1
|
Liu H, Chen X, Wang H, Zhuang G, Zhu ZJ, Zhuang M. ZBTB17/MIZ1 promotes peroxisome biogenesis by transcriptional regulation of PEX13. J Cell Biol 2025; 224:e202407198. [PMID: 40243840 PMCID: PMC12005116 DOI: 10.1083/jcb.202407198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/16/2025] [Accepted: 02/26/2025] [Indexed: 04/18/2025] Open
Abstract
Peroxisomes are integral metabolic organelles involved in both catabolic and anabolic processes in humans, with defects linked to diseases. The functions of peroxisomes are regulated at transcriptional, translational, and posttranslational levels. In this study, we employed the CRISPR/Cas9-based screening of a ubiquitin ligase library to identify regulators of human peroxisomes. We discovered that ZBTB17 (MIZ1) plays a role in regulating the import of proteins into peroxisomes. Independent of its ubiquitin ligase activity, ZBTB17/MIZ1 operates as a transcription factor to modulate the expression of key importer PEX13, influencing the localization of peroxisomal enzymes. Furthermore, metabolomic profiling reveals that knockdown of ZBTB17 or PEX13 results in similar metabolic alterations, with downregulated purine synthesis. Collectively, we identify ZBTB17 as a key regulator of peroxisomal protein import, thereby affecting peroxisomal function and nucleotide metabolism. Our findings provide insights into the multifaceted regulation of peroxisomes in complex human cells and shed light on the molecular mechanisms underlying ZBTB17's role as a transcriptional regulator.
Collapse
Affiliation(s)
- Hongqin Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xi Chen
- University of Chinese Academy of Sciences, Beijing, China
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Hanlin Wang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, China
| | - Guanglei Zhuang
- State Key Laboratory of Systems Medicine for Cancer, Department of Obstetrics and Gynecology, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Min Zhuang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
2
|
Liu S, Wang M, Xu L, Deng D, Lu L, Tian J, Zhou D, Rui K. New insight into the role of SOCS family in immune regulation and autoimmune pathogenesis. J Adv Res 2025:S2090-1232(25)00313-3. [PMID: 40349956 DOI: 10.1016/j.jare.2025.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/07/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025] Open
Abstract
BACKGROUND Suppressor of cytokine signaling (SOCS) proteins regulate signal transduction by interacting with cytokine receptors and signaling proteins and targeting associated proteins for degradation. Recent studies have demonstrated that the SOCS proteins serve as crucial inhibitors in cytokine signaling networks and play a pivotal role in both innate and adaptive immune responses. AIM OF REVIEW In this review, we aim to discuss recent advancements in understanding the complex functions of SOCS proteins in various immune cells, as well as the effects of SOCS proteins in human health and diseases. Increasing evidence indicates that SOCS proteins are frequently dysregulated in developing autoimmune diseases, suggesting that therapeutic targeting of SOCS proteins could provide clinical benefit. KEY SCIENTIFIC CONCEPTS OF REVIEW This review provides a comprehensive understanding of SOCS proteins in immune regulation and autoimmune pathogenesis, it also highlights the role of SOCS-related mimetic peptides in immunotherapy.
Collapse
Affiliation(s)
- Shiyi Liu
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China; Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Mingwei Wang
- Department of Emergency, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Liangjie Xu
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Daihua Deng
- Department of Rheumatology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang, China
| | - Liwei Lu
- Department of Pathology and Shenzhen Institute of Research and Innovation, The University of Hong Kong, Chongqing International Institute for Immunology, China
| | - Jie Tian
- Department of Immunology, Jiangsu Key Laboratory of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, China.
| | - Dongmei Zhou
- Department of Rheumatology and Immunology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Ke Rui
- Department of Laboratory Medicine, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
3
|
Beck D, Cao H, Tian F, Huang Y, Jiang M, Zhao H, Tai X, Xu W, Kosasih HJ, Kealy DJ, Zhao W, Taylor SJ, Couttas TA, Song G, Chacon-Fajardo D, Walia Y, Wang M, Dowle AA, Holding AN, Bridge KS, Zhang C, Wang J, Mi JQ, Lock RB, de Bock CE, Jing D. PU.1 eviction at lymphocyte-specific chromatin domains mediates glucocorticoid response in acute lymphoblastic leukemia. Nat Commun 2024; 15:9697. [PMID: 39516193 PMCID: PMC11549222 DOI: 10.1038/s41467-024-54096-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The epigenetic landscape plays a critical role in cancer progression, yet its therapeutic potential remains underexplored. Glucocorticoids are essential components of treatments for lymphoid cancers, but resistance, driven in part by epigenetic changes at glucocorticoid-response elements, poses a major challenge to effective therapies. Here we show that glucocorticoid treatment induces distinct patterns of chromosomal organization in glucocorticoid-sensitive and resistant acute lymphoblastic leukemia xenograft models. These glucocorticoid-response elements are primed by the pioneer transcription factor PU.1, which interacts with the glucocorticoid receptor. Eviction of PU.1 promotes receptor binding, increasing the expression of genes involved in apoptosis and facilitating a stronger therapeutic response. Treatment with a PU.1 inhibitor enhances glucocorticoid sensitivity, demonstrating the clinical potential of targeting this pathway. This study uncovers a mechanism involving PU.1 and the glucocorticoid receptor, linking transcription factor activity with drug response, and suggesting potential therapeutic strategies for overcoming resistance.
Collapse
Affiliation(s)
- Dominik Beck
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia.
| | - Honghui Cao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Feng Tian
- Hebei Key Laboratory of Medical Data Science, Institute of Biomedical Informatics, School of Medicine, Hebei University of Engineering, Handan, Hebei Province, China
| | - Yizhou Huang
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Miao Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Han Zhao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Tai
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenqian Xu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hansen J Kosasih
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - David J Kealy
- Centre for Blood Research, University of York, England, UK
| | - Weiye Zhao
- York Biomedical Research Institute, University of York, England, UK
| | - Samuel J Taylor
- Department of Cell Biology, Albert Einstein College of Medicine, Randwick, NY, USA
| | - Timothy A Couttas
- Neuroscience Research Australia, Randwick, NSW, Australia
- Brain and Mind Centre, Translational Research Collective, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Gaoxian Song
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Diego Chacon-Fajardo
- Centre for Health Technologies and the School of Biomedical Engineering, University of Technology, Sydney, NSW, Australia
| | - Yashna Walia
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia
| | - Meng Wang
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Adam A Dowle
- Metabolomics & Proteomics Laboratory, Bioscience Technology Facility, Department of Biology, University of York, England, UK
| | - Andrew N Holding
- York Biomedical Research Institute, University of York, England, UK
| | | | - Chao Zhang
- Department of Orthopedics and Precision Research Center for Refractory Diseases, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jin Wang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian-Qing Mi
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Richard B Lock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
| | - Charles E de Bock
- Children's Cancer Institute, Lowy Cancer Research Centre, School of Clinical Medicine, UNSW Medicine & Health, UNSW Centre for Childhood Cancer Research, UNSW Sydney, Sydney, NSW, Australia.
| | - Duohui Jing
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Krenz B, Lee J, Kannan T, Eilers M. Immune evasion: An imperative and consequence of MYC deregulation. Mol Oncol 2024; 18:2338-2355. [PMID: 38957016 PMCID: PMC11459038 DOI: 10.1002/1878-0261.13695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/08/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024] Open
Abstract
MYC has been implicated in the pathogenesis of a wide range of human tumors and has been described for many years as a transcription factor that regulates genes with pleiotropic functions to promote tumorigenic growth. However, despite extensive efforts to identify specific target genes of MYC that alone could be responsible for promoting tumorigenesis, the field is yet to reach a consensus whether this is the crucial function of MYC. Recent work shifts the view on MYC's function from being a gene-specific transcription factor to an essential stress resilience factor. In highly proliferating cells, MYC preserves cell integrity by promoting DNA repair at core promoters, protecting stalled replication forks, and/or preventing transcription-replication conflicts. Furthermore, an increasing body of evidence demonstrates that MYC not only promotes tumorigenesis by driving cell-autonomous growth, but also enables tumors to evade the host's immune system. In this review, we summarize our current understanding of how MYC impairs antitumor immunity and why this function is evolutionarily hard-wired to the biology of the MYC protein family. We show why the cell-autonomous and immune evasive functions of MYC are mutually dependent and discuss ways to target MYC proteins in cancer therapy.
Collapse
Affiliation(s)
- Bastian Krenz
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Mildred Scheel Early Career CenterWürzburgGermany
| | - Jongkuen Lee
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Toshitha Kannan
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
| | - Martin Eilers
- Department of Biochemistry and Molecular BiologyTheodor Boveri Institute, Biocenter, University of WürzburgWürzburgGermany
- Comprehensive Cancer Center MainfrankenWürzburgGermany
| |
Collapse
|
5
|
Sigvardsson M. Early B-Cell Factor 1: An Archetype for a Lineage-Restricted Transcription Factor Linking Development to Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:143-156. [PMID: 39017843 DOI: 10.1007/978-3-031-62731-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The development of highly specialized blood cells from hematopoietic stem cells (HSCs) in the bone marrow (BM) is dependent upon a stringently orchestrated network of stage- and lineage-restricted transcription factors (TFs). Thus, the same stem cell can give rise to various types of differentiated blood cells. One of the key regulators of B-lymphocyte development is early B-cell factor 1 (EBF1). This TF belongs to a small, but evolutionary conserved, family of proteins that harbor a Zn-coordinating motif and an IPT/TIG (immunoglobulin-like, plexins, transcription factors/transcription factor immunoglobulin) domain, creating a unique DNA-binding domain (DBD). EBF proteins play critical roles in diverse developmental processes, including body segmentation in the Drosophila melanogaster embryo, and retina formation in mice. While several EBF family members are expressed in neuronal cells, adipocytes, and BM stroma cells, only B-lymphoid cells express EBF1. In the absence of EBF1, hematopoietic progenitor cells (HPCs) fail to activate the B-lineage program. This has been attributed to the ability of EBF1 to act as a pioneering factor with the ability to remodel chromatin, thereby creating a B-lymphoid-specific epigenetic landscape. Conditional inactivation of the Ebf1 gene in B-lineage cells has revealed additional functions of this protein in relation to the control of proliferation and apoptosis. This may explain why EBF1 is frequently targeted by mutations in human leukemia cases. This chapter provides an overview of the biochemical and functional properties of the EBF family proteins, with a focus on the roles of EBF1 in normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
- Division of Molecular Hematology, Lund University, Lund, Sweden.
| |
Collapse
|
6
|
da Silva Lima F, da Silva Gonçalves CE, Fock RA. A review of the role of zinc finger proteins on hematopoiesis. J Trace Elem Med Biol 2023; 80:127290. [PMID: 37659124 DOI: 10.1016/j.jtemb.2023.127290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/04/2023]
Abstract
The bone marrow is responsible for producing an incredible number of cells daily in order to maintain blood homeostasis through a process called hematopoiesis. Hematopoiesis is a greatly demanding process and one entirely dependent on complex interactions between the hematopoietic stem cell (HSC) and its surrounding microenvironment. Zinc (Zn2+) is considered an important trace element, playing diverse roles in different tissues and cell types, and zinc finger proteins (ZNF) are proteins that use Zn2+ as a structural cofactor. In this way, the ZNF structure is supported by a Zn2+ that coordinates many possible combinations of cysteine and histidine, with the most common ZNF being of the Cys2His2 (C2H2) type, which forms a family of transcriptional activators that play an important role in different cellular processes such as development, differentiation, and suppression, all of these being essential processes for an adequate hematopoiesis. This review aims to shed light on the relationship between ZNF and the regulation of the hematopoietic tissue. We include works with different designs, including both in vitro and in vivo studies, detailing how ZNF might regulate hematopoiesis.
Collapse
Affiliation(s)
- Fabiana da Silva Lima
- Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Ricardo Ambrósio Fock
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Sigvardsson M. Transcription factor networks link B-lymphocyte development and malignant transformation in leukemia. Genes Dev 2023; 37:703-723. [PMID: 37673459 PMCID: PMC10546977 DOI: 10.1101/gad.349879.122] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Rapid advances in genomics have opened unprecedented possibilities to explore the mutational landscapes in malignant diseases, such as B-cell acute lymphoblastic leukemia (B-ALL). This disease is manifested as a severe defect in the production of normal blood cells due to the uncontrolled expansion of transformed B-lymphocyte progenitors in the bone marrow. Even though classical genetics identified translocations of transcription factor-coding genes in B-ALL, the extent of the targeting of regulatory networks in malignant transformation was not evident until the emergence of large-scale genomic analyses. There is now evidence that many B-ALL cases present with mutations in genes that encode transcription factors with critical roles in normal B-lymphocyte development. These include PAX5, IKZF1, EBF1, and TCF3, all of which are targeted by translocations or, more commonly, partial inactivation in cases of B-ALL. Even though there is support for the notion that germline polymorphisms in the PAX5 and IKZF1 genes predispose for B-ALL, the majority of leukemias present with somatic mutations in transcription factor-encoding genes. These genetic aberrations are often found in combination with mutations in genes that encode components of the pre-B-cell receptor or the IL-7/TSLP signaling pathways, all of which are important for early B-cell development. This review provides an overview of our current understanding of the molecular interplay that occurs between transcription factors and signaling events during normal and malignant B-lymphocyte development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Department of Biomedical and Clinical Sciences, Linköping University, 58185 Linköping, Sweden; Division of Molecular Hematology, Lund University, 22184 Lund, Sweden
| |
Collapse
|
8
|
Do-Umehara HC, Chen C, Zhang Q, Schleimer RP, Budinger GRS, Liu J. Suppression of Allergic Asthma by Loss of Function of Miz1-Mediated Th1 Skewing. Am J Respir Cell Mol Biol 2022; 67:346-359. [PMID: 35833903 DOI: 10.1165/rcmb.2022-0135oc] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Asthma is the most prevalent chronic respiratory disease worldwide. There is currently no cure, and it remains an important cause of morbidity and mortality. Here we report that lung-specific loss of function of the transcription factor c-Myc-interacting zinc finger protein-1 (Miz1) upregulates the pro-T helper 1 (Th1) cytokine interleukin 12 (IL-12). Upregulation of IL-12 in turn stimulates a Th1 response, thereby counteracting T helper 2 (Th2) response and preventing the allergic response in mouse models of house dust mite (HDM)- and ovalbumin (OVA)-induced asthma. Using transgenic mice expressing Cre under a cell-specific promoter, we demonstrate that Miz1 acts in lung epithelial cells and dendritic cells in asthma. Chromatin immunoprecipitation (ChIP) coupled with high-throughput DNA sequencing (ChIP-seq) or quantitative PCR (ChIP-qPCR) reveals the binding of Miz1 on the Il12 promoter indicating direct repression of IL-12 by Miz1. Additionally, histone deacetylase 1 (HDAC1) is recruited to the Il12 promoter in a Miz1-depdenent manner, suggesting epigenetic repression of Il12 by Miz1. Furthermore, Miz1 is upregulated in human asthmatic samples as well as in asthmatic mice. Our data together suggest that Miz1 is upregulated during asthma, which in turn promotes asthma pathogenesis by preventing Th1 skewing through the transcriptional repression of IL-12.
Collapse
Affiliation(s)
| | - Cong Chen
- Northwestern University, Chicago, Illinois, United States
| | - Qiao Zhang
- Northwestern University - Chicago, 205058, Chicago, Illinois, United States
| | - Robert P Schleimer
- Feinberg School of Medicine, Northwestern University, Division of Allergy-Immunology, Chicago, Illinois, United States
| | - G R Scott Budinger
- Northwestern University, Pulmonary and Critical Care Medicine, Chicago, Illinois, United States
| | - Jing Liu
- University of Illinois at Chicago College of Medicine, 12247, Chicago, Illinois, United States;
| |
Collapse
|
9
|
Myc-Interacting Zinc Finger Protein 1 (Miz-1) Is Essential to Maintain Homeostasis and Immunocompetence of the B Cell Lineage. BIOLOGY 2022; 11:biology11040504. [PMID: 35453704 PMCID: PMC9027237 DOI: 10.3390/biology11040504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 11/16/2022]
Abstract
Aging of the immune system is described as a progressive loss of the ability to respond to immunologic stimuli and is commonly referred to as immunosenescence. B cell immunosenescence is characterized by a decreased differentiation rate in the bone marrow and accumulation of antigen-experienced and age-associated B cells in secondary lymphoid organs (SLOs). A specific deletion of the POZ-domain of the transcription factor Miz-1 in pro-B cells, which is known to be involved in bone marrow hematopoiesis, leads to premature aging of the B cell lineage. In mice, this causes a severe reduction in bone marrow-derived B cells with a drastic decrease from the pre-B cell stage on. Further, mature, naïve cells in SLOs are reduced at an early age, while post-activation-associated subpopulations increase prematurely. We propose that Miz-1 interferes at several key regulatory checkpoints, critical during B cell aging, and counteracts a premature loss of immunocompetence. This enables the use of our mouse model to gain further insights into mechanisms of B cell aging and it can significantly contribute to understand molecular causes of impaired adaptive immune responses to counteract loss of immunocompetence and restore a functional immune response in the elderly.
Collapse
|
10
|
Huang J, Long Z, Jia R, Wang M, Zhu D, Liu M, Chen S, Zhao X, Yang Q, Wu Y, Zhang S, Tian B, Mao S, Ou X, Sun D, Gao Q, Cheng A. The Broad Immunomodulatory Effects of IL-7 and Its Application In Vaccines. Front Immunol 2021; 12:680442. [PMID: 34956167 PMCID: PMC8702497 DOI: 10.3389/fimmu.2021.680442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 11/24/2021] [Indexed: 12/30/2022] Open
Abstract
Interleukin-7 (IL-7) is produced by stromal cells, keratinocytes, and epithelial cells in host tissues or tumors and exerts a wide range of immune effects mediated by the IL-7 receptor (IL-7R). IL-7 is primarily involved in regulating the development of B cells, T cells, natural killer cells, and dendritic cells via the JAK-STAT, PI3K-Akt, and MAPK pathways. This cytokine participates in the early generation of lymphocyte subsets and maintain the survival of all lymphocyte subsets; in particular, IL-7 is essential for orchestrating the rearrangement of immunoglobulin genes and T-cell receptor genes in precursor B and T cells, respectively. In addition, IL-7 can aid the activation of immune cells in anti-virus and anti-tumor immunity and plays important roles in the restoration of immune function. These biological functions of IL-7 make it an important molecular adjuvant to improve vaccine efficacy as it can promote and extend systemic immune responses against pathogens by prolonging lymphocyte survival, enhancing effector cell activity, and increasing antigen-specific memory cell production. This review focuses on the biological function and mechanism of IL-7 and summarizes its contribution towards improved vaccine efficacy. We hope to provide a thorough overview of this cytokine and provide strategies for the development of the future vaccines.
Collapse
Affiliation(s)
- Juan Huang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Zhiyao Long
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qiao Yang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Sai Mao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Qun Gao
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Research Center of Avian Disease, College of Veterinary Medicine of Sichuan Agricultural University, Chengdu, China.,Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, China.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
11
|
Boisvert O, Létourneau D, Delattre P, Tremblay C, Jolibois É, Montagne M, Lavigne P. Zinc Fingers 10 and 11 of Miz-1 undergo conformational exchange to achieve specific DNA binding. Structure 2021; 30:623-636.e5. [PMID: 34963061 DOI: 10.1016/j.str.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/08/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022]
Abstract
Miz-1 (ZBTB17) is a poly-zinc finger BTB/POZ transcription factor with 12 consecutive C2H2 zinc fingers (ZFs) that binds transcriptional start sites (TSSs) to regulate the expression of genes involved in cell development and proliferation. As of now, it is not known which of the 12 consecutive ZFs are responsible for the recognition of the 24 base pair consensus sequence found at these TSSs. Evidence suggests ZFs 7-12 plays this role. We provide validation for this and describe the structural and dynamical characterization of unprecedented conformational exchange in the linker between ZFs 10 and 11. This conformational exchange uncouples ZFs 7-10 from 11 and 12 and promotes a scanning-recognition mechanism through which the two segments cooperate to bind two sub-sites at both ends of the consensus. We further show that this can result in the coiling of TSSs as part of Miz-1's mechanism of transcriptional transactivation.
Collapse
Affiliation(s)
- Olivier Boisvert
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Danny Létourneau
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Patrick Delattre
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Cynthia Tremblay
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Émilie Jolibois
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Martin Montagne
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada
| | - Pierre Lavigne
- Département de biochimie et de génomique fonctionnelle, Institut de Pharmacologie de Sherbrooke and PROTÉO, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3001 12 Avenue N, Sherbrooke, Quebec J1H 5N4, Canada.
| |
Collapse
|
12
|
Rakhra G, Rakhra G. Zinc finger proteins: insights into the transcriptional and post transcriptional regulation of immune response. Mol Biol Rep 2021; 48:5735-5743. [PMID: 34304391 PMCID: PMC8310398 DOI: 10.1007/s11033-021-06556-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/08/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Zinc finger proteins encompass one of the unique and large families of proteins with diversified biological functions in the human body. These proteins are primarily considered to be DNA binding transcription factors; however, owing to the diverse array of zinc-finger domains, they are able to interact with molecules other than DNA like RNA, proteins, lipids and PAR (poly-ADP-ribose). Evidences from recent scientific studies have provided an insight into the potential functions of zinc finger proteins in immune system regulation both at the transcriptional and post transcriptional level. However, the mechanism and importance of zinc finger proteins in the regulation of immune response is not very well defined and understood. This review highlights in detail the importance of zinc finger proteins in the regulation of immune system at transcriptional and post transcriptional level. CONCLUSION Different types of zinc finger proteins are involved in immune system regulation and their mechanism of regulation is discussed herewith.
Collapse
Affiliation(s)
- Gurseen Rakhra
- Department of Nutrition & Dietetics, Faculty of Allied Health Sciences, Manav Rachna International Institute of Research & Studies, Faridabad, Haryana, 121004, India
| | - Gurmeen Rakhra
- Department of Biochemistry, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, India.
| |
Collapse
|
13
|
Cheng ZY, He TT, Gao XM, Zhao Y, Wang J. ZBTB Transcription Factors: Key Regulators of the Development, Differentiation and Effector Function of T Cells. Front Immunol 2021; 12:713294. [PMID: 34349770 PMCID: PMC8326903 DOI: 10.3389/fimmu.2021.713294] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/06/2021] [Indexed: 12/12/2022] Open
Abstract
The development and differentiation of T cells represents a long and highly coordinated, yet flexible at some points, pathway, along which the sequential and dynamic expressions of different transcriptional factors play prominent roles at multiple steps. The large ZBTB family comprises a diverse group of transcriptional factors, and many of them have emerged as critical factors that regulate the lineage commitment, differentiation and effector function of hematopoietic-derived cells as well as a variety of other developmental events. Within the T-cell lineage, several ZBTB proteins, including ZBTB1, ZBTB17, ZBTB7B (THPOK) and BCL6 (ZBTB27), mainly regulate the development and/or differentiation of conventional CD4/CD8 αβ+ T cells, whereas ZBTB16 (PLZF) is essential for the development and function of innate-like unconventional γδ+ T & invariant NKT cells. Given the critical role of T cells in host defenses against infections/tumors and in the pathogenesis of many inflammatory disorders, we herein summarize the roles of fourteen ZBTB family members in the development, differentiation and effector function of both conventional and unconventional T cells as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Zhong-Yan Cheng
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ting-Ting He
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
14
|
Orth B, Sander B, Möglich A, Diederichs K, Eilers M, Lorenz S. Identification of an atypical interaction site in the BTB domain of the MYC-interacting zinc-finger protein 1. Structure 2021; 29:1230-1240.e5. [PMID: 34186024 DOI: 10.1016/j.str.2021.06.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/26/2021] [Accepted: 06/04/2021] [Indexed: 10/21/2022]
Abstract
The repurposing of structurally conserved protein domains in different functional contexts is thought to be a driving force in the evolution of complex protein interaction networks. The BTB/POZ domain is such a versatile binding module that occurs over 200 times in the human proteome with diverse protein-specific adaptations. In BTB-zinc-finger transcription factors, the BTB domain drives homo- and heterodimerization as well as interactions with non-BTB-domain-containing proteins. Which mechanisms encode specificity in these interactions at a structural level is incompletely understood. Here, we uncover an atypical peptide-binding site in the BTB domain of the MYC-interacting zinc-finger protein 1 (MIZ1) that arises from local flexibility of the core BTB fold and may provide a target site for MIZ1-directed therapeutic approaches. Intriguingly, the identified binding mode requires the BTB domain to be in a homodimeric state, thus holding opportunities for functional discrimination between homo- and heterodimers of MIZ1 in the cell.
Collapse
Affiliation(s)
- Barbara Orth
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany; Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Bodo Sander
- Rudolf Virchow Center for Integrative and Translational Bioimaging, University of Würzburg, 97080 Würzburg, Germany
| | - Andreas Möglich
- Lehrstuhl für Biochemie, University of Bayreuth, 95447 Bayreuth, Germany
| | - Kay Diederichs
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Martin Eilers
- Lehrstuhl für Biochemie, Biocenter, University of Würzburg, 97074 Würzburg, Germany
| | - Sonja Lorenz
- Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany.
| |
Collapse
|
15
|
Zhang W, Zhangyuan G, Wang F, Jin K, Shen H, Zhang L, Yuan X, Wang J, Zhang H, Yu W, Huang R, Xu X, Yin Y, Zhong G, Lin A, Sun B. The zinc finger protein Miz1 suppresses liver tumorigenesis by restricting hepatocyte-driven macrophage activation and inflammation. Immunity 2021; 54:1168-1185.e8. [PMID: 34038747 DOI: 10.1016/j.immuni.2021.04.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 01/20/2021] [Accepted: 04/29/2021] [Indexed: 12/16/2022]
Abstract
Chronic inflammation plays a central role in hepatocellular carcinoma (HCC), but the contribution of hepatocytes to tumor-associated inflammation is not clear. Here, we report that the zinc finger transcription factor Miz1 restricted hepatocyte-driven inflammation to suppress HCC, independently of its transcriptional activity. Miz1 was downregulated in HCC mouse models and a substantial fraction of HCC patients. Hepatocyte-specific Miz1 deletion in mice generated a distinct sub-group of hepatocytes that produced pro-inflammatory cytokines and chemokines, which skewed the polarization of the tumor-infiltrating macrophages toward pro-inflammatory phenotypes to promote HCC. Mechanistically, Miz1 sequestrated the oncoprotein metadherin (MTDH), preventing MTDH from promoting transcription factor nuclear factor κB (NF-κB) activation. A distinct sub-group of pro-inflammatory cytokine-producing hepatocytes was also seen in a subset of HCC patients. In addition, Miz1 expression inversely correated with disease recurrence and poor prognosis in HCC patients. Our findings identify Miz1 as a tumor suppressor that prevents hepatocytes from driving inflammation in HCC.
Collapse
Affiliation(s)
- Wenjie Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guangyan Zhangyuan
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Fei Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Kangpeng Jin
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Haiyuan Shen
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Liansheng Zhang
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Xiang Yuan
- The State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China; Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA
| | - Jincheng Wang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Haitian Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Weiwei Yu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Ruyi Huang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Xiaoliang Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Yin Yin
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China
| | - Guisheng Zhong
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Anning Lin
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637, USA; Institute of Modern Biology, Nanjing University, Nanjing 20018, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China; Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, China.
| |
Collapse
|
16
|
Ross J, Miron CE, Plescia J, Laplante P, McBride K, Moitessier N, Möröy T. Targeting MYC: From understanding its biology to drug discovery. Eur J Med Chem 2020; 213:113137. [PMID: 33460833 DOI: 10.1016/j.ejmech.2020.113137] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/06/2023]
Abstract
The MYC oncogene is considered to be a high priority target for clinical intervention in cancer patients due to its aberrant activation in more than 50% of human cancers. Direct small molecule inhibition of MYC has traditionally been hampered by its intrinsically disordered nature and lack of both binding site and enzymatic activity. In recent years, however, a number of strategies for indirectly targeting MYC have emerged, guided by the advent of protein structural information and the growing set of computational tools that can be used to accelerate the hit to lead process in medicinal chemistry. In this review, we provide an overview of small molecules developed for clinical applications of these strategies, which include stabilization of the MYC guanine quadruplex, inhibition of BET factor BRD4, and disruption of the MYC:MAX heterodimer. The recent identification of novel targets for indirect MYC inhibition at the protein level is also discussed.
Collapse
Affiliation(s)
- Julie Ross
- Institut de recherches cliniques de Montréal (IRCM), 110 Pine Ave W., Montréal, Québec, H2W 1R7, Canada
| | - Caitlin E Miron
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada
| | - Jessica Plescia
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada
| | - Patricia Laplante
- AmorChem II Ventures Inc., 4 Westmount Sq. Bureau 160, Westmount, Québec, H3Z 2S6, Canada
| | - Kevin McBride
- AmorChem II Ventures Inc., 4 Westmount Sq. Bureau 160, Westmount, Québec, H3Z 2S6, Canada
| | - Nicolas Moitessier
- Department of Chemistry, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada.
| | - Tarik Möröy
- Institut de recherches cliniques de Montréal (IRCM), 110 Pine Ave W., Montréal, Québec, H2W 1R7, Canada; Département de microbiologie, infectiologie et immunologie, Université de Montréal, 2900, boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada; Division of Experimental Medicine, McGill University, 801 Sherbrooke St. W., Montréal, Québec, H3A 0B8, Canada.
| |
Collapse
|
17
|
Toboso-Navasa A, Gunawan A, Morlino G, Nakagawa R, Taddei A, Damry D, Patel Y, Chakravarty P, Janz M, Kassiotis G, Brink R, Eilers M, Calado DP. Restriction of memory B cell differentiation at the germinal center B cell positive selection stage. J Exp Med 2020; 217:e20191933. [PMID: 32407433 PMCID: PMC7336312 DOI: 10.1084/jem.20191933] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/24/2020] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
Abstract
Memory B cells (MBCs) are key for protection from reinfection. However, it is mechanistically unclear how germinal center (GC) B cells differentiate into MBCs. MYC is transiently induced in cells fated for GC expansion and plasma cell (PC) formation, so-called positively selected GC B cells. We found that these cells coexpressed MYC and MIZ1 (MYC-interacting zinc-finger protein 1 [ZBTB17]). MYC and MIZ1 are transcriptional activators; however, they form a transcriptional repressor complex that represses MIZ1 target genes. Mice lacking MYC-MIZ1 complexes displayed impaired cell cycle entry of positively selected GC B cells and reduced GC B cell expansion and PC formation. Notably, absence of MYC-MIZ1 complexes in positively selected GC B cells led to a gene expression profile alike that of MBCs and increased MBC differentiation. Thus, at the GC positive selection stage, MYC-MIZ1 complexes are required for effective GC expansion and PC formation and to restrict MBC differentiation. We propose that MYC and MIZ1 form a module that regulates GC B cell fate.
Collapse
Affiliation(s)
| | - Arief Gunawan
- Immunity and Cancer, Francis Crick Institute, London, UK
| | - Giulia Morlino
- Immunity and Cancer, Francis Crick Institute, London, UK
| | | | - Andrea Taddei
- Immunity and Cancer, Francis Crick Institute, London, UK
| | - Djamil Damry
- Immunity and Cancer, Francis Crick Institute, London, UK
| | - Yash Patel
- Retroviral Immunology, Francis Crick Institute, London, UK
| | | | - Martin Janz
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine and Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Robert Brink
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Martin Eilers
- Theodor Boveri Institute and Comprehensive Cancer Center Mainfranken, Biocenter, University of Würzburg, Würzburg, Germany
| | - Dinis Pedro Calado
- Immunity and Cancer, Francis Crick Institute, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| |
Collapse
|
18
|
Muthalagu N, Monteverde T, Raffo-Iraolagoitia X, Wiesheu R, Whyte D, Hedley A, Laing S, Kruspig B, Upstill-Goddard R, Shaw R, Neidler S, Rink C, Karim SA, Gyuraszova K, Nixon C, Clark W, Biankin AV, Carlin LM, Coffelt SB, Sansom OJ, Morton JP, Murphy DJ. Repression of the Type I Interferon Pathway Underlies MYC- and KRAS-Dependent Evasion of NK and B Cells in Pancreatic Ductal Adenocarcinoma. Cancer Discov 2020; 10:872-887. [PMID: 32200350 PMCID: PMC7611248 DOI: 10.1158/2159-8290.cd-19-0620] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/07/2020] [Accepted: 03/18/2020] [Indexed: 12/15/2022]
Abstract
MYC is implicated in the development and progression of pancreatic cancer, yet the precise level of MYC deregulation required to contribute to tumor development has been difficult to define. We used modestly elevated expression of human MYC, driven from the Rosa26 locus, to investigate the pancreatic phenotypes arising in mice from an approximation of MYC trisomy. We show that this level of MYC alone suffices to drive pancreatic neuroendocrine tumors, and to accelerate progression of KRAS-initiated precursor lesions to metastatic pancreatic ductal adenocarcinoma (PDAC). Our phenotype exposed suppression of the type I interferon (IFN) pathway by the combined actions of MYC and KRAS, and we present evidence of repressive MYC-MIZ1 complexes binding directly to the promoters of the genes encodiing the type I IFN regulators IRF5, IRF7, STAT1, and STAT2. Derepression of IFN regulator genes allows pancreatic tumor infiltration by B and natural killer (NK) cells, resulting in increased survival. SIGNIFICANCE: We define herein a novel mechanism of evasion of NK cell-mediated immunity through the combined actions of endogenously expressed mutant KRAS and modestly deregulated expression of MYC, via suppression of the type I IFN pathway. Restoration of IFN signaling may improve outcomes for patients with PDAC.This article is highlighted in the In This Issue feature, p. 747.
Collapse
Affiliation(s)
| | - Tiziana Monteverde
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | | | - Robert Wiesheu
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Declan Whyte
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Ann Hedley
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Sarah Laing
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Björn Kruspig
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Rosanna Upstill-Goddard
- Wolfson Wohl Translational Cancer Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Robin Shaw
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Sarah Neidler
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Curtis Rink
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Saadia A Karim
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Katarina Gyuraszova
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Colin Nixon
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - William Clark
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
| | - Andrew V Biankin
- Wolfson Wohl Translational Cancer Research Centre, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Leo M Carlin
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Seth B Coffelt
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Owen J Sansom
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Jennifer P Morton
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Daniel J Murphy
- CRUK Beatson Institute, Glasgow, Scotland, United Kingdom.
- Institute of Cancer Sciences, University of Glasgow, Glasgow, Scotland, United Kingdom
| |
Collapse
|
19
|
Zhai SZ, Guo HD, Li SQ, Zhao XS, Wang Y, Xu LP, Liu KY, Huang XJ, Chang YJ. Effects of Granulocyte Colony-Stimulating Factor on Proliferation and Apoptosis of B Cells in Bone Marrow of Healthy Donors. Transplant Proc 2020; 52:345-352. [PMID: 31918969 DOI: 10.1016/j.transproceed.2019.11.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/06/2019] [Accepted: 11/02/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND OBJECTIVE The aim of this study was to investigate the effects of granulocyte colony-stimulating factor (G-CSF) on the proliferation and apoptosis of bone marrow (BM) B cells from healthy donors and its mechanism. MATERIALS AND METHODS The proliferation ability and apoptosis of BM cells from healthy donors before and after in vivo G-CSF application were determined by multiparameter flow cytometry. The gene expression of B cells was detected by RNA-Seq. In vitro experiments were performed to investigate the effects of G-CSF on the proliferation and apoptosis of BM B cells through which gene. RESULTS Treating healthy donors with G-CSF significantly decreased proliferation and increased apoptosis of BM B cells. The proliferation of CD19+CD27- B cell subgroup and CD19+CD24hiCD38hi B cell subset were also decreased. G-CSF also significantly altered proapoptotic genes, cell cycle arrest genes, and DNA replication and cell cycle genes, especially significantly increased SOCS1 expression of BM B cells. In vitro experiments showed that SOCS1 overexpression did not affect B cell proliferation ability and apoptosis. CONCLUSIONS Our results suggest that extensive effects of G-CSF on BM B cells, such as inhibiting proliferation, inducing apoptosis, and altering a series of gene expression.
Collapse
Affiliation(s)
- Shu-Zhen Zhai
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C
| | - Hui-Dong Guo
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C
| | - Si-Qi Li
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C
| | - Xiao-Su Zhao
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C
| | - Yu Wang
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C
| | - Lan-Ping Xu
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C
| | - Kai-Yan Liu
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C
| | - Xiao-Jun Huang
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C
| | - Ying-Jun Chang
- Peking University People's Hospital and Peking University Institute of Hematology, Beijing Key Laboratory of Hematopoietic Stem Cell Transplantation, Beijing, P.R.C..
| |
Collapse
|
20
|
Ross J, Rashkovan M, Fraszczak J, Joly-Beauparlant C, Vadnais C, Winkler R, Droit A, Kosan C, Möröy T. Deletion of the Miz-1 POZ Domain Increases Efficacy of Cytarabine Treatment in T- and B-ALL/Lymphoma Mouse Models. Cancer Res 2019; 79:4184-4195. [DOI: 10.1158/0008-5472.can-18-3038] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/03/2019] [Accepted: 06/24/2019] [Indexed: 11/16/2022]
|
21
|
Yoshida T, Hu Y, Zhang Z, Emmanuel AO, Galani K, Muhire B, Snippert HJ, Williams CJ, Tolstorukov MY, Gounari F, Georgopoulos K. Chromatin restriction by the nucleosome remodeler Mi-2β and functional interplay with lineage-specific transcription regulators control B-cell differentiation. Genes Dev 2019; 33:763-781. [PMID: 31123064 PMCID: PMC6601517 DOI: 10.1101/gad.321901.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 04/15/2019] [Indexed: 01/08/2023]
Abstract
Here, Yoshida et al. investigate the role of Mi-2β, a SNF-2-like nucleosome remodeler and key component of the nucleosome remodeling and histone deacetylase (NuRD) complex in early B cells. They found that the nucleosome remodeler Mi-2β promotes pre-B-cell differentiation by providing repression capabilities to distinct lineage-specific transcription factor-based regulatory networks. Coordinated induction, but also repression, of genes are key to normal differentiation. Although the role of lineage-specific transcription regulators has been studied extensively, their functional integration with chromatin remodelers, one of the key enzymatic machineries that control chromatin accessibility, remains ill-defined. Here we investigate the role of Mi-2β, a SNF-2-like nucleosome remodeler and key component of the nucleosome remodeling and histone deacetylase (NuRD) complex in early B cells. Inactivation of Mi-2β arrested differentiation at the large pre-B-cell stage and caused derepression of cell adhesion and cell migration signaling factors by increasing chromatin access at poised enhancers and chromosome architectural elements. Mi-2β also supported IL-7R signaling, survival, and proliferation by repressing negative effectors of this pathway. Importantly, overexpression of Bcl2, a mitochondrial prosurvival gene and target of IL-7R signaling, partly rescued the differentiation block caused by Mi-2β loss. Mi-2β stably associated with chromatin sites that harbor binding motifs for IKAROS and EBF1 and physically associated with these transcription factors both on and off chromatin. Notably, Mi-2β shared loss-of-function cellular and molecular phenotypes with IKAROS and EBF1, albeit in a distinct fashion. Thus, the nucleosome remodeler Mi-2β promotes pre-B-cell differentiation by providing repression capabilities to distinct lineage-specific transcription factor-based regulatory networks.
Collapse
Affiliation(s)
- Toshimi Yoshida
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Yeguang Hu
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Zhihong Zhang
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Akinola O Emmanuel
- Knapp Center for Lupus Research, Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Kiriaki Galani
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Brejnev Muhire
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02144, USA
| | - Hugo J Snippert
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Christine J Williams
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Michael Y Tolstorukov
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02144, USA
| | - Fotini Gounari
- Knapp Center for Lupus Research, Department of Medicine, Section of Rheumatology, The University of Chicago, Chicago, Illinois 60637, USA
| | - Katia Georgopoulos
- Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
22
|
Yang F, Huang Y, Chen X, Liu L, Liao D, Zhang H, Huang G, Liu W, Zhu X, Wang W, Lobo CA, Yazdanbakhsh K, An X, Ju Z. Deletion of a flippase subunit Tmem30a in hematopoietic cells impairs mouse fetal liver erythropoiesis. Haematologica 2019; 104:1984-1994. [PMID: 30819915 PMCID: PMC6886424 DOI: 10.3324/haematol.2018.203992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 02/27/2019] [Indexed: 01/01/2023] Open
Abstract
Transmembrane protein 30A (Tmem30a) is the β-subunit of P4-ATPases which function as flippase that transports aminophospholipids such as phosphatidylserine from the outer to the inner leaflets of the plasma membrane to maintain asymmetric distribution of phospholipids. It has been documented that deficiency of Tmem30a led to exposure of phosphatidylserine. However, the role of Tmem30a in vivo remains largely unknown. Here we found that Vav-Cre-driven conditional deletion of Tmem30a in hematopoietic cells led to embryonic lethality due to severe anemia by embryonic day 16.5. The numbers of erythroid colonies and erythroid cells were decreased in the Tmem30a deficient fetal liver. This was accompanied by increased apoptosis of erythroid cells. Confocal microscopy analysis revealed an increase of localization of erythropoietin receptor to areas of membrane raft microdomains in response to erythropoietin stimulation in Ter119−erythroid progenitors, which was impaired in Tmem30a deficient cells. Moreover, erythropoietin receptor (EPOR)-mediated activation of the STAT5 pathway was significantly reduced in Tmem30a deficient fetal liver cells. Consistently, knockdown of TMEM30A in human CD34+ cells also impaired erythropoiesis. Our findings demonstrate that Tmem30a plays a critical role in erythropoiesis by regulating the EPOR signaling pathway through the formation of membrane rafts in erythroid cells.
Collapse
Affiliation(s)
- Fan Yang
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Yumin Huang
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianda Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Lu Liu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Dandan Liao
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Huan Zhang
- Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA.,School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Gang Huang
- Division of Pathology and Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Wenjing Liu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China and Chengdu, Sichuan, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study, Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China and Chengdu, Sichuan, China.,Chengdu Institute of Biology, Sichuan Translational Medicine Research Hospital, Chinese Academy of Sciences, Chengdu, China
| | - Wengong Wang
- Department of Biochemistry and Molecular Biology, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Cheryl A Lobo
- Laboratory of Blood-Borne Parasites, New York Blood Center, New York, NY, USA
| | | | - Xiuli An
- Department of Hematology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China .,Laboratory of Membrane Biology, New York Blood Center, New York, NY, USA.,School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China .,Institute of Aging Research, School of Medicine, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
23
|
Sigvardsson M. Molecular Regulation of Differentiation in Early B-Lymphocyte Development. Int J Mol Sci 2018; 19:ijms19071928. [PMID: 29966360 PMCID: PMC6073616 DOI: 10.3390/ijms19071928] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 12/15/2022] Open
Abstract
B-lymphocyte differentiation is one of the best understood developmental pathways in the hematopoietic system. Our understanding of the developmental trajectories linking the multipotent hematopoietic stem cell to the mature functional B-lymphocyte is extensive as a result of efforts to identify and prospectively isolate progenitors at defined maturation stages. The identification of defined progenitor compartments has been instrumental for the resolution of the molecular features that defines given developmental stages as well as for our understanding of the mechanisms that drive the progressive maturation process. Over the last years it has become increasingly clear that the regulatory networks that control normal B-cell differentiation are targeted by mutations in human B-lineage malignancies. This generates a most interesting link between development and disease that can be explored to improve diagnosis and treatment protocols in lymphoid malignancies. The aim of this review is to provide an overview of our current understanding of molecular regulation in normal and malignant B-cell development.
Collapse
Affiliation(s)
- Mikael Sigvardsson
- Division of Molecular Hematology, Lund Stem Cell Center, Department of Laboratory Medicine, Lund University, 22184 Lund, Sweden.
- Department of Clinical and Experimental Medicine, Linköping University, SE-581 85 Linköping, Sweden.
| |
Collapse
|
24
|
Wang Y, Xiao M, Tao C, Chen J, Wang Z, Yang J, Chen Z, Zou Z, Liu A, Cai D, Jiang Y, Ding C, Li M, Bai X. Inactivation of mTORC1 Signaling in Osterix-Expressing Cells Impairs B-cell Differentiation. J Bone Miner Res 2018; 33:732-742. [PMID: 29206332 DOI: 10.1002/jbmr.3352] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/23/2017] [Accepted: 11/26/2017] [Indexed: 01/17/2023]
Abstract
Osteoblasts provide a microenvironmental niche for B-cell commitment and maturation in the bone marrow (BM). Any abnormity of osteoblasts function may result in the defect of B lymphopoiesis. Signaling from mechanistic target of rapamycin complex 1 (mTORC1) has been implicated in regulating the expansion and differentiation of osteoblasts. Thus, we raise a hypothesis that mTORC1 signaling in osteoblasts plays a vital role in B-cell development. Inactivation of mTORC1 in osterix-expressing cells (mainly osteoblast lineage) through Osx-Cre-directed deletion of Raptor (an mTORC1-specific component) resulted in a reduction in the total B-cell population in the BM, which was due to a block in early B-cell development from the pro-B to pre-B cell stage. Further mechanistic studies revealed that this defect was the result of reduction of interleukin-7 (IL-7) expression in osterix-expressing immature osteoblasts, which caused the abnormality of IL-7/Stat5 signaling in early B lymphocytes, leading to an increased apoptosis of pre-B plus immature B cells. In vitro and in vivo studies demonstrated that the addition of exogenous IL-7 partially restored B lymphopoiesis in the BM of Raptor mutant mice. Furthermore, total BM cells cultured in conditioned media from Raptor null immature osteoblasts or media with anti-IL-7 neutralizing antibody failed to differentiate into pre-B and immature B cells, indicating that inactivation of mTORC1 in immature osteoblast cannot fully support normal B-cell development. Taken together, these findings demonstrate a novel role for mTORC1 in the regulation of bone marrow environments that support B-cell differentiation via regulating IL-7 expression. © 2017 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Yongkui Wang
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Min Xiao
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Chen Tao
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jing Chen
- SunYat-sen University Cancer Center, Guangzhou, China
| | - Zhenyu Wang
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jun Yang
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhenguo Chen
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zhipeng Zou
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Anling Liu
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Daozhang Cai
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, USA
| | - Changhai Ding
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Mangmang Li
- State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaochun Bai
- Academy of Orthopedics, Guangdong Province, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,State Key Laboratory of Organ Failure Research, Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Zhu C, Chen G, Zhao Y, Gao XM, Wang J. Regulation of the Development and Function of B Cells by ZBTB Transcription Factors. Front Immunol 2018; 9:580. [PMID: 29616049 PMCID: PMC5869932 DOI: 10.3389/fimmu.2018.00580] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 03/07/2018] [Indexed: 12/20/2022] Open
Abstract
The large ZBTB family comprises a diverse group of transcriptional factors. Several ZBTB proteins have emerged as critical factors that regulate the lineage commitment, differentiation, and function of lymphoid cells as well as many other developmental events. For instance, dysfunctions of ZBTB20 or ZBTB24 have been linked to multisystem failures in humans. Within the B-cell lineage, BCL6, ZBTB7A, ZBTB17, and ZBTB1 regulate the development/differentiation of B cells in both bone marrow and peripheral lymphoid organs, while ZBTB20 and ZBTB32 seem to mainly impact the maintenance of terminal plasma cells. Given the importance of B cells in the prevention and treatment of infectious or autoimmune disorders, we herein summarize the roles of seven ZBTB family members (BCL6, ZBTB7A, ZBTB17, ZBTB20, ZBTB32, ZBTB1, and ZBTB24) in the development, differentiation, and function of B cells as well as the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Can Zhu
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ge Chen
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Ying Zhao
- Department of Pathophysiology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Xiao-Ming Gao
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| | - Jun Wang
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
26
|
Miz1 Controls Schwann Cell Proliferation via H3K36 me2 Demethylase Kdm8 to Prevent Peripheral Nerve Demyelination. J Neurosci 2017; 38:858-877. [PMID: 29217679 DOI: 10.1523/jneurosci.0843-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/21/2022] Open
Abstract
Schwann cell differentiation and myelination depends on chromatin remodeling, histone acetylation, and methylation, which all affect Schwann cell proliferation. We previously reported that the deletion of the POZ (POxvirus and Zinc finger) domain of the transcription factor Miz1 (Myc-interacting zinc finger protein; encoded by Zbtb17) in mouse Schwann cells (Miz1ΔPOZ) causes a neuropathy at 90 d after birth [postnatal day (P) 90], with a subsequent spontaneous regeneration. Here we show that RNA sequencing from Miz1ΔPOZ and control animals at P30 revealed a set of upregulated genes with a strong correlation to cell-cycle regulation. Consistently, a subset of Schwann cells did not exit the cell cycle as observed in control animals and the growth fraction increased over time. From the RNAseq gene list, two direct Miz1 target genes were identified, one of which encodes the histone H3K36me2 demethylase Kdm8. We show that the expression of Kdm8 is repressed by Miz1 and that its release in Miz1ΔPOZ cells induces a decrease of H3K36me2, especially in deregulated cell-cycle-related genes. The linkage between elevated Kdm8 expression, hypomethylation of H3K36 at cell-cycle-relevant genes, and the subsequent re-entering of adult Schwann cells into the cell cycle suggests that the release of Kdm8 repression in the absence of a functional Miz1 is a central issue in the development of the Miz1ΔPOZ phenotype.SIGNIFICANCE STATEMENT The deletion of the Miz1 (Myc-interacting zinc finger protein 1) POZ (POxvirus and Zinc finger) domain in Schwann cells causes a neuropathy. Here we report sustained Schwann cell proliferation caused by an increased expression of the direct Miz1 target gene Kdm8, encoding a H3K36me2 demethylase. Hence, the demethylation of H3K36 is linked to the pathogenesis of a neuropathy.
Collapse
|
27
|
Liu L, Lai YJ, Zhao LG, Chen GJ. Increased expression of Myc-interacting zinc finger protein 1 in APP/PS1 mice. Exp Ther Med 2017; 14:5751-5756. [PMID: 29285117 PMCID: PMC5740591 DOI: 10.3892/etm.2017.5289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 06/02/2017] [Indexed: 01/15/2023] Open
Abstract
Myc-interacting zinc-finger protein 1 (Miz1) is a member of the poxvirus and zinc-finger domain/zinc finger transcription factor family. Its transcription activation and repression functions in the nucleus are well elucidated; however its cytoplasmic inflammation function is poorly understood and may be associated with the pathogenesis of Alzheimer's disease (AD). The aim of the present study was to investigate the association between AD and Miz1 expression. In the present study, the expression and distribution of Miz1 in wild-type (WT) and amyloid precursor protein/presenelin-1 (AD) mice was studied using reverse transcription-quantitative polymerase chain reaction, western blot analysis, and immunohistochemical and immunofluorescence staining. The results indicated that Miz1 was significantly upregulated in the cortex of AD mice (P<0.05). Double immunofluorescence labeling revealed that Miz1 protein was predominantly expressed in neurons and astrocytes, as evidenced by co-localization with the dendritic markers microtubule associated protein 2 and glial fibrillary acidic protein, respectively. The results of the present study suggest that the expression of Miz1 in the brain tissue of AD mice may serve an important role in AD pathogenesis.
Collapse
Affiliation(s)
- Lu Liu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, P.R. China
| | - Yu-Jie Lai
- Department of Neurology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing 401120, P.R. China
| | - Li-Ge Zhao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, P.R. China
| | - Guo-Jun Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Neurology, Chongqing 400016, P.R. China
| |
Collapse
|
28
|
A missense mutation in zbtb17 blocks the earliest steps of T cell differentiation in zebrafish. Sci Rep 2017; 7:44145. [PMID: 28266617 PMCID: PMC5339814 DOI: 10.1038/srep44145] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 02/03/2017] [Indexed: 11/17/2022] Open
Abstract
T cells are an evolutionarily conserved feature of the adaptive immune systems of vertebrates. Comparative studies using evolutionarily distant species hold great promise for unraveling the genetic landscape underlying this process. To this end, we used ENU mutagenesis to generate mutant zebrafish with specific aberrations in early T cell development. Here, we describe the identification of a recessive missense mutation in the transcriptional regulator zbtb17 (Q562K), which affects the ninth zinc finger module of the protein. Homozygous mutant fish exhibit an early block of intrathymic T cell development, as a result of impaired thymus colonization owing to reduced expression of the gene encoding the homing receptor ccr9a, and inefficient T cell differentiation owing to reduced expression of socs1a. Our results reveal the zbtb17-socs1 axis as an evolutionarily conserved central regulatory module of early T cell development of vertebrates.
Collapse
|
29
|
Fraszczak J, Helness A, Chen R, Vadnais C, Robert F, Khandanpour C, Möröy T. Threshold Levels of Gfi1 Maintain E2A Activity for B Cell Commitment via Repression of Id1. PLoS One 2016; 11:e0160344. [PMID: 27467586 PMCID: PMC4965025 DOI: 10.1371/journal.pone.0160344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/18/2016] [Indexed: 11/18/2022] Open
Abstract
A regulatory circuit that controls myeloid versus B lymphoid cell fate in hematopoietic progenitors has been proposed, in which a network of the transcription factors Egr1/2, Nab, Gfi1 and PU.1 forms the core element. Here we show that a direct link between Gfi1, the transcription factor E2A and its inhibitor Id1 is a critical element of this regulatory circuit. Our data suggest that a certain threshold of Gfi1 is required to gauge E2A activity by adjusting levels of Id1 in multipotent progenitors, which are the first bipotential myeloid/lymphoid-restricted progeny of hematopoietic stem cells. If Gfi1 levels are high, Id1 is repressed enabling E2A to activate a specific set of B lineage genes by binding to regulatory elements for example the IL7 receptor gene. If Gfi1 levels fall below a threshold, Id1 expression increases and renders E2A unable to function, which prevents hematopoietic progenitors from engaging along the B lymphoid lineage.
Collapse
Affiliation(s)
- Jennifer Fraszczak
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - Anne Helness
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
| | - Riyan Chen
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
| | - Charles Vadnais
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
| | - François Robert
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Département de médecine, Université de Montréal, Montréal, Québec, Canada
| | | | - Tarik Möröy
- Institut de recherches cliniques de Montréal (IRCM), Montréal, Québec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Québec, Canada
- Division of Experimental Medicine, McGill University, Montreal, Canada
- * E-mail:
| |
Collapse
|
30
|
Cao X, Lu Y, Zhang X, Kovalovsky D. Zbtb1 Safeguards Genome Integrity and Prevents p53-Mediated Apoptosis in Proliferating Lymphoid Progenitors. THE JOURNAL OF IMMUNOLOGY 2016; 197:1199-211. [PMID: 27402700 DOI: 10.4049/jimmunol.1600013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/07/2016] [Indexed: 12/30/2022]
Abstract
Expression of the transcription factor Zbtb1 is required for normal lymphoid development. We report in the present study that Zbtb1 maintains genome integrity in immune progenitors, without which cells undergo increased DNA damage and p53-mediated apoptosis during replication and differentiation. Increased DNA damage in Zbtb1-mutant (ScanT) progenitors was due to increased sensitivity to replication stress, which was a consequence of inefficient activation of the S-phase checkpoint response. Increased p53-mediated apoptosis affected not only lymphoid but also myeloid development in competitive bone marrow chimeras, and prevention of apoptosis by transgenic Bcl2 expression and p53 deficiency rescued lymphoid as well as myeloid development from Zbtb1-mutant progenitors. Interestingly, however, protection from apoptosis rescued only the early stages of T cell development, and thymocytes remained arrested at the double-negative 3 developmental stage, indicating a strict requirement of Zbtb1 at later T cell developmental stages. Collectively, these results indicate that Zbtb1 prevents DNA damage in replicating immune progenitors, allowing the generation of B cells, T cells, and myeloid cells.
Collapse
Affiliation(s)
- Xin Cao
- College of Life Science and Engineering, Northwest University for Nationalities, Lanzhou 730030, China; and Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Ying Lu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Xianyu Zhang
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| | - Damian Kovalovsky
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
31
|
Heterogeneous Nuclear Ribonucleoprotein L is required for the survival and functional integrity of murine hematopoietic stem cells. Sci Rep 2016; 6:27379. [PMID: 27271479 PMCID: PMC4895350 DOI: 10.1038/srep27379] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 05/16/2016] [Indexed: 12/15/2022] Open
Abstract
The proliferation and survival of hematopoietic stem cells (HSCs) has to be strictly coordinated to ensure the timely production of all blood cells. Here we report that the splice factor and RNA binding protein hnRNP L (heterogeneous nuclear ribonucleoprotein L) is required for hematopoiesis, since its genetic ablation in mice reduces almost all blood cell lineages and causes premature death of the animals. In agreement with this, we observed that hnRNP L deficient HSCs lack both the ability to self-renew and foster hematopoietic differentiation in transplanted hosts. They also display mitochondrial dysfunction, elevated levels of γH2AX, are Annexin V positive and incorporate propidium iodide indicating that they undergo cell death. Lin(-)c-Kit(+) fetal liver cells from hnRNP L deficient mice show high p53 protein levels and up-regulation of p53 target genes. In addition, cells lacking hnRNP L up-regulated the expression of the death receptors TrailR2 and CD95/Fas and show Caspase-3, Caspase-8 and Parp cleavage. Treatment with the pan-caspase inhibitor Z-VAD-fmk, but not the deletion of p53, restored cell survival in hnRNP L deficient cells. Our data suggest that hnRNP L is critical for the survival and functional integrity of HSCs by restricting the activation of caspase-dependent death receptor pathways.
Collapse
|
32
|
Chen P, Wang W, Zhang Y, Yuan Y, Wu Y. Decreased MIZ1 Expression in Severe Experimental Acute Pancreatitis: A Rat Study. Dig Dis Sci 2016; 61:758-66. [PMID: 26581215 DOI: 10.1007/s10620-015-3951-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 10/27/2015] [Indexed: 12/15/2022]
Abstract
AIM We tested our hypothesis that Myc-interacting zinc finger protein 1 (MIZ1), a cell cycle regulator, suppressed inflammation, and therefore, represented a useful prognostic marker in patients with acute necrotizing pancreatitis (ANP) complicated by acute lung injury. METHODS Sprague-Dawley rats were randomly divided into control and ANP groups at different time points. The MIZ1 protein expression was measured by Western blot and ELISA, and confirmed using immunohistochemistry. The severity of pancreatic and lung injury was evaluated by the injury score and wet/dry weight ratio. The severity of disease was evaluated by serum C-reactive protein (CRP). The MPO activity of lung tissue amylase levels and the degree of inflammation were evaluated by serum tumor necrosis factor (TNF)-α and interleukin (IL)-6 expression. The risk due to multiple factors was investigated by relationship analysis. RESULTS The serum levels of CRP, amylase, TNF-α, and IL-6 were gradually increased at 6, 24, and 48 h in ANP when compared with the control rats. The MIZ1 expressions were greatly decreased in ANP rats, especially at 24 h. Statistical analysis showed that there were time-dependent differences in ANP rats when compared with control rats (6 vs. 24 or 48 h, P < 0.01). MIZ1 showed close negative correlation with the degree of pancreatic and lung injury, serum amylase, CRP, TNF-α, and IL-6 (P < 0.01, respectively). CONCLUSION The decreasing MIZ1 expression was closely correlated with inflammatory response, and development of ANP. Decreasing MIZ1 levels indicate a risk for ANP.
Collapse
Affiliation(s)
- Ping Chen
- Department of Gastroenterology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, 201801, China.
| | - Weiyi Wang
- Department of Gastroenterology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, 201801, China.
| | - Yongping Zhang
- Department of Gastroenterology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, 201801, China.
| | - Yaozong Yuan
- Department of Gastroenterology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, 201801, China.
| | - Yunlin Wu
- Department of Gastroenterology, Ruijin Hospital North, Shanghai Jiaotong University School of Medicine, Shanghai, 201801, China.
| |
Collapse
|
33
|
Vo BT, Wolf E, Kawauchi D, Gebhardt A, Rehg JE, Finkelstein D, Walz S, Murphy BL, Youn YH, Han YG, Eilers M, Roussel MF. The Interaction of Myc with Miz1 Defines Medulloblastoma Subgroup Identity. Cancer Cell 2016; 29:5-16. [PMID: 26766587 PMCID: PMC4714043 DOI: 10.1016/j.ccell.2015.12.003] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2015] [Revised: 10/25/2015] [Accepted: 12/09/2015] [Indexed: 12/17/2022]
Abstract
Four distinct subgroups of cerebellar medulloblastomas (MBs) differ in their histopathology, molecular profiles, and prognosis. c-Myc (Myc) or MycN overexpression in granule neuron progenitors (GNPs) induces Group 3 (G3) or Sonic Hedgehog (SHH) MBs, respectively. Differences in Myc and MycN transcriptional profiles depend, in part, on their interaction with Miz1, which binds strongly to Myc but not MycN, to target sites on chromatin. Myc suppresses ciliogenesis and reprograms the transcriptome of SHH-dependent GNPs through Miz1-dependent gene repression to maintain stemness. Genetic disruption of the Myc/Miz1 interaction inhibited G3 MB development. Target genes of Myc/Miz1 are repressed in human G3 MBs but not in other subgroups. Therefore, the Myc/Miz1 interaction is a defining hallmark of G3 MB development.
Collapse
Affiliation(s)
- BaoHan T. Vo
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Elmar Wolf
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Daisuke Kawauchi
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, 262 Danny Thomas Place, Memphis, TN 38105, USA
- German Cancer Research Center (DKFZ), Division of Pediatric Neurooncology (B062) Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| | - Anneli Gebhardt
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Jerold E. Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - David Finkelstein
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Susanne Walz
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Josef-Schneider-Str.6, 97080 Würzburg, Germany
| | - Brian L. Murphy
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Yong Ha Youn
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Young-Goo Han
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Martin Eilers
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
- Comprehensive Cancer Center Mainfranken, University of Würzburg, Josef-Schneider-Str.6, 97080 Würzburg, Germany
- Correspondence: (M.F.R.); (M.E.)
| | - Martine F. Roussel
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, Memphis, 262 Danny Thomas Place, Memphis, TN 38105, USA
- Correspondence: (M.F.R.); (M.E.)
| |
Collapse
|
34
|
Genetic and Epigenetic Mechanisms That Maintain Hematopoietic Stem Cell Function. Stem Cells Int 2015; 2016:5178965. [PMID: 26798358 PMCID: PMC4699043 DOI: 10.1155/2016/5178965] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 09/03/2015] [Accepted: 09/09/2015] [Indexed: 01/15/2023] Open
Abstract
All hematopoiesis cells develop from multipotent progenitor cells. Hematopoietic stem cells (HSC) have the ability to develop into all blood lineages but also maintain their stemness. Different molecular mechanisms have been identified that are crucial for regulating quiescence and self-renewal to maintain the stem cell pool and for inducing proliferation and lineage differentiation. The stem cell niche provides the microenvironment to keep HSC in a quiescent state. Furthermore, several transcription factors and epigenetic modifiers are involved in this process. These create modifications that regulate the cell fate in a more or less reversible and dynamic way and contribute to HSC homeostasis. In addition, HSC respond in a unique way to DNA damage. These mechanisms also contribute to the regulation of HSC function and are essential to ensure viability after DNA damage. How HSC maintain their quiescent stage during the entire life is still matter of ongoing research. Here we will focus on the molecular mechanisms that regulate HSC function.
Collapse
|
35
|
Abstract
The transcription factor Miz1 negatively regulates TNF-induced JNK activation and cell death by suppressing TRAF2 K63-polyubiquitination; upon TNF stimulation, the suppression is relieved by Mule/ARF-BP1-mediated Miz1 ubiquitination and subsequent degradation. It is not known how Mule is activated by TNF. Here we report that TNF activates Mule by inducing the dissociation of Mule from its inhibitor ARF. ARF binds to and thereby inhibits the E3 ligase activity of Mule in the steady state. TNF induces tyrosine phosphorylation of Mule, which subsequently dissociates from ARF and becomes activated. Inhibition of Mule phosphorylation by silencing of the Spleen Tyrosine Kinase (Syk) prevents its dissociation from ARF, thereby inhibiting Mule E3 ligase activity and TNF-induced JNK activation and cell death. Our data provides a missing link in TNF signaling pathway that leads to JNK activation and cell death.
Collapse
|
36
|
Iguchi T, Aoki K, Ikawa T, Taoka M, Taya C, Yoshitani H, Toma-Hirano M, Koiwai O, Isobe T, Kawamoto H, Masai H, Miyatake S. BTB-ZF Protein Znf131 Regulates Cell Growth of Developing and Mature T Cells. THE JOURNAL OF IMMUNOLOGY 2015; 195:982-93. [PMID: 26136427 DOI: 10.4049/jimmunol.1500602] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/31/2015] [Indexed: 02/01/2023]
Abstract
Many members of the BTB-ZF family have been shown to play important roles in lymphocyte development and function. The role of zinc finger Znf131 (also known as Zbtb35) in T cell lineage was elucidated through the production of mice with floxed allele to disrupt at different stages of development. In this article, we present that Znf131 is critical for T cell development during double-negative to double-positive stage, with which significant cell expansion triggered by the pre-TCR signal is coupled. In mature T cells, Znf131 is required for the activation of effector genes, as well as robust proliferation induced upon TCR signal. One of the cyclin-dependent kinase inhibitors, p21(Cip1) encoded by cdkn1a gene, is one of the targets of Znf131. The regulation of T cell proliferation by Znf131 is in part attributed to its suppression on the expression of p21(Cip1).
Collapse
Affiliation(s)
- Tomohiro Iguchi
- Laboratory of Self Defense Gene Regulation, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Kazuhisa Aoki
- Laboratory of Self Defense Gene Regulation, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Tomokatsu Ikawa
- Young Chief Investigators Laboratory for Immune Regeneration, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Masato Taoka
- Laboratory of Biochemistry, Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Choji Taya
- Animal Research Division, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Hiroshi Yoshitani
- Laboratory of Self Defense Gene Regulation, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Makiko Toma-Hirano
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Osamu Koiwai
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
| | - Toshiaki Isobe
- Laboratory of Biochemistry, Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, Hachioji, Tokyo 192-0397, Japan
| | - Hiroshi Kawamoto
- Department of Immunology, Field of Regeneration Control, Institute of Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan; and
| | - Hisao Masai
- Genome Dynamics Project, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan
| | - Shoichiro Miyatake
- Laboratory of Self Defense Gene Regulation, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-8506, Japan;
| |
Collapse
|
37
|
Transcription factor networks in B-cell differentiation link development to acute lymphoid leukemia. Blood 2015; 126:144-52. [PMID: 25990863 DOI: 10.1182/blood-2014-12-575688] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 05/12/2015] [Indexed: 12/26/2022] Open
Abstract
B-lymphocyte development in the bone marrow is controlled by the coordinated action of transcription factors creating regulatory networks ensuring activation of the B-lymphoid program and silencing of alternative cell fates. This process is tightly connected to malignant transformation because B-lineage acute lymphoblastic leukemia cells display a pronounced block in differentiation resulting in the expansion of immature progenitor cells. Over the last few years, high-resolution analysis of genetic changes in leukemia has revealed that several key regulators of normal B-cell development, including IKZF1, TCF3, EBF1, and PAX5, are genetically altered in a large portion of the human B-lineage acute leukemias. This opens the possibility of directly linking the disrupted development as well as aberrant gene expression patterns in leukemic cells to molecular functions of defined transcription factors in normal cell differentiation. This review article focuses on the roles of transcription factors in early B-cell development and their involvement in the formation of human leukemia.
Collapse
|
38
|
Kang J, Malhotra N. Transcription factor networks directing the development, function, and evolution of innate lymphoid effectors. Annu Rev Immunol 2015; 33:505-38. [PMID: 25650177 PMCID: PMC4674156 DOI: 10.1146/annurev-immunol-032414-112025] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity.
Collapse
Affiliation(s)
- Joonsoo Kang
- Department of Pathology, University of Massachusetts Medical School, Worcester, Massachusetts 01655;
| | | |
Collapse
|
39
|
Miz-1 regulates translation of Trp53 via ribosomal protein L22 in cells undergoing V(D)J recombination. Proc Natl Acad Sci U S A 2014; 111:E5411-9. [PMID: 25468973 DOI: 10.1073/pnas.1412107111] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
To be effective, the adaptive immune response requires a large repertoire of antigen receptors, which are generated through V(D)J recombination in lymphoid precursors. These precursors must be protected from DNA damage-induced cell death, however, because V(D)J recombination generates double-strand breaks and may activate p53. Here we show that the BTB/POZ domain protein Miz-1 restricts p53-dependent induction of apoptosis in both pro-B and DN3a pre-T cells that actively rearrange antigen receptor genes. Miz-1 exerts this function by directly activating the gene for ribosomal protein L22 (Rpl22), which binds to p53 mRNA and negatively regulates its translation. This mechanism limits p53 expression levels and thus contains its apoptosis-inducing functions in lymphocytes, precisely at differentiation stages in which V(D)J recombination occurs.
Collapse
|
40
|
Stead MA, Wright SC. Structures of heterodimeric POZ domains of Miz1/BCL6 and Miz1/NAC1. Acta Crystallogr F Struct Biol Commun 2014; 70:1591-6. [PMID: 25484205 PMCID: PMC4259219 DOI: 10.1107/s2053230x14023449] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022] Open
Abstract
The POZ domain is an evolutionarily conserved protein-protein interaction domain that is found in approximately 40 mammalian transcription factors. POZ domains mediate both homodimerization and the heteromeric interactions of different POZ-domain transcription factors with each other. Miz1 is a POZ-domain transcription factor that regulates cell-cycle arrest and DNA-damage responses. The activities of Miz1 are altered by its interaction with the POZ-domain transcriptional repressors BCL6 and NAC1, and these interactions have been implicated in tumourigenesis in B-cell lymphomas and in ovarian serous carcinomas that overexpress BCL6 and NAC1, respectively. A strategy for the purification of tethered POZ domains that form forced heterodimers is described, and crystal structures of the heterodimeric POZ domains of Miz1/BCL6 and of Miz1/NAC1 are reported. These structures will be relevant for the design of therapeutics that target POZ-domain interaction interfaces.
Collapse
|
41
|
Sanz-Moreno A, Fuhrmann D, Zankel A, Reingruber H, Kern L, Meijer D, Niemann A, Elsässer HP. Late onset neuropathy with spontaneous clinical remission in mice lacking the POZ domain of the transcription factor Myc-interacting zinc finger protein 1 (Miz1) in Schwann cells. J Biol Chem 2014; 290:727-43. [PMID: 25416780 DOI: 10.1074/jbc.m114.605931] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The transcription factor Miz1 (Myc-interacting zinc finger 1) is a known regulator of the cell cycle but also has cell cycle-independent functions. Here we analyzed the role of Miz1 in the peripheral nervous system, using an early embryonic conditional knock-out model in which the Miz1 POZ domain is ablated in Schwann cells. Although the development of myelinated nerve fibers was not impaired, Miz1ΔPOZ mice acquired behavioral signs of a peripheral neuropathy at the age of 3 months. At this time, ultrastructural analysis of the sciatic nerve showed de- and dysmyelination of fibers, with massive outfoldings and a focal infiltration of macrophages. Although the expression of genes encoding structural myelin proteins, such as periaxin, myelin basic protein, and myelin protein zero, was decreased, genes associated with a negative regulation of myelination, including c-Jun, Sox2, and Id2, were up-regulated in Miz1ΔPOZ mice compared with controls. In animals older than 4 months, the motor disabilities vanished, and the ultrastructure of the sciatic nerve exhibited numerous tomacula and remyelinated fibers, as indicated by thinner myelin. No second acute attack was observed up to the age of 1 year. Thus, the deletion of the Miz1 POZ domain in Schwann cells induces an acute neuropathy with a subsequent regeneration in which there is ongoing balancing between de- and remyelination. Miz1ΔPOZ mice are impaired in the maintenance of myelinated fibers and are a promising model for studying remyelination in adult peripheral nerves.
Collapse
Affiliation(s)
- Adrián Sanz-Moreno
- From the Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, Robert-Koch-Strasse 6, 35033 Marburg, Germany
| | - David Fuhrmann
- From the Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, Robert-Koch-Strasse 6, 35033 Marburg, Germany
| | - Armin Zankel
- Graz University of Technology, 8010 Graz, Austria
| | | | - Lara Kern
- From the Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, Robert-Koch-Strasse 6, 35033 Marburg, Germany
| | - Dies Meijer
- Erasmus Medical Center, 3015GE Rotterdam, Netherlands, and
| | | | - Hans-Peter Elsässer
- From the Department of Cytobiology and Cytopathobiology, Philipps University of Marburg, Robert-Koch-Strasse 6, 35033 Marburg, Germany,
| |
Collapse
|
42
|
Boller S, Grosschedl R. The regulatory network of B-cell differentiation: a focused view of early B-cell factor 1 function. Immunol Rev 2014; 261:102-15. [PMID: 25123279 PMCID: PMC4312928 DOI: 10.1111/imr.12206] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
During the last decades, many studies have investigated the transcriptional and epigenetic regulation of lineage decision in the hematopoietic system. These efforts led to a model in which extrinsic signals and intrinsic cues establish a permissive chromatin context upon which a regulatory network of transcription factors and epigenetic modifiers act to guide the differentiation of hematopoietic lineages. These networks include lineage-specific factors that further modify the epigenetic landscape and promote the generation of specific cell types. The process of B lymphopoiesis requires a set of transcription factors, including Ikaros, PU.1, E2A, and FoxO1 to 'prime' cis-regulatory regions for subsequent activation by the B-lineage-specific transcription factors EBF1 and Pax-5. The expression of EBF1 is initiated by the combined action of E2A and FoxO1, and it is further enhanced and maintained by several positive feedback loops that include Pax-5 and IL-7 signaling. EBF1 acts in concert with Ikaros, PU.1, Runx1, E2A, FoxO1, and Pax-5 to establish the B cell-specific transcription profile. EBF1 and Pax-5 also collaborate to repress alternative cell fates and lock cells into the B-lineage fate. In addition to the functions of EBF1 in establishing and maintaining B-cell identity, EBF1 is required to coordinate differentiation with cell proliferation and survival.
Collapse
Affiliation(s)
- Sören Boller
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and EpigeneticsFreiburg, Germany
| | - Rudolf Grosschedl
- Department of Cellular and Molecular Immunology, Max Planck Institute of Immunobiology and EpigeneticsFreiburg, Germany
| |
Collapse
|
43
|
Walz S, Lorenzin F, Morton J, Wiese KE, von Eyss B, Herold S, Rycak L, Dumay-Odelot H, Karim S, Bartkuhn M, Roels F, Wüstefeld T, Fischer M, Teichmann M, Zender L, Wei CL, Sansom O, Wolf E, Eilers M. Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles. Nature 2014; 511:483-7. [PMID: 25043018 PMCID: PMC6879323 DOI: 10.1038/nature13473] [Citation(s) in RCA: 386] [Impact Index Per Article: 35.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 05/13/2014] [Indexed: 12/26/2022]
Abstract
In mammalian cells, the MYC oncoprotein binds to thousands of promoters. During mitogenic stimulation of primary lymphocytes, MYC promotes an increase in the expression of virtually all genes. In contrast, MYC-driven tumour cells differ from normal cells in the expression of specific sets of up- and downregulated genes that have considerable prognostic value. To understand this discrepancy, we studied the consequences of inducible expression and depletion of MYC in human cells and murine tumour models. Changes in MYC levels activate and repress specific sets of direct target genes that are characteristic of MYC-transformed tumour cells. Three factors account for this specificity. First, the magnitude of response parallels the change in occupancy by MYC at each promoter. Functionally distinct classes of target genes differ in the E-box sequence bound by MYC, suggesting that different cellular responses to physiological and oncogenic MYC levels are controlled by promoter affinity. Second, MYC both positively and negatively affects transcription initiation independent of its effect on transcriptional elongation. Third, complex formation with MIZ1 (also known as ZBTB17) mediates repression of multiple target genes by MYC and the ratio of MYC and MIZ1 bound to each promoter correlates with the direction of response.
Collapse
Affiliation(s)
- Susanne Walz
- 1] Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany [2]
| | - Francesca Lorenzin
- 1] Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany [2]
| | - Jennifer Morton
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Katrin E Wiese
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Björn von Eyss
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Steffi Herold
- Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lukas Rycak
- Institute for Molecular Biology and Tumor Research (IMT), Emil-Mannkopff-Str.2, 35033 Marburg, Germany
| | - Hélène Dumay-Odelot
- University of Bordeaux, IECB, ARNA laboratory, Equipe Labellisée Contre le Cancer, 33600 Pessac, France
| | - Saadia Karim
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Marek Bartkuhn
- Institute for Genetics, Justus-Liebig-University, Heinrich-Buff-Ring 58, 35390 Giessen, Germany
| | - Frederik Roels
- University Children's Hospital of Cologne, and Cologne Center for Molecular Medicine (CMMC), University of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Torsten Wüstefeld
- University Hospital Tübingen, Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, Otfried-Mueller-Strasse 10, 72076 Tübingen, Germany
| | - Matthias Fischer
- University Children's Hospital of Cologne, and Cologne Center for Molecular Medicine (CMMC), University of Cologne, Kerpener Str. 62, 50924 Cologne, Germany
| | - Martin Teichmann
- University of Bordeaux, IECB, ARNA laboratory, Equipe Labellisée Contre le Cancer, 33600 Pessac, France
| | - Lars Zender
- 1] University Hospital Tübingen, Division of Translational Gastrointestinal Oncology, Department of Internal Medicine I, Otfried-Mueller-Strasse 10, 72076 Tübingen, Germany [2] Translational Gastrointestinal Oncology Group within the German Center for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), 69121 Heidelberg, Germany
| | - Chia-Lin Wei
- DOE Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, California 94598, USA
| | - Owen Sansom
- CRUK Beatson Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Elmar Wolf
- 1] Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany [2] Rudolf Virchow Center/DFG Research Center for Experimental Biomedicine, University of Würzburg, Josef-Schneider-Str.2, 97080 Würzburg, Germany [3]
| | - Martin Eilers
- 1] Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany [2] Comprehensive Cancer Center Mainfranken, University of Würzburg, Josef-Schneider-Str. 6, 97080 Würzburg, Germany [3]
| |
Collapse
|
44
|
Barrilleaux BL, Burow D, Lockwood SH, Yu A, Segal DJ, Knoepfler PS. Miz-1 activates gene expression via a novel consensus DNA binding motif. PLoS One 2014; 9:e101151. [PMID: 24983942 PMCID: PMC4077741 DOI: 10.1371/journal.pone.0101151] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 06/03/2014] [Indexed: 01/22/2023] Open
Abstract
The transcription factor Miz-1 can either activate or repress gene expression in concert with binding partners including the Myc oncoprotein. The genomic binding of Miz-1 includes both core promoters and more distal sites, but the preferred DNA binding motif of Miz-1 has been unclear. We used a high-throughput in vitro technique, Bind-n-Seq, to identify two Miz-1 consensus DNA binding motif sequences—ATCGGTAATC and ATCGAT (Mizm1 and Mizm2)—bound by full-length Miz-1 and its zinc finger domain, respectively. We validated these sequences directly as high affinity Miz-1 binding motifs. Competition assays using mutant probes indicated that the binding affinity of Miz-1 for Mizm1 and Mizm2 is highly sequence-specific. Miz-1 strongly activates gene expression through the motifs in a Myc-independent manner. MEME-ChIP analysis of Miz-1 ChIP-seq data in two different cell types reveals a long motif with a central core sequence highly similar to the Mizm1 motif identified by Bind-n-Seq, validating the in vivo relevance of the findings. Miz-1 ChIP-seq peaks containing the long motif are predominantly located outside of proximal promoter regions, in contrast to peaks without the motif, which are highly concentrated within 1.5 kb of the nearest transcription start site. Overall, our results indicate that Miz-1 may be directed in vivo to the novel motif sequences we have identified, where it can recruit its specific binding partners to control gene expression and ultimately regulate cell fate.
Collapse
Affiliation(s)
- Bonnie L. Barrilleaux
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, California, United States of America
| | - Dana Burow
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, California, United States of America
| | - Sarah H. Lockwood
- Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biochemistry, University of California Davis, Davis, California, United States of America
| | - Abigail Yu
- Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biochemistry, University of California Davis, Davis, California, United States of America
| | - David J. Segal
- Genome Center, University of California Davis, Davis, California, United States of America
- Department of Biochemistry, University of California Davis, Davis, California, United States of America
| | - Paul S. Knoepfler
- Department of Cell Biology and Human Anatomy, University of California Davis School of Medicine, Davis, California, United States of America
- Genome Center, University of California Davis, Davis, California, United States of America
- Comprehensive Cancer Center, University of California Davis, Sacramento, California, United States of America
- Institute of Pediatric Regenerative Medicine, Shriners Hospital For Children Northern California, Sacramento, California, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
Nac1 (nucleus accumbens 1) is a POZ (poxvirus and zinc finger)-domain transcriptional repressor that is expressed at high levels in ovarian serous carcinoma. Here we identify Nac1 as a novel interacting partner of the POZ-domain transcriptional activator, Miz1 (Myc-interacting zinc-finger protein 1), and using chemical crosslinking we show that this association is mediated by a heterodimeric interaction of the Nac1 and Miz1 POZ domains. Nac1 is found in discrete bodies within the nucleus of mammalian cells, and we demonstrate the relocalization of Miz1 to these structures in transfected HeLa cells. We show that siRNA (small interfering RNA)-mediated knockdown of Nac1 in ovarian cancer cells results in increased levels of the Miz1 target gene product, p21Cip1. The interaction of Nac1 with Miz1 may thus be relevant to its mechanism of tumourigenesis in ovarian cancer. Nac1 is a transcriptional repressor that has been implicated in ovarian serous carcinoma. Here we show that Nac1 interacts with the transcription factor Miz1, and suggest that this interaction may contribute to tumourigenesis.
Collapse
|
46
|
Eibel H, Kraus H, Sic H, Kienzler AK, Rizzi M. B cell biology: an overview. Curr Allergy Asthma Rep 2014; 14:434. [PMID: 24633618 DOI: 10.1007/s11882-014-0434-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this review we summarize recent insights into the development of human B cells primarily by studying immunodeficiencies. Development and differentiation of B cells can be considered as a paradigm for many other developmental processes in cell biology. However, it differs from the development of many other cell types by phases of extremely rapid cell division and by defined series of somatic recombination and mutation events required to assemble and refine the B cell antigen receptors. Both somatic DNA alteration and proliferation phases take place in defined sites but in different organs. Thus, cell migration and timely arrival at defined sites are additional features of B cell development. By comparing experimental mouse models with insights gained from studying defined genetic defects leading to primary immunodeficiencies and hypogammaglobulinemia, we address important features that are characteristic for human B cells. We also summarize recent advances made by developing improved in vitro and in vivo systems allowing the development of human B cells from hematopoietic stem cells. Combined with genetic and functional studies of immunodeficiencies, these models will contribute not only to a better understanding of disease affecting the B lymphocyte compartment, but also to designing better and safer novel B cell-targeted therapies in autoimmunity and allergy.
Collapse
Affiliation(s)
- Hermann Eibel
- Center for Chronic Immunodeficiency, University Medical Center Freiburg, Engesserstr. 4, Freiburg, 79108, Germany,
| | | | | | | | | |
Collapse
|
47
|
Wolf E, Gebhardt A, Kawauchi D, Walz S, von Eyss B, Wagner N, Renninger C, Krohne G, Asan E, Roussel MF, Eilers M. Miz1 is required to maintain autophagic flux. Nat Commun 2014; 4:2535. [PMID: 24088869 DOI: 10.1038/ncomms3535] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 09/03/2013] [Indexed: 02/07/2023] Open
Abstract
Miz1 is a zinc finger protein that regulates the expression of cell cycle inhibitors as part of a complex with Myc. Cell cycle-independent functions of Miz1 are poorly understood. Here we use a Nestin-Cre transgene to delete an essential domain of Miz1 in the central nervous system (Miz1(ΔPOZNes)). Miz1(ΔPOZNes) mice display cerebellar neurodegeneration characterized by the progressive loss of Purkinje cells. Chromatin immunoprecipitation sequencing and biochemical analyses show that Miz1 activates transcription upon binding to a non-palindromic sequence present in core promoters. Target genes of Miz1 encode regulators of autophagy and proteins involved in vesicular transport that are required for autophagy. Miz1(ΔPOZ) neuronal progenitors and fibroblasts show reduced autophagic flux. Consistently, polyubiquitinated proteins and p62/Sqtm1 accumulate in the cerebella of Miz1(ΔPOZNes) mice, characteristic features of defective autophagy. Our data suggest that Miz1 may link cell growth and ribosome biogenesis to the transcriptional regulation of vesicular transport and autophagy.
Collapse
Affiliation(s)
- Elmar Wolf
- 1] Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany [2]
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Chevrier S, Emslie D, Shi W, Kratina T, Wellard C, Karnowski A, Erikci E, Smyth GK, Chowdhury K, Tarlinton D, Corcoran LM. The BTB-ZF transcription factor Zbtb20 is driven by Irf4 to promote plasma cell differentiation and longevity. ACTA ACUST UNITED AC 2014; 211:827-40. [PMID: 24711583 PMCID: PMC4010913 DOI: 10.1084/jem.20131831] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Zbtb20 facilitates terminal differentiation of B cells into antibody-secreting cells, and its expression is dependent on Irf4 and independent of Blimp1. The transcriptional network regulating antibody-secreting cell (ASC) differentiation has been extensively studied, but our current understanding is limited. The mechanisms of action of known “master” regulators are still unclear, while the participation of new factors is being revealed. Here, we identify Zbtb20, a Bcl6 homologue, as a novel regulator of late B cell development. Within the B cell lineage, Zbtb20 is specifically expressed in B1 and germinal center B cells and peaks in long-lived bone marrow (BM) ASCs. Unlike Bcl6, an inhibitor of ASC differentiation, ectopic Zbtb20 expression in primary B cells facilitates terminal B cell differentiation to ASCs. In plasma cell lines, Zbtb20 induces cell survival and blocks cell cycle progression. Immunized Zbtb20-deficient mice exhibit curtailed humoral responses and accelerated loss of antigen-specific plasma cells, specifically from the BM pool. Strikingly, Zbtb20 induction does not require Blimp1 but depends directly on Irf4, acting at a newly identified Zbtb20 promoter in ASCs. These results identify Zbtb20 as an important player in late B cell differentiation and provide new insights into this complex process.
Collapse
Affiliation(s)
- Stéphane Chevrier
- Molecular Immunology Division, 2 Bioinformatics Division, 3 Immunology Division, The Walter and Eliza Hall Institute, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
BTB-ZF transcription factors, a growing family of regulators of early and late B-cell development. Immunol Cell Biol 2014; 92:481-8. [PMID: 24638067 DOI: 10.1038/icb.2014.20] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 02/18/2014] [Accepted: 02/18/2014] [Indexed: 02/06/2023]
Abstract
The differentiation of early B-cell precursors in the bone marrow into the variety of mature and effector B-cell subsets of the periphery is a complex process that requires tight regulation at the transcriptional level. Different members of the broad complex, tramtrack, bric-à-brac and zinc finger (BTB-ZF) family of transcription factors have recently been shown to have key roles in many phases of B-cell development, including early B-cell development in the bone marrow, peripheral B-cell maturation and specialization into effector cells during an immune response. This review highlights the critical functions mediated by BTB-ZF transcription factors within the B-cell lineage and emphasizes how the deregulation of these transcription factors can lead to B-cell malignancies.
Collapse
|
50
|
Miz1 deficiency in the mammary gland causes a lactation defect by attenuated Stat5 expression and phosphorylation. PLoS One 2014; 9:e89187. [PMID: 24586582 PMCID: PMC3929623 DOI: 10.1371/journal.pone.0089187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 01/15/2014] [Indexed: 01/25/2023] Open
Abstract
Miz1 is a zinc finger transcription factor with an N-terminal POZ domain. Complexes with Myc, Bcl-6 or Gfi-1 repress expression of genes like Cdkn2b (p15Ink4) or Cdkn1a (p21Cip1). The role of Miz1 in normal mammary gland development has not been addressed so far. Conditional knockout of the Miz1 POZ domain in luminal cells during pregnancy caused a lactation defect with a transient reduction of glandular tissue, reduced proliferation and attenuated differentiation. This was recapitulated in vitro using mouse mammary gland derived HC11 cells. Further analysis revealed decreased Stat5 activity in Miz1ΔPOZ mammary glands and an attenuated expression of Stat5 targets. Gene expression of the Prolactin receptor (PrlR) and ErbB4, both critical for Stat5 phosphorylation (pStat5) or pStat5 nuclear translocation, was decreased in Miz1ΔPOZ females. Microarray, ChIP-Seq and gene set enrichment analysis revealed a down-regulation of Miz1 target genes being involved in vesicular transport processes. Our data suggest that deranged intracellular transport and localization of PrlR and ErbB4 disrupt the Stat5 signalling pathway in mutant glands and cause the observed lactation phenotype.
Collapse
|