1
|
Guertin J, Chrobak P, Meunier C, Thomson CM, Hanna Z, Jolicoeur P. HIV Nef disrupts Lck signaling by inducing aberrant phosphorylation of its substrates. Immunohorizons 2025; 9:vlaf016. [PMID: 40329465 PMCID: PMC12055471 DOI: 10.1093/immhor/vlaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 05/08/2025] Open
Abstract
Human in vitro studies of HIV Nef on TcR proximal signaling have been controversial and have not provided an integrated picture of its impact. Tyrosine (Y) phosphorylation (pY) of Lck and its substrates (CD3ζ, Zap-70) was investigated in vivo, in Nef-expressing transgenic (Tg) thymocytes. In Tg cells, Lck was mis-localized and activated, but the pY-CD3ζ levels were unexpectedly lower, both constitutively and after anti-CD3ε Ab stimulation. Nef also favors the hyperphosphorylation of the Lck Y505 site and the accumulation of doubly phosphorylated (Y394, Y505) Lck. In contrast, after anti-CD3ε+anti-CD4 Ab stimulation, Nef decreased Lck activity and Lck was deprived of its pY partners. In Nef and LckY505F Tg thymocytes, Lck had similar activity but distinct LckY505 levels, Zap-70 pY phosphorylation, and Zap-70 activity, suggesting a different mode of Lck activation. Western blot analysis of Zap-70 with pY site-specific mAb showed modest enhanced levels of Zap-70pY292 and Zap-70pY493 (the latter required for its full activation) constitutively and after anti-CD3ε Ab stimulation, consistent with elevated Tg LATpY and suggesting a semiactive kinase. In fact, phenotypes of Nef Tg mice are very similar to those of mice harboring semiactive Zap-70 mutants. After anti-CD3ε+anti-CD4 stimulation, Tg Zap-70 activity and Zap-70pY493 levels were severely decreased, but Zap-70pY292 and Zap-70pY319 levels were barely affected, suggesting qualitative Lck defect. Rescue of Nef-mediated CD4+ T-cell loss with LckY505F in double (Nef × LckY505F) Tg mice correlated with greatly enhanced levels of Zap-70pY and Zap-70 activity. Thus, Nef impacts Lck in a unique way, triggering it to mis-phosphorylate its substrates.
Collapse
Affiliation(s)
- Joel Guertin
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, QC, Canada
| | - Pavel Chrobak
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, QC, Canada
| | - Clémence Meunier
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, QC, Canada
| | - Cassandra M Thomson
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, QC, Canada
| | - Zaher Hanna
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, QC, Canada
- Department of Medicine, University of Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Paul Jolicoeur
- Laboratory of Molecular Biology, Clinical Research Institute of Montreal, Montreal, QC, Canada
- Division of Experimental Medicine, McGill University, Montreal, QC, Canada
- Department of Microbiology/Immunology, University of Montreal, Montreal, QC, Canada
| |
Collapse
|
2
|
Proulx J, Borgmann K, Park IW. Post-translational modifications inducing proteasomal degradation to counter HIV-1 infection. Virus Res 2020; 289:198142. [PMID: 32882242 DOI: 10.1016/j.virusres.2020.198142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
Post-translational modifications (PTMs) are integral to regulating a wide variety of cellular processes in eukaryotic cells, such as regulation of protein stability, alteration of celluar location, protein activity modulation, and regulation of protein interactions. HIV-1, like other eukaryotic viruses, and its infected host exploit the proteasomal degradation system for their respective proliferation and survival, using various PTMs, including but not limited to ubiquitination, SUMOylation, NEDDylation, interferon-stimulated gene (ISG)ylation. Essentially all viral proteins within the virions -- and in the HIV-1-infected cells -- interact with their cellular counterparts for this degradation, utilizing ubiquitin (Ub), and the Ub-like (Ubl) modifiers less frequently, to eliminate the involved proteins throughout the virus life cycle, from the entry step to release of the assembled virus particles. Such interplay is pivotal for, on the one hand, the cell to restrict proliferation of the infecting virus, and on the other, for molecular counteraction by the virus to overcome this cellular protein-imposed restriction. Recent reports indicate that not only viral/cellular proteins but also viral/viral protein interactions play vital roles in regulating viral protein stability. We hence give an overview of the molecular processes of PTMs involved in proteasomal degradation of the viral and cellular proteins, and the viral/viral and viral/cellular protein interplay in restriction and competition for HIV-1 vs. host cell survival. Insights in this realm could open new avenues for developing therapeutics against HIV-1 via targeting specific steps of the proteasome degradation pathway during the HIV-1 life cycle.
Collapse
Affiliation(s)
- Jessica Proulx
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - In-Woo Park
- Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States.
| |
Collapse
|
3
|
Ferreira MAR, Vonk JM, Baurecht H, Marenholz I, Tian C, Hoffman JD, Helmer Q, Tillander A, Ullemar V, Lu Y, Grosche S, Rüschendorf F, Granell R, Brumpton BM, Fritsche LG, Bhatta L, Gabrielsen ME, Nielsen JB, Zhou W, Hveem K, Langhammer A, Holmen OL, Løset M, Abecasis GR, Willer CJ, Emami NC, Cavazos TB, Witte JS, Szwajda A, Hinds DA, Hübner N, Weidinger S, Magnusson PKE, Jorgenson E, Karlsson R, Paternoster L, Boomsma DI, Almqvist C, Lee YA, Koppelman GH. Age-of-onset information helps identify 76 genetic variants associated with allergic disease. PLoS Genet 2020; 16:e1008725. [PMID: 32603359 PMCID: PMC7367489 DOI: 10.1371/journal.pgen.1008725] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 07/17/2020] [Accepted: 03/19/2020] [Indexed: 12/18/2022] Open
Abstract
Risk factors that contribute to inter-individual differences in the age-of-onset of allergic diseases are poorly understood. The aim of this study was to identify genetic risk variants associated with the age at which symptoms of allergic disease first develop, considering information from asthma, hay fever and eczema. Self-reported age-of-onset information was available for 117,130 genotyped individuals of European ancestry from the UK Biobank study. For each individual, we identified the earliest age at which asthma, hay fever and/or eczema was first diagnosed and performed a genome-wide association study (GWAS) of this combined age-of-onset phenotype. We identified 50 variants with a significant independent association (P<3x10-8) with age-of-onset. Forty-five variants had comparable effects on the onset of the three individual diseases and 38 were also associated with allergic disease case-control status in an independent study (n = 222,484). We observed a strong negative genetic correlation between age-of-onset and case-control status of allergic disease (rg = -0.63, P = 4.5x10-61), indicating that cases with early disease onset have a greater burden of allergy risk alleles than those with late disease onset. Subsequently, a multivariate GWAS of age-of-onset and case-control status identified a further 26 associations that were missed by the univariate analyses of age-of-onset or case-control status only. Collectively, of the 76 variants identified, 18 represent novel associations for allergic disease. We identified 81 likely target genes of the 76 associated variants based on information from expression quantitative trait loci (eQTL) and non-synonymous variants, of which we highlight ADAM15, FOSL2, TRIM8, BMPR2, CD200R1, PRKCQ, NOD2, SMAD4, ABCA7 and UBE2L3. Our results support the notion that early and late onset allergic disease have partly distinct genetic architectures, potentially explaining known differences in pathophysiology between individuals.
Collapse
Affiliation(s)
- Manuel A. R. Ferreira
- Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Judith M. Vonk
- University of Groningen, University Medical Center Groningen, Epidemiology, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| | - Hansjörg Baurecht
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
- Department of Epidemiology and Preventive Medicine, University of Regensburg, Regensburg, Germany
| | - Ingo Marenholz
- Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center of Charité Universitätsmedizin Berlin and Max Delbrück Center, Berlin, Germany
| | - Chao Tian
- 23andMe, Inc., Mountain View, California, United States of America
| | - Joshua D. Hoffman
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America
| | - Quinta Helmer
- Department Biological Psychology, Netherlands Twin Register, Vrije University, Amsterdam, The Netherlands
| | - Annika Tillander
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Vilhelmina Ullemar
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Yi Lu
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Sarah Grosche
- Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center of Charité Universitätsmedizin Berlin and Max Delbrück Center, Berlin, Germany
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | | | - Raquel Granell
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Ben M. Brumpton
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Thoracic Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Lars G. Fritsche
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Laxmi Bhatta
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Maiken E. Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Jonas B. Nielsen
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Wei Zhou
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Arnulf Langhammer
- The HUNT Research Centre, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Oddgeir L. Holmen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mari Løset
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Dermatology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Gonçalo R. Abecasis
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Cristen J. Willer
- Department of Biostatistics and Center for Statistical Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Human Genetics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Nima C. Emami
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
| | - Taylor B. Cavazos
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California, United States of America
| | - John S. Witte
- Program in Biological and Medical Informatics, University of California, San Francisco, San Francisco, California, United States of America
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, United States of America
- Institute for Human Genetics, University of California, San Francisco, San Francisco, California, United States of America
- Department of Urology, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, United States of America
| | - Agnieszka Szwajda
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | | | | | - David A. Hinds
- 23andMe, Inc., Mountain View, California, United States of America
| | - Norbert Hübner
- Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
| | - Stephan Weidinger
- Department of Dermatology, Allergology and Venereology, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Patrik KE Magnusson
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Eric Jorgenson
- Division of Research, Kaiser Permanente Northern California, Oakland, California, United States of America
| | - Robert Karlsson
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
| | - Lavinia Paternoster
- MRC Integrative Epidemiology Unit, Population Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Dorret I. Boomsma
- Department Biological Psychology, Netherlands Twin Register, Vrije University, Amsterdam, The Netherlands
| | - Catarina Almqvist
- Department of Medical Epidemiology and Biostatistics and the Swedish Twin Registry, Karolinska Institutet, Stockholm, Sweden
- Pediatric Allergy and Pulmonology Unit at Astrid Lindgren Children’s Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Young-Ae Lee
- Max Delbrück Center (MDC) for Molecular Medicine, Berlin, Germany
- Clinic for Pediatric Allergy, Experimental and Clinical Research Center of Charité Universitätsmedizin Berlin and Max Delbrück Center, Berlin, Germany
| | - Gerard H. Koppelman
- University of Groningen, University Medical Center Groningen, Beatrix Children’s Hospital, Pediatric Pulmonology and Pediatric Allergology, and University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD, Groningen, the Netherlands
| |
Collapse
|
4
|
Pyeon D, Rojas VK, Price L, Kim S, Singh M, Park IW. HIV-1 Impairment via UBE3A and HIV-1 Nef Interactions Utilizing the Ubiquitin Proteasome System. Viruses 2019; 11:v11121098. [PMID: 31783587 PMCID: PMC6950590 DOI: 10.3390/v11121098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 11/15/2019] [Accepted: 11/25/2019] [Indexed: 12/30/2022] Open
Abstract
Molecular basis of HIV-1 life cycle regulation has thus far focused on viral gene stage-specificity, despite the quintessence of post-function protein elimination processes in the virus life cycle and consequent pathogenesis. Our studies demonstrated that a key pathogenic HIV-1 viral protein, Nef, interacted with ubiquitin (Ub)-protein ligase E3A (UBE3A/E6AP), suggesting that interaction between Nef and UBE3A is integral to regulation of viral and cellular protein decay and thereby the competing HIV-1 and host cell survivals. In fact, Nef and UBE3A degraded reciprocally, and UBE3A-mediated degradation of Nef was significantly more potent than Nef-triggered degradation of UBE3A. Further, UBE3A degraded not only Nef but also HIV-1 structural proteins, Gag, thus significantly inhibiting HIV-1 replication in Jurkat T cells only in the presence of Nef, indicating that interaction between Nef and UBE3Awas pivotal for UBE3A-mediated degradation of the viral proteins. Mechanistic study showed that Nef and UBE3A were specific and antagonistic to each other in regulating proteasome activity and ubiquitination of cellular proteins in general, wherein specific domains of Nef overlapping with the long terminal repeat (LTR) were essential for the observed actions. Further, Nef itself reduced the level of intracellular Gag by degrading a cardinal transcription regulator, Tat, demonstrating a broad role for Nef in the regulation of the HIV-1 life cycle. Taken together, these data demonstrated that the Nef and UBE3A complex plays a crucial role in coordinating viral protein degradation and hence HIV-1 replication, providing insights as to the nature of pathobiologic and defense strategies of HIV-1 and HIV-infected host cells.
Collapse
Affiliation(s)
- Dohun Pyeon
- Departments of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA;
| | - Vivian K. Rojas
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.K.R.); (L.P.)
| | - Lenore Price
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.K.R.); (L.P.)
| | - Seongcheol Kim
- Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA (M.S.)
| | - Meharvan Singh
- Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA (M.S.)
| | - In-Woo Park
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA; (V.K.R.); (L.P.)
- Correspondence: ; Tel.: +(817)-735-5115; Fax: +(817)-735-2610
| |
Collapse
|
5
|
Exosomes containing HIV protein Nef reorganize lipid rafts potentiating inflammatory response in bystander cells. PLoS Pathog 2019; 15:e1007907. [PMID: 31344124 PMCID: PMC6657916 DOI: 10.1371/journal.ppat.1007907] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/11/2019] [Indexed: 01/21/2023] Open
Abstract
HIV infection has a profound effect on “bystander” cells causing metabolic co-morbidities. This may be mediated by exosomes secreted by HIV-infected cells and containing viral factors. Here we show that exosomes containing HIV-1 protein Nef (exNef) are rapidly taken up by macrophages releasing Nef into the cell interior. This caused down-regulation of ABCA1, reduction of cholesterol efflux and sharp elevation of the abundance of lipid rafts through reduced activation of small GTPase Cdc42 and decreased actin polymerization. Changes in rafts led to re-localization of TLR4 and TREM-1 to rafts, phosphorylation of ERK1/2, activation of NLRP3 inflammasome, and increased secretion of pro-inflammatory cytokines. The effects of exNef on lipid rafts and on inflammation were reversed by overexpression of a constitutively active mutant of Cdc42. Similar effects were observed in macrophages treated with exosomes produced by HIV-infected cells or isolated from plasma of HIV-infected subjects, but not with exosomes from cells and subjects infected with ΔNef-HIV or uninfected subjects. Mice injected with exNef exhibited monocytosis, reduced ABCA1 in macrophages, increased raft abundance in monocytes and augmented inflammation. Thus, Nef-containing exosomes potentiated pro-inflammatory response by inducing changes in cholesterol metabolism and reorganizing lipid rafts. These mechanisms may contribute to HIV-associated metabolic co-morbidities. HIV infects only a limited repertoire of cells expressing HIV receptors. Nevertheless, co-morbidities of HIV infection, such as atherosclerosis, dementia, renal impairment, myocardial pathology, abnormal haematopoiesis and others, involve dysfunction of cells that can not be infected by HIV. These co-morbidities persist even after successful application of antiretroviral therapy, when no virus is found in the blood. Many co-morbidities of HIV have a common element in their pathogenesis, impairment of cholesterol metabolism. In this study we show that HIV protein Nef released from infected cells in extracellular vesicles is taken up by un-infected (‘bystander’) cells impairing cholesterol metabolism in these cells. This impairment causes formation of excessive lipid rafts, re-localization of the inflammatory receptors into rafts, and triggers inflammation. These mechanisms may contribute to HIV-associated metabolic co-morbidities. Our work demonstrates how a single viral factor released from infected cells into circulation may cause a pleiotropy of pathogenic responses.
Collapse
|
6
|
Rojas VK, Park IW. Role of the Ubiquitin Proteasome System (UPS) in the HIV-1 Life Cycle. Int J Mol Sci 2019; 20:ijms20122984. [PMID: 31248071 PMCID: PMC6628307 DOI: 10.3390/ijms20122984] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 06/10/2019] [Accepted: 06/11/2019] [Indexed: 01/18/2023] Open
Abstract
Given that the ubiquitin proteasome system (UPS) is the major protein degradation process in the regulation of a wide variety of cellular processes in eukaryotic cells, including alteration of cellular location, modulation of protein activity, and regulation of protein interaction, it is reasonable to suggest that the infecting HIV-1 and the invaded hosts exploit the UPS in a contest for survival and proliferation. However, to date, regulation of the HIV-1 life cycle has been mainly explained by the stage-specific expression of HIV-1 viral genes, not by elimination processes of the synthesized proteins after completion of their duties in the infected cells, which is also quintessential for understanding the molecular processes of the virus life cycle and thereby HIV-1 pathogenesis. In fact, several previous publications have indicated that the UPS plays a critical role in the regulation of the proteasomal degradation of viral and cellular counterparts at every step of the HIV-1 life cycle, from the virus entry to release of the assembled virus particles, which is integral for the regulation of survival and proliferation of the infecting HIV-1 and to replication restriction of the invading virus in the host. However, it is unknown whether and how these individual events taking place at different stages of the HIV-1 life cycle are orchestrated as an overall strategy to overcome the restrictions conferred by the host cells. Thus, in this review, we overview the interplay between HIV-1 viral and cellular proteins for restrictions/competitions for proliferation of the virus in the infected cell, which could open a new avenue for the development of therapeutics against HIV-1 via targeting a specific step of the proteasome degradation pathway during the HIV-1 life cycle.
Collapse
Affiliation(s)
- Vivian K Rojas
- Department of Microbiology, Immunology, and Genetics, University of North Texas, Health Science Center, Fort Worth, TX 76107, USA.
| | - In-Woo Park
- Department of Microbiology, Immunology, and Genetics, University of North Texas, Health Science Center, Fort Worth, TX 76107, USA.
| |
Collapse
|
7
|
Chase AJ, Wombacher R, Fackler OT. Intrinsic properties and plasma membrane trafficking route of Src family kinase SH4 domains sensitive to retargeting by HIV-1 Nef. J Biol Chem 2018; 293:7824-7840. [PMID: 29588370 DOI: 10.1074/jbc.ra118.002794] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Indexed: 01/18/2023] Open
Abstract
The HIV type 1 pathogenicity factor Nef enhances viral replication by modulating multiple host cell pathways, including tuning the activation state of infected CD4 T lymphocytes to optimize virus spread. For this, Nef inhibits anterograde transport of the Src family kinase (SFK) Lck toward the plasma membrane (PM). This leads to retargeting of the kinase to the trans-Golgi network, whereas the intracellular transport of a related SFK, Fyn, is unaffected by Nef. The 18-amino acid Src homology 4 (SH4) domain membrane anchor of Lck is necessary and sufficient for Nef-mediated retargeting, but other details of this process are not known. The goal of this study was therefore to identify characteristics of SH4 domains responsive to Nef and the transport machinery used. Screening a panel of SFK SH4 domains revealed two groups that were sensitive or insensitive for trans-Golgi network retargeting by Nef as well as the importance of the amino acid at position 8 for determining Nef sensitivity. Anterograde transport of Nef-sensitive domains was characterized by slower delivery to the PM and initial targeting to Golgi membranes, where transport was arrested in the presence of Nef. For Nef-sensitive SH4 domains, ectopic expression of the lipoprotein binding chaperone Unc119a or the GTPase Arl3 or reduction of their endogenous expression phenocopied the effect of Nef. Together, these results suggest that, analogous to K-Ras, Nef-sensitive SH4 domains are transported to the PM by a cycle of solubilization and membrane insertion and that intrinsic properties define SH4 domains as cargo of this Nef-sensitive lipoprotein binding chaperone-GTPase transport cycle.
Collapse
Affiliation(s)
- Amanda J Chase
- From the Department of Infectious Diseases, Center for Integrative Infectious Disease Research (CIID), Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Rebecka Wombacher
- From the Department of Infectious Diseases, Center for Integrative Infectious Disease Research (CIID), Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| | - Oliver T Fackler
- From the Department of Infectious Diseases, Center for Integrative Infectious Disease Research (CIID), Integrative Virology, University Hospital Heidelberg, Im Neuenheimer Feld 344, 69120 Heidelberg, Germany
| |
Collapse
|
8
|
Pawlak EN, Dirk BS, Jacob RA, Johnson AL, Dikeakos JD. The HIV-1 accessory proteins Nef and Vpu downregulate total and cell surface CD28 in CD4 + T cells. Retrovirology 2018; 15:6. [PMID: 29329537 PMCID: PMC5767034 DOI: 10.1186/s12977-018-0388-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
Background The HIV-1 accessory proteins Nef and Vpu alter cell surface levels of multiple host proteins to modify the immune response and increase viral persistence. Nef and Vpu can downregulate cell surface levels of the co-stimulatory molecule CD28, however the mechanism of this function has not been completely elucidated. Results Here, we provide evidence that Nef and Vpu decrease cell surface and total cellular levels of CD28. Moreover, using inhibitors we implicate the cellular degradation machinery in the downregulation of CD28. We shed light on the mechanisms of CD28 downregulation by implicating the Nef LL165 and DD175 motifs in decreasing cell surface CD28 and Nef DD175 in decreasing total cellular CD28. Moreover, the Vpu LV64 and S52/56 motifs were required for cell surface CD28 downregulation, while, unlike for CD4 downregulation, Vpu W22 was dispensable. The Vpu S52/56 motif was also critical for Vpu-mediated decreases in total CD28 protein level. Finally, the ability of Vpu to downregulate CD28 is conserved between multiple group M Vpu proteins and infection with viruses encoding or lacking Nef and Vpu have differential effects on activation upon stimulation. Conclusions We report that Nef and Vpu downregulate cell surface and total cellular CD28 levels. We identified inhibitors and mutations within Nef and Vpu that disrupt downregulation, shedding light on the mechanisms utilized to downregulate CD28. The conservation and redundancy between the abilities of two HIV-1 proteins to downregulate CD28 highlight the importance of this function, which may contribute to the development of latently infected cells. Electronic supplementary material The online version of this article (10.1186/s12977-018-0388-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Emily N Pawlak
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Brennan S Dirk
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Rajesh Abraham Jacob
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Aaron L Johnson
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada
| | - Jimmy D Dikeakos
- Department of Microbiology and Immunology, Schulich School of Medicine and Dentistry, University of Western Ontario, Dental Sciences Building, Room 3007J, London, ON, N6A 5C1, Canada.
| |
Collapse
|
9
|
Murshid A, Borges TJ, Lang BJ, Calderwood SK. The Scavenger Receptor SREC-I Cooperates with Toll-Like Receptors to Trigger Inflammatory Innate Immune Responses. Front Immunol 2016; 7:226. [PMID: 27379091 PMCID: PMC4904184 DOI: 10.3389/fimmu.2016.00226] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/26/2016] [Indexed: 11/13/2022] Open
Abstract
Scavenger receptor expressed by endothelial cell-I (SREC-I) is a class F scavenger receptor expressed by immune cells with a significant role in CD8+- and CD4+-mediated T cell immunity. This receptor can also modulate the function of toll-like receptors (TLRs), which play essential roles in innate immunity. Earlier, it was found that human monocyte/macrophage THP1 cells and bone marrow-derived macrophages from mice exhibited increased responses to polyinosine–polycytidylic acid (poly I:C, PIC) and CpG (unmethylated) DNA and enhanced production of inflammatory cytokines with overexpressed SREC-I. Our data also showed that intracellular/endocytic TLR3 and TLR9 could directly interact with SREC-I in the presence of their respective ligands. We also observed that the internalized ligand along with TLR3/TLR9 colocalized in the endosome in macrophages and THP-1 cells overexpressing these receptors. In the absence of these ligands, there was no detectable colocalization between the SREC-I and endocytic TLRs. Earlier, it was shown that SREC-I stimulated double-stranded RNA/CpGDNA-mediated TLR3/TLR9 activation of the innate immune response by triggering signaling through the NF-κB, IRF3, and MAP kinase pathways leading to transcription of cytokine genes. We also established that SREC-I can associate with plasma membrane TLRs, such as TLR2 and TLR4. We demonstrated that SREC-I–TLR4 signals more efficiently from lipid microdomain in which lipopolysaccharide (LPS) can associate with SREC-I–TLR4 complex. We also proved that SREC-I is an alternate receptor for LPS capable of internalizing the complex and for endocytic TLR ligands as well. This binding activated endocytic TLR-mediated downstream cytokine production in THP1 cells and macrophages. Finally, SREC-I could also form complexes with TLR2 and induce the release of cytokines in the presence of bacterial, viral, and fungal ligands.
Collapse
Affiliation(s)
- Ayesha Murshid
- Molecular and Cellular Radiation Oncology, Center for Life Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Thiago J Borges
- Biomedical Research Institute, School of Biosciences, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS) , Porto Alegre , Brazil
| | - Benjamin J Lang
- Molecular and Cellular Radiation Oncology, Center for Life Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| | - Stuart K Calderwood
- Molecular and Cellular Radiation Oncology, Center for Life Sciences, Beth Israel Deaconess Medical Center, Harvard Medical School , Boston, MA , USA
| |
Collapse
|
10
|
Lee H, Tsygankov AY. Cbl-family proteins as regulators of cytoskeleton-dependent phenomena. J Cell Physiol 2013; 228:2285-93. [DOI: 10.1002/jcp.24412] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/29/2013] [Indexed: 12/21/2022]
Affiliation(s)
- Hojin Lee
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| | - Alexander Y. Tsygankov
- Department of Microbiology and Immunology; Sol Sherry Thrombosis Research Center and Fels Institute for Cancer Research; Temple University School of Medicine; Philadelphia Pennsylvania
| |
Collapse
|
11
|
Abbas W, Herbein G. Plasma membrane signaling in HIV-1 infection. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1838:1132-42. [PMID: 23806647 DOI: 10.1016/j.bbamem.2013.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/12/2013] [Accepted: 06/16/2013] [Indexed: 10/26/2022]
Abstract
Plasma membrane is a multifunctional structure that acts as the initial barrier against infection by intracellular pathogens. The productive HIV-1 infection depends upon the initial interaction of virus and host plasma membrane. Immune cells such as CD4+ T cells and macrophages contain essential cell surface receptors and molecules such as CD4, CXCR4, CCR5 and lipid raft components that facilitate HIV-1 entry. From plasma membrane HIV-1 activates signaling pathways that prepare the grounds for viral replication. Through viral proteins HIV-1 hijacks host plasma membrane receptors such as Fas, TNFRs and DR4/DR5, which results in immune evasion and apoptosis both in infected and uninfected bystander cells. These events are hallmark in HIV-1 pathogenesis that leads towards AIDS. The interplay between HIV-1 and plasma membrane signaling has much to offer in terms of viral fitness and pathogenicity, and a better understanding of this interplay may lead to development of new therapeutic approaches. This article is part of a Special Issue entitled: Viral Membrane Proteins - Channels for Cellular Networking.
Collapse
Affiliation(s)
- Wasim Abbas
- Department of Virology, EA 4266 "Pathogens & Inflammation", SFR FED4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France.
| | - Georges Herbein
- Department of Virology, EA 4266 "Pathogens & Inflammation", SFR FED4234, University of Franche-Comte, CHRU Besançon, F-25030 Besançon, France.
| |
Collapse
|
12
|
Pan X, Geist MM, Rudolph JM, Nickel W, Fackler OT. HIV-1 Nef disrupts membrane-microdomain-associated anterograde transport for plasma membrane delivery of selected Src family kinases. Cell Microbiol 2013; 15:1605-21. [DOI: 10.1111/cmi.12148] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 03/29/2013] [Accepted: 04/08/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoyu Pan
- Department of Infectious Diseases, Virology; University Hospital Heidelberg; INF 324; 69120; Heidelberg; Germany
| | - Miriam M. Geist
- Department of Infectious Diseases, Virology; University Hospital Heidelberg; INF 324; 69120; Heidelberg; Germany
| | - Jochen M. Rudolph
- Department of Infectious Diseases, Virology; University Hospital Heidelberg; INF 324; 69120; Heidelberg; Germany
| | - Walter Nickel
- Biochemistry Center; Heidelberg University; INF 328; 69120; Heidelberg; Germany
| | - Oliver T. Fackler
- Department of Infectious Diseases, Virology; University Hospital Heidelberg; INF 324; 69120; Heidelberg; Germany
| |
Collapse
|
13
|
Watanabe T, Urano E, Miyauchi K, Ichikawa R, Hamatake M, Misawa N, Sato K, Ebina H, Koyanagi Y, Komano J. The hematopoietic cell-specific Rho GTPase inhibitor ARHGDIB/D4GDI limits HIV type 1 replication. AIDS Res Hum Retroviruses 2012; 28:913-22. [PMID: 21936715 DOI: 10.1089/aid.2011.0180] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rho GTPases are able to influence the replication of human immunodeficiency virus type 1 (HIV-1). However, little is known about the regulation of HIV-1 replication by guanine nucleotide dissociation inhibitors (GDIs), one of the three major regulators of the Rho GTPase activation cycle. From a T cell-based cDNA library screening, ARHGDIB/RhoGDIβ, a hematopoietic lineage-specific GDI family protein, was identified as a negative regulator of HIV-1 replication. Up-regulation of ARHGDIB attenuated the replication of HIV-1 in multiple T cell lines. The results showed that (1) a significant portion of RhoA and Rac1, but not Cdc42, exists in the GTP-bound active form under steady-state conditions, (2) ectopic ARHGDIB expression reduced the F-actin content and the active forms of both RhoA and Rac1, and (3) HIV-1 infection was attenuated by either ectopic expression of ARHGDIB or inhibition of the RhoA signal cascade at the HIV-1 Env-dependent early phase of the viral life cycle. This is in good agreement with the previous finding that RhoA and Rac1 promote HIV-1 entry by increasing the efficiency of receptor clustering and virus-cell membrane fusion. In conclusion, the ARHGDIB is a lymphoid-specific intrinsic negative regulator of HIV-1 replication that acts by simultaneously inhibiting RhoA and Rac1 functions.
Collapse
Affiliation(s)
- Tadashi Watanabe
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Emiko Urano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Kosuke Miyauchi
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Reiko Ichikawa
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makiko Hamatake
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Naoko Misawa
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Kei Sato
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Hirotaka Ebina
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Yoshio Koyanagi
- Laboratory of Viral Pathogenesis, Institute for Virus Research, Kyoto University, Kyoto, Japan
| | - Jun Komano
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
14
|
Abraham L, Bankhead P, Pan X, Engel U, Fackler OT. HIV-1 Nef limits communication between linker of activated T cells and SLP-76 to reduce formation of SLP-76-signaling microclusters following TCR stimulation. THE JOURNAL OF IMMUNOLOGY 2012; 189:1898-910. [PMID: 22802418 DOI: 10.4049/jimmunol.1200652] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Signal initiation by engagement of the TCR triggers actin rearrangements, receptor clustering, and dynamic organization of signaling complexes to elicit and sustain downstream signaling. Nef, a pathogenicity factor of HIV, disrupts early TCR signaling in target T cells. To define the mechanism underlying this Nef-mediated signal disruption, we employed quantitative single-cell microscopy following surface-mediated TCR stimulation that allows for dynamic visualization of distinct signaling complexes as microclusters (MCs). Despite marked inhibition of actin remodeling and cell spreading, the induction of MCs containing TCR-CD3 or ZAP70 was not affected significantly by Nef. However, Nef potently inhibited the subsequent formation of MCs positive for the signaling adaptor Src homology-2 domain-containing leukocyte protein of 76 kDa (SLP-76) to reduce MC density in Nef-expressing and HIV-1-infected T cells. Further analyses suggested that Nef prevents formation of SLP-76 MCs at the level of the upstream adaptor protein, linker of activated T cells (LAT), that couples ZAP70 to SLP-76. Nef did not disrupt pre-existing MCs positive for LAT. However, the presence of the viral protein prevented de novo recruitment of active LAT into MCs due to retargeting of LAT to an intracellular compartment. These modulations in MC formation and composition depended on Nef's ability to simultaneously disrupt both actin remodeling and subcellular localization of TCR-proximal machinery. Nef thus employs a dual mechanism to disturb early TCR signaling by limiting the communication between LAT and SLP-76 and preventing the dynamic formation of SLP-76-signaling MCs.
Collapse
Affiliation(s)
- Libin Abraham
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
15
|
Saxena SK, Shrivastava G, Tiwari S, Swamy MA, Nair MP. Modulation of HIV pathogenesis and T-cell signaling by HIV-1 Nef. Future Virol 2012; 7:609-620. [PMID: 22844345 DOI: 10.2217/fvl.12.42] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
HIV-1 Nef protein is an approximately 27-kDa myristoylated protein that is a virulence factor essential for efficient viral replication and infection in CD4(+) T cells. The functions of CD4(+) T cells are directly impeded after HIV infection. HIV-1 Nef plays a crucial role in manipulating host cellular machinery and in HIV pathogenesis by reducing the ability of infected lymphocytes to form immunological synapses by promoting virological synapses with APCs, and by affecting T-cell stimulation. This article reviews the current status of the efficient Nef-mediated spread of virus in the unreceptive environment of the immune system by altering CD4(+) T-lymphocyte signaling, intracellular trafficking, cell migration and apoptotic pathways.
Collapse
Affiliation(s)
- Shailendra K Saxena
- CSIR-Centre for Cellular & Molecular Biology, Uppal Road, Hyderabad 500007 (AP), India
| | | | | | | | | |
Collapse
|
16
|
Dahiya S, Nonnemacher MR, Wigdahl B. Deployment of the human immunodeficiency virus type 1 protein arsenal: combating the host to enhance viral transcription and providing targets for therapeutic development. J Gen Virol 2012; 93:1151-1172. [PMID: 22422068 DOI: 10.1099/vir.0.041186-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Despite the success of highly active antiretroviral therapy in combating human immunodeficiency virus type 1 (HIV-1) infection, the virus still persists in viral reservoirs, often in a state of transcriptional silence. This review focuses on the HIV-1 protein and regulatory machinery and how expanding knowledge of the function of individual HIV-1-coded proteins has provided valuable insights into understanding HIV transcriptional regulation in selected susceptible cell types. Historically, Tat has been the most studied primary transactivator protein, but emerging knowledge of HIV-1 transcriptional regulation in cells of the monocyte-macrophage lineage has more recently established that a number of the HIV-1 accessory proteins like Vpr may directly or indirectly regulate the transcriptional process. The viral proteins Nef and matrix play important roles in modulating the cellular activation pathways to facilitate viral replication. These observations highlight the cross talk between the HIV-1 transcriptional machinery and cellular activation pathways. The review also discusses the proposed transcriptional regulation mechanisms that intersect with the pathways regulated by microRNAs and how development of the knowledge of chromatin biology has enhanced our understanding of key protein-protein and protein-DNA interactions that form the HIV-1 transcriptome. Finally, we discuss the potential pharmacological approaches to target viral persistence and enhance effective transcription to purge the virus in cellular reservoirs, especially within the central nervous system, and the novel therapeutics that are currently in various stages of development to achieve a much superior prognosis for the HIV-1-infected population.
Collapse
Affiliation(s)
- Satinder Dahiya
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Michael R Nonnemacher
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Brian Wigdahl
- Department of Microbiology and Immunology, Center for Molecular Virology and Translational Neuroscience, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
17
|
Biard-Piechaczyk M, Borel S, Espert L, de Bettignies G, Coux O. HIV-1, ubiquitin and ubiquitin-like proteins: the dialectic interactions of a virus with a sophisticated network of post-translational modifications. Biol Cell 2012; 104:165-87. [PMID: 22188301 DOI: 10.1111/boc.201100112] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 12/14/2011] [Indexed: 11/26/2022]
Abstract
The modification of intracellular proteins by ubiquitin (Ub) and ubiquitin-like (UbL) proteins is a central mechanism for regulating and fine-tuning all cellular processes. Indeed, these modifications are widely used to control the stability, activity and localisation of many key proteins and, therefore, they are instrumental in regulating cellular functions as diverse as protein degradation, cell signalling, vesicle trafficking and immune response. It is thus no surprise that pathogens in general, and viruses in particular, have developed multiple strategies to either counteract or exploit the complex mechanisms mediated by the Ub and UbL protein conjugation pathways. The aim of this review is to provide an overview on the intricate and conflicting relationships that intimately link HIV-1 and these sophisticated systems of post-translational modifications.
Collapse
Affiliation(s)
- Martine Biard-Piechaczyk
- Centre d'étude d'agents Pathogènes et Biotechnologies pour la Santé (CPBS-CNRS), Montpellier Cedex 5, France.
| | | | | | | | | |
Collapse
|
18
|
Carlin LM, Evans R, Milewicz H, Fernandes L, Matthews DR, Perani M, Levitt J, Keppler MD, Monypenny J, Coolen T, Barber PR, Vojnovic B, Suhling K, Fraternali F, Ameer-Beg S, Parker PJ, Thomas NSB, Ng T. A targeted siRNA screen identifies regulators of Cdc42 activity at the natural killer cell immunological synapse. Sci Signal 2011; 4:ra81. [PMID: 22126964 DOI: 10.1126/scisignal.2001729] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells kill tumor cells and virally infected cells, and an effective NK cell response requires processes, such as motility, recognition, and directional secretion, that rely on cytoskeletal rearrangement. The Rho guanosine triphosphatase (GTPase) Cdc42 coordinates cytoskeletal reorganization downstream of many receptors. The Rho-related GTPase from plants 1 (ROP1) exhibits oscillatory activation behavior at the apical plasma membrane of growing pollen tubes; however, a similar oscillation in Rho GTPase activity has so far not been demonstrated in mammalian cells. We hypothesized that oscillations in Cdc42 activity might occur within NK cells as they interact with target cells. Through fluorescence lifetime imaging of a Cdc42 biosensor, we observed that in live NK cells forming immunological synapses with target cells, Cdc42 activity oscillated after exhibiting an initial increase. We used protein-protein interaction networks and structural databases to identify candidate proteins that controlled Cdc42 activity, leading to the design of a targeted short interfering RNA screen. The guanine nucleotide exchange factors RhoGEF6 and RhoGEF7 were necessary for Cdc42 activation within the NK cell immunological synapse. In addition, the kinase Akt and the p85α subunit of phosphoinositide 3-kinase (PI3K) were required for Cdc42 activation, the periodicity of the oscillation in Cdc42 activity, and the subsequent polarization of cytotoxic vesicles toward target cells. Given that PI3Ks are targets of tumor therapies, our findings suggest the need to monitor innate immune function during the course of targeted therapy against these enzymes.
Collapse
Affiliation(s)
- Leo M Carlin
- Richard Dimbleby Department of Cancer Research, King's College London, London SE1 1UL, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
HIV-1 Nef compensates for disorganization of the immunological synapse by inducing trans-Golgi network-associated Lck signaling. Blood 2011; 119:786-97. [PMID: 22123847 DOI: 10.1182/blood-2011-08-373209] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The Nef protein of HIV-1 facilitates viral replication and disease progression in vivo. Nef disturbs the organization of immunological synapses between infected CD4(+) T lymphocytes and antigen-presenting B-lymphocytes to interfere with TCR proximal signaling. Paradoxically, Nef enhances distal TCR signaling in infected CD4(+) T lymphocytes, an effect thought to be involved in its role in AIDS pathogenesis. Using quantitative confocal microscopy and cell fractionation of Nef-expressing cells and HIV-1-infected primary human T lymphocytes, we found that Nef induces intracellular compartmentalization of TCR signaling to adjust TCR responses to antigenic stimulation. Nef reroutes kinase-active pools of the TCR signaling master switch Lck away from the plasma membrane (PM) to the trans-Golgi network (TGN), thereby preventing the recruitment of active Lck to the immunological synapse after TCR engagement and limiting signal initiation at the PM. Instead, Nef triggers Lck-dependent activation of TGN-associated Ras-Erk signaling to promote the production of the T lymphocyte survival factor IL-2 and to enhance virus spread. Overexpression of the Lck PM transporter Unc119 restores Nef-induced subversions of Lck trafficking and TCR signaling. Nef therefore hijacks Lck sorting to selectively activate TGN-associated arms of compartmentalized TCR signaling. By tailoring T-lymphocyte responses to antigenic stimulation, Nef optimizes the environment for HIV-1 replication.
Collapse
|
20
|
Olivieri KC, Mukerji J, Gabuzda D. Nef-mediated enhancement of cellular activation and human immunodeficiency virus type 1 replication in primary T cells is dependent on association with p21-activated kinase 2. Retrovirology 2011; 8:64. [PMID: 21819585 PMCID: PMC3169461 DOI: 10.1186/1742-4690-8-64] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 08/05/2011] [Indexed: 12/13/2022] Open
Abstract
Background The HIV-1 accessory protein Nef is an important determinant of lentiviral pathogenicity that contributes to disease progression by enhancing viral replication and other poorly understood mechanisms. Nef mediates diverse functions including downmodulation of cell surface CD4 and MHC Class I, enhancement of viral infectivity, and enhancement of T cell activation. Nef interacts with a multiprotein signaling complex that includes Src family kinases, Vav1, CDC42, and activated PAK2 (p21-activated kinase 2). Although previous studies have attempted to identify a biological role for the Nef-PAK2 signaling complex, the importance of this complex and its constituent proteins in Nef function remains unclear. Results Here, we show that Nef mutants defective for PAK2-association, but functional for CD4 and MHC Class I downmodulation and infectivity enhancement, are also defective for the ability to enhance viral replication in primary T cells that are infected and subsequently activated by sub-maximal stimuli (1 μg/ml PHA-P). In contrast, these Nef mutants had little or no effect on HIV-1 replication in T cells activated by stronger stimuli (2 μg/ml PHA-P or anti-CD3/CD28-coated beads). Viruses bearing wild-type Nefs, but not Nef mutants defective for PAK2 association, enhanced NFAT and IL2 receptor promoter activity in Jurkat cells. Moreover, expression of wild-type Nefs, but not mutant Nefs defective for PAK2 association, was sufficient to enhance responsiveness of primary CD4 and CD8 T cells to activating stimuli in Nef-expressing and bystander cells. siRNA knockdown of PAK2 in Jurkat cells reduced NFAT activation induced by anti-CD3/CD28 stimulation both in the presence and absence of Nef, and expression of a PAK2 dominant mutant inhibited Nef-mediated enhancement of CD25 expression. Conclusion Nef-mediated enhancement of cellular activation and viral replication in primary T cells is dependent on PAK2 and on the strength of the activating stimuli, and correlates with the ability of Nef to associate with PAK2. PAK2 is likely to play a role in Nef-mediated enhancement of viral replication and immune activation in vivo.
Collapse
Affiliation(s)
- Kevin C Olivieri
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | | |
Collapse
|
21
|
Gag induces the coalescence of clustered lipid rafts and tetraspanin-enriched microdomains at HIV-1 assembly sites on the plasma membrane. J Virol 2011; 85:9749-66. [PMID: 21813604 DOI: 10.1128/jvi.00743-11] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The HIV-1 structural protein Gag associates with two types of plasma membrane microdomains, lipid rafts and tetraspanin-enriched microdomains (TEMs), both of which have been proposed to be platforms for HIV-1 assembly. However, a variety of studies have demonstrated that lipid rafts and TEMs are distinct microdomains in the absence of HIV-1 infection. To measure the impact of Gag on microdomain behaviors, we took advantage of two assays: an antibody-mediated copatching assay and a Förster resonance energy transfer (FRET) assay that measures the clustering of microdomain markers in live cells without antibody-mediated patching. We found that lipid rafts and TEMs copatched and clustered to a greater extent in the presence of membrane-bound Gag in both assays, suggesting that Gag induces the coalescence of lipid rafts and TEMs. Substitutions in membrane binding motifs of Gag revealed that, while Gag membrane binding is necessary to induce coalescence of lipid rafts and TEMs, either acylation of Gag or binding of phosphatidylinositol-(4,5)-bisphosphate is sufficient. Finally, a Gag derivative that is defective in inducing membrane curvature appeared less able to induce lipid raft and TEM coalescence. A higher-resolution analysis of assembly sites by correlative fluorescence and scanning electron microscopy showed that coalescence of clustered lipid rafts and TEMs occurs predominantly at completed cell surface virus-like particles, whereas a transmembrane raft marker protein appeared to associate with punctate Gag fluorescence even in the absence of cell surface particles. Together, these results suggest that different membrane microdomain components are recruited in a stepwise manner during assembly.
Collapse
|
22
|
Baur AS. HIV-Nef and AIDS pathogenesis: are we barking up the wrong tree? Trends Microbiol 2011; 19:435-40. [PMID: 21795047 DOI: 10.1016/j.tim.2011.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 05/15/2011] [Accepted: 06/07/2011] [Indexed: 12/25/2022]
Abstract
After two decades of research the Nef protein of human immunodeficiency virus (HIV) remains a mysterious protein with an indisputable role in HIV pathogenesis. The ability to downregulate CD4 and major histocompatibility complex class I (MHC-I) was the first ascribed function of Nef and, whereas the number of downmodulated receptors by Nef is rising, so are the explanations for how their downregulation could contribute to HIV pathogenesis. At the same time there is increasing evidence that Nef not only induces endocytosis but also exocytosis, namely of cytokines and microvesicles that contain Nef itself. Because endocytosis and exocytosis are connected events, this is not surprising - and raises the intriguing possibility that HIV aims at secretion rather than ingestion. Have we therefore barked up the wrong tree over the past two decades? In this opinion article I argue that Nef-induced secretion is most probably the pathogenesis-relevant function behind this elusive viral effector.
Collapse
Affiliation(s)
- Andreas S Baur
- Department of Dermatology, University of Erlangen/Nürnberg, D-91052 Erlangen, Germany.
| |
Collapse
|
23
|
Huang T, Xu Z, Chen L, Cai YD, Kong X. Computational analysis of HIV-1 resistance based on gene expression profiles and the virus-host interaction network. PLoS One 2011; 6:e17291. [PMID: 21394196 PMCID: PMC3048858 DOI: 10.1371/journal.pone.0017291] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Accepted: 01/28/2011] [Indexed: 01/17/2023] Open
Abstract
A very small proportion of people remain negative for HIV infection after repeated HIV-1 viral exposure, which is called HIV-1 resistance. Understanding the mechanism of HIV-1 resistance is important for the development of HIV-1 vaccines and Acquired Immune Deficiency Syndrome (AIDS) therapies. In this study, we analyzed the gene expression profiles of CD4+ T cells from HIV-1-resistant individuals and HIV-susceptible individuals. One hundred eighty-five discriminative HIV-1 resistance genes were identified using the Minimum Redundancy-Maximum Relevance (mRMR) and Incremental Feature Selection (IFS) methods. The virus protein target enrichment analysis of the 185 HIV-1 resistance genes suggested that the HIV-1 protein nef might play an important role in HIV-1 infection. Moreover, we identified 29 infection information exchanger genes from the 185 HIV-1 resistance genes based on a virus-host interaction network analysis. The infection information exchanger genes are located on the shortest paths between virus-targeted proteins and are important for the coordination of virus infection. These proteins may be useful targets for AIDS prevention or therapy, as intervention in these pathways could disrupt communication with virus-targeted proteins and HIV-1 infection.
Collapse
Affiliation(s)
- Tao Huang
- Key Laboratory of Systems Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Shanghai Center for Bioinformation Technology, Shanghai, People's Republic of China
| | - Zhongping Xu
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Jiao Tong University School of Medicine, RuiJin Hospital, Shanghai, People's Republic of China
| | - Lei Chen
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
- College of Information Engineering, Shanghai Maritime University, Shanghai, People's Republic of China
| | - Yu-Dong Cai
- Centre for Computational Systems Biology, Fudan University, Shanghai, People's Republic of China
- Institute of Systems Biology, Shanghai University, Shanghai, People's Republic of China
| | - Xiangyin Kong
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Shanghai Jiao Tong University School of Medicine, RuiJin Hospital, Shanghai, People's Republic of China
- Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
24
|
Wolf D, Witte V, Clark P, Blume K, Lichtenheld MG, Baur AS. HIV Nef Enhances Tat-Mediated Viral Transcription through a hnRNP-K-Nucleated Signaling Complex. Cell Host Microbe 2008; 4:398-408. [DOI: 10.1016/j.chom.2008.08.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/10/2008] [Accepted: 08/07/2008] [Indexed: 01/08/2023]
|
25
|
|
26
|
Human immunodeficiency virus type 1 Nef recruits the guanine exchange factor Vav1 via an unexpected interface into plasma membrane microdomains for association with p21-activated kinase 2 activity. J Virol 2007; 82:2918-29. [PMID: 18094167 DOI: 10.1128/jvi.02185-07] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alterations of T-cell receptor signaling by human immunodeficiency virus type 1 (HIV-1) Nef involve its association with a highly active subpopulation of p21-activated kinase 2 (PAK2) within a dynamic signalosome assembled in detergent-insoluble membrane microdomains. Nef-PAK2 complexes contain the GTPases Rac and Cdc42 as well as a factor providing guanine nucleotide exchange factor (GEF) activity for Rac/Cdc42. However, the identity of this GEF has remained controversial. Previous studies suggested the association of Nef with at least three independent GEFs, Vav, DOCK2/ELMO1, and betaPix. Here we used a broad panel of approaches to address which of these GEFs is involved in the functional interaction of Nef with PAK2 activity. Biochemical fractionation and confocal microscopy revealed that Nef recruits Vav1, but not DOCK2/ELMO1 or betaPix, to membrane microdomains. Transient RNAi knockdown, analysis of cell lines defective for expression of Vav1 or DOCK2 as well as use of a betaPix binding-deficient PAK2 variant confirmed a role for Vav1 but not DOCK2 or betaPix in Nef's association with PAK2 activity. Nef-mediated microdomain recruitment of Vav1 occurred independently of the Src homology 3 domain binding PxxP motif, which is known to connect Nef to many cellular signaling processes. Instead, a recently described protein interaction surface surrounding Nef residue F195 was identified as critical for Nef-mediated raft recruitment of Vav1. These results identify Vav1 as a relevant component of the Nef-PAK2 signalosome and provide a molecular basis for the role of F195 in formation of a catalytically active Nef-PAK2 complex.
Collapse
|
27
|
Brügger B, Krautkrämer E, Tibroni N, Munte CE, Rauch S, Leibrecht I, Glass B, Breuer S, Geyer M, Kräusslich HG, Kalbitzer HR, Wieland FT, Fackler OT. Human immunodeficiency virus type 1 Nef protein modulates the lipid composition of virions and host cell membrane microdomains. Retrovirology 2007; 4:70. [PMID: 17908312 PMCID: PMC2065869 DOI: 10.1186/1742-4690-4-70] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2007] [Accepted: 10/01/2007] [Indexed: 01/03/2023] Open
Abstract
Background The Nef protein of Human Immunodeficiency Viruses optimizes viral spread in the infected host by manipulating cellular transport and signal transduction machineries. Nef also boosts the infectivity of HIV particles by an unknown mechanism. Recent studies suggested a correlation between the association of Nef with lipid raft microdomains and its positive effects on virion infectivity. Furthermore, the lipidome analysis of HIV-1 particles revealed a marked enrichment of classical raft lipids and thus identified HIV-1 virions as an example for naturally occurring membrane microdomains. Since Nef modulates the protein composition and function of membrane microdomains we tested here if Nef also has the propensity to alter microdomain lipid composition. Results Quantitative mass spectrometric lipidome analysis of highly purified HIV-1 particles revealed that the presence of Nef during virus production from T lymphocytes enforced their raft character via a significant reduction of polyunsaturated phosphatidylcholine species and a specific enrichment of sphingomyelin. In contrast, Nef did not significantly affect virion levels of phosphoglycerolipids or cholesterol. The observed alterations in virion lipid composition were insufficient to mediate Nef's effect on particle infectivity and Nef augmented virion infectivity independently of whether virus entry was targeted to or excluded from membrane microdomains. However, altered lipid compositions similar to those observed in virions were also detected in detergent-resistant membrane preparations of virus producing cells. Conclusion Nef alters not only the proteome but also the lipid composition of host cell microdomains. This novel activity represents a previously unrecognized mechanism by which Nef could manipulate HIV-1 target cells to facilitate virus propagation in vivo.
Collapse
Affiliation(s)
- Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | | | - Nadine Tibroni
- Abteilung Virologie, Universität Heidelberg, Heidelberg, Germany
| | - Claudia E Munte
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Regensburg, Germany
| | - Susanne Rauch
- Abteilung Virologie, Universität Heidelberg, Heidelberg, Germany
| | - Iris Leibrecht
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Bärbel Glass
- Abteilung Virologie, Universität Heidelberg, Heidelberg, Germany
| | - Sebastian Breuer
- Max-Planck-Institut für molekulare Physiologie, Abteilung Physikalische Biochemie, Dortmund, Germany
| | - Matthias Geyer
- Max-Planck-Institut für molekulare Physiologie, Abteilung Physikalische Biochemie, Dortmund, Germany
| | | | - Hans Robert Kalbitzer
- Institut für Biophysik und Physikalische Biochemie, Universität Regensburg, Regensburg, Germany
| | - Felix T Wieland
- Heidelberg University Biochemistry Center (BZH), Heidelberg, Germany
| | - Oliver T Fackler
- Abteilung Virologie, Universität Heidelberg, Heidelberg, Germany
| |
Collapse
|
28
|
Wu TH, Zhen Y, Zeng C, Yi HF, Zhao Y. B and T lymphocyte attenuator interacts with CD3zeta and inhibits tyrosine phosphorylation of TCRzeta complex during T-cell activation. Immunol Cell Biol 2007; 85:590-5. [PMID: 17607320 DOI: 10.1038/sj.icb.7100087] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
B and T lymphocyte attenuator (BTLA) is an important negative regulator of T-cell activation. T-cell activation involves partitioning of receptors into discrete membrane compartments known as lipid rafts and the formation of an immunological synapse (IS) between the T cell and antigen-presenting cell (APC). Here we show that after T-cell stimulation, BTLA co-clusters with the CD3zeta and is then involved in IS, as determined by a two-photon microscope. BTLA can interact with the phosphorylated form of T-cell receptor (TCR) within the lipid raft, which is associated with the T-cell signaling complex. Coligation of BTLA with the TCR significantly decreased the amount of phosphorylated TCR-related signal accumulation in the lipid raft during T-cell activation. These results suggest that BTLA functions to regulate T-cell signaling by controlling the phosphorylated form of TCRzeta accumulation in the lipid raft.
Collapse
Affiliation(s)
- Ting-He Wu
- Transplantation Biology Research Division, State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
29
|
Fackler OT, Alcover A, Schwartz O. Modulation of the immunological synapse: a key to HIV-1 pathogenesis? Nat Rev Immunol 2007; 7:310-7. [PMID: 17380160 DOI: 10.1038/nri2041] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIDS is the result of a constant struggle between the lentivirus HIV and the immune system. Infection with HIV interferes directly with the function of CD4(+) T cells and manipulates the host immune response to the virus. Recent studies indicate that the viral protein Nef, a central player in HIV pathogenesis, impairs the ability of infected lymphocytes to form immunological synapses with antigen-presenting cells and affects T-cell-receptor-mediated stimulation. An integrative picture of the abnormal behaviour of HIV-infected lymphocytes is therefore emerging. We propose that modulating lymphocyte signalling, apoptosis and intracellular trafficking ensures efficient spread of the virus in the hostile environment of the immune system.
Collapse
Affiliation(s)
- Oliver T Fackler
- Oliver T. Fackler is at the Department of Virology, University of Heidelberg, D-69120 Heidelberg, Germany.
| | | | | |
Collapse
|
30
|
|
31
|
Foster JL, Garcia JV. Role of Nef in HIV-1 replication and pathogenesis. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2007; 55:389-409. [PMID: 17586321 DOI: 10.1016/s1054-3589(07)55011-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- John L Foster
- Department of Internal Medicine, University of Texas Southwestern, Medical Center, Dallas, TX 75390, USA
| | | |
Collapse
|
32
|
Machida YJ, Machida Y, Chen Y, Gurtan AM, Kupfer GM, D'Andrea AD, Dutta A. UBE2T is the E2 in the Fanconi anemia pathway and undergoes negative autoregulation. Mol Cell 2006; 23:589-96. [PMID: 16916645 DOI: 10.1016/j.molcel.2006.06.024] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2005] [Revised: 05/04/2006] [Accepted: 06/15/2006] [Indexed: 02/06/2023]
Abstract
The Fanconi anemia pathway is required for the efficient repair of damaged DNA. A key step in this pathway is the monoubiquitination of the FANCD2 protein by the ubiquitin ligase (E3) composed of Fanconi anemia core complex proteins. Here, we show that UBE2T is the ubiquitin-conjugating enzyme (E2) essential for this pathway. UBE2T binds to FANCL, the ubiquitin ligase subunit of the Fanconi anemia core complex, and is required for the monoubiquitination of FANCD2 in vivo. DNA damage in UBE2T-depleted cells leads to the formation of abnormal chromosomes that are a hallmark of Fanconi anemia. In addition, we show that UBE2T undergoes automonoubiquitination in vivo. This monoubiquitination is stimulated by the presence of the FANCL protein and inactivates UBE2T. Therefore, UBE2T is the E2 in the Fanconi anemia pathway and has a self-inactivation mechanism that could be important for negative regulation of the Fanconi anemia pathway.
Collapse
Affiliation(s)
- Yuichi J Machida
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Haller C, Rauch S, Michel N, Hannemann S, Lehmann MJ, Keppler OT, Fackler OT. The HIV-1 pathogenicity factor Nef interferes with maturation of stimulatory T-lymphocyte contacts by modulation of N-Wasp activity. J Biol Chem 2006; 281:19618-30. [PMID: 16687395 DOI: 10.1074/jbc.m513802200] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Nef protein is a key determinant of human immunodeficiency virus (HIV) pathogenicity that, among other activities, sensitizes T-lymphocytes for optimal virus production. The initial events by which Nef modulates the T-cell receptor (TCR) cascade are poorly understood. TCR engagement triggers actin rearrangements that control receptor clustering for signal initiation and dynamic organization of signaling protein complexes to form an immunological synapse. Here we report that Nef potently interferes with cell spreading and formation of actin-rich circumferential rings in T-lymphocytes upon surface-supported TCR stimulation. These effects were conserved among Nef proteins from different lentiviruses and occurred in HIV-1-infected primary human T-lymphocytes. This novel Nef activity critically depended on its Src homology 3 domain binding motif and required efficient association with Pak2 activity. Notably, whereas overall signaling microcluster formation immediately following TCR engagement occurred normally in Nef-expressing cells, the viral protein inhibited the concomitant activation of the actin organizer N-Wasp. During the subsequent maturation phase of the stimulatory contact, Nef interfered with the translocation of N-Wasp to the cell periphery, the overall induction of tyrosine phosphorylation, and the selective recruitment of phosphorylated LAT to stimulatory contacts. Consistent with such a critical role of N-Wasp in this process, Nef also blocked morphological changes induced by the known N-Wasp regulators Rac1 and Cdc42. Together, our results demonstrate that Nef alters both the amount and composition of signaling microclusters. We propose modulation of actin dynamics as an important mechanism for Nef-induced alterations of TCR signaling.
Collapse
Affiliation(s)
- Claudia Haller
- Department of Virology, University of Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
34
|
Agopian K, Wei BL, Garcia JV, Gabuzda D. A hydrophobic binding surface on the human immunodeficiency virus type 1 Nef core is critical for association with p21-activated kinase 2. J Virol 2006; 80:3050-61. [PMID: 16501114 PMCID: PMC1395437 DOI: 10.1128/jvi.80.6.3050-3061.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The interaction of human immunodeficiency virus type 1 (HIV-1) Nef with p21-activated kinase 2 (Pak2) has been proposed to play an important role in T-cell activation and disease progression during viral infection. However, the mechanism by which Nef activates Pak2 is poorly understood. Mutations in most Nef motifs previously reported to be required for Pak2 activation (G2, PxxP72, and RR105) also affect other Nef functions, such as CD4 or major histocompatibility complex class I (MHC-I) downregulation. To better understand Nef interactions with Pak2, we performed mutational analysis of three primary HIV-1 Nef clones that exhibited similar capacities for downregulation of CD4 and MHC-I but variable abilities to associate with activated Pak2. Our results demonstrate that Nef amino acids at positions 85, 89, 187, 188, and 191 (L, H, S, R, and F in the clade B consensus, respectively) are critical for Pak2 association. Mutation of these Nef residues dramatically altered association with Pak2 without affecting Nef expression levels or CD4 and MHC-I downregulation. Furthermore, compensation occurred at positions 89 and 191 when both amino acids were substituted. Since residues 85, 89, 187, 188, and 191 cluster on the surface of the Nef core domain in a region distinct from the dimerization and SH3-binding domains, we propose that these Nef residues form part of a unique binding surface specifically involved in association with Pak2. This binding surface includes exposed and recessed hydrophobic residues and may participate in an as-yet-unidentified protein-protein interaction to facilitate Pak2 activation.
Collapse
Affiliation(s)
- Kristin Agopian
- Department of Cancer Immunology and AIDS, Dana-Farber Cancer Institute, Harvard Medical School, JFB 816, 44 Binney St., Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|