1
|
Miller C, Boegler K, Carver S, MacMillan M, Bielefeldt-Ohmann H, VandeWoude S. Pathogenesis of oral FIV infection. PLoS One 2017; 12:e0185138. [PMID: 28934316 PMCID: PMC5608358 DOI: 10.1371/journal.pone.0185138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 09/05/2017] [Indexed: 01/09/2023] Open
Abstract
Feline immunodeficiency virus (FIV) is the feline analogue of human immunodeficiency virus (HIV) and features many hallmarks of HIV infection and pathogenesis, including the development of concurrent oral lesions. While HIV is typically transmitted via parenteral transmucosal contact, recent studies prove that oral transmission can occur, and that saliva from infected individuals contains significant amounts of HIV RNA and DNA. While it is accepted that FIV is primarily transmitted by biting, few studies have evaluated FIV oral infection kinetics and transmission mechanisms over the last 20 years. Modern quantitative analyses applied to natural FIV oral infection could significantly further our understanding of lentiviral oral disease and transmission. We therefore characterized FIV salivary viral kinetics and antibody secretions to more fully document oral viral pathogenesis. Our results demonstrate that: (i) saliva of FIV-infected cats contains infectious virus particles, FIV viral RNA at levels equivalent to circulation, and lower but significant amounts of FIV proviral DNA; (ii) the ratio of FIV RNA to DNA is significantly higher in saliva than in circulation; (iii) FIV viral load in oral lymphoid tissues (tonsil, lymph nodes) is significantly higher than mucosal tissues (buccal mucosa, salivary gland, tongue); (iv) salivary IgG antibodies increase significantly over time in FIV-infected cats, while salivary IgA levels remain static; and, (v) saliva from naïve Specific Pathogen Free cats inhibits FIV growth in vitro. Collectively, these results suggest that oral lymphoid tissues serve as a site for enhanced FIV replication, resulting in accumulation of FIV particles and FIV-infected cells in saliva. Failure to induce a virus-specific oral mucosal antibody response, and/or viral capability to overcome inhibitory components in saliva may perpetuate chronic oral cavity infection. Based upon these findings, we propose a model of oral FIV pathogenesis and suggest alternative diagnostic modalities and translational approaches to study oral HIV infection.
Collapse
Affiliation(s)
- Craig Miller
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Karen Boegler
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Scott Carver
- School of Zoology, University of Tasmania, Hobart, Tasmania, Australia
| | - Martha MacMillan
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
| | - Helle Bielefeldt-Ohmann
- Australian Infectious Diseases Research Centre, University of Queensland, St. Lucia, Queensland, Australia
| | - Sue VandeWoude
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado
- * E-mail:
| |
Collapse
|
2
|
Tomusange K, Wijesundara D, Gummow J, Garrod T, Li Y, Gray L, Churchill M, Grubor-Bauk B, Gowans EJ. A HIV-Tat/C4-binding protein chimera encoded by a DNA vaccine is highly immunogenic and contains acute EcoHIV infection in mice. Sci Rep 2016; 6:29131. [PMID: 27358023 PMCID: PMC4928126 DOI: 10.1038/srep29131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 06/15/2016] [Indexed: 12/22/2022] Open
Abstract
DNA vaccines are cost-effective to manufacture on a global scale and Tat-based DNA vaccines have yielded protective outcomes in preclinical and clinical models of human immunodeficiency virus (HIV), highlighting the potential of such vaccines. However, Tat-based DNA vaccines have been poorly immunogenic, and despite the administration of multiple doses and/or the addition of adjuvants, these vaccines are not in general use. In this study, we improved Tat immunogenicity by fusing it with the oligomerisation domain of a chimeric C4-binding protein (C4b-p), termed IMX313, resulting in Tat heptamerisation and linked Tat to the leader sequence of tissue plasminogen activator (TPA) to ensure that the bulk of heptamerised Tat is secreted. Mice vaccinated with secreted Tat fused to IMX313 (pVAX-sTat-IMX313) developed higher titres of Tat-specific serum IgG, mucosal sIgA and cell-mediated immune (CMI) responses, and showed superior control of EcoHIV infection, a surrogate murine HIV challenge model, compared with animals vaccinated with other test vaccines. Given the crucial contribution of Tat to HIV-1 pathogenesis and the precedent of Tat-based DNA vaccines in conferring some level of protection in animal models, we believe that the virologic control demonstrated with this novel multimerised Tat vaccine highlights the promise of this vaccine candidate for humans.
Collapse
Affiliation(s)
- Khamis Tomusange
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Danushka Wijesundara
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Jason Gummow
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Tamsin Garrod
- Royal Australasian College of Surgeons, Adelaide, South Australia, Australia
| | - Yanrui Li
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Lachlan Gray
- Centre for Biomedical Research, Burnet Institute, Melbourne VIC, Australia
- Department of Infectious Diseases, Monash University, Melbourne VIC, Australia
| | - Melissa Churchill
- Centre for Biomedical Research, Burnet Institute, Melbourne VIC, Australia
| | - Branka Grubor-Bauk
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| | - Eric J. Gowans
- Virology Laboratory, Basil Hetzel Institute, Discipline of Surgery, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
3
|
Esparza J. A New Scientific Paradigm may be Needed to Finally Develop an HIV Vaccine. Front Immunol 2015; 6:124. [PMID: 25852692 PMCID: PMC4364287 DOI: 10.3389/fimmu.2015.00124] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 03/06/2015] [Indexed: 12/13/2022] Open
Abstract
The bulk of current HIV vaccine research is conducted within the infectious disease paradigm that has been very successful in developing vaccines against many other viral diseases. Different HIV vaccine concepts, based on the induction of neutralizing antibodies and/or cell mediated immunity, have been developed and clinically tested over the last 30 years, resulting in a few small successes and many disappointments. As new scientific knowledge is obtained, HIV vaccine concepts are constantly modified with the hope that the newly introduced tweaks (or paradigm drifts) will provide the solution to one of the most difficult challenges that modern biomedical research is confronting. Efficacy trials have been critical in guiding HIV vaccine development. However, from the five phase III efficacy trials conducted to date, only one (RV144) resulted in modest efficacy. The results from RV144 were surprising in many ways, including the identified putative correlates of protection (or risk), which did not include neutralizing antibodies or cytotoxic T-cells. The solution to the HIV vaccine challenge may very well come from approaches based on the current paradigm. However, at the same time, out-of-the-paradigm ideas should be systematically explored to complement the current efforts. New mechanisms are needed to identify and support the innovative research that will hopefully accelerate the development of an urgently needed HIV vaccine.
Collapse
Affiliation(s)
- José Esparza
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
4
|
Chagnon-Choquet J, Gauvin J, Roger J, Fontaine J, Poudrier J, Roger M. HIV Nef promotes expression of B-lymphocyte stimulator by blood dendritic cells during HIV infection in humans. J Infect Dis 2014; 211:1229-40. [PMID: 25378636 DOI: 10.1093/infdis/jiu611] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Dendritic cells (DCs) modulate B-cell survival and differentiation, mainly through production of growth factors such as B lymphocyte stimulator (BLyS; also known as "B-cell factor belonging to the tumor necrosis factor family" [BAFF]). We have recently shown that, in human immunodeficiency virus (HIV)-infected individuals with rapid and those with classic disease progression, B-cell dysregulations were associated with increased BLyS expression in plasma and by blood myeloid DCs (mDCs), in contrast to aviremic HIV-infected individuals with slow disease progression (also known as "elite controllers"). In previous work with transgenic mice expressing HIV genes, B-cell dysregulations were concomitant with altered mDCs and dependent on HIV negative factor (Nef). We now report that HIV Nef is detected early after infection and despite successful therapy in plasma and BLyS-overexpressing blood mDCs of HIV-infected rapid and classic progressors, whereas it is low to undetectable in aviremic slow progressors. In vitro, HIV Nef drives monocyte-derived DCs toward BLyS overexpression through a process involving STAT1. Importantly, this is counteracted in the presence of all-trans retinoic acid. Nef thus contributes to high BLyS proinflammatory profiles in HIV-infected individuals.
Collapse
Affiliation(s)
- Josiane Chagnon-Choquet
- Laboratoire d'immunogénétique, Centre de Recherche du Centre Hospitalier Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Canada
| | - Julie Gauvin
- Laboratoire d'immunogénétique, Centre de Recherche du Centre Hospitalier Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Canada
| | - Julien Roger
- Laboratoire d'immunogénétique, Centre de Recherche du Centre Hospitalier
| | - Julie Fontaine
- Laboratoire d'immunogénétique, Centre de Recherche du Centre Hospitalier Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Canada
| | - Johanne Poudrier
- Laboratoire d'immunogénétique, Centre de Recherche du Centre Hospitalier Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Canada
| | - Michel Roger
- Laboratoire d'immunogénétique, Centre de Recherche du Centre Hospitalier Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Canada
| | | |
Collapse
|
5
|
Wood LF, Chahroudi A, Chen HL, Jaspan HB, Sodora DL. The oral mucosa immune environment and oral transmission of HIV/SIV. Immunol Rev 2014; 254:34-53. [PMID: 23772613 DOI: 10.1111/imr.12078] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The global spread of human immunodeficiency virus (HIV) is dependent on the ability of this virus to efficiently cross from one host to the next by traversing a mucosal membrane. Unraveling how mucosal exposure of HIV results in systemic infection is critical for the development of effective therapeutic strategies. This review focuses on understanding the immune events associated with the oral route of transmission (via breastfeeding or sexual oral intercourse), which occurs across the oral and/or gastrointestinal mucosa. Studies in both humans and simian immunodeficiency virus (SIV) monkey models have identified viral changes and immune events associated with oral HIV/SIV exposure. This review covers our current knowledge of HIV oral transmission in both infants and adults, the use of SIV models in understanding early immune events, oral immune factors that modulate HIV/SIV susceptibility (including mucosal inflammation), and interventions that may impact oral HIV transmission rates. Understanding the factors that influence oral HIV transmission will provide the foundation for developing immune therapeutic and vaccine strategies that can protect both infants and adults from oral HIV transmission.
Collapse
Affiliation(s)
- Lianna F Wood
- Seattle Biomedical Research Institute, Seattle, WA, USA
| | | | | | | | | |
Collapse
|
6
|
|
7
|
Natural Immunity to HIV: a delicate balance between strength and control. Clin Dev Immunol 2012; 2012:875821. [PMID: 23304192 PMCID: PMC3529906 DOI: 10.1155/2012/875821] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/10/2012] [Accepted: 11/16/2012] [Indexed: 12/30/2022]
Abstract
Understanding how the mucosal immune system in the human female reproductive tract might prevent or facilitate HIV infection has important implications for the design of effective interventions. We and others have established cohorts of highly-exposed, HIV-seronegative individuals, such as HIV-uninfected commercial sex workers, who have remained HIV-negative after more than 5 years of active prostitution. Observations obtained in studies of such individuals, who represent a model of natural immunity to HIV, indicate that HIV resistance may be associated with the host's capacity to preserve systemic integrity by constraining immune activity and controlling inflammatory conditions at the mucosal point of entry. This likely necessitates the orchestration of balanced, first-line and adaptive immune responses.
Collapse
|
8
|
Abstract
Mucosal surfaces are a major portal of entry for many human pathogens that are the cause of infectious diseases worldwide. Vaccines capable of eliciting mucosal immune responses can fortify defenses at mucosal front lines and protect against infection. However, most licensed vaccines are administered parenterally and fail to elicit protective mucosal immunity. Immunization by mucosal routes may be more effective at inducing protective immunity against mucosal pathogens at their sites of entry. Recent advances in our understanding of mucosal immunity and identification of correlates of protective immunity against specific mucosal pathogens have renewed interest in the development of mucosal vaccines. Efforts have focused on efficient delivery of vaccine antigens to mucosal sites that facilitate uptake by local antigen-presenting cells to generate protective mucosal immune responses. Discovery of safe and effective mucosal adjuvants are also being sought to enhance the magnitude and quality of the protective immune response.
Collapse
Affiliation(s)
- Kim A Woodrow
- Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
9
|
Andersen-Nissen E, Heit A, McElrath MJ. Profiling immunity to HIV vaccines with systems biology. Curr Opin HIV AIDS 2012; 7:32-7. [PMID: 22134340 DOI: 10.1097/coh.0b013e32834ddcd9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE OF REVIEW The recent modest success of the RV144 HIV vaccine trial in Thailand has shown that development of an HIV vaccine is possible. Designing a vaccine that achieves better protection, however, will require a more complete understanding of vaccine mechanisms of action and correlates of protection. Systems biology approaches enable integration of large datasets from a variety of assays and offer new approaches to understanding how vaccine-induced immune responses are coordinately regulated. In this review, we discuss the recent advances in clinical trial design, specimen collection, and assay standardization that will generate datasets for systems analyses of immune responses to HIV vaccines. RECENT FINDINGS Several recently published HIV vaccine trials have shown that different HIV vaccine prime/boost combinations can greatly affect the immune response generated, but mechanistic insights into their modes of action are lacking. Novel systems biology studies of efficacious, licensed vaccines provide a new template for analysis of HIV vaccines. To generate datasets appropriate for systems analysis, current HIV vaccine clinical trials are undergoing design modifications and increased standardization of specimen collection and immune response assays. SUMMARY Systems biology approaches to HIV vaccine evaluation are driving new methods of HIV vaccine immune response profiling in clinical trials and will hopefully lead to new improved HIV vaccines in the near future.
Collapse
Affiliation(s)
- Erica Andersen-Nissen
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | | | | |
Collapse
|
10
|
Influence of dendritic cells on B-cell responses during HIV infection. Clin Dev Immunol 2012; 2012:592187. [PMID: 22461837 PMCID: PMC3296217 DOI: 10.1155/2012/592187] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 12/11/2011] [Accepted: 12/12/2011] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs) modulate B-cell differentiation, activation, and survival mainly through production of growth factors such as B lymphocyte stimulator (BLyS/BAFF). DC populations have been reported to be affected in number, phenotype and function during HIV infection and such alterations may contribute to the dysregulation of the B-cell compartment. Herein, we reflect on the potential impact of DC on the pathogenesis of HIV-related B cell disorders, and how DC status may modulate the outcome of mucosal B cell responses against HIV, which are pivotal to the control of disease. A concept that could be extrapolated to the overall outcome of HIV disease, whereby control versus progression may reside in the host's capacity to maintain DC homeostasis at mucosal sites, where DC populations present an inherent capacity of modulating the balance between tolerance and protection, and are amongst the earliest cell types to be exposed to the virus.
Collapse
|
11
|
Ahmed Z, Czubala M, Blanchet F, Piguet V. HIV impairment of immune responses in dendritic cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 762:201-38. [PMID: 22975877 DOI: 10.1007/978-1-4614-4433-6_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Dendritic cells and their subsets are diverse populations of immune cells in the skin and mucous membranes that possess the ability to sense the presence of microbes and orchestrate an efficient and adapted immune response. Dendritic cells (DC) have the unique ability to act as a bridge between the innate and adaptive immune responses. These cells are composed of a number of subsets behaving with preferential and specific features depending on their location and surrounding environment. Langerhans cells (LC) or dermal DC (dDC) are readily present in mucosal areas. Other DC subsets such as plasmacytoid DC (pDC), myeloid DC (myDC), or monocyte-derived DC (MDDC) are thought to be recruited or differentiated in sites of pathogenic challenge. Upon HIV infection, DC and their subsets are likely among the very first immune cells to encounter incoming pathogens and initiate innate and adaptive immune responses. However, as evidenced during HIV infection, some pathogens have evolved subtle strategies to hijack key cellular machineries essential to generate efficient antiviral responses and subvert immune responses for spread and survival.In this chapter, we review recent research aimed at investigating the involvement of DC subtypes in HIV transmission at mucosal sites, concentrating on HIV impact on cellular signalling and trafficking pathways in DC leading to DC-mediated immune response alterations and viral immune evasion. We also address some aspects of DC functions during the chronic immune pathogenesis and conclude with an overview of the current and novel therapeutic and prophylactic strategies aimed at improving DC-mediated immune responses, thus to potentially tackle the early events of mucosal HIV infection and spread.
Collapse
Affiliation(s)
- Zahra Ahmed
- Department of Dermatology and Wound Healing, Cardiff University School of Medicine, Cardiff, Wales, UK
| | | | | | | |
Collapse
|