1
|
Willett BAS, Thompson SB, Chen V, Dareshouri A, Jackson CL, Brunetti T, D'Alessandro A, Klarquist J, Nemkov T, Kedl RM. Mitochondrial protein OPA1 is required for the expansion of effector CD8 T cells. Cell Rep 2025; 44:115610. [PMID: 40261796 DOI: 10.1016/j.celrep.2025.115610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/14/2025] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Short-lived effector cells are characterized metabolically by a highly glycolytic state, driving energy and biomass acquisition, whereas memory-fated T cells have historically been described as meeting these requirements through mitochondrial metabolism. Here, we show that the mitochondrial protein optic atrophy 1 (OPA1) is critical for rapidly dividing CD8 T cells in vivo, the requirement for which is most pronounced in effector CD8 T cells. More specifically, OPA1 supports proper cell cycle initiation and progression and the viability and survival of CD8 T cells during clonal expansion. Use of mice deficient in the mitochondrial membrane fusion proteins Mitofusin 1 and 2 (MFN1/2) in both in vivo proliferation/differentiation assays and ex vivo metabolic analysis indicates that the requirement for OPA1 during cell division supersedes its role in mitochondrial fusion. We conclude that OPA1 is critical for the generation and accumulation of short-lived effector cells that arise during the response to infection.
Collapse
Affiliation(s)
- Benjamin A S Willett
- Department of Immunology and Microbiology, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Scott B Thompson
- Department of Immunology and Microbiology, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Vincent Chen
- Department of Immunology and Microbiology, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Anza Dareshouri
- Department of Cell and Developmental Biology, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Conner L Jackson
- Department of Biostatistics and Informatics, Colorado School of Public Health, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Tonya Brunetti
- Department of Immunology and Microbiology, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angelo D'Alessandro
- Department of Biochemistry & Molecular Genetics, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Jared Klarquist
- Department of Immunology and Microbiology, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Travis Nemkov
- Department of Biochemistry & Molecular Genetics, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Ross M Kedl
- Department of Immunology and Microbiology, University of Colorado-Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| |
Collapse
|
2
|
Kouwenhoven WM, Robinson EJ, Hamberg D, von Oerthel L, Smidt MP, van der Heide LP. The absence of Pitx3 results in postnatal loss of dopamine neurons and is associated with an increase in the pro-apoptotic Bcl2 factor Noxa and cleaved caspase 3. Cell Death Dis 2025; 16:230. [PMID: 40169558 PMCID: PMC11962142 DOI: 10.1038/s41419-025-07552-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 02/22/2025] [Accepted: 03/17/2025] [Indexed: 04/03/2025]
Abstract
Mesodiencephalic dopamine neurons (mdDA) of the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) play critical roles in regulating movement and motivation. Pitx3 is an essential transcription factor required for proper embryonic development and terminal differentiation of mdDA neurons. Although Pitx3 is expressed in every mdDA neuron, its ablation results only in the absence of the SNc, not the VTA. The developmental stage at which the loss of SNc first becomes apparent, as well as the underlying mechanism, remains elusive. Here, we demonstrate, using a Pitx3 knockout GFP knock-in mouse model, that this loss does not occur during embryogenesis but rather postnatally. Quantification of GFP expression revealed a significant reduction in the total number of dopamine neurons at postnatal day 3, but not at embryonic day 14.5, 155, and 18.5. Mechanistically this reduction is accompanied by an increase in the number of cleaved caspase 3-positive GFP neurons, suggesting apoptosis. In addition, RT-PCR performed on isolated GFP neurons, one day before the loss of dopamine neurons revealed a notable elevation in the expression of the pro-apoptotic BH3-only factor Noxa. Overexpression of Noxa in dopaminergic MN9D cells dose-dependently increases the level of cleaved caspase 3 and the number of propidium iodide-positive cells, indicating that Noxa expression is sufficient to induce cell death in dopamine cells. Additionally, Noxa expression in MN9D cells, combined with a Bax-inhibiting peptide, reduces the number of cleaved caspase 3-positive and propidium iodide-positive cells, further supporting apoptosis as the mechanistic form of cell death. Overall, our study provides insights into the cell death machinery implicated in the loss of dopamine neurons, which may hold relevance for diseases affected by the loss of dopamine neurons such as Parkinson's disease, where this is a hallmark feature.
Collapse
Affiliation(s)
- Willemieke M Kouwenhoven
- Swammerdam Institute for Life Sciences, Molecular Neuroscience Lab, University of Amsterdam, Amsterdam, The Netherlands
| | - Edward J Robinson
- Swammerdam Institute for Life Sciences, Molecular Neuroscience Lab, University of Amsterdam, Amsterdam, The Netherlands
| | - Daniek Hamberg
- Swammerdam Institute for Life Sciences, Molecular Neuroscience Lab, University of Amsterdam, Amsterdam, The Netherlands
| | - Lars von Oerthel
- Swammerdam Institute for Life Sciences, Molecular Neuroscience Lab, University of Amsterdam, Amsterdam, The Netherlands
| | - Marten P Smidt
- Swammerdam Institute for Life Sciences, Molecular Neuroscience Lab, University of Amsterdam, Amsterdam, The Netherlands
| | - Lars P van der Heide
- Swammerdam Institute for Life Sciences, Molecular Neuroscience Lab, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Fernandez EG, Mai WX, Song K, Bayley NA, Kim J, Zhu H, Pioso M, Young P, Andrasz CL, Cadet D, Liau LM, Li G, Yong WH, Rodriguez FJ, Dixon SJ, Souers AJ, Li JJ, Graeber TG, Cloughesy TF, Nathanson DA. Integrated molecular and functional characterization of the intrinsic apoptotic machinery identifies therapeutic vulnerabilities in glioma. Nat Commun 2024; 15:10089. [PMID: 39572533 PMCID: PMC11582606 DOI: 10.1038/s41467-024-54138-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/03/2024] [Indexed: 11/24/2024] Open
Abstract
Genomic profiling often fails to predict therapeutic outcomes in cancer. This failure is, in part, due to a myriad of genetic alterations and the plasticity of cancer signaling networks. Functional profiling, which ascertains signaling dynamics, is an alternative method to anticipate drug responses. It is unclear whether integrating genomic and functional features of solid tumours can provide unique insight into therapeutic vulnerabilities. We perform combined molecular and functional characterization, via BH3 profiling of the intrinsic apoptotic machinery, in glioma patient samples and derivative models. We identify that standard-of-care therapy rapidly rewires apoptotic signaling in a genotype-specific manner, revealing targetable apoptotic vulnerabilities in gliomas containing specific molecular features (e.g., TP53 WT). However, integration of BH3 profiling reveals high mitochondrial priming is also required to induce glioma apoptosis. Accordingly, a machine-learning approach identifies a composite molecular and functional signature that best predicts responses of diverse intracranial glioma models to standard-of-care therapies combined with ABBV-155, a clinical drug targeting intrinsic apoptosis. This work demonstrates how complementary functional and molecular data can robustly predict therapy-induced cell death.
Collapse
Affiliation(s)
- Elizabeth G Fernandez
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Wilson X Mai
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Kai Song
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jiyoon Kim
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, Los Angeles, California, USA
| | - Henan Zhu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Marissa Pioso
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Pauline Young
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Cassidy L Andrasz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Human Genetics, University of California, Los Angeles, CA, 90095-7088, USA
| | - Dimitri Cadet
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Linda M Liau
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Gang Li
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, Los Angeles, California, USA
| | - William H Yong
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fausto J Rodriguez
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Scott J Dixon
- Department of Biology, Stanford University, Stanford, CA, 94305, USA
| | - Andrew J Souers
- AbbVie, Inc., 1 North Waukegan Road, North Chicago, IL, 60064, USA
| | - Jingyi Jessica Li
- Department of Biostatistics, Jonathan and Karin Fielding School of Public Health, Los Angeles, California, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, University of California, Los Angeles, CA, 90095-7088, USA
- Department of Computational Medicine, University of California, Los Angeles, CA, 90095-1766, USA
- Department of Statistics and Data Science, University of California, Los Angeles, CA, 90095-1554, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Metabolomics Center, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy F Cloughesy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Xiao C, Xiong W, Xu Y, Zou J, Zeng Y, Liu J, Peng Y, Hu C, Wu F. Immunometabolism: a new dimension in immunotherapy resistance. Front Med 2023; 17:585-616. [PMID: 37725232 DOI: 10.1007/s11684-023-1012-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 05/19/2023] [Indexed: 09/21/2023]
Abstract
Immune checkpoint inhibitors (ICIs) have demonstrated unparalleled clinical responses and revolutionized the paradigm of tumor treatment, while substantial patients remain unresponsive or develop resistance to ICIs as a single agent, which is traceable to cellular metabolic dysfunction. Although dysregulated metabolism has long been adjudged as a hallmark of tumor, it is now increasingly accepted that metabolic reprogramming is not exclusive to tumor cells but is also characteristic of immunocytes. Correspondingly, people used to pay more attention to the effect of tumor cell metabolism on immunocytes, but in practice immunocytes interact intimately with their own metabolic function in a way that has never been realized before during their activation and differentiation, which opens up a whole new frontier called immunometabolism. The metabolic intervention for tumor-infiltrating immunocytes could offer fresh opportunities to break the resistance and ameliorate existing ICI immunotherapy, whose crux might be to ascertain synergistic combinations of metabolic intervention with ICIs to reap synergic benefits and facilitate an adjusted anti-tumor immune response. Herein, we elaborate potential mechanisms underlying immunotherapy resistance from a novel dimension of metabolic reprogramming in diverse tumor-infiltrating immunocytes, and related metabolic intervention in the hope of offering a reference for targeting metabolic vulnerabilities to circumvent immunotherapeutic resistance.
Collapse
Affiliation(s)
- Chaoyue Xiao
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410078, China
| | - Yiting Xu
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Ji'an Zou
- Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yue Zeng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Junqi Liu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yurong Peng
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Chunhong Hu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, China
| | - Fang Wu
- Department of Oncology, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Cancer Mega-Data Intelligent Application and Engineering Research Centre, Changsha, 410011, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy in Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, 410011, China.
| |
Collapse
|
5
|
Kumar V, Stewart JH. Immunometabolic reprogramming, another cancer hallmark. Front Immunol 2023; 14:1125874. [PMID: 37275901 PMCID: PMC10235624 DOI: 10.3389/fimmu.2023.1125874] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Molecular carcinogenesis is a multistep process that involves acquired abnormalities in key biological processes. The complexity of cancer pathogenesis is best illustrated in the six hallmarks of the cancer: (1) the development of self-sufficient growth signals, (2) the emergence of clones that are resistant to apoptosis, (3) resistance to the antigrowth signals, (4) neo-angiogenesis, (5) the invasion of normal tissue or spread to the distant organs, and (6) limitless replicative potential. It also appears that non-resolving inflammation leads to the dysregulation of immune cell metabolism and subsequent cancer progression. The present article delineates immunometabolic reprogramming as a critical hallmark of cancer by linking chronic inflammation and immunosuppression to cancer growth and metastasis. We propose that targeting tumor immunometabolic reprogramming will lead to the design of novel immunotherapeutic approaches to cancer.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| | - John H. Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
- Louisiana State University- Louisiana Children’s Medical Center, Stanley S. Scott, School of Medicine, Louisiana State University Health Science Center (LSUHSC), New Orleans, LA, United States
| |
Collapse
|
6
|
Yan C, Hu W, Tu J, Li J, Liang Q, Han S. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J Transl Med 2023; 21:300. [PMID: 37143126 PMCID: PMC10158301 DOI: 10.1186/s12967-023-04166-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
Alcoholism is a widespread and damaging behaviour of people throughout the world. Long-term alcohol consumption has resulted in alcoholic liver disease (ALD) being the leading cause of chronic liver disease. Many metabolic enzymes, including alcohol dehydrogenases such as ADH, CYP2E1, and CATacetaldehyde dehydrogenases ALDHsand nonoxidative metabolizing enzymes such as SULT, UGT, and FAEES, are involved in the metabolism of ethanol, the main component in alcoholic beverages. Ethanol consumption changes the functional or expression profiles of various regulatory factors, such as kinases, transcription factors, and microRNAs. Therefore, the underlying mechanisms of ALD are complex, involving inflammation, mitochondrial damage, endoplasmic reticulum stress, nitrification, and oxidative stress. Moreover, recent evidence has demonstrated that the gut-liver axis plays a critical role in ALD pathogenesis. For example, ethanol damages the intestinal barrier, resulting in the release of endotoxins and alterations in intestinal flora content and bile acid metabolism. However, ALD therapies show low effectiveness. Therefore, this review summarizes ethanol metabolism pathways and highly influential pathogenic mechanisms and regulatory factors involved in ALD pathology with the aim of new therapeutic insights.
Collapse
Affiliation(s)
- Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Jinqi Tu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College of Wuhu, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
7
|
Li L, Tian Y. The role of metabolic reprogramming of tumor-associated macrophages in shaping the immunosuppressive tumor microenvironment. Biomed Pharmacother 2023; 161:114504. [PMID: 37002579 DOI: 10.1016/j.biopha.2023.114504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
Macrophages are potent immune effector cells in innate immunity and exert dual-effects in the tumor microenvironment (TME). Tumor-associated macrophages (TAMs) make up a significant portion of TME immune cells. Similar to M1/M2 macrophages, TAMs are also highly plastic, and their functions are regulated by cytokines, chemokines and other factors in the TME. The metabolic changes in TAMs are significantly associated with polarization towards a protumour or antitumour phenotype. The metabolites generated via TAM metabolic reprogramming in turn promote tumor progression and immune tolerance. In this review, we explore the metabolic reprogramming of TAMs in terms of energy, amino acid and fatty acid metabolism and the potential roles of these changes in immune suppression.
Collapse
Affiliation(s)
- Lunxu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Lee YG, Yang N, Chun I, Porazzi P, Carturan A, Paruzzo L, Sauter CT, Guruprasad P, Pajarillo R, Ruella M. Apoptosis: a Janus bifrons in T-cell immunotherapy. J Immunother Cancer 2023; 11:e005967. [PMID: 37055217 PMCID: PMC10106075 DOI: 10.1136/jitc-2022-005967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 04/15/2023] Open
Abstract
Immunotherapy has revolutionized the treatment of cancer. In particular, immune checkpoint blockade, bispecific antibodies, and adoptive T-cell transfer have yielded unprecedented clinical results in hematological malignancies and solid cancers. While T cell-based immunotherapies have multiple mechanisms of action, their ultimate goal is achieving apoptosis of cancer cells. Unsurprisingly, apoptosis evasion is a key feature of cancer biology. Therefore, enhancing cancer cells' sensitivity to apoptosis represents a key strategy to improve clinical outcomes in cancer immunotherapy. Indeed, cancer cells are characterized by several intrinsic mechanisms to resist apoptosis, in addition to features to promote apoptosis in T cells and evade therapy. However, apoptosis is double-faced: when it occurs in T cells, it represents a critical mechanism of failure for immunotherapies. This review will summarize the recent efforts to enhance T cell-based immunotherapies by increasing apoptosis susceptibility in cancer cells and discuss the role of apoptosis in modulating the survival of cytotoxic T lymphocytes in the tumor microenvironment and potential strategies to overcome this issue.
Collapse
Affiliation(s)
- Yong Gu Lee
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, Republic of Korea
| | - Nicholas Yang
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Inkook Chun
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Patrizia Porazzi
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Alberto Carturan
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Luca Paruzzo
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Department of Oncology, University of Turin, Torino, Piemonte, Italy
| | - Christopher Tor Sauter
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Puneeth Guruprasad
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Raymone Pajarillo
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marco Ruella
- Division of Hematology and Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Center for Cellular Immunotherapies, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
- Lymphoma Program, Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
9
|
The Role of Reprogrammed Glucose Metabolism in Cancer. Metabolites 2023; 13:metabo13030345. [PMID: 36984785 PMCID: PMC10051753 DOI: 10.3390/metabo13030345] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/19/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer cells reprogram their metabolism to meet biosynthetic needs and to adapt to various microenvironments. Accelerated glycolysis offers proliferative benefits for malignant cells by generating glycolytic products that move into branched pathways to synthesize proteins, fatty acids, nucleotides, and lipids. Notably, reprogrammed glucose metabolism and its associated events support the hallmark features of cancer such as sustained cell proliferation, hijacked apoptosis, invasion, metastasis, and angiogenesis. Overproduced enzymes involved in the committed steps of glycolysis (hexokinase, phosphofructokinase-1, and pyruvate kinase) are promising pharmacological targets for cancer therapeutics. In this review, we summarize the role of reprogrammed glucose metabolism in cancer cells and how it can be manipulated for anti-cancer strategies.
Collapse
|
10
|
(20S) Ginsenoside Rh2-Activated, Distinct Apoptosis Pathways in Highly and Poorly Differentiated Human Esophageal Cancer Cells. Molecules 2022; 27:molecules27175602. [PMID: 36080369 PMCID: PMC9457866 DOI: 10.3390/molecules27175602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
Ginsenoside Rh2 (G-Rh2), a rare ginsenoside isolated from red ginseng, has considerable anti-cancer activity and induces apoptosis in a variety of cancer cells, but its activity in esophageal cancer cells is unclear. In this study, we examined the cytotoxic activity of (20S) G-Rh2 in highly differentiated esophageal squamous ECA109 cells and poorly differentiated esophageal squamous TE-13 cells. (20S) G-Rh2 exerted intense cytotoxicity in ECA109 and TE-13 cells with an IC50 of 2.9 and 3.7 μg/mL, respectively. After treatment with G-Rh2, Bcl-2, and Bcl-xL, the two main anti-apoptosis Bcl-2 family proteins upregulated, and Bax and Bak, the two key pro-apoptosis proteins translocated to mitochondria in both cell lines. At the same time, cytochrome c and Smac released from mitochondria, followed by caspase-9 activation, indicating that a mitochondria-mediated intrinsic apoptosis pathway was activated in both cell lines upon treatment with (20S) G-Rh2. It is noteworthy that (20S) G-Rh2 upregulated the transcription and protein expression of two death receptors, Fas and DR5, and subsequently activated Caspase-8 in the TE-13 cells but not in the ECA109 cells. Taken together, we demonstrated the potent anti-esophageal cancer cell activity of (20S) G-Rh2 and showed its working mechanism in two differentiated esophageal cancer cells, which can provide important evidence for developing an effective strategy for anti-esophageal cancer treatment.
Collapse
|
11
|
MEK and MCL-1 sequential inhibition synergize to enhance rhabdomyosarcoma treatment. Cell Death Dis 2022; 8:172. [PMID: 35393436 PMCID: PMC8989976 DOI: 10.1038/s41420-022-00959-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/18/2022] [Accepted: 03/16/2022] [Indexed: 11/09/2022]
Abstract
Targeted agents have emerged as promising molecules for cancer treatment, but most of them fail to achieve complete tumor regression or attain durable remissions due to tumor adaptations. We used dynamic BH3 profiling to identify targeted agents effectiveness and anti-apoptotic adaptations upon targeted treatment in rhabdomyosarcoma. We focused on studying the use of BH3 mimetics to specifically inhibit pro-survival BCL-2 family proteins, overwhelm resistance to therapy and prevent relapse. We observed that the MEK1/2 inhibitor trametinib rapidly depleted the pro-apoptotic protein NOXA, thus increasing MCL-1 availability. Indeed, we found that the MCL-1 inhibitor S63845 synergistically enhanced trametinib cytotoxicity in rhabdomyosarcoma cells in vitro and in vivo. In conclusion, our findings indicate that the combination of a BH3 mimetic targeting MCL-1 with trametinib improves efficiency on rhabdomyosarcoma by blocking tumor adaptation to treatment.
Collapse
|
12
|
Metabolism in atherosclerotic plaques: immunoregulatory mechanisms in the arterial wall. Clin Sci (Lond) 2022; 136:435-454. [PMID: 35348183 PMCID: PMC8965849 DOI: 10.1042/cs20201293] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/02/2022] [Accepted: 03/16/2022] [Indexed: 02/05/2023]
Abstract
Over the last decade, there has been a growing interest to understand the link between metabolism and the immune response in the context of metabolic diseases but also beyond, giving then birth to a new field of research. Termed 'immunometabolism', this interdisciplinary field explores paradigms of both immunology and metabolism to provided unique insights into different disease pathogenic processes, and the identification of new potential therapeutic targets. Similar to other inflammatory conditions, the atherosclerotic inflammatory process in the artery has been associated with a local dysregulated metabolic response. Thus, recent studies show that metabolites are more than just fuels in their metabolic pathways, and they can act as modulators of vascular inflammation and atherosclerosis. In this review article, we describe the most common immunometabolic pathways characterised in innate and adaptive immune cells, and discuss how macrophages' and T cells' metabolism may influence phenotypic changes in the plaque. Moreover, we discuss the potential of targeting immunometabolism to prevent and treat cardiovascular diseases (CVDs).
Collapse
|
13
|
Roufayel R, Younes K, Al-Sabi A, Murshid N. BH3-Only Proteins Noxa and Puma Are Key Regulators of Induced Apoptosis. Life (Basel) 2022; 12:life12020256. [PMID: 35207544 PMCID: PMC8875537 DOI: 10.3390/life12020256] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 12/29/2022] Open
Abstract
Apoptosis is an evolutionarily conserved and tightly regulated cell death pathway. Physiological cell death is important for maintaining homeostasis and optimal biological conditions by continuous elimination of undesired or superfluous cells. The BH3-only pro-apoptotic members are strong inducers of apoptosis. The pro-apoptotic BH3-only protein Noxa activates multiple death pathways by inhibiting the anti-apoptotic Bcl-2 family protein, Mcl-1, and other protein members leading to Bax and Bak activation and MOMP. On the other hand, Puma is induced by p53-dependent and p53-independent apoptotic stimuli in several cancer cell lines. Moreover, this protein is involved in several physiological and pathological processes, such as immunity, cancer, and neurodegenerative diseases. Future heat shock research could disclose the effect of hyperthermia on both Noxa and BH3-only proteins. This suggests post-transcriptional mechanisms controlling the translation of both Puma and Noxa mRNA in heat-shocked cells. This study was also the chance to recapitulate the different reactional mechanisms investigated for caspases.
Collapse
|
14
|
The aryl-ureido fatty acid CTU activates endoplasmic reticulum stress and PERK/NOXA-mediated apoptosis in tumor cells by a dual mitochondrial-targeting mechanism. Cancer Lett 2022; 526:131-141. [PMID: 34822928 DOI: 10.1016/j.canlet.2021.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
The cancer cell mitochondrion is functionally different from that in normal cells and could be targeted to develop novel experimental therapeutics. The aryl-ureido fatty acid CTU (16({[4-chloro-3-(trifluoromethyl)phenyl]-carbamoyl}amino)hexadecanoic acid) is the prototype of a new class of mitochondrion-targeted agents that kill cancer cells. Here we show that CTU rapidly depolarized the inner mitochondrial membrane, selectively inhibited complex III of the electron transport chain and increased reactive oxygen species (ROS) production. From RNA-seq analysis, endoplasmic reticulum (ER)-stress was a major activated pathway in CTU-treated cells and in MDA-MB-231 tumor xenografts from CTU-treated nu/nu mice. Mitochondrion-derived ROS activated the PERK-linked ER-stress pathway and induced the BH3-only protein NOXA leading to outer mitochondrial membrane (OMM) disruption. The lipid peroxyl scavenger α-tocopherol attenuated CTU-dependent ER-stress and apoptosis which confirmed the critical role of ROS. Oleic acid protected against CTU-mediated apoptosis by activating Mcl-1 expression, which increased NOXA sequestration and prevented OMM disruption. Taken together, CTU both uncouples mitochondrial electron transport and activates ROS production which promotes ER-stress-dependent OMM disruption and tumor cell death. Dual-mitochondrial targeting agents like CTU offer a novel approach for development of new anti-cancer therapeutics.
Collapse
|
15
|
Stenlid R, Olsson D, Cen J, Manell H, Haglind C, Chowdhury AI, Bergsten P, Nordenström A, Halldin M. Altered mitochondrial metabolism in peripheral blood cells from patients with inborn errors of β-oxidation. Clin Transl Sci 2021; 15:182-194. [PMID: 34437764 PMCID: PMC8742636 DOI: 10.1111/cts.13133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/18/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
Inborn errors of mitochondrial fatty acid oxidation (FAO), such as medium-chain acyl-CoA dehydrogenase deficiency (MCAD) and very long-chain acyl-CoA dehydrogenase deficiency (VLCAD) affects cellular function and whole-body metabolism. Carnitine uptake deficiency (CUD) disturbs the transportation of fatty acids into the mitochondria, but when treated is a mild disease without significant effects on FAO. For improved clinical care of VLCAD in particular, estimation of FAO severity could be important. We have investigated whether the oxygen consumption rate (OCR) of peripheral blood mononuclear cells (PBMCs) obtained from patients with MCAD, VLCAD, and CUD can be used to study cellular metabolism in patients with FAO defects and to determine the severity of FAO impairment. PBMCs were isolated from patients with VLCAD (n = 9), MCAD (n = 5-7), and CUD (n = 5). OCR was measured within 6-hours of venous puncture using the Seahorse XFe96. The PBMCs were exposed to glucose alone or with caprylic acid (C8:0) or palmitic acid (C16:0). OCR was significantly lower in cells from patients with β-oxidation deficiencies (MCAD and VLCAD) compared to CUD at basal conditions. When exposed to C16:0, OCR in VLCAD cells was unchanged, whereas OCR in MCAD cells increased but not to the levels observed in CUD. However, C8:0 did not increase OCR, as would be expected, in VLCAD cells. There was no clear relationship between clinical severity level and OCR. In patients with β-oxidation deficiencies, changes of mitochondrial respiration in PBMCs are detectable, which indicate that PBMCs have translational potential for studies of β-oxidation defects. However, further studies are warranted.
Collapse
Affiliation(s)
- Rasmus Stenlid
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - David Olsson
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.,Department of Paediatric Endocrinology and Metabolic Disorders, Astrid Lindgren Children Hospital, Karolinska University Hospital, Solna, Sweden
| | - Jing Cen
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Hannes Manell
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Charlotte Haglind
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
| | | | - Peter Bergsten
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Anna Nordenström
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.,Department of Paediatric Endocrinology and Metabolic Disorders, Astrid Lindgren Children Hospital, Karolinska University Hospital, Solna, Sweden
| | - Maria Halldin
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden.,Department of Paediatric Endocrinology and Metabolic Disorders, Astrid Lindgren Children Hospital, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
16
|
Stubbins RJ, Maksakova IA, Sanford DS, Rouhi A, Kuchenbauer F. Mitochondrial metabolism: powering new directions in acute myeloid leukemia. Leuk Lymphoma 2021; 62:2331-2341. [PMID: 34060970 DOI: 10.1080/10428194.2021.1910685] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There has been an explosion of knowledge about the role of metabolism and the mitochondria in acute myeloid leukemia (AML). We have also recently seen several waves of novel therapies change the treatment landscape for AML, such as the selective B-cell lymphoma 2 (BCL-2) inhibitor venetoclax. In this new context, we review the rapidly advancing literature on the role of metabolism and the mitochondria in AML pathogenesis, and how these are interwoven with the mechanisms of action for novel therapeutics in AML. We also review the role of oxidative phosphorylation (OxPhos) in maintaining leukemia stem cells (LSCs), how recurrent genomic alterations in AML alter downstream metabolism, and focus on how the BCL-2 pathway and the mitochondria are inextricably linked in AML. Thus, we provide an overview of the mitochondria and metabolism in the context of our new therapeutic world for AML and outline how targeting these vulnerabilities may produce novel therapeutic strategies.
Collapse
Affiliation(s)
- Ryan J Stubbins
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Irina A Maksakova
- Terry Fox Laboratory, BC Cancer Research Centre, University of British Columbia, Vancouver, Canada
| | - David S Sanford
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, Canada
| | - Arefeh Rouhi
- Terry Fox Laboratory, BC Cancer Research Centre, University of British Columbia, Vancouver, Canada
| | - Florian Kuchenbauer
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, Canada.,Terry Fox Laboratory, BC Cancer Research Centre, University of British Columbia, Vancouver, Canada
| |
Collapse
|
17
|
Zhang J, Li C, Zhang L, Heng Y, Xu T, Zhang Y, Chen X, Hoffman RM, Jia L. Andrographolide Induces Noxa-Dependent Apoptosis by Transactivating ATF4 in Human Lung Adenocarcinoma Cells. Front Pharmacol 2021; 12:680589. [PMID: 33995110 PMCID: PMC8117100 DOI: 10.3389/fphar.2021.680589] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Lung adenocarcinoma is the most common pathological type of lung cancer with poor patient outcomes; therefore, developing novel therapeutic agents is critically needed. Andrographolide (AD), a major active component derived from the traditional Chinese medicine (TCM) Andrographis paniculate, is a potential antitumor drug, but the role of AD in lung adenocarcinoma remains poorly understood. In the present study, we demonstrated that AD inhibited the proliferation of broad-spectrum lung cancer cell lines in a dose-dependent manner. Meanwhile, we found that a high dose of AD induced Noxa-dependent apoptosis in human lung adenocarcinoma cells (A549 and H1299). Further studies revealed that Noxa was transcriptionally activated by activating transcription factor 4 (ATF4) in AD-induced apoptosis. Knockdown of ATF4 by small interfering RNA (siRNA) significantly diminished the transactivation of Noxa as well as the apoptotic population induced by AD. These results of the present study indicated that AD induced apoptosis of human lung adenocarcinoma cells by activating the ATF4/Noxa axis and supporting the development of AD as a promising candidate for the new era of chemotherapy.
Collapse
Affiliation(s)
- Junqian Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunjie Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongqing Heng
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Tong Xu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yunjing Zhang
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xihui Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Robert M Hoffman
- Department of Surgery, University of California, San Diego, La Jolla, CA, United States.,Anticancer Inc., San Diego, CA, United States
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
18
|
Metabolic Modulation of Immunity: A New Concept in Cancer Immunotherapy. Cell Rep 2021; 32:107848. [PMID: 32640218 DOI: 10.1016/j.celrep.2020.107848] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/22/2020] [Accepted: 06/11/2020] [Indexed: 12/18/2022] Open
Abstract
Immunotherapy shifted the paradigm of cancer treatment. The clinical approval of immune checkpoint blockade and adoptive cell transfer led to considerable success in several tumor types. However, for a significant number of patients, these therapies have proven ineffective. Growing evidence shows that the metabolic requirements of immune cells in the tumor microenvironment (TME) greatly influence the success of immunotherapy. It is well established that the TME influences energy consumption and metabolic reprogramming of immune cells, often inducing them to become tolerogenic and inefficient in cancer cell eradication. Increasing nutrient availability using pharmacological modulators of metabolism or antibodies targeting specific immune receptors are strategies that support energetic rewiring of immune cells and boost their anti-tumor capacity. In this review, we describe the metabolic features of the diverse immune cell types in the context of the TME and discuss how these immunomodulatory strategies could synergize with immunotherapy to circumvent its current limitations.
Collapse
|
19
|
Colturato-Kido C, Lopes RM, Medeiros HCD, Costa CA, Prado-Souza LFL, Ferraz LS, Rodrigues T. Inhibition of Autophagy Enhances the Antitumor Effect of Thioridazine in Acute Lymphoblastic Leukemia Cells. Life (Basel) 2021; 11:life11040365. [PMID: 33923896 PMCID: PMC8073363 DOI: 10.3390/life11040365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 12/18/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is an aggressive malignant disorder of lymphoid progenitor cells that affects children and adults. Despite the high cure rates, drug resistance still remains a significant clinical problem, which stimulates the development of new therapeutic strategies and drugs to improve the disease outcome. Antipsychotic phenothiazines have emerged as potential candidates to be repositioned as antitumor drugs. It was previously shown that the anti-histaminic phenothiazine derivative promethazine induced autophagy-associated cell death in chronic myeloid leukemia cells, although autophagy can act as a "double-edged sword" contributing to cell survival or cell death. Here we evaluated the role of autophagy in thioridazine (TR)-induced cell death in the human ALL model. TR induced apoptosis in ALL Jurkat cells and it was not cytotoxic to normal peripheral mononuclear blood cells. TR promoted the activation of caspase-8 and -3, which was associated with increased NOXA/MCL-1 ratio and autophagy triggering. AMPK/PI3K/AKT/mTOR and MAPK/ERK pathways are involved in TR-induced cell death. The inhibition of the autophagic process enhanced the cytotoxicity of TR in Jurkat cells, highlighting autophagy as a targetable process for drug development purposes in ALL.
Collapse
Affiliation(s)
- Carina Colturato-Kido
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André 09210-580, São Paulo, Brazil; (C.C.-K.); (R.M.L.); (H.C.D.M.); (L.F.L.P.-S.); (L.S.F.)
| | - Rayssa M. Lopes
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André 09210-580, São Paulo, Brazil; (C.C.-K.); (R.M.L.); (H.C.D.M.); (L.F.L.P.-S.); (L.S.F.)
| | - Hyllana C. D. Medeiros
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André 09210-580, São Paulo, Brazil; (C.C.-K.); (R.M.L.); (H.C.D.M.); (L.F.L.P.-S.); (L.S.F.)
| | - Claudia A. Costa
- Centro Interdisciplinar de Investigação Bioquímica (CIIB), Universidade de Mogi das Cruzes (UMC), Mogi das Cruzes 08780-911, São Paulo, Brazil;
| | - Laura F. L. Prado-Souza
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André 09210-580, São Paulo, Brazil; (C.C.-K.); (R.M.L.); (H.C.D.M.); (L.F.L.P.-S.); (L.S.F.)
| | - Letícia S. Ferraz
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André 09210-580, São Paulo, Brazil; (C.C.-K.); (R.M.L.); (H.C.D.M.); (L.F.L.P.-S.); (L.S.F.)
| | - Tiago Rodrigues
- Centro de Ciências Naturais e Humanas (CCNH), Universidade Federal do ABC (UFABC), Santo André 09210-580, São Paulo, Brazil; (C.C.-K.); (R.M.L.); (H.C.D.M.); (L.F.L.P.-S.); (L.S.F.)
- Correspondence: ; Tel.: +55-(11)-4996-8371
| |
Collapse
|
20
|
Todorovic Z, Milovanovic J, Arsenijevic D, Vukovic N, Vukic M, Arsenijevic A, Djurdjevic P, Milovanovic M, Arsenijevic N. Shikonin Derivatives from Onsoma visianii Decrease Expression of Phosphorylated STAT3 in Leukemia Cells and Exert Antitumor Activity. Nutrients 2021; 13:nu13041147. [PMID: 33807148 PMCID: PMC8065735 DOI: 10.3390/nu13041147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/21/2021] [Accepted: 03/24/2021] [Indexed: 12/11/2022] Open
Abstract
Antitumor effects of shikonins on chronic lymphocytic leukemia (CLL) and B-cell prolymphocytic leukemia (B-PLL) are mostly unexplored. The antitumor activity of shikonins, isolated from Onosma visianii Clem (Boraginaceae), in BCL1, mouse CLL cells and JVM-13, human B-PLL cells was explored in this study. The cytotoxicity of shikonin derivatives was measured by an MTT test. Cell death, proliferation, cell cycle, and expression of molecules that control these processes were analyzed by flow cytometry. Expression of STAT3-regulated genes was analyzed by real-time q-RT-PCR (Quantitative Real-Time Polymerase Chain Reaction). The antitumor effects of shikonin derivatives in vivo were analyzed, using flow cytometry, by detection of leukemia cells in the peripheral blood and spleens of mice intravenously injected with BCL1 cells. The two most potent derivatives, isobutyrylshikonin (IBS) and α-methylbutyrylshikonin (MBS), induced cell cycle disturbances and apoptosis, inhibited proliferation, and decreased expression of phospho-STAT3 and downstream-regulated molecules in BCL1 and JVM-13 cells. IBS and MBS decreased the percentage of leukemia cells in vivo. The link between the decrease in phosphorylated STAT3 by MBS and IBS and BCL1 cell death was confirmed by detection of enhanced cell death after addition of AG490, an inhibitor of Jak2 kinase. It seems that IBS and MBS, by decreasing STAT3 phosphorylation, trigger apoptosis, inhibit cell proliferation, and attenuate leukemia cell stemness.
Collapse
Affiliation(s)
- Zeljko Todorovic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (Z.T.); (P.D.)
| | - Jelena Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (J.M.); (D.A.); (A.A.); (N.A.)
- Department of Histology and Embriology, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Dragana Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (J.M.); (D.A.); (A.A.); (N.A.)
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia
| | - Nenad Vukovic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (N.V.); (M.V.)
| | - Milena Vukic
- Department of Chemistry, Faculty of Science, University of Kragujevac, 34000 Kragujevac, Serbia; (N.V.); (M.V.)
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (J.M.); (D.A.); (A.A.); (N.A.)
| | - Predrag Djurdjevic
- Department of Internal Medicine, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (Z.T.); (P.D.)
| | - Marija Milovanovic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (J.M.); (D.A.); (A.A.); (N.A.)
- Correspondence: ; Tel.: +381-34306800
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, Faculty of Medical Sciences, University of Kragujevac, 34000 Kragujevac, Serbia; (J.M.); (D.A.); (A.A.); (N.A.)
| |
Collapse
|
21
|
Meltendorf S, Fu H, Pierau M, Lindquist JA, Finzel S, Mertens PR, Gieseler-Halbach S, Ambach A, Thomas U, Lingel H, Voll RE, Brunner-Weinzierl MC. Cell Survival Failure in Effector T Cells From Patients With Systemic Lupus Erythematosus Following Insufficient Up-Regulation of Cold-Shock Y-Box Binding Protein 1. Arthritis Rheumatol 2020; 72:1721-1733. [PMID: 32475063 DOI: 10.1002/art.41382] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/23/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVE The importance of cold-shock Y-box binding protein 1 (YB-1) for cell homeostasis is well-documented based on prior observations of its association with certain cancer entities. This study was undertaken to explore the role of YB-1 in T cell homeostasis and survival and the potential contribution of YB-1 to the pathogenesis of systemic lupus erythematosus (SLE). METHODS In the peripheral blood from 25 SLE patients and 25 healthy donors, the expression of YB-1 and frequency of T cell apoptosis was analyzed by quantitative polymerase chain reaction (qPCR) and fluorescence-activated cell sorting of CD4+ T cells ex vivo and also analyzed in T cells in vitro after 6 days of stimulation with anti-CD3-coupled or anti-CD3/anti-CD28-coupled microspheres. YB-1 was overexpressed using lentiviral transduction with wild-type green fluorescent protein (wtGFP) YB-1, and knockdown of YB-1 was achieved using specific short hairpin RNA (shRNA) (3-fold reduction; P < 0.0001). RESULTS YB-1 expression was significantly lower in apoptosis-prone T cells and in activated T cells from SLE patients compared to YB-1 expression in nonapoptotic T cells and activated T cells from healthy donors (P = 0.001). Knockdown of YB-1 in T cells consequently led to expression of proapoptotic molecules and caspase 3 activation (1.6-fold), and subsequently, to apoptosis. Furthermore, YB-1 promoted survival pathways involving enhanced protein expression of the kinase Akt (2-fold) and Bcl-2 (3-fold), even when Fas/CD95 was triggered. YB-1-mediated T cell survival was reversed by Akt and phosphatidylinositol 3-kinase (PI3K) inactivation. In SLE patients, rescue of YB-1 expression strongly promoted survival of T cells and even prevented cell death in T cells that were extremely apoptosis-prone. CONCLUSION Our data show that failure of YB-1 up-regulation in T cells from SLE patients led to enhanced apoptosis. These findings imply that YB-1 plays a crucial role in the disturbed homeostasis of activated T cells leading to hematopoietic alterations in SLE. These insights may help facilitate the development of new treatment strategies for SLE.
Collapse
Affiliation(s)
- Stefan Meltendorf
- Department of Experimental Pediatrics, Otto von uericke University, Magdeburg, Germany
| | - Hang Fu
- Department of Experimental Pediatrics, Otto von uericke University, Magdeburg, Germany
| | - Mandy Pierau
- Department of Experimental Pediatrics, Otto von uericke University, Magdeburg, Germany
| | - Jonathan A Lindquist
- Clinic of Nephrology, Hypertension, Diabetes, and Endocrinology, Otto von Guericke University, Magdeburg, Germany
| | - Stephanie Finzel
- Department of Rheumatology and Clinical Immunology, Albert Ludwig University of Freiburg, Freiburg, Germany
| | - Peter R Mertens
- Clinic of Nephrology, Hypertension, Diabetes, and Endocrinology, Otto von Guericke University, Magdeburg, Germany
| | | | - Andreas Ambach
- Department of Dermatology, Otto von Guericke University, Magdeburg, Germany
| | - Ulrich Thomas
- Department of Neurochemistry and Molecular Biology, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Holger Lingel
- Department of Experimental Pediatrics, Otto von uericke University, Magdeburg, Germany
| | - Reinhard E Voll
- Department of Rheumatology and Clinical Immunology, Albert Ludwig University of Freiburg, Freiburg, Germany
| | | |
Collapse
|
22
|
Gifford G, Stevenson W, Best G. Combination of the dual PIM/PI3-kinase inhibitor IBL-202 and venetoclax is effective in diffuse large B-cell lymphoma. Leuk Lymphoma 2020; 61:3165-3176. [PMID: 32723130 DOI: 10.1080/10428194.2020.1795156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Current chemoimmunotherapy is unable to cure up to 40% of patients diagnosed with diffuse large B-cell lymphoma (DLBCL). Targeting the mechanisms by which DLBCL evades apoptosis is crucial to overcoming treatment failure in this heterogeneous disease as both current and novel treatments depend on the apoptosis of malignant cells. Despite the common overexpression of BCL-2, venetoclax is ineffective in DLBCL due to MCL-1 co-expression. This is driven by pro-growth PI3-kinase signaling, which is promoted in turn by PIM kinases. In this study, the novel dual-kinase inhibitor, IBL-202, was combined with venetoclax against a panel of DLBCL cell lines that have variable expression of pro-survival proteins. The results support the efficacy of simultaneously targeting inter-related molecules to overcome apoptotic escape in this biologically heterogeneous disease. As venetoclax, pan-PIM-kinase and pan-PI3-kinase inhibitors have, or are currently being studied in clinical trials, it may be rational to consider these drugs in combination for the treatment of DLBCL.
Collapse
Affiliation(s)
- Grace Gifford
- Northern Blood Research Centre, Kolling Institution of Medical Research, The University of Sydney. St Leonards, Australia.,Department of Haematology, Royal North Shore Hospital, St Leonards, Australia
| | - William Stevenson
- Northern Blood Research Centre, Kolling Institution of Medical Research, The University of Sydney. St Leonards, Australia.,Department of Haematology, Royal North Shore Hospital, St Leonards, Australia
| | - Giles Best
- Northern Blood Research Centre, Kolling Institution of Medical Research, The University of Sydney. St Leonards, Australia.,Department of Haematology, Royal North Shore Hospital, St Leonards, Australia
| |
Collapse
|
23
|
Liu A, Curran MA. Tumor hypermetabolism confers resistance to immunotherapy. Semin Cancer Biol 2020; 65:155-163. [PMID: 31982512 DOI: 10.1016/j.semcancer.2020.01.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/15/2022]
Abstract
Advances in our understanding of tumor immune biology and development of cancer immunotherapies have led to improved outcomes for patients that suffer from aggressive cancers such as metastatic melanoma. Despite these advances, a significant proportion of patients still fail to benefit, and as a result, attention has shifted to understanding how cancer cells escape immune destruction. Of particular interest is the metabolic landscape of the tumor microenvironment, as recent studies have demonstrated how both competition for essential nutrients and depletion of specific amino acids can promote T cell dysfunction. Here, we will discuss the major energetic pathways engaged by both T cells and cancer cells, metabolic substrates present in the tumor microenvironment, and emerging therapeutic strategies that seek to improve T cell metabolic fitness and bolster the antitumor immune response.
Collapse
Affiliation(s)
- Arthur Liu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77054, USA
| | - Michael A Curran
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77054, USA.
| |
Collapse
|
24
|
Sharma A, Boise LH, Shanmugam M. Cancer Metabolism and the Evasion of Apoptotic Cell Death. Cancers (Basel) 2019; 11:E1144. [PMID: 31405035 PMCID: PMC6721599 DOI: 10.3390/cancers11081144] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 07/29/2019] [Accepted: 08/08/2019] [Indexed: 12/19/2022] Open
Abstract
Cellular growth and proliferation depend upon the acquisition and synthesis of specific metabolites. These metabolites fuel the bioenergy, biosynthesis, and redox potential required for duplication of cellular biomass. Multicellular organisms maintain tissue homeostasis by balancing signals promoting proliferation and removal of cells via apoptosis. While apoptosis is in itself an energy dependent process activated by intrinsic and extrinsic signals, whether specific nutrient acquisition (elevated or suppressed) and their metabolism regulates apoptosis is less well investigated. Normal cellular metabolism is regulated by lineage specific intrinsic features and microenvironment driven extrinsic features. In the context of cancer, genetic abnormalities, unconventional microenvironments and/or therapy engage constitutive pro-survival signaling to re-program and rewire metabolism to maintain survival, growth, and proliferation. It thus becomes particularly relevant to understand whether altered nutrient acquisition and metabolism in cancer can also contribute to the evasion of apoptosis and consequently therapy resistance. Our review attempts to dissect a causal relationship between two cancer hallmarks, i.e., deregulated cellular energetics and the evasion of programmed cell death with primary focus on the intrinsic pathway of apoptosis.
Collapse
Affiliation(s)
- Aditi Sharma
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Lawrence H Boise
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA
| | - Mala Shanmugam
- Department of Hematology and Medical Oncology, Winship Cancer Institute, School of Medicine, Emory University, Atlanta, GA 30322, USA.
| |
Collapse
|
25
|
Hemidesmus indicus induces apoptosis via proteasome inhibition and generation of reactive oxygen species. Sci Rep 2019; 9:7199. [PMID: 31076590 PMCID: PMC6510901 DOI: 10.1038/s41598-019-43609-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 04/27/2019] [Indexed: 01/11/2023] Open
Abstract
Proteasome inhibition represents an important anticancer strategy. Here, we studied the mechanisms at the basis of the pro-apoptotic activity of the standardized decoction of Hemidesmus indicus, a plant evoking a complex anticancer activity, and explored its inhibition of proteasome activity in human leukemia cells. Additionally, we preliminary tested the cytotoxicity of some H. indicus’s phytochemicals on leukemia cells and their intestinal absorption on a human intestinal epithelium model consisting of a monolayer of differentiated Caco2 cells. We observed a potent antileukemic effect for H. indicus, imputable to the modulation of different critical targets at protein and mRNA levels and the reduction of the 26S proteasome expression. We found that some phytomarkers of H. indicus decoction passed through the enterocyte monolayer. Overall, our study supports the pharmacological potential of H. indicus, which can represent an interesting botanical drug in the oncological area.
Collapse
|
26
|
Zhang W, Liang Y, Li L, Wang X, Yan Z, Dong C, Zeng M, Zhong Q, Liu X, Yu J, Sun S, Liu X, Kang J, Zhao H, Jeong LS, Zhang Y, Jia L. The Nedd8-activating enzyme inhibitor MLN4924 (TAK-924/Pevonedistat) induces apoptosis via c-Myc-Noxa axis in head and neck squamous cell carcinoma. Cell Prolif 2019; 52:e12536. [PMID: 30341788 PMCID: PMC6496207 DOI: 10.1111/cpr.12536] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 07/08/2018] [Accepted: 07/25/2018] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVES The present study aimed to reveal expression status of the neddylation enzymes in HNSCC and to elucidate the anticancer efficacy and the underlying mechanisms of inhibiting neddylation pathway. MATERIALS AND METHODS The expression levels of neddylation enzymes were estimated by Western blotting in human HNSCC specimens and bioinformatics analysis of the cancer genome atlas (TCGA) database. Cell apoptosis was evaluated by Annexin V fluorescein isothiocyanate/propidium iodide (Annexin V-FITC/PI) stain and fluorescence-activated cell sorting (FACS). Small interfering RNA (siRNA) and the CRISPR-Cas9 system were used to elucidate the underlying molecular mechanism of MLN4924-induced HNSCC apoptosis. RESULTS Expression levels of NAE1 and UBC12 were prominently higher in HNSCC tissues than that in normal tissues. Inactivation of the neddylation pathway significantly inhibited malignant phenotypes of HNSCC cells. Mechanistic studies revealed that MLN4924 induced the accumulation of CRL ligase substrate c-Myc that transcriptionally activated pro-apoptotic protein Noxa, which triggered apoptosis in HNSCC. CONCLUSIONS These findings determined the over-expression levels of neddylation enzymes in HNSCC and revealed novel mechanisms underlying neddylation inhibition induced growth suppression in HNSCC cells, which provided preclinical evidence for further clinical evaluation of neddylation inhibitors (eg, MLN4924) for the treatment of HNSCC.
Collapse
Affiliation(s)
- Wenjuan Zhang
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yupei Liang
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Lihui Li
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Xiaofang Wang
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Zi Yan
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Changsheng Dong
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Mu‐Sheng Zeng
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Qian Zhong
- Department of Experimental ResearchSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Xue‐Kui Liu
- Department of Head & Neck CancerSun Yat‐sen University Cancer CenterState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineGuangzhouChina
| | - Jinha Yu
- College of PharmacySeoul National UniversitySeoulKorea
| | - Shuyang Sun
- Department of Oral and Maxillofacial‐Head Neck OncologyNinth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaojun Liu
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
| | - Jihui Kang
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Hu Zhao
- Department of Clinical LaboratoryHuadong HospitalShanghai Key Laboratory of Clinical Geriatric MedicineResearch Center on Aging and MedicineFudan UniversityShanghaiChina
| | | | - Yanmei Zhang
- Department of Clinical LaboratoryHuadong HospitalShanghai Key Laboratory of Clinical Geriatric MedicineResearch Center on Aging and MedicineFudan UniversityShanghaiChina
| | - Lijun Jia
- Cancer InstituteFudan University Shanghai Cancer CenterShanghaiChina
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
27
|
Hu T, Zhang J, Sha B, Li M, Wang L, Zhang Y, Liu X, Dong Z, Liu Z, Li P, Chen P. Targeting the overexpressed USP7 inhibits esophageal squamous cell carcinoma cell growth by inducing NOXA-mediated apoptosis. Mol Carcinog 2019; 58:42-54. [PMID: 30182448 DOI: 10.1002/mc.22905] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/13/2018] [Accepted: 08/31/2018] [Indexed: 02/06/2023]
Abstract
Increasing evidence suggests that deubiquitinase USP7 participates in tumor progression by various mechanisms and serves as a potential therapeutic target. However, its expression and role in esophageal cancer remains elusive; the anti-cancer effect by targeting USP7 still needs to be investigated. Here, we reported that USP7 was overexpressed in esophageal squamous cell carcinoma (ESCC) tissues compared with adjacent tissues, implying that USP7 was an attractive anticancer target of ESCC. Pharmaceutical or genetic inactivation of USP7 inhibited esophageal cancer cells growth in vitro and in vivo and induced apoptosis. Mechanistically, inhibition of USP7 accumulated poly-ubiquitinated proteins, activated endoplasmic reticulum stress, and increased expression of ATF4, which transcriptionally upregulated expression of NOXA and induced NOXA-mediated apoptosis. These results provide an evidence for clinical investigation of USP7 inhibitors for the treatment of ESCC.
Collapse
Affiliation(s)
- Tao Hu
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| | - Jingyang Zhang
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
- Department of Breast surgery, Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Beibei Sha
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| | - Miaomiao Li
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| | - Longhao Wang
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| | - Yi Zhang
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| | - Xingge Liu
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| | - Ziming Dong
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| | - Zhenzhen Liu
- Department of Breast surgery, Breast Cancer Center, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, China
| | - Pei Li
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| | - Ping Chen
- College of Basic Medical Sciences, Zhengzhou University; Collaborative Innovation Center of Henan province for cancer chemoprevention, Zhengzhou, China
| |
Collapse
|
28
|
Zhou L, Kong Q, Zhang Y, Yang W, Yan S, Li M, Wang Y, Zhou Y, Yu H, Han L. Glucose deprivation promotes apoptotic response to S1 by enhancing autophagy in human cervical cancer cells. Cancer Manag Res 2018; 10:6195-6204. [PMID: 30538566 PMCID: PMC6260140 DOI: 10.2147/cmar.s184180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background S1 is a novel BH3 mimetic that can induce death in some types of cancer cells, such as melanoma B16, ovarian cancer SKOV3, and U251 glioma cells. S1 inhibits Bcl-2 and Mcl-1 expression and induces cancer cell apoptosis. Cancer cell survival is highly dependent on glucose. Here, we observed the effect of glucose deprivation on the apoptotic response to S1 in human cervical cancer (HeLa) cells. Materials and methods Earle’s balanced salt solution (EBSS) was used to simulate glucose deprivation. MTT assay was used to analyze the cell survival rate, and Hoechst 33342 dye was used to detect the apoptosis in HeLa cells. Western blotting was used to detect the expression of ER stress and autophagy relative proteins. In addition, lysosomes were observed with Lyso-Tracker staining by confocal microscopy. Results S1 decreased cell distribution density and survival rate, and MTT assay showed that EBSS enhanced the inhibitory effects of S1 on HeLa cell growth. Hoechst 33342 dye showed that S1 led to pyknosis, fragmentation, and strong staining in HeLa cell nuclei, and EBSS enhanced these effects. Western blotting indicated that EBSS enhanced the expression of apoptosis-related proteins (cytochrome C, caspase-3, and poly[ADP-ribose] polymerase 1) induced by S1 in HeLa cells. S1 decreased p62 expression and increased the autophagosome-associated protein LC3-II expression, which indicated that S1 induced autophagy in HeLa cells. EBSS enhanced S1-induced autophagy in HeLa cells. Furthermore, autophagy inhibitor chloroquine enhanced S1-induced apoptosis in HeLa cells. Conclusion These results indicate that EBSS exacerbates S1-induced autophagy and severe autophagy induced by EBSS and S1 could lead to apoptosis in HeLa cells. The results also suggest that EBSS enhances the sensitivity of HeLa cells to S1-induced apoptosis and that autophagy plays an important role in this process.
Collapse
Affiliation(s)
- Li Zhou
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China, .,Department of Obstetrics and Gynecology, The First Hospital of Jilin University, Changchun 130021, China
| | - Qinghuan Kong
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China,
| | - Yunhan Zhang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China,
| | - Wei Yang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Shan Yan
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China,
| | - Meihui Li
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China,
| | - Yidan Wang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China,
| | - Yanjie Zhou
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China,
| | - Huimei Yu
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Jilin University, Changchun 130021, China,
| | - Liying Han
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun 130041, China,
| |
Collapse
|
29
|
Gonzalez PS, O'Prey J, Cardaci S, Barthet VJA, Sakamaki JI, Beaumatin F, Roseweir A, Gay DM, Mackay G, Malviya G, Kania E, Ritchie S, Baudot AD, Zunino B, Mrowinska A, Nixon C, Ennis D, Hoyle A, Millan D, McNeish IA, Sansom OJ, Edwards J, Ryan KM. Mannose impairs tumour growth and enhances chemotherapy. Nature 2018; 563:719-723. [PMID: 30464341 DOI: 10.1038/s41586-018-0729-3] [Citation(s) in RCA: 289] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 10/05/2018] [Indexed: 12/20/2022]
Abstract
It is now well established that tumours undergo changes in cellular metabolism1. As this can reveal tumour cell vulnerabilities and because many tumours exhibit enhanced glucose uptake2, we have been interested in how tumour cells respond to different forms of sugar. Here we report that the monosaccharide mannose causes growth retardation in several tumour types in vitro, and enhances cell death in response to major forms of chemotherapy. We then show that these effects also occur in vivo in mice following the oral administration of mannose, without significantly affecting the weight and health of the animals. Mechanistically, mannose is taken up by the same transporter(s) as glucose3 but accumulates as mannose-6-phosphate in cells, and this impairs the further metabolism of glucose in glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway and glycan synthesis. As a result, the administration of mannose in combination with conventional chemotherapy affects levels of anti-apoptotic proteins of the Bcl-2 family, leading to sensitization to cell death. Finally we show that susceptibility to mannose is dependent on the levels of phosphomannose isomerase (PMI). Cells with low levels of PMI are sensitive to mannose, whereas cells with high levels are resistant, but can be made sensitive by RNA-interference-mediated depletion of the enzyme. In addition, we use tissue microarrays to show that PMI levels also vary greatly between different patients and different tumour types, indicating that PMI levels could be used as a biomarker to direct the successful administration of mannose. We consider that the administration of mannose could be a simple, safe and selective therapy in the treatment of cancer, and could be applicable to multiple tumour types.
Collapse
Affiliation(s)
| | - James O'Prey
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Simone Cardaci
- Cancer Research UK Beatson Institute, Glasgow, UK
- Division of Genetics and Cell Biology, San Raffaele Scientific Institute, Milan, Italy
| | | | | | | | - Antonia Roseweir
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - David M Gay
- Cancer Research UK Beatson Institute, Glasgow, UK
| | | | | | | | | | | | | | | | - Colin Nixon
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Darren Ennis
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Aoisha Hoyle
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - David Millan
- Department of Pathology, Queen Elizabeth University Hospital, Glasgow, UK
| | - Iain A McNeish
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Joanne Edwards
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Kevin M Ryan
- Cancer Research UK Beatson Institute, Glasgow, UK.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
30
|
Raud B, Roy DG, Divakaruni AS, Tarasenko TN, Franke R, Ma EH, Samborska B, Hsieh WY, Wong AH, Stüve P, Arnold-Schrauf C, Guderian M, Lochner M, Rampertaap S, Romito K, Monsale J, Brönstrup M, Bensinger SJ, Murphy AN, McGuire PJ, Jones RG, Sparwasser T, Berod L. Etomoxir Actions on Regulatory and Memory T Cells Are Independent of Cpt1a-Mediated Fatty Acid Oxidation. Cell Metab 2018; 28:504-515.e7. [PMID: 30043753 PMCID: PMC6747686 DOI: 10.1016/j.cmet.2018.06.002] [Citation(s) in RCA: 284] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/12/2018] [Accepted: 06/02/2018] [Indexed: 10/28/2022]
Abstract
T cell subsets including effector (Teff), regulatory (Treg), and memory (Tmem) cells are characterized by distinct metabolic profiles that influence their differentiation and function. Previous research suggests that engagement of long-chain fatty acid oxidation (LC-FAO) supports Foxp3+ Treg cell and Tmem cell survival. However, evidence for this is mostly based on inhibition of Cpt1a, the rate-limiting enzyme for LC-FAO, with the drug etomoxir. Using genetic models to target Cpt1a specifically in T cells, we dissected the role of LC-FAO in primary, memory, and regulatory T cell responses. Here we show that the ACC2/Cpt1a axis is largely dispensable for Teff, Tmem, or Treg cell formation, and that the effects of etomoxir on T cell differentiation and function are independent of Cpt1a expression. Together our data argue that metabolic pathways other than LC-FAO fuel Tmem or Treg differentiation and suggest alternative mechanisms for the effects of etomoxir that involve mitochondrial respiration.
Collapse
Affiliation(s)
- Brenda Raud
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Niedersachsen 30625, Germany
| | - Dominic G Roy
- Goodman Cancer Research Centre, Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tatyana N Tarasenko
- Metabolism, Infection, and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Raimo Franke
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eric H Ma
- Goodman Cancer Research Centre, Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Bozena Samborska
- Goodman Cancer Research Centre, Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Wei Yuan Hsieh
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alison H Wong
- Goodman Cancer Research Centre, Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada
| | - Philipp Stüve
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Niedersachsen 30625, Germany
| | - Catharina Arnold-Schrauf
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Niedersachsen 30625, Germany
| | - Melanie Guderian
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Niedersachsen 30625, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Niedersachsen 30625, Germany
| | - Shakuntala Rampertaap
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kimberly Romito
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Joseph Monsale
- Department of Laboratory Medicine, National Institutes of Health, Bethesda, MD 20892, USA
| | - Mark Brönstrup
- Department of Chemical Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Steven J Bensinger
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Peter J McGuire
- Metabolism, Infection, and Immunity Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Russell G Jones
- Goodman Cancer Research Centre, Department of Physiology, McGill University, 3655 Promenade Sir William Osler, Montreal, QC H3G 1Y6, Canada.
| | - Tim Sparwasser
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Niedersachsen 30625, Germany.
| | - Luciana Berod
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Niedersachsen 30625, Germany.
| |
Collapse
|
31
|
Chang W, Teng J. Prox1 is essential for oligodendrocyte survival and regulates oligodendrocyte apoptosis via the regulation of NOXA. Acta Biochim Biophys Sin (Shanghai) 2018; 50:709-717. [PMID: 29931031 DOI: 10.1093/abbs/gmy061] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Indexed: 11/13/2022] Open
Abstract
Demyelinating diseases, such as multiple sclerosis, are known to result from acute or chronic injury to the myelin sheath and inadequate remyelination. Its underlying molecular mechanisms, however, remain unclear. The transcription factor prospero homeobox 1 (Prox1) plays an essential role during embryonic development of the central nervous system and cell differentiation. Thus, we aimed to investigate the role of Prox1 in the survival and differentiation of oligodendrocytes. Cell viability was measured by MTT assay. Flow cytometry was conducted to analyze cell apoptosis. Ectopic-Prox1 and shProx1 were used for the overexpression and knockdown respectively of Prox1 in FBD-102b cells. Real-time reverse transcriptase polymerase chain reaction and western blot analysis were used to assess the alterations of signaling pathway-related mRNAs and proteins, respectively. Results showed that Prox1 was upregulated in differentiating oligodendrocytes, and Prox1 knockdown inhibited the differentiation of oligodendrocytes. In addition, overexpression of Prox1 promoted oligodendrocyte differentiation, as shown by the change in myelin basic protein expression. The overexpression of Prox1 had no effect on oligodendrocyte survival, while Prox1 knockdown impaired cell survival. Further study demonstrated that Prox1 knockdown promoted oligodendrocyte apoptosis and activated NOXA, a pro-apoptotic member of the Bcl-2 protein family. Knockdown of NOXA by siRNA abrogated Prox1 knockdown-induced apoptosis. Our findings indicated that Prox1 regulated the differentiation of oligodendrocyte precursor cells via the regulation of NOXA. Therefore, Prox1 could be a potential modulator of demyelinating diseases in clinical settings.
Collapse
Affiliation(s)
- Wenguang Chang
- Department of Neurology, the Center Hospital of Xinxiang, Xinxiang, China
| | - Junfang Teng
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
32
|
Zhang C, Jones JT, Chand HS, Wathelet MG, Evans CM, Dickey B, Xiang J, Mebratu YA, Tesfaigzi Y. Noxa/HSP27 complex delays degradation of ubiquitylated IkBα in airway epithelial cells to reduce pulmonary inflammation. Mucosal Immunol 2018; 11:741-751. [PMID: 29363670 PMCID: PMC5976511 DOI: 10.1038/mi.2017.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 12/03/2017] [Indexed: 02/04/2023]
Abstract
IFN-γ is known as a pro-inflammatory cytokine, but can also block inflammation in certain chronic diseases although the underlying mechanisms are poorly understood. We found that IFN-γ rapidly induced Noxa expression and that extent of inflammation by repeated house dust mite exposure was enhanced in noxa-/- compared with noxa+/+ mice. Noxa expression blocked transforming necrosis factor alpha (TNF-α)-induced nuclear translocation of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and the production of pro-inflammatory cytokines. Noxa did not affect TNF-α-induced IκBα phosphorylation but the degradation of 48-chain-ubiquitylated IκBα. The Cys25 of Noxa was cross-linked with Cys137 of phospho-HSP27 and both proteins were required for blocking the degradation of ubiquitylated IκBα. Because phospho-HSP27 is present in airway epithelial cells and not in fibroblasts or thymocytes, we generated transgenic mice that inducibly expressed Noxa in airway epithelia. These mice showed protection from allergen-induced inflammation and mucous cell metaplasia by blocking nuclear translocation of NF-κB. Further, we identified a Noxa-derived peptide that prolonged degradation of 48-chain-ubiquitylated IκBα, blocked nuclear translocation of NF-κB, and reduced allergen-induced inflammation in mice. These results suggest that the anti-inflammatory role of the Noxa protein may be restricted to airway epithelial cells and the use of Noxa for therapy of chronic lung diseases may be associated with reduced side effects.
Collapse
Affiliation(s)
- Chunyu Zhang
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Jane T. Jones
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Hitendra S. Chand
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Marc G. Wathelet
- Infectious Diseases Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Christopher M. Evans
- Pulmonary Sciences and Critical Care Medicine, University of Colorado, CO 80045, USA
| | - Burton Dickey
- Division of Internal Medicine, The University of Texas M. D. Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jialing Xiang
- Department of Biological and Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Yohannes A. Mebratu
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| | - Yohannes Tesfaigzi
- COPD Program, Lovelace Respiratory Research Institute, Albuquerque, NM 87108, USA
| |
Collapse
|
33
|
Zhou Z, Zhu C, Cai Z, Zhao F, He L, Lou X, Qi X. Betulin induces cytochrome c release and apoptosis in colon cancer cells via NOXA. Oncol Lett 2018; 15:7319-7327. [PMID: 29725447 DOI: 10.3892/ol.2018.8183] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 11/29/2017] [Indexed: 01/04/2023] Open
Abstract
Betulin is a common triterpene that can be readily obtained from various plants, particularly birch trees, in their natural environment. Specific tumor cells are sensitive to betulin, whereas healthy cells are not. Betulin was observed to stimulate programmed cell death of various cancer cell lines; however, the precise molecular mechanism of action of betulin remains unknown. The present study used colon cancer cells, in which mass apoptosis triggered by betulin was identified, and the apoptotic process was demonstrated to occur via the activation of caspase-3 and -9 pathways. In addition, release of cytochrome c was detected. Furthermore, the pro-apoptotic member of the Bcl-2 protein family, NOXA, was induced following treatment with betulin, and the downregulation of NOXA markedly suppressed the release of cytochrome c and apoptosis in colon cancer cells. Conversely, the overexpression of NOXA further enhanced betulin-induced apoptosis. The present study therefore offers novel insights into the mechanism of action of the natural compound betulin against tumors.
Collapse
Affiliation(s)
- Zhiyuan Zhou
- Department of General Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Chenfang Zhu
- Department of General Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Zhongfang Cai
- Department of General Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Feng Zhao
- Department of General Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Liu He
- Department of General Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiaolou Lou
- Department of General Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Xiaoliang Qi
- Department of General Surgery, The Ninth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
34
|
Zhan Y, Carrington EM, Zhang Y, Heinzel S, Lew AM. Life and Death of Activated T Cells: How Are They Different from Naïve T Cells? Front Immunol 2017; 8:1809. [PMID: 29326701 PMCID: PMC5733345 DOI: 10.3389/fimmu.2017.01809] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 11/30/2017] [Indexed: 01/09/2023] Open
Abstract
T cells are pivotal in immunity and immunopathology. After activation, T cells undergo a clonal expansion and differentiation followed by a contraction phase, once the pathogen has been cleared. Cell survival and cell death are critical for controlling the numbers of naïve T cells, effector, and memory T cells. While naïve T cell survival has been studied for a long time, more effort has gone into understanding the survival and death of activated T cells. Despite this effort, there is still much to be learnt about T cell survival, as T cells transition from naïve to effector to memory. One key advance is the development of inhibitors that may allow the temporal study of survival mechanisms operating in these distinct cell states. Naïve T cells were highly reliant on BCL-2 and sensitive to BCL-2 inhibition. Activated T cells are remarkably different in their regulation of apoptosis by pro- and antiapoptotic members of the BCL-2 family, rendering them differentially sensitive to antagonists blocking the function of one or more members of this family. Recent progress in understanding other programmed cell death mechanisms, especially necroptosis, suggests a unique role for alternative pathways in regulating death of activated T cells. Furthermore, we highlight a mechanism of epigenetic regulation of cell survival unique to activated T cells. Together, we present an update of our current understanding of the survival requirement of activated T cells.
Collapse
Affiliation(s)
- Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Emma M Carrington
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Yuxia Zhang
- Guangzhou Institute of Paediatrics, Guangzhou Women and Children's Medical Centre, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Susanne Heinzel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Andrew M Lew
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
35
|
Abstract
Apoptosis is often deregulated in a number of human diseases. Heat-induced apoptosis is a model system for studying the consequences of protein misfolding and is mediated by the Bcl-2 family of proteins. This family consists of both pro-apoptotic and anti-apoptotic members that control mitochondrial integrity. The BH3-only pro-apoptotic members are strong inducers of apoptotic cell death. Protein damaging stress can activate a process of cellular destruction known as apoptosis. The pro-apoptotic BH3-only proteins and transcription factors activate this death pathway by inhibiting the anti-apoptotic Bcl-2 family proteins eliminating cancer cells in a short period of time.
Collapse
Affiliation(s)
- Rabih Roufayel
- a Department of Science , American University of the Middle East , Egaila , Kuwait
| |
Collapse
|
36
|
Sperling S, Aung T, Martin S, Rohde V, Ninkovic M. Riluzole: a potential therapeutic intervention in human brain tumor stem-like cells. Oncotarget 2017; 8:96697-96709. [PMID: 29228563 PMCID: PMC5722515 DOI: 10.18632/oncotarget.18043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 05/15/2017] [Indexed: 11/30/2022] Open
Abstract
A small subpopulation of tumor stem-like cells has the capacity to initiate tumors and mediate radio- and chemoresistance in diverse cancers hence also in glioblastoma (GBM). It has been reported that this capacity of tumor initiation in the brain is mainly dependent on the body's nutrient supply. This population of so-called brain tumor initiating or brain tumor stem-like cells (BTSCs) is able to extract nutrients like glucose with a higher affinity. Riluzole, a drug approved for treating amyotrophic lateral sclerosis (ALS), was reported to possess anticancer properties, affecting the glutamate metabolism. We report that riluzole treatment inhibits the growth of brain tumor stem-like cells enriched cultures isolated from two human glioblastomas. The effects of riluzole on these cells were associated with an inhibition of a poor prognostic indicator: glucose transporter 3 (GLUT3). A decrease in GLUT3 is associated with a decrease in the p-Akt/HIF1α pathway. Further, downregulation of the DNA (Cytosine-5-)-methyltransferase 1 (DNMT1) gene that causes hypermethylation of various tumor-suppressor genes and leads to a poor prognosis in GBM, was detected. Two hallmarks of cancer cells-proliferation and cell death-were positively influenced by riluzole treatment. Finally, we observed that riluzole reduced the tumor growth in in vivo CAM assay, suggesting it could be a possible synergistic drug for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Swetlana Sperling
- The Translational Neurooncology Research Group, Department of Neurosurgery, University Medical Center Göttingen, University Göttingen, Göttingen, Germany
| | - Thiha Aung
- Center of Plastic, Hand and Reconstructive Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Sabine Martin
- Department of Molecular Biology of Neuronal Signals, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany
| | - Veit Rohde
- The Translational Neurooncology Research Group, Department of Neurosurgery, University Medical Center Göttingen, University Göttingen, Göttingen, Germany
| | - Milena Ninkovic
- The Translational Neurooncology Research Group, Department of Neurosurgery, University Medical Center Göttingen, University Göttingen, Göttingen, Germany
| |
Collapse
|
37
|
Palmer CS, Duette GA, Wagner MCE, Henstridge DC, Saleh S, Pereira C, Zhou J, Simar D, Lewin SR, Ostrowski M, McCune JM, Crowe SM. Metabolically active CD4+ T cells expressing Glut1 and OX40 preferentially harbor HIV during in vitro infection. FEBS Lett 2017; 591:3319-3332. [PMID: 28892135 PMCID: PMC5658250 DOI: 10.1002/1873-3468.12843] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 09/01/2017] [Accepted: 09/04/2017] [Indexed: 12/04/2022]
Abstract
High glucose transporter 1 (Glut1) surface expression is associated with increased glycolytic activity in activated CD4+ T cells. Phosphatidylinositide 3‐kinases (PI3K) activation measured by p‐Akt and OX40 is elevated in CD4+Glut1+ T cells from HIV+ subjects. TCR engagement of CD4+Glut1+ T cells from HIV+ subjects demonstrates hyperresponsive PI3K‐mammalian target of rapamycin signaling. High basal Glut1 and OX40 on CD4+ T cells from combination antiretroviral therapy (cART)‐treated HIV+ patients represent a sufficiently metabolically active state permissive for HIV infection in vitro without external stimuli. The majority of CD4+OX40+ T cells express Glut1, thus OX40 rather than Glut1 itself may facilitate HIV infection. Furthermore, infection of CD4+ T cells is limited by p110γ PI3K inhibition. Modulating glucose metabolism may limit cellular activation and prevent residual HIV replication in ‘virologically suppressed’ cART‐treated HIV+ persons.
Collapse
Affiliation(s)
- Clovis S Palmer
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Gabriel A Duette
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | | | - Darren C Henstridge
- Cellular and Molecular Metabolism Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Australia
| | - Suah Saleh
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - Candida Pereira
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia.,Monash Micro Imaging, Monash University, Melbourne, Australia
| | - Jingling Zhou
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia
| | - David Simar
- Inflammation and Infection Research, School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Sharon R Lewin
- Department of Infectious Diseases, Monash University, Melbourne, Australia.,The Peter Doherty Institute for Infection and Immunity, The University of Melbourne and Royal Melbourne Hospital, Melbourne, Australia
| | - Matias Ostrowski
- CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), Buenos Aires, Argentina
| | - Joseph M McCune
- Division of Experimental Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Suzanne M Crowe
- Centre for Biomedical Research, Burnet Institute, Melbourne, Australia.,Department of Infectious Diseases, Monash University, Melbourne, Australia
| |
Collapse
|
38
|
Voss K, Larsen SE, Snow AL. Metabolic reprogramming and apoptosis sensitivity: Defining the contours of a T cell response. Cancer Lett 2017; 408:190-196. [PMID: 28866092 DOI: 10.1016/j.canlet.2017.08.033] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 01/09/2023]
Abstract
An effective adaptive immune response hinges on the rapid clonal expansion of T cells in response to antigen. The sensitivity of these T cells to programmed cell death (i.e. apoptosis) is carefully calibrated at various stages to ensure a robust yet measured reaction that resolves without inflicting unintended damage to host tissues. To meet bioenergetic demands associated with vigorous proliferation, acquisition of effector functions, and memory formation, T cells also undergo dynamic changes in their metabolism at every stage of this response. In this review, we focus on relatively recent studies that illuminate intimate links between metabolic programs and apoptosis sensitivity in T cells. We then examine how these connections ultimately influence T cell survival and function within the metabolically taxing environs of the tumor microenvironment.
Collapse
Affiliation(s)
- Kelsey Voss
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Sasha E Larsen
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Infectious Disease Research Institute, Seattle, WA, USA
| | - Andrew L Snow
- Department of Pharmacology & Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
39
|
Guikema JE, Amiot M, Eldering E. Exploiting the pro-apoptotic function of NOXA as a therapeutic modality in cancer. Expert Opin Ther Targets 2017; 21:767-779. [PMID: 28670929 DOI: 10.1080/14728222.2017.1349754] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Jeroen E Guikema
- Department of Pathology, Academic Medical Center, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| | - Martine Amiot
- CRCINA, INSERM, CNRS, Université d’Angers, Université de Nantes, Nantes, France
| | - Eric Eldering
- Department of Experimental Immunology, Academic Medical Center, Amsterdam, The Netherlands
- Lymphoma and Myeloma Center Amsterdam (LYMMCARE), The Netherlands
| |
Collapse
|
40
|
Li KP, Shanmuganad S, Carroll K, Katz JD, Jordan MB, Hildeman DA. Dying to protect: cell death and the control of T-cell homeostasis. Immunol Rev 2017; 277:21-43. [PMID: 28462527 PMCID: PMC5416827 DOI: 10.1111/imr.12538] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 02/07/2023]
Abstract
T cells play a critical role in immune responses as they specifically recognize peptide/MHC complexes with their T-cell receptors and initiate adaptive immune responses. While T cells are critical for performing appropriate effector functions and maintaining immune memory, they also can cause autoimmunity or neoplasia if misdirected or dysregulated. Thus, T cells must be tightly regulated from their development onward. Maintenance of appropriate T-cell homeostasis is essential to promote protective immunity and limit autoimmunity and neoplasia. This review will focus on the role of cell death in maintenance of T-cell homeostasis and outline novel therapeutic strategies tailored to manipulate cell death to limit T-cell survival (eg, autoimmunity and transplantation) or enhance T-cell survival (eg, vaccination and immune deficiency).
Collapse
Affiliation(s)
- Kun-Po Li
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Sharmila Shanmuganad
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Kaitlin Carroll
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Jonathan D. Katz
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Endocrinology, Diabetes Research Center, Cincinnati, OH 45229, USA
| | - Michael B. Jordan
- Division of Immunobiology, Cincinnati, OH 45229, USA
- Division of Bone Marrow Transplantation and Immune Deficiency, Department of Pediatrics, Cincinnati Children’s Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | |
Collapse
|
41
|
Roufayel R, Kadry S. Expression of miR-23a by apoptotic regulators in human cancer: A review. Cancer Biol Ther 2017; 18:269-276. [PMID: 28453394 DOI: 10.1080/15384047.2017.1310342] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
MicroRNAs play fundamental roles in mammalian development, differentiation and cellular homeostasis by regulating essential processes such as proliferation, migration, metabolism, migration and cell death. These small non-coding RNAs are also responsible in RNA silencing, and in many developmental and pathological processes. Not surprisingly, miR-23a misexpression contributes to numerous diseases including cancer where certain miRNA genes have been classified as either oncogenes or tumor suppressor genes. Since a single microRNA is capable of targeting a large number of mRNA sequences, de-regulated miRNA expression has the ability to alter various transcripts and activate a wide range of cancer-related pathways. This review article documents reduced levels of mature miR-23a in various tumors, primarily due to epigenetic silencing or alterations in biogenesis pathways. Moreover, inhibition of miR-23a in stressed cells represent a general mechanism for inducing apoptosis and these microRNAs are showed to be regulated by molecular chaperon HSP70. Microarray expression analysis of miRNA overexpression or depletion is now used in the characterization of cancer development pathways and as a biomarker for early cancer detection.
Collapse
Affiliation(s)
- Rabih Roufayel
- a Department of Science , American University of the Middle East , Kuwait
| | - Seifedine Kadry
- a Department of Science , American University of the Middle East , Kuwait
| |
Collapse
|
42
|
Zhang J, Li S, Shang Z, Lin S, Gao P, Zhang Y, Hou S, Mo S, Cao W, Dong Z, Hu T, Chen P. Targeting the overexpressed ROC1 induces G2 cell cycle arrest and apoptosis in esophageal cancer cells. Oncotarget 2017; 8:29125-29137. [PMID: 28418860 PMCID: PMC5438718 DOI: 10.18632/oncotarget.16250] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 02/20/2017] [Indexed: 01/17/2023] Open
Abstract
Recent reports showed that regulator of Cullins-1 (ROC1) play an important role in tumor progression in a tumor-specific manner. However, the role and mechanism of ROC1 in esophageal cancer remains elusive. Here we demonstrated that ROC1 was overexpressed in esophageal squamous cell carcinomas, which was positive associated with poor prognosis of esophageal cancer patients. ROC1 knockdown significantly inhibited the growth of esophageal cancer cells in vitro and in vivo. Mechanistically, ROC1 silencing induced G2 cell cycle arrest and triggered apoptosis by accumulating the pro-apoptotic protein NOXA. Consistently, the downregulation of NOXA expression via siRNA substantially attenuated apoptosis induced by ROC1 silencing. These findings suggest that ROC1 is an appealing drug target for esophageal cancer.
Collapse
Affiliation(s)
- Jingyang Zhang
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Shuo Li
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Zhaoyang Shang
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Shan Lin
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Peng Gao
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Yi Zhang
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Shuaiheng Hou
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Saijun Mo
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Wenbo Cao
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Ziming Dong
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Tao Hu
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| | - Ping Chen
- College of Basic Medical Sciences, Zhengzhou University, Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, 450001, China
| |
Collapse
|
43
|
Liu X, Jiang Y, Wu J, Zhang W, Liang Y, Jia L, Yu J, Jeong LS, Li L. NEDD8-activating enzyme inhibitor, MLN4924 (Pevonedistat) induces NOXA-dependent apoptosis through up-regulation of ATF-4. Biochem Biophys Res Commun 2017; 488:1-5. [PMID: 28450112 DOI: 10.1016/j.bbrc.2017.04.122] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 04/22/2017] [Indexed: 11/29/2022]
Abstract
It has been reported that MLN4924 can inhibit cell growth and metastasis in various kinds of cancer. We have reported that MLN4924 is able to inhibit angiogenesis through the induction of cell apoptosis both in vitro and in vivo models. Moreover, Neddylation inhibition using MLN4924 triggered the accumulation of pro-apoptotic protein NOXA in Human umbilical vein endothelial cells (HUVECs). However, the mechanism of MLN4924-induced NOXA up-regulation has not been addressed in HUVECs yet. In this study, we investigated how MLN4924 induced NOXA expression and cellular apoptosis in HUVECs treated with MLN4924 at indicated concentrations. MLN4924-induced apoptosis was evaluated by Annexin V-FITC/PI analysis and expression of genes associated with apoptosis was assessed by Quantitative RT-PCR and western blotting. As a result, MLN4924 triggered NOXA-dependent apoptosis in a dose-dependent manner in HUVECs. Mechanistically, inactivation of Neddylation pathway caused up-regulation of activating transcription factor 4 (ATF-4), a substrate of Cullin-Ring E3 ubiquitin ligases (CRL). NOXA was subsequently transactivated by ATF-4 and further induced apoptosis. More importantly, knockdown of ATF-4 by siRNA significantly decreased NOXA expression and apoptotic induction in HUVECs. In summary, our study reveals a new mechanism underlying MLN4924-induced NOXA accumulation in HUVECs, which may help extend further study of MLN4924 for angiogenesis inhibition treatment.
Collapse
Affiliation(s)
- Xiaojun Liu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yanan Jiang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jianfu Wu
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wenjuan Zhang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yupei Liang
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Lijun Jia
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Cancer Research Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200032, China
| | - Jinha Yu
- College of Pharmacy, Seoul National University, Seoul, Korea Department of Pharmacy, South Korea
| | - L S Jeong
- College of Pharmacy, Seoul National University, Seoul, Korea Department of Pharmacy, South Korea.
| | - Lihui Li
- Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
44
|
Bae K, Park KE, Han J, Kim J, Kim K, Yoon KA. Mitotic cell death caused by follistatin-like 1 inhibition is associated with up-regulated Bim by inactivated Erk1/2 in human lung cancer cells. Oncotarget 2017; 7:18076-84. [PMID: 26716515 PMCID: PMC4951272 DOI: 10.18632/oncotarget.6729] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/25/2015] [Indexed: 11/25/2022] Open
Abstract
Follistatin-like 1 (FSTL1) was identified as a novel pro-inflammatory protein showing high-level expression in rheumatoid arthritis. The protective effect of FSTL1 via the inhibition of apoptosis was reported in myocardial injury. However, the functional mechanism of FSTL1 in cancer is poorly characterized, and its proliferative effects are ambiguous. Here, we examined the effects of FSTL1 on cellular proliferation and cell cycle checkpoints in lung cancer cells. FSTL1 inhibition induced the cellular portion of G2/M phase in human lung cancer cells via the accumulation of regulators of the transition through the G2/M phase, including the cyclin-dependent kinase 1 (Cdk1)-cyclin B1 complex. An increase in histone H3 phosphorylation (at Ser10), another hallmark of mitosis, indicated that the knockdown of FSTL1 in lung cancer cells stimulated a mitotic arrest. After that, apoptosis was promoted by the activation of caspase-3 and -9. Protein level of Bim, a BH3 domain-only, pro-apoptotic member and its isoforms, BimL, BimS, and BimEL were up-regulated by FSTL1 inhibition. Degradation of Bim was blocked in FSTL1-knockdown cells by decreased phosphorylation of Bim. Increased BimEL as well as decreased phosphorylated Erk1/2 is essential for cell death by FSTL1 inhibition in NCI-H460 cells. Taken together, our results suggest that the knockdown of FSTL1 induces apoptosis through a mitotic arrest and caspase-dependent cell death. FSTL1 plays the important roles in cellular proliferation and apoptosis in lung cancer cells, and thus can be a new target for lung cancer treatment.
Collapse
Affiliation(s)
- Kieun Bae
- Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Kyoung Eun Park
- Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Jihye Han
- Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Jongkwang Kim
- Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Kyungtae Kim
- Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi, Korea
| | - Kyong-Ah Yoon
- Research Institute and Hospital, National Cancer Center, Goyang, Gyeonggi, Korea.,College of Veterinary Medicine, Konkuk University, Gwangjin-gu, Seoul, Korea
| |
Collapse
|
45
|
Vakifahmetoglu-Norberg H, Ouchida AT, Norberg E. The role of mitochondria in metabolism and cell death. Biochem Biophys Res Commun 2017; 482:426-431. [DOI: 10.1016/j.bbrc.2016.11.088] [Citation(s) in RCA: 270] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Accepted: 11/15/2016] [Indexed: 10/20/2022]
|
46
|
Geiger R, Rieckmann J, Wolf T, Basso C, Feng Y, Fuhrer T, Kogadeeva M, Picotti P, Meissner F, Mann M, Zamboni N, Sallusto F, Lanzavecchia A. L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell 2016; 167. [PMID: 27745970 PMCID: PMC5075284 DOI: 10.1016/j.cell.2016.09.031 10.1016/j.cell.2016.09.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Metabolic activity is intimately linked to T cell fate and function. Using high-resolution mass spectrometry, we generated dynamic metabolome and proteome profiles of human primary naive T cells following activation. We discovered critical changes in the arginine metabolism that led to a drop in intracellular L-arginine concentration. Elevating L-arginine levels induced global metabolic changes including a shift from glycolysis to oxidative phosphorylation in activated T cells and promoted the generation of central memory-like cells endowed with higher survival capacity and, in a mouse model, anti-tumor activity. Proteome-wide probing of structural alterations, validated by the analysis of knockout T cell clones, identified three transcriptional regulators (BAZ1B, PSIP1, and TSN) that sensed L-arginine levels and promoted T cell survival. Thus, intracellular L-arginine concentrations directly impact the metabolic fitness and survival capacity of T cells that are crucial for anti-tumor responses.
Collapse
Affiliation(s)
- Roger Geiger
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland,Institute of Microbiology, ETH Zurich, Zurich 8093, Switzerland,Corresponding author
| | - Jan C. Rieckmann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Tobias Wolf
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland,Institute of Microbiology, ETH Zurich, Zurich 8093, Switzerland
| | - Camilla Basso
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland
| | - Yuehan Feng
- Institute of Biochemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Tobias Fuhrer
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Maria Kogadeeva
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Paola Picotti
- Institute of Biochemistry, ETH Zurich, Zurich 8093, Switzerland
| | - Felix Meissner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Federica Sallusto
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland,Center of Medical Immunology, Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland
| | - Antonio Lanzavecchia
- Institute for Research in Biomedicine, Università della Svizzera italiana, Bellinzona 6500, Switzerland,Institute of Microbiology, ETH Zurich, Zurich 8093, Switzerland,Corresponding author
| |
Collapse
|
47
|
L-Arginine Modulates T Cell Metabolism and Enhances Survival and Anti-tumor Activity. Cell 2016; 167:829-842.e13. [PMID: 27745970 PMCID: PMC5075284 DOI: 10.1016/j.cell.2016.09.031] [Citation(s) in RCA: 1157] [Impact Index Per Article: 128.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 03/18/2016] [Accepted: 09/19/2016] [Indexed: 12/11/2022]
Abstract
Metabolic activity is intimately linked to T cell fate and function. Using high-resolution mass spectrometry, we generated dynamic metabolome and proteome profiles of human primary naive T cells following activation. We discovered critical changes in the arginine metabolism that led to a drop in intracellular L-arginine concentration. Elevating L-arginine levels induced global metabolic changes including a shift from glycolysis to oxidative phosphorylation in activated T cells and promoted the generation of central memory-like cells endowed with higher survival capacity and, in a mouse model, anti-tumor activity. Proteome-wide probing of structural alterations, validated by the analysis of knockout T cell clones, identified three transcriptional regulators (BAZ1B, PSIP1, and TSN) that sensed L-arginine levels and promoted T cell survival. Thus, intracellular L-arginine concentrations directly impact the metabolic fitness and survival capacity of T cells that are crucial for anti-tumor responses. Dataset on dynamic metabolome/proteome profiles of activated human naive T cells Intracellular L-arginine levels regulate several metabolic pathways in T cells T cells with increased L-arginine display enhanced survival and anti-tumor activity LiP-MS identified proteins that are structurally modified by high L-arginine levels
Collapse
|
48
|
Johnson MO, Siska PJ, Contreras DC, Rathmell JC. Nutrients and the microenvironment to feed a T cell army. Semin Immunol 2016; 28:505-513. [PMID: 27712958 PMCID: PMC5154770 DOI: 10.1016/j.smim.2016.09.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 09/28/2016] [Accepted: 09/30/2016] [Indexed: 02/04/2023]
Abstract
T cells have dramatic functional and proliferative shifts in the course of maintaining immune protection from pathogens and cancer. To support these changes, T cells undergo metabolic reprogramming upon stimulation and again after antigen clearance. Depending on the extrinsic cell signals, T cells can differentiate into functionally distinct subsets that utilize and require diverse metabolic programs. Effector T cells (Teff) enhance glucose and glutamine uptake, whereas regulatory T cells (Treg) do not rely on significant rates of glycolysis. The dependence of these subsets on specific metabolic programs makes T cells reliant on these signaling pathways and nutrients. Metabolic pathways, such as those regulated by mTOR and Myc, augment T cell glycolysis and glutaminolysis programs to promote T cell activity. These pathways respond to signals and control metabolism through both transcriptional or post-transcriptional mechanisms. Epigenetic modifications also play an important role by stabilizing the transcription factors that define subset specific reprogramming. In addition, circadian rhythm cycling may also influence energy use, immune surveillance, and function of T cells. In this review, we focus on the metabolic and nutrient requirements of T cells, and how canonical pathways of growth and metabolism regulate nutrients that are essential for T cell function.
Collapse
Affiliation(s)
- Marc O Johnson
- Department of Pathology, Microbiology, and Immunology, and Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Peter J Siska
- Department of Pathology, Microbiology, and Immunology, and Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Diana C Contreras
- Department of Pathology, Microbiology, and Immunology, and Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, United States
| | - Jeffrey C Rathmell
- Department of Pathology, Microbiology, and Immunology, and Cancer Biology, Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, United States.
| |
Collapse
|
49
|
Wang S, Mao Y, Xi S, Wang X, Sun L. Nutrient Starvation Sensitizes Human Ovarian Cancer SKOV3 Cells to BH3 Mimetic via Modulation of Mitochondrial Dynamics. Anat Rec (Hoboken) 2016; 300:326-339. [DOI: 10.1002/ar.23454] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 03/22/2016] [Accepted: 04/17/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Si Wang
- Department of Pathophysiology, Basic College of Medicine; Jilin University; Changchun 130021 People's Republic of China
| | - Ying Mao
- Department of Pathophysiology, Basic College of Medicine; Jilin University; Changchun 130021 People's Republic of China
| | - Song Xi
- Department of Biological Engineering, College of Pharmacy; Jilin University; Changchun 130021 People's Republic of China
| | - Xinxue Wang
- Department of Pathophysiology, Basic College of Medicine; Jilin University; Changchun 130021 People's Republic of China
| | - Liankun Sun
- Department of Pathophysiology, Basic College of Medicine; Jilin University; Changchun 130021 People's Republic of China
| |
Collapse
|
50
|
Matsuura K, Canfield K, Feng W, Kurokawa M. Metabolic Regulation of Apoptosis in Cancer. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:43-87. [PMID: 27692180 DOI: 10.1016/bs.ircmb.2016.06.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Apoptosis is a cellular suicide program that plays a critical role in development and human diseases, including cancer. Cancer cells evade apoptosis, thereby enabling excessive proliferation, survival under hypoxic conditions, and acquired resistance to therapeutic agents. Among various mechanisms that contribute to the evasion of apoptosis in cancer, metabolism is emerging as one of the key factors. Cellular metabolites can regulate functions of pro- and antiapoptotic proteins. In turn, p53, a regulator of apoptosis, also controls metabolism by limiting glycolysis and facilitating mitochondrial respiration. Consequently, with dysregulated metabolism and p53 inactivation, cancer cells are well-equipped to disable the apoptotic machinery. In this article, we review how cellular apoptosis is regulated and how metabolism can influence the signaling pathways leading to apoptosis, especially focusing on how glucose and lipid metabolism are altered in cancer cells and how these alterations can impact the apoptotic pathways.
Collapse
Affiliation(s)
- K Matsuura
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, United States
| | - K Canfield
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - W Feng
- Norris Cotton Cancer Center, Lebanon, NH, United States
| | - M Kurokawa
- Department of Molecular & Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States; Norris Cotton Cancer Center, Lebanon, NH, United States.
| |
Collapse
|