2018] [Indexed: 01/12/2023] Open
Abstract
Newly generated bone marrow B cells are positively selected into the peripheral lymphoid tissue only when they express a B cell receptor (BCR) that is nonautoreactive or one that binds self-antigen with only minimal avidity. This positive selection process, moreover, is critically contingent on the ligand-independent tonic signals transduced by the BCR. We have previously shown that when autoreactive B cells express an active form of the rat sarcoma (RAS) oncogene, they upregulate the receptor for the B cell activating factor (BAFFR) and undergo differentiation in vitro and positive selection into the spleen in vivo, overcoming central tolerance. Based on the in vitro use of pharmacologic inhibitors, we further showed that this cell differentiation process is critically dependent on the activation of the mitogen-activated protein kinase kinase pathway MEK (MAPKK)-extracellular signal-regulated kinase (ERK), which is downstream of RAS. Here, we next investigated if activation of ERK is not only necessary but also sufficient to break central B cell tolerance and induce differentiation of autoreactive B cells in vitro and in vivo. Our results demonstrate that activation of ERK is critical for upregulating BAFFR and overcoming suboptimal levels of tonic BCR signals or low amounts of antigen-induced BCR signals during in vitro B cell differentiation. However, direct activation of ERK does not lead high avidity autoreactive B cells to increase BAFFR levels and undergo positive selection and differentiation in vivo. B cell-specific MEK-ERK activation in mice is also unable to lead to autoantibody secretion, and this in spite of a general increase of serum immunoglobulin levels. These findings indicate that additional pathways downstream of RAS are required for high avidity autoreactive B cells to break central and/or peripheral tolerance.
Collapse
Affiliation(s)
- Sarah A Greaves
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Jacob N Peterson
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States.,Department of Biomedical Research, National Jewish Health, Denver, CO, United States
| |
Collapse
|
11
|
Corrected and Republished from: BCL11A Is a Critical Component of a Transcriptional Network That Activates RAG Expression and V(D)J Recombination. Mol Cell Biol 2017; 38:MCB.00362-17. [PMID: 29038163 DOI: 10.1128/mcb.00362-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 08/30/2017] [Indexed: 12/13/2022] Open
Abstract
Recombination activating gene 1 (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining [V(D)J] segment recombination, an essential process for antigen receptor expression and lymphocyte development. The BCL11A transcription factor is required for B cell and plasmacytoid dendritic cell (pDC) development, but its molecular function(s) in early B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds directly to the RAG1 promoter as well as directly to regulatory regions of transcription factors previously implicated in both B cell and pDC development to activate RAG1 and RAG2 gene transcription in pro- and pre-B cells. We employed BCL11A overexpression with recombination substrates to demonstrate direct consequences of BCL11A/RAG modulation on V(D)J recombination. We conclude that BCL11A is a critical component of a transcriptional network that regulates B cell fate by controlling V(D)J recombination.
Collapse
|
12
|
Bahjat M, Guikema JEJ. The Complex Interplay between DNA Injury and Repair in Enzymatically Induced Mutagenesis and DNA Damage in B Lymphocytes. Int J Mol Sci 2017; 18:ijms18091876. [PMID: 28867784 PMCID: PMC5618525 DOI: 10.3390/ijms18091876] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 11/25/2022] Open
Abstract
Lymphocytes are endowed with unique and specialized enzymatic mutagenic properties that allow them to diversify their antigen receptors, which are crucial sensors for pathogens and mediators of adaptive immunity. During lymphocyte development, the antigen receptors expressed by B and T lymphocytes are assembled in an antigen-independent fashion by ordered variable gene segment recombinations (V(D)J recombination), which is a highly ordered and regulated process that requires the recombination activating gene products 1 & 2 (RAG1, RAG2). Upon activation by antigen, B lymphocytes undergo additional diversifications of their immunoglobulin B-cell receptors. Enzymatically induced somatic hypermutation (SHM) and immunoglobulin class switch recombination (CSR) improves the affinity for antigen and shape the effector function of the humoral immune response, respectively. The activation-induced cytidine deaminase (AID) enzyme is crucial for both SHM and CSR. These processes have evolved to both utilize as well as evade different DNA repair and DNA damage response pathways. The delicate balance between enzymatic mutagenesis and DNA repair is crucial for effective immune responses and the maintenance of genomic integrity. Not surprisingly, disturbances in this balance are at the basis of lymphoid malignancies by provoking the formation of oncogenic mutations and chromosomal aberrations. In this review, we discuss recent mechanistic insight into the regulation of RAG1/2 and AID expression and activity in lymphocytes and the complex interplay between these mutagenic enzymes and DNA repair and DNA damage response pathways, focusing on the base excision repair and mismatch repair pathways. We discuss how disturbances of this interplay induce genomic instability and contribute to oncogenesis.
Collapse
Affiliation(s)
- Mahnoush Bahjat
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| | - Jeroen E J Guikema
- Department of Pathology, Academic Medical Center, University of Amsterdam; Lymphoma and Myeloma Center Amsterdam (LYMMCARE), Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
13
|
Arya R, Bassing CH. V(D)J Recombination Exploits DNA Damage Responses to Promote Immunity. Trends Genet 2017; 33:479-489. [PMID: 28532625 PMCID: PMC5499712 DOI: 10.1016/j.tig.2017.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 04/25/2017] [Accepted: 04/26/2017] [Indexed: 11/16/2022]
Abstract
It has been recognized for 40 years that the variable (diversity) joining [V(D)J] recombination-mediated assembly of diverse B and T lymphocyte antigen receptor (AgR) genes is not only essential for adaptive immunity, but also a risk for autoimmunity and lymphoid malignancies. Over the past few years, several studies have revealed that recombination-activating gene (RAG) endonuclease-induced DNA double-strand breaks (DSBs) transcend hazardous intermediates during antigen receptor gene assembly. RAG cleavage within the genomes of lymphocyte progenitors and immature lymphocytes regulates the expression of ubiquitous and lymphocyte-specific gene transcripts to control the differentiation and function of both adaptive and innate immune cell lineages. These unexpected discoveries raise important new questions that have broad implications for basic immunology research and the screening, diagnosis, and treatment of human immunological disease.
Collapse
Affiliation(s)
- Rahul Arya
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
14
|
Hemon P, Renaudineau Y, Debant M, Le Goux N, Mukherjee S, Brooks W, Mignen O. Calcium Signaling: From Normal B Cell Development to Tolerance Breakdown and Autoimmunity. Clin Rev Allergy Immunol 2017; 53:141-165. [DOI: 10.1007/s12016-017-8607-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
15
|
Abstract
Immune tolerance hinders the potentially destructive responses of lymphocytes to host tissues. Tolerance is regulated at the stage of immature B cell development (central tolerance) by clonal deletion, involving apoptosis, and by receptor editing, which reprogrammes the specificity of B cells through secondary recombination of antibody genes. Recent mechanistic studies have begun to elucidate how these divergent mechanisms are controlled. Single-cell antibody cloning has revealed defects of B cell central tolerance in human autoimmune diseases and in several human immunodeficiency diseases caused by single gene mutations, which indicates the relevance of B cell tolerance to disease and suggests possible genetic pathways that regulate tolerance.
Collapse
|
16
|
Fisher MR, Rivera-Reyes A, Bloch NB, Schatz DG, Bassing CH. Immature Lymphocytes Inhibit Rag1 and Rag2 Transcription and V(D)J Recombination in Response to DNA Double-Strand Breaks. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 198:2943-2956. [PMID: 28213501 PMCID: PMC5360515 DOI: 10.4049/jimmunol.1601639] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 01/16/2017] [Indexed: 12/26/2022]
Abstract
Mammalian cells have evolved a common DNA damage response (DDR) that sustains cellular function, maintains genomic integrity, and suppresses malignant transformation. In pre-B cells, DNA double-strand breaks (DSBs) induced at Igκ loci by the Rag1/Rag2 (RAG) endonuclease engage this DDR to modulate transcription of genes that regulate lymphocyte-specific processes. We previously reported that RAG DSBs induced at one Igκ allele signal through the ataxia telangiectasia mutated (ATM) kinase to feedback-inhibit RAG expression and RAG cleavage of the other Igκ allele. In this article, we show that DSBs induced by ionizing radiation, etoposide, or bleomycin suppress Rag1 and Rag2 mRNA levels in primary pre-B cells, pro-B cells, and pro-T cells, indicating that inhibition of Rag1 and Rag2 expression is a prevalent DSB response among immature lymphocytes. DSBs induced in pre-B cells signal rapid transcriptional repression of Rag1 and Rag2, causing downregulation of both Rag1 and Rag2 mRNA, but only Rag1 protein. This transcriptional inhibition requires the ATM kinase and the NF-κB essential modulator protein, implicating a role for ATM-mediated activation of canonical NF-κB transcription factors. Finally, we demonstrate that DSBs induced in pre-B cells by etoposide or bleomycin inhibit recombination of Igκ loci and a chromosomally integrated substrate. Our data indicate that immature lymphocytes exploit a common DDR signaling pathway to limit DSBs at multiple genomic locations within developmental stages wherein monoallelic Ag receptor locus recombination is enforced. We discuss the implications of our findings for mechanisms that orchestrate the differentiation of monospecific lymphocytes while suppressing oncogenic Ag receptor locus translocations.
Collapse
Affiliation(s)
- Megan R Fisher
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
| | - Adrian Rivera-Reyes
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Cancer Biology Program of the Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; and
| | - Noah B Bloch
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - David G Schatz
- Department of Immunobiology, Yale University School of Medicine, Howard Hughes Medical Institute, New Haven, CT 06520
| | - Craig H Bassing
- Division of Cancer Pathobiology, Department of Pathology and Laboratory Medicine, Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104;
- Immunology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Department of Pathology and Laboratory Medicine, Abramson Family Cancer Research Institute, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104
- Cancer Biology Program of the Cell and Molecular Biology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104; and
| |
Collapse
|
17
|
Shinohara H, Nagashima T, Cascalho MI, Kurosaki T. TAK1 maintains the survival of immunoglobulin λ-chain-positive B cells. Genes Cells 2016; 21:1233-1243. [PMID: 27696624 DOI: 10.1111/gtc.12442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/08/2016] [Indexed: 12/13/2022]
Abstract
TAK1 (MAP3K7) mediation of the IκB kinase (IKK) complex-nuclear factor-κB (NF-κB) pathway is crucial for the activation of immune response and to perpetuate inflammation. Although progress has been made to understand TAK1 function in the B-cell receptor (BCR) signaling, the physiological roles of TAK1 in B-cell development, particularly in the bone marrow (BM), remain elusive. Previous studies suggested that the IKK complex is required for the development of immunoglobulin light chain λ-positive B cells, but not for receptor editing. In contrast, NF-κB activity is suggested to be involved in the regulation of receptor editing. Thus, NF-κB signaling in early B-cell development is yet to be fully characterized. Therefore, we addressed the role of TAK1 in early B-cell development. TAK1-deficient mice showed significant reduction of BM Igλ-positive B-cell numbers without any alteration in the BCR editing. Furthermore, the expression of survival factor Bcl-2 was reduced in TAK1-deficient BM B cells as assessed by microarray and quantitative PCR analyses. Ex vivo over-expression of exogenous Bcl-2 enhanced the survival of TAK1-deficient Igλ-positive B cells. TAK1-IKK-NF-κB signaling contributes to the survival of λ-chain-positive B cells through NF-κB-dependent anti-apoptotic Bcl-2 expression.
Collapse
Affiliation(s)
- Hisaaki Shinohara
- Laboratory for Integrated Cellular Systems, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takeshi Nagashima
- Division of Cell Proliferation, ART, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Marilia I Cascalho
- Department of Surgery, University of Michigan, Ann Arbor, MI, 48109, USA.,Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tomohiro Kurosaki
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences (IMS-RCAI), Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.,Laboratory for Lymphocyte Differentiation, Immunology Frontier Research Center, Osaka University, 3-1 Yamada-oka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
18
|
Ochodnicka-Mackovicova K, Bahjat M, Maas C, van der Veen A, Bloedjes TA, de Bruin AM, van Andel H, Schrader CE, Hendriks RW, Verhoeyen E, Bende RJ, van Noesel CJM, Guikema JEJ. The DNA Damage Response Regulates RAG1/2 Expression in Pre-B Cells through ATM-FOXO1 Signaling. THE JOURNAL OF IMMUNOLOGY 2016; 197:2918-29. [PMID: 27559048 DOI: 10.4049/jimmunol.1501989] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 07/20/2016] [Indexed: 01/01/2023]
Abstract
The recombination activating gene (RAG) 1 and RAG2 protein complex introduces DNA breaks at Tcr and Ig gene segments that are required for V(D)J recombination in developing lymphocytes. Proper regulation of RAG1/2 expression safeguards the ordered assembly of Ag receptors and the development of lymphocytes, while minimizing the risk for collateral damage. The ataxia telangiectasia mutated (ATM) kinase is involved in the repair of RAG1/2-mediated DNA breaks and prevents their propagation. The simultaneous occurrence of RAG1/2-dependent and -independent DNA breaks in developing lymphocytes exposed to genotoxic stress increases the risk for aberrant recombinations. In this study, we assessed the effect of genotoxic stress on RAG1/2 expression in pre-B cells and show that activation of the DNA damage response resulted in the rapid ATM-dependent downregulation of RAG1/2 mRNA and protein expression. We show that DNA damage led to the loss of FOXO1 binding to the enhancer region of the RAG1/2 locus (Erag) and provoked FOXO1 cleavage. We also show that DNA damage caused by RAG1/2 activity in pre-B cells was able to downmodulate RAG1/2 expression and activity, confirming the existence of a negative feedback regulatory mechanism. Our data suggest that pre-B cells are endowed with a protective mechanism that reduces the risk for aberrant recombinations and chromosomal translocations when exposed to DNA damage, involving the ATM-dependent regulation of FOXO1 binding to the Erag enhancer region.
Collapse
Affiliation(s)
- Katarina Ochodnicka-Mackovicova
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Mahnoush Bahjat
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Chiel Maas
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Amélie van der Veen
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Timon A Bloedjes
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Alexander M de Bruin
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Harmen van Andel
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Carol E Schrader
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA 01655
| | - Rudi W Hendriks
- Department of Pulmonary Medicine, Erasmus MC, 3000 CA Rotterdam, the Netherlands
| | - Els Verhoeyen
- Centre International de Recherche en Infectiologie, Virus Enveloppés, Vecteurs et Réponses Innées Équipe, INSERM U1111, CNRS, UMR5308, Université de Lyon-1, École Normale Supérieure de Lyon, 69007 Lyon, France; and INSERM, U1065, Centre de Médecine Moléculaire, Équipe 3, 06204 Nice, France
| | - Richard J Bende
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Carel J M van Noesel
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jeroen E J Guikema
- Department of Pathology, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands; Lymphoma and Myeloma Center Amsterdam, 1105 AZ Amsterdam, the Netherlands;
| |
Collapse
|
19
|
Lang J, Ota T, Kelly M, Strauch P, Freed BM, Torres RM, Nemazee D, Pelanda R. Receptor editing and genetic variability in human autoreactive B cells. J Exp Med 2015; 213:93-108. [PMID: 26694971 PMCID: PMC4710202 DOI: 10.1084/jem.20151039] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 11/23/2015] [Indexed: 12/11/2022] Open
Abstract
Lang et al. show in a humanized mouse model that human B cells undergo central tolerance via a combination of receptor editing and clonal deletion. The mechanisms by which B cells undergo tolerance, such as receptor editing, clonal deletion, and anergy, have been established in mice. However, corroborating these mechanisms in humans remains challenging. To study how autoreactive human B cells undergo tolerance, we developed a novel humanized mouse model. Mice expressing an anti–human Igκ membrane protein to serve as a ubiquitous neo self-antigen (Ag) were transplanted with a human immune system. By following the fate of self-reactive human κ+ B cells relative to nonautoreactive λ+ cells, we show that tolerance of human B cells occurs at the first site of self-Ag encounter, the bone marrow, via a combination of receptor editing and clonal deletion. Moreover, the amount of available self-Ag and the genetics of the cord blood donor dictate the levels of central tolerance and autoreactive B cells in the periphery. Thus, this model can be useful for studying specific mechanisms of human B cell tolerance and to reveal differences in the extent of this process among human populations.
Collapse
Affiliation(s)
- Julie Lang
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045 Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Takayuki Ota
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Margot Kelly
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045 Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Pamela Strauch
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045 Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - Brian M Freed
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045 Division of Allergy and Clinical Immunology, University of Colorado Denver School of Medicine, Aurora, CO 80045
| | - Raul M Torres
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045 Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| | - David Nemazee
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037
| | - Roberta Pelanda
- Department of Immunology and Microbiology, University of Colorado Denver School of Medicine, Aurora, CO 80045 Department of Biomedical Research, National Jewish Health, Denver, CO 80206
| |
Collapse
|
20
|
Wang X, Tan X, Zhang PJ, Zhang Y, Xu P. Recombination-activating gene 1 and 2 (RAG1 and RAG2) in flounder (Paralichthys olivaceus). J Biosci 2015; 39:849-58. [PMID: 25431413 DOI: 10.1007/s12038-014-9469-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
During the development of B and T lymphocytes, Ig and TCR variable region genes are assembled from germline V, D, and J gene segments by a site-specific recombination reaction known as V(D)J recombination. The process of somatic V(D)J recombination, mediated by the recombination-activating gene (RAG) products, is the most significant characteristic of adaptive immunity in jawed vertebrates. Flounder (Paralichthys olivaceus) RAG1 and RAG2 were isolated by Genome Walker and RT-PCR, and their expression patterns were analysed by RT-PCR and in situ hybridization on sections. RAG1 spans over 7.0 kb, containing 4 exons and 3 introns, and the full-length ORF is 3207 bp, encoding a peptide of 1068 amino acids. The first exon lies in the 5'-UTR, which is an alternative exon. RAG2 full-length ORF is 1062 bp, encodes a peptide of 533 amino acids, and lacks introns in the coding region. In 6-month old flounders, the expression of RAG1 and RAG2 was essentially restricted to the pronephros (head kidney) and mesonephros (truck kidney). Additionally, both of them were mainly expressed in the thymus. These results revealed that the thymus and kidney most likely serve as the primary lymphoid tissues in the flounder.
Collapse
Affiliation(s)
- Xianlei Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | | | | | | | | |
Collapse
|
21
|
NF-κB and AKT signaling prevent DNA damage in transformed pre-B cells by suppressing RAG1/2 expression and activity. Blood 2015; 126:1324-35. [PMID: 26153519 DOI: 10.1182/blood-2015-01-621623] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 07/01/2015] [Indexed: 01/16/2023] Open
Abstract
In developing lymphocytes, expression and activity of the recombination activation gene protein 1 (RAG1) and RAG2 endonuclease complex is tightly regulated to ensure ordered recombination of the immunoglobulin genes and to avoid genomic instability. Aberrant RAG activity has been implicated in the generation of secondary genetic events in human B-cell acute lymphoblastic leukemias (B-ALLs), illustrating the oncogenic potential of the RAG complex. Several layers of regulation prevent collateral genomic DNA damage by restricting RAG activity to the G1 phase of the cell cycle. In this study, we show a novel pathway that suppresses RAG expression in cycling-transformed mouse pre-B cells and human pre-B B-ALL cells that involves the negative regulation of FOXO1 by nuclear factor κB (NF-κB). Inhibition of NF-κB in cycling pre-B cells resulted in upregulation of RAG expression and recombination activity, which provoked RAG-dependent DNA damage. In agreement, we observe a negative correlation between NF-κB activity and the expression of RAG1, RAG2, and TdT in B-ALL patients. Our data suggest that targeting NF-κB in B-ALL increases the risk of RAG-dependent genomic instability.
Collapse
|
22
|
Hayashi T, Murata T. Physiological significance of Rag1 in retinal ganglion cell death. Neural Regen Res 2015; 10:192-4. [PMID: 25883610 PMCID: PMC4392659 DOI: 10.4103/1673-5374.152365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2015] [Indexed: 12/01/2022] Open
Affiliation(s)
- Takuma Hayashi
- Department of Immunology and Infectious Disease, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| | - Toshinori Murata
- Department of Ophthalmology, Shinshu University Graduate School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan
| |
Collapse
|
23
|
Hirano T, Murata T, Hayashi T. Physiological significance of recombination-activating gene 1 in neuronal death, especially optic neuropathy. FEBS J 2014; 282:129-41. [PMID: 25312244 DOI: 10.1111/febs.13109] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 08/28/2014] [Accepted: 10/10/2014] [Indexed: 12/20/2022]
Abstract
Although the transcription factor nuclear factor-κB (NF-κB) is known to regulate cell death and survival, its precise role in cell death within the central nervous system remains unknown. We previously reported that mice with a homozygous deficiency for NF-κBp50 spontaneously develop optic neuropathy. The aim of the present study was to demonstrate the expression and activation of the proapoptotic factor(s) that mediate optic neuropathy in p50-deficient mice. Recombination-activating gene (Rag) 1 is known to activate the recombination of immunoglobulin V(D)J. In this study, experiments with genetically engineered mice revealed the involvement of Rag1 expression in apoptosis of Brn3a-positive retinal ganglion cells, and also demonstrated the specific effect of p50 deficiency on the activation of Rag1 gene transcription. Furthermore, genetic analysis of murine neuronal stem-like cells clarified the biological significance of Rag1 in N-methyl-D-aspartate-induced neuronal apoptosis. We also detected the apoptosis-regulating factors Bax and cleaved caspase 3, 8 and 9 in HEK293 cells transfected-molecule of Rag1, and a human histological examination revealed the expression of Rag1 in retinal ganglion cells. The results of the present study indicate that Rag1 plays a role in optic neuropathy as a proapoptotic candidate in p50-deficient mice. This finding may lead to new therapeutic targets in optic neuropathy.
Collapse
Affiliation(s)
- Takao Hirano
- Department of Ophthalmology, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan; Department of Immunology and Infectious Disease, Shinshu University Graduate School of Medicine, Matsumoto, Nagano, Japan
| | | | | |
Collapse
|
24
|
Ramachandiran S, Adon A, Guo X, Wang Y, Wang H, Chen Z, Kowalski J, Sunay UR, Young AN, Brown T, Mar JC, Du Y, Fu H, Mann KP, Natkunam Y, Boise LH, Saavedra HI, Lossos IS, Bernal-Mizrachi L. Chromosome instability in diffuse large B cell lymphomas is suppressed by activation of the noncanonical NF-κB pathway. Int J Cancer 2014; 136:2341-51. [PMID: 25359525 DOI: 10.1002/ijc.29301] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/16/2014] [Indexed: 12/12/2022]
Abstract
Diffuse large B cell lymphoma (DLBCL) is the most common form of lymphoma in the United States. DLBCL comprises biologically distinct subtypes including germinal center-like (GCB) and activated-B-cell-like DLBCL (ABC). The most aggressive type, ABC-DLBCL, displays dysregulation of both canonical and noncanonical NF-κB pathway as well as genomic instability. Although, much is known about the tumorigenic roles of the canonical NF-kB pathway, the precise role of the noncanonical NF-kB pathway remains unknown. Here we show that activation of the noncanonical NF-κB pathway regulates chromosome stability, DNA damage response and centrosome duplication in DLBCL. Analysis of 92 DLBCL samples revealed that activation of the noncanonical NF-κB pathway is associated with low levels of DNA damage and centrosome amplification. Inhibiting the noncanonical pathway in lymphoma cells uncovered baseline DNA damage and prevented doxorubicin-induced DNA damage repair. In addition, it triggered centrosome amplification and chromosome instability, indicated by anaphase bridges, multipolar spindles and chromosome missegregation. We determined that the noncanonical NF-κB pathway execute these functions through the regulation of GADD45α and REDD1 in a p53-independent manner, while it collaborates with p53 to regulate cyclin G2 expression. Furthermore, this pathway regulates GADD45α, REDD1 and cyclin G2 through direct binding of NF-κB sites to their promoter region. Overall, these results indicate that the noncanonical NF-κB pathway plays a central role in maintaining genome integrity in DLBCL. Our data suggests that inhibition of the noncanonical NF-kB pathway should be considered as an important component in DLBCL therapeutic approach.
Collapse
Affiliation(s)
- Sampath Ramachandiran
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Lange MD, Huang L, Yu Y, Li S, Liao H, Zemlin M, Su K, Zhang Z. Accumulation of VH Replacement Products in IgH Genes Derived from Autoimmune Diseases and Anti-Viral Responses in Human. Front Immunol 2014; 5:345. [PMID: 25101087 PMCID: PMC4105631 DOI: 10.3389/fimmu.2014.00345] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Accepted: 07/06/2014] [Indexed: 11/24/2022] Open
Abstract
VH replacement refers to RAG-mediated secondary recombination of the IgH genes, which renews almost the entire VH gene coding region but retains a short stretch of nucleotides as a VH replacement footprint at the newly generated VH–DH junction. To explore the biological significance of VH replacement to the antibody repertoire, we developed a Java-based VH replacement footprint analyzer program and analyzed the distribution of VH replacement products in 61,851 human IgH gene sequences downloaded from the NCBI database. The initial assignment of the VH, DH, and JH gene segments provided a comprehensive view of the human IgH repertoire. To our interest, the overall frequency of VH replacement products is 12.1%; the frequencies of VH replacement products in IgH genes using different VH germline genes vary significantly. Importantly, the frequencies of VH replacement products are significantly elevated in IgH genes derived from different autoimmune diseases, including rheumatoid arthritis, systemic lupus erythematosus, and allergic rhinitis, and in IgH genes encoding various autoantibodies or anti-viral antibodies. The identified VH replacement footprints preferentially encoded charged amino acids to elongate IgH CDR3 regions, which may contribute to their autoreactivities or anti-viral functions. Analyses of the mutation status of the identified VH replacement products suggested that they had been actively involved in immune responses. These results provide a global view of the distribution of VH replacement products in human IgH genes, especially in IgH genes derived from autoimmune diseases and anti-viral immune responses.
Collapse
Affiliation(s)
- Miles D Lange
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| | - Lin Huang
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| | - Yangsheng Yu
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| | - Song Li
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| | - Hongyan Liao
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA
| | - Michael Zemlin
- Department of Pediatrics, Philipps-University Marburg , Marburg , Germany
| | - Kaihong Su
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA ; The Eppley Cancer Institute, University of Nebraska Medical Center , Omaha, NE , USA ; Department of Internal Medicine, University of Nebraska Medical Center , Omaha, NE , USA
| | - Zhixin Zhang
- Department of Pathology and Microbiology, University of Nebraska Medical Center , Omaha, NE , USA ; The Eppley Cancer Institute, University of Nebraska Medical Center , Omaha, NE , USA
| |
Collapse
|
26
|
The PARP1/ARTD1-Mediated Poly-ADP-Ribosylation and DNA Damage Repair in B Cell Diversification. Antibodies (Basel) 2014. [DOI: 10.3390/antib3010037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
27
|
Doster A, Ziegler S, Foermer S, Rieker RJ, Heeg K, Bekeredjian-Ding I. Phosphorothioate-modified CpG oligodeoxynucleotides mimic autoantigens and reveal a potential role for Toll-like receptor 9 in receptor revision. Immunology 2013; 139:166-78. [PMID: 23289794 DOI: 10.1111/imm.12063] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 12/07/2012] [Accepted: 12/21/2012] [Indexed: 12/28/2022] Open
Abstract
Re-expression of recombinase activating genes (RAG) in mature B cells may support autoreactivity by enabling revision of the B-cell receptor (BCR). Recent reports suggest that administration of Toll-like receptor 9 (TLR9) -stimulating CpG oligodeoxynucleotides (ODN) could trigger the manifestation of autoimmune disease and that TLR are involved in the selection processes eliminating autoreactive BCR. The mechanisms involved remain to be elucidated. This prompted us to ask, whether TLR9 could be involved in receptor revision. We found that phosphorothioate-modified CpG ODN (CpG(PTO)) induced expression of Ku70 and re-expression of RAG-1 in human peripheral blood B lymphocytes and Igλ expression in sorted Igκ(+) B cells. Further results revealed unselective binding specificity of CpG(PTO) -induced immunoglobulin and suggested that CpG(PTO) engage and/or mimic IgM receptor signalling, an important prerequisite for the initialization of receptor editing or revision. Altogether, our data describe a potential role for TLR9 in receptor revision and suggest that CpG(PTO) could mimic chromatin-bearing autoantigens by simultaneously engaging the BCR and TLR9 on IgM(+) B cells.
Collapse
Affiliation(s)
- Anne Doster
- Department of Infectious Diseases, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
28
|
Rowland SL, Tuttle K, Torres RM, Pelanda R. Antigen and cytokine receptor signals guide the development of the naïve mature B cell repertoire. Immunol Res 2013; 55:231-40. [PMID: 22941591 DOI: 10.1007/s12026-012-8366-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Immature B cells are generated daily in the bone marrow tissue. More than half of the newly generated immature B cells are autoreactive and bind a self-antigen, while the others are nonautoreactive. A selection process has evolved on the one hand to thwart development of autoreactive immature B cells and, on the other hand, to promote further differentiation of nonautoreactive immature B cells into transitional and mature B cells. These negative and positive selection events are carefully regulated by signals that emanate from the antigen receptor, whether antigen-mediated or tonic, and are influenced by signals that are generated by receptors that bind cytokines, chemokines, and other factors produced in the bone marrow tissue. These signals, therefore, are the predominant driving forces for the generation of a B cell population that is capable of protecting the body from infections while maintaining self-tolerance. Here, we review recent findings from our group and others that describe how tonic antigen receptor signaling and bone marrow cytokines regulate the selection of immature B cells.
Collapse
Affiliation(s)
- Sarah L Rowland
- Integrated Department of Immunology, University of Colorado School of Medicine, National Jewish Health, Denver, CO, USA
| | | | | | | |
Collapse
|
29
|
The BCL11A transcription factor directly activates RAG gene expression and V(D)J recombination. Mol Cell Biol 2013; 33:1768-81. [PMID: 23438597 DOI: 10.1128/mcb.00987-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Recombination-activating gene 1 protein (RAG1) and RAG2 are critical enzymes for initiating variable-diversity-joining (VDJ) segment recombination, an essential process for antigen receptor expression and lymphocyte development. The transcription factor BCL11A is required for B cell development, but its molecular function(s) in B cell fate specification and commitment is unknown. We show here that the major B cell isoform, BCL11A-XL, binds the RAG1 promoter and Erag enhancer to activate RAG1 and RAG2 transcription in pre-B cells. We employed BCL11A overexpression with recombination substrates in a cultured pre-B cell line as well as Cre recombinase-mediated Bcl11a(lox/lox) deletion in explanted murine pre-B cells to demonstrate direct consequences of BCL11A/RAG modulation on V(D)J recombination. We conclude that BCL11A is a critical component of a transcriptional network that regulates B cell fate by controlling V(D)J recombination.
Collapse
|
30
|
|
31
|
Meffre E. The establishment of early B cell tolerance in humans: lessons from primary immunodeficiency diseases. Ann N Y Acad Sci 2012; 1246:1-10. [PMID: 22236425 DOI: 10.1111/j.1749-6632.2011.06347.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Patients with primary immunodeficiency (PID) provide rare opportunities to study the impact of specific gene mutations on the regulation of human B cell tolerance. Alterations in B cell receptor and Toll-like receptor signaling pathways result in a defective central checkpoint and a failure to counterselect developing autoreactive B cells in the bone marrow. In contrast, CD40L- and MHC class II-deficient patients only displayed peripheral B cell tolerance defects, suggesting that decreased numbers of regulatory T cells and increased concentration of B cell activating factor (BAFF) may interfere with the peripheral removal of autoreactive B cells. The pathways regulating B cell tolerance identified in PID patients are likely to be affected in patients with rheumatoid arthritis, systemic lupus erythematosus, and type 1 diabetes who display defective central and peripheral B cell tolerance checkpoints. Indeed, risk alleles encoding variants altering BCR signaling, such as PTPN22 alleles associated with the development of these diseases, interfere with the removal of developing autoreactive B cells. Hence, insights into B cell selection from PID patients are highly relevant to the understanding of the etiology of autoimmune conditions.
Collapse
Affiliation(s)
- Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06511, USA.
| |
Collapse
|
32
|
Enforced expression of the apoptosis inhibitor Bcl-2 ablates tolerance induction in DNA-reactive B cells through a novel mechanism. J Autoimmun 2011; 37:18-27. [PMID: 21458954 DOI: 10.1016/j.jaut.2011.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/02/2011] [Accepted: 03/03/2011] [Indexed: 11/21/2022]
Abstract
How self tolerance is maintained during B cell development in the bone marrow has been a focal area of study in immunology. Receptor editing, anergy and clonal deletion all play important roles in the regulation of autoimmunity in the immature population. The mechanisms of tolerance induction in the periphery, however, are less well characterized. Overexpression of the apoptosis inhibitor Bcl-2 rescues autoreactive B cells from deletion and can contribute to the development of autoimmune disease in certain genetic backgrounds. Using a peptide-induced autoimmunity model, we recently identified a peripheral tolerance checkpoint in antigen-activated B cells that have undergone class switching and somatic hypermutation. At this checkpoint, receptor editing, induced by antigen engagement, dampened the autoantibody response. In this study, we show that receptor editing fails to be induced in antigen-activated DNA-reactive B cells that overexpress Bcl-2 (Bcl-2 Tg). The failure to induce RAG and receptor editing is likely due, at least partially, to the lack of self antigen. First, the levels of circulating DNA and of apoptotic bodies in the spleen of Bcl-2 Tg mice are significantly lower than in control mice. Second, in Bcl-2 Tg mice, RAG can be induced in a population of antigen-activated B cells by providing exogenous soluble antigen. These data suggest that, in addition to its anti-apoptotic activity, Bcl-2 may indirectly inhibit tolerance induction in B cells acquiring anti-nuclear antigen reactivity after peripheral activation by limiting the availability of self antigen.
Collapse
|
33
|
A rearranged EP300 gene in the human B-cell lymphoma cell line RC-K8 encodes a disabled transcriptional co-activator that contributes to cell growth and oncogenicity. Cancer Lett 2011; 302:76-83. [PMID: 21232847 DOI: 10.1016/j.canlet.2010.12.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Revised: 12/12/2010] [Accepted: 12/18/2010] [Indexed: 12/27/2022]
Abstract
Human diffuse large B-cell lymphoma cell line RC-K8 has an altered EP300 locus that encodes a C-terminally truncated histone acetyltransferase (HAT) protein (p300ΔC). We now show that p300ΔC contains 1047N-terminal amino acids of p300 fused to 25 amino acids encoded by sequences from chromosome 6. Over-expressed p300ΔC localized to nuclear subdomains and interacted with transcription factor REL. p300ΔC did not function as a co-activator for REL-directed transactivation, and blocked the ability of wild-type p300 to enhance transcriptional activation by REL. Knock down of p300ΔC in RC-K8 cells reduced their growth in both liquid culture and soft agar. Truncations of p300 were not found in eight other B-lymphoma cell lines. These results suggest that p300ΔC contributes to the oncogenic state of RC-K8 cells by acting as a defective co-activator.
Collapse
|
34
|
Chen Z, Xiao Y, Zhang J, Li J, Liu Y, Zhao Y, Ma C, Luo J, Qiu Y, Huang G, Korteweg C, Gu J. Transcription factors E2A, FOXO1 and FOXP1 regulate recombination activating gene expression in cancer cells. PLoS One 2011; 6:e20475. [PMID: 21655267 PMCID: PMC3105062 DOI: 10.1371/journal.pone.0020475] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 04/26/2011] [Indexed: 02/05/2023] Open
Abstract
It has long been accepted that immunoglobulins (Igs) were produced by B lymphoid cells only. Recently Igs have been found to be expressed in various human cancer cells and promote tumor growth. Recombination activating gene 1 (RAG1) and RAG2, which are essential enzymes for initiating variable-diversity-joining segment recombination, have also been found to be expressed in cancer cells. However, the mechanism of RAG activation in these cancer cells has not been elucidated. Here, we investigated the regulatory mechanism of RAG expression in four human cancer cell lines by analyzing transcription factors that induce RAG activation in B cells. By RT-PCR, Western blot and immunofluorescence, we found that transcription factors E2A, FOXO1 and FOXP1 were expressed and localized to the nuclei of these cancer cells. Over-expression of E2A, FOXO1 or Foxp1 increased RAG expression, while RNA interference of E2A, FOXO1 or FOXP1 decreased RAG expression in the cancer cells. Chromatin immunoprecipitation experiments showed acetylation of RAG enhancer (Erag) and E2A, FOXO1 or FOXP1 were bound to Erag in vivo. These results indicate that in these cancer cells the transcription factors E2A, FOXO1 and FOXP1 regulate RAG expression, which initiates Ig gene rearrangement much in the way similar to B lymphocytes.
Collapse
Affiliation(s)
- Zhengshan Chen
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Yanna Xiao
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Junjun Zhang
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Jing Li
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Yuxuan Liu
- Department of Pathology, Peking (Beijing) University Health Science Center, Beijing, China
| | - Yingying Zhao
- Department of Pathology, Peking (Beijing) University Health Science Center, Beijing, China
| | - Changchun Ma
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Jin Luo
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Yamei Qiu
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Guowei Huang
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Christine Korteweg
- Department of Pathology, Shantou University Medical College, Shantou, China
| | - Jiang Gu
- Department of Pathology, Shantou University Medical College, Shantou, China
- Department of Pathology, Peking (Beijing) University Health Science Center, Beijing, China
- * E-mail:
| |
Collapse
|
35
|
Abstract
The allelic exclusion of immunoglobulin (Ig) genes is one of the most evolutionarily conserved features of the adaptive immune system and underlies the monospecificity of B cells. While much has been learned about how Ig allelic exclusion is established during B-cell development, the relevance of monospecificity to B-cell function remains enigmatic. Here, we review the theoretical models that have been proposed to explain the establishment of Ig allelic exclusion and focus on the molecular mechanisms utilized by developing B cells to ensure the monoallelic expression of Ig kappa and Ig lambda light chain genes. We also discuss the physiological consequences of Ig allelic exclusion and speculate on the importance of monospecificity of B cells for immune recognition.
Collapse
Affiliation(s)
- Christian Vettermann
- Division of Immunology & Pathogenesis, Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | |
Collapse
|
36
|
Novak R, Jacob E, Haimovich J, Avni O, Melamed D. The MAPK/ERK and PI3K pathways additively coordinate the transcription of recombination-activating genes in B lineage cells. THE JOURNAL OF IMMUNOLOGY 2010; 185:3239-47. [PMID: 20709952 DOI: 10.4049/jimmunol.1001430] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Rag-1 and Rag-2 are essential for the construction of the BCR repertoire. Regulation of Rag gene expression is tightly linked with BCR expression and signaling during B cell development. Earlier studies have shown a major role of the PI(3)K/Akt pathway in regulating the transcription of Rag genes. In this study, by using the 38c13 murine B cell lymphoma we show that transcription of Rag genes is also regulated by the MEK/ERK pathways, and that both pathways additively coordinate in this regulation. The additive effect is observed for both ligand-dependent (upon BCR ligation) and ligand independent (tonic) signals. However, whereas the PI(3)K/Akt regulation of Rag transcription is mediated by Foxo1, we show in this study that the MEK/ERK pathway coordinates with the regulation of Rag by controlling the phosphorylation and turnover of E47 and its consequential binding to the Rag enhancer regions. Our results suggest that the PI(3)K and MEK/ERK pathways additively coordinate in the regulation of Rag transcription in an independent manner.
Collapse
Affiliation(s)
- Rostislav Novak
- Department of Immunology, Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | | | | | | | | |
Collapse
|
37
|
Shinohara H, Kurosaki T. Comprehending the complex connection between PKCbeta, TAK1, and IKK in BCR signaling. Immunol Rev 2010; 232:300-18. [PMID: 19909372 DOI: 10.1111/j.1600-065x.2009.00836.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) contributes to many events in the immune system. Characterization of NF-kappaB has facilitated our understanding of immune cell differentiation, survival, proliferation, and effector functions. Intense research continues to elucidate the role of NF-kappaB, which is shared in several receptor signaling pathways, such as Toll-like receptors, the tumor necrosis factor receptor, and antigen receptors. The specificity of cellular responses emanating from stimulation of these receptors is determined by post-translational modification, or 'fine tuning', which regulates spatiotemporal dynamics of downstream signaling. Understanding the fine tuning mechanisms of NF-kappaB activation is crucial for insights into biological regulation and for understanding how cellular signaling pathways are tightly regulated to guide different cell fates. In this review, we focus on recent advances that illuminate the fine tuning mechanisms of NF-kappaB activation by BCR signaling and have increased our comprehension of complex signal systems.
Collapse
Affiliation(s)
- Hisaaki Shinohara
- Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan.
| | | |
Collapse
|
38
|
The pre-B cell receptor: turning autoreactivity into self-defense. Trends Immunol 2010; 31:176-83. [DOI: 10.1016/j.it.2010.02.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Revised: 02/03/2010] [Accepted: 02/25/2010] [Indexed: 11/17/2022]
|
39
|
Baitaluk M, Ponomarenko J. Semantic integration of data on transcriptional regulation. ACTA ACUST UNITED AC 2010; 26:1651-61. [PMID: 20427517 DOI: 10.1093/bioinformatics/btq231] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
MOTIVATION Experimental and predicted data concerning gene transcriptional regulation are distributed among many heterogeneous sources. However, there are no resources to integrate these data automatically or to provide a 'one-stop shop' experience for users seeking information essential for deciphering and modeling gene regulatory networks. RESULTS IntegromeDB, a semantic graph-based 'deep-web' data integration system that automatically captures, integrates and manages publicly available data concerning transcriptional regulation, as well as other relevant biological information, is proposed in this article. The problems associated with data integration are addressed by ontology-driven data mapping, multiple data annotation and heterogeneous data querying, also enabling integration of the user's data. IntegromeDB integrates over 100 experimental and computational data sources relating to genomics, transcriptomics, genetics, and functional and interaction data concerning gene transcriptional regulation in eukaryotes and prokaryotes. AVAILABILITY IntegromeDB is accessible through the integrated research environment BiologicalNetworks at http://www.BiologicalNetworks.org CONTACT baitaluk@sdsc.edu SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Michael Baitaluk
- San Diego Supercomputer Center, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | | |
Collapse
|
40
|
Abstract
This article focuses on the functions of NF-kappaB that vitally impact lymphocytes and thus adaptive immunity. NF-kappaB has long been known to be essential for many of the responses of mature lymphocytes to invading pathogens. In addition, NF-kappaB has important functions in shaping the immune system so it is able to generate adaptive responses to pathogens. In both contexts, NF-kappaB executes critical cell-autonomous functions within lymphocytes as well as within supportive cells, such as antigen-presenting cells or epithelial cells. It is these aspects of NF-kappaB's physiologic impact that we address in this article.
Collapse
|
41
|
Cadera EJ, Wan F, Amin RH, Nolla H, Lenardo MJ, Schlissel MS. NF-kappaB activity marks cells engaged in receptor editing. ACTA ACUST UNITED AC 2009; 206:1803-16. [PMID: 19581408 PMCID: PMC2722169 DOI: 10.1084/jem.20082815] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Because of the extreme diversity in immunoglobulin genes, tolerance mechanisms are necessary to ensure that B cells do not respond to self-antigens. One such tolerance mechanism is called receptor editing. If the B cell receptor (BCR) on an immature B cell recognizes self-antigen, it is down-regulated from the cell surface, and light chain gene rearrangement continues in an attempt to edit the autoreactive specificity. Analysis of a heterozygous mutant mouse in which the NF-κB–dependent IκBα gene was replaced with a lacZ (β-gal) reporter complementary DNA (cDNA; IκBα+/lacZ) suggests a potential role for NF-κB in receptor editing. Sorted β-gal+ pre–B cells showed increased levels of various markers of receptor editing. In IκBα+/lacZ reporter mice expressing either innocuous or self-specific knocked in BCRs, β-gal was preferentially expressed in pre–B cells from the mice with self-specific BCRs. Retroviral-mediated expression of a cDNA encoding an IκBα superrepressor in primary bone marrow cultures resulted in diminished germline κ and rearranged λ transcripts but similar levels of RAG expression as compared with controls. We found that IRF4 transcripts were up-regulated in β-gal+ pre–B cells. Because IRF4 is a target of NF-κB and is required for receptor editing, we suggest that NF-κB could be acting through IRF4 to regulate receptor editing.
Collapse
Affiliation(s)
- Emily J Cadera
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | |
Collapse
|
42
|
Paleo-immunology: evidence consistent with insertion of a primordial herpes virus-like element in the origins of acquired immunity. PLoS One 2009; 4:e5778. [PMID: 19492059 PMCID: PMC2686171 DOI: 10.1371/journal.pone.0005778] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 04/22/2009] [Indexed: 11/29/2022] Open
Abstract
Background The RAG encoded proteins, RAG-1 and RAG-2 regulate site-specific recombination events in somatic immune B- and T-lymphocytes to generate the acquired immune repertoire. Catalytic activities of the RAG proteins are related to the recombinase functions of a pre-existing mobile DNA element in the DDE recombinase/RNAse H family, sometimes termed the “RAG transposon”. Methodology/Principal Findings Novel to this work is the suggestion that the DDE recombinase responsible for the origins of acquired immunity was encoded by a primordial herpes virus, rather than a “RAG transposon.” A subsequent “arms race” between immunity to herpes infection and the immune system obscured primary amino acid similarities between herpes and immune system proteins but preserved regulatory, structural and functional similarities between the respective recombinase proteins. In support of this hypothesis, evidence is reviewed from previous published data that a modern herpes virus protein family with properties of a viral recombinase is co-regulated with both RAG-1 and RAG-2 by closely linked cis-acting co-regulatory sequences. Structural and functional similarity is also reviewed between the putative herpes recombinase and both DDE site of the RAG-1 protein and another DDE/RNAse H family nuclease, the Argonaute protein component of RISC (RNA induced silencing complex). Conclusions/Significance A “co-regulatory” model of the origins of V(D)J recombination and the acquired immune system can account for the observed linked genomic structure of RAG-1 and RAG-2 in non-vertebrate organisms such as the sea urchin that lack an acquired immune system and V(D)J recombination. Initially the regulated expression of a viral recombinase in immune cells may have been positively selected by its ability to stimulate innate immunity to herpes virus infection rather than V(D)J recombination Unlike the “RAG-transposon” hypothesis, the proposed model can be readily tested by comparative functional analysis of herpes virus replication and V(D)J recombination.
Collapse
|
43
|
Claudio E, Saret S, Wang H, Siebenlist U. Cell-autonomous role for NF-kappa B in immature bone marrow B cells. THE JOURNAL OF IMMUNOLOGY 2009; 182:3406-13. [PMID: 19265118 DOI: 10.4049/jimmunol.0803360] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The NF-kappaB transcription factors have many essential functions in B cells, such as during differentiation and proliferation of Ag-challenged mature B cells, but also during final maturation of developing B cells in the spleen. Among the various specific functions NF-kappaB factors carry out in these biologic contexts, their ability to assure the survival of mature and maturing B cells in the periphery stands out. Less clear is what if any roles NF-kappaB factors play during earlier stages of B cell development in the bone marrow. Using mice deficient in both NF-kappaB1 and NF-kappaB2, which are thus partially compromised in both the classical and alternative activation pathways, we demonstrate a B cell-autonomous contribution of NF-kappaB to the survival of immature B cells in the bone marrow. NF-kappaB1 and NF-kappaB2 also play a role during the earlier transition from proB to late preB cells; however, in this context these factors do not act in a B cell-autonomous fashion. Although NF-kappaB1 and NF-kappaB2 are not absolutely required for survival and progression of immature B cells in the bone marrow, they nevertheless make a significant contribution that marks the beginning of the profound cell-autonomous control these factors exert during all subsequent stages of B cell development. Therefore, the lifelong dependency of B cells on NF-kappaB-mediated survival functions is set in motion at the time of first expression of a full BCR.
Collapse
Affiliation(s)
- Estefania Claudio
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
44
|
Derudder E, Cadera EJ, Vahl JC, Wang J, Fox CJ, Zha S, van Loo G, Pasparakis M, Schlissel MS, Schmidt-Supprian M, Rajewsky K. Development of immunoglobulin lambda-chain-positive B cells, but not editing of immunoglobulin kappa-chain, depends on NF-kappaB signals. Nat Immunol 2009; 10:647-54. [PMID: 19412180 PMCID: PMC2742984 DOI: 10.1038/ni.1732] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Accepted: 03/27/2009] [Indexed: 01/05/2023]
Abstract
By genetically ablating IκB kinase (IKK)-mediated NF-κB activation in the B cell lineage, and by analyzing a mouse mutant in which Igλ+ B cells are generated in the absence of rearrangements in Igk, we define two distinct, consecutive phases of early B cell development that differ in their dependence on IKK-mediated NF-κB signaling. During the first phase, in which NF-κB signaling is dispensable, predominantly Igκ+ B cells are generated and undergo efficient receptor editing. In the second phase, predominantly Igλ+ B cells are generated, whose development is ontogenetically timed to occur after Igk rearrangements. This second phase of development is dependent on NF-κB signals, which can be substituted by transgenic expression of the pro-survival factor Bcl2.
Collapse
|
45
|
Mechanisms controlling expression of the RAG locus during lymphocyte development. Curr Opin Immunol 2009; 21:173-8. [PMID: 19359154 DOI: 10.1016/j.coi.2009.03.008] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Accepted: 03/13/2009] [Indexed: 11/20/2022]
Abstract
Recombination activating genes (RAG)1 and RAG2 are expressed in developing B and T lymphocytes and are required for the rearrangement of antigen receptor genes. In turn, RAG expression is regulated by the products of these assembled immunoglobulin (Ig) and T cell receptor (TCR) genes. Upon successful assembly of Ig genes, the antigen receptor is expressed on the immature B cell surface and tested for autoreactivity leading to either maintenance or inactivation of RAG expression. Successful assembly of TCR genes is followed by surface TCR expression and testing for its ability to interact with self-MHC, which if appropriate leads to the inactivation of RAG expression. Recent studies in B and T lymphocytes demonstrate that the reduction in RAG expression at the immature B and double-positive (DP) T cell stages is mediated through tonic (foreign antigen independent) receptor signaling. In B cells, tonic signaling activates PI(3)K and Akt kinases, which phosphorylate and lead to the cytoplasmic sequestration of FoxO proteins, the key transcriptional activators of RAG expression. In T cells, tonic signaling activates Abl and Erk kinases, leading to the transcriptional inactivation of RAGs.
Collapse
|
46
|
Hillion S, Rochas C, Youinou P, Jamin C. Signaling pathways regulating RAG expression in B lymphocytes. Autoimmun Rev 2009; 8:599-604. [PMID: 19393209 DOI: 10.1016/j.autrev.2009.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2009] [Accepted: 02/04/2009] [Indexed: 10/21/2022]
Abstract
Development of B-cell lymphopoiesis is dependent on the presence of recombination activating genes RAG1 and RAG2 enzymes. They control the rearrangements of immunoglobulin variable, diversity and joining region segments, and allow progression of the cellular maturation. RAG1 and RAG2 are successively up- and down-regulated at each B-cell stage to progressively generate a B-cell receptor for which unforeseeable antigenic specificity results from a stochastic process. Therefore, in autoreactive immature B cells, new round of RAG re-expression can be observed to eliminate self-reactivity. In some circumstances, RAG up-regulation can also be found in peripheral mature B lymphocytes, specifically in autoimmune diseases. It is therefore of utmost importance to unravel signaling pathways that trigger RAG induction in normal and pathological conditions. Therapeutic modulation of cytokines or intracellular contacts involved in RAG expression might restrict the development of inappropriate autoimmune repertoire.
Collapse
|
47
|
Toda T, Kitabatake M, Igarashi H, Sakaguchi N. The immature B-cell subpopulation with low RAG1 expression is increased in the autoimmune New Zealand Black mouse. Eur J Immunol 2009; 39:600-11. [DOI: 10.1002/eji.200838644] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Huber C, Mårtensson A, Bokoch GM, Nemazee D, Gavin AL. FGD2, a CDC42-specific exchange factor expressed by antigen-presenting cells, localizes to early endosomes and active membrane ruffles. J Biol Chem 2008; 283:34002-12. [PMID: 18838382 DOI: 10.1074/jbc.m803957200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Members of the Fgd (faciogenital dysplasia) gene family encode a group of critical guanine nucleotide exchange factors (GEFs), which, by specifically activating Cdc42, control cytoskeleton-dependent membrane rearrangements. In its first characterization, we find that FGD2 is expressed in antigen-presenting cells, including B lymphocytes, macrophages, and dendritic cells. In the B lymphocyte lineage, FGD2 levels change with developmental stage. In both mature splenic B cells and immature bone marrow B cells, FGD2 expression is suppressed upon activation through the B cell antigen receptor. FGD2 has a complex intracellular localization, with concentrations found in membrane ruffles and early endosomes. Although endosomal localization of FGD2 is dependent on a conserved FYVE domain, its C-terminal pleckstrin homology domain mediates recruitment to membrane ruffles. FGD2 overexpression promotes the activation of Cdc42 and leads to elevated JNK1 activity in a Cdc42- but not Rac1-dependent fashion. These findings are consistent with a role of FGD2 in leukocyte signaling and vesicle trafficking in cells specialized to present antigen in the immune system.
Collapse
Affiliation(s)
- Christoph Huber
- Department of Immunology and Microbial Sciences, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
49
|
Brown KD, Claudio E, Siebenlist U. The roles of the classical and alternative nuclear factor-kappaB pathways: potential implications for autoimmunity and rheumatoid arthritis. Arthritis Res Ther 2008; 10:212. [PMID: 18771589 PMCID: PMC2575629 DOI: 10.1186/ar2457] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is an inducible transcription factor controlled by two principal signaling cascades, each activated by a set of signal ligands: the classical/canonical NF-κB activation pathway and the alternative/noncanonical pathway. The former pathway proceeds via phosphorylation and degradation of inhibitor of NF-κB (IκB) and leads most commonly to activation of the heterodimer RelA/NF-κB1(p50). The latter pathway proceeds via phosphorylation and proteolytic processing of NF-κB2 (p100) and leads to activation, most commonly, of the heterodimer RelB/NF-κB2 (p52). Both pathways play critical roles at multiple levels of the immune system in both health and disease, including the autoimmune inflammatory response. These roles include cell cycle progression, cell survival, adhesion, and inhibition of apoptosis. NF-κB is constitutively activated in many autoimmune diseases, including diabetes type 1, systemic lupus erythematosus, and rheumatoid arthritis (RA). In this review we survey recent developments in the involvement of the classical and alternative pathways of NF-κB activation in autoimmunity, focusing particularly on RA. We discuss the involvement of NF-κB in self-reactive T and B lymphocyte development, survival and proliferation, and the maintenance of chronic inflammation due to cytokines such as tumor necrosis factor-α, IL-1, IL-6, and IL-8. We discuss the roles played by IL-17 and T-helper-17 cells in the inflammatory process; in the activation, maturation, and proliferation of RA fibroblast-like synovial cells; and differentiation and activation of osteoclast bone-resorbing activity. The prospects of therapeutic intervention to block activation of the NF-κB signaling pathways in RA are also discussed.
Collapse
Affiliation(s)
- Keith D Brown
- Immune Activation Section, Laboratory of Immune Regulation, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892-1876, USA
| | | | | |
Collapse
|
50
|
|