1
|
Tong M, Homans C, Pelit W, Delikkaya B, de la Monte SM. Progressive Alcohol-Related Brain Atrophy and White Matter Pathology Are Linked to Long-Term Inhibitory Effects on mTOR Signaling. Biomolecules 2025; 15:413. [PMID: 40149949 PMCID: PMC11940526 DOI: 10.3390/biom15030413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Alcohol-related brain damage (ARBD) causes cognitive-behavioral impairments that can lead to dementia. White matter is a major target in ARBD. Additional research is needed to better understand the mechanisms of ARBD progression to advanced stages with permanent disability. Potential contributing factors include neuroinflammation and altered signaling through pathways that regulate cell survival, neuronal plasticity, myelin maintenance, and energy metabolism. OBJECTIVES This study characterizes the time course-related effects of chronic heavy ethanol feeding on white matter myelin protein expression, neuroinflammation, and molecules that mediate signaling through the mechanistic target of rapamycin (mTOR) pathways. METHODS Adult Long Evans rats (8-12/group) were fed with isocaloric liquid diets containing 0% (control) or 36% ethanol. Experimental endpoints spanned from 1 day to 8 weeks. The frontal lobes were used for histopathology and molecular and biochemical analyses. RESULTS Chronic ethanol feeding caused significant brain atrophy that was detected within 4 weeks and sustained over the course of the study. Early exposure time points, i.e., 2 weeks or less, were associated with global increases in the expression of non-myelinating, myelinating, and astrocyte markers, whereas at 6 or 8 weeks, white matter oligodendrocyte/myelin/glial protein expression was reduced. These effects were not associated with shifts in neuroinflammatory markers. Instead, the early stages of ARBD were accompanied by increases in several mTOR proteins and phosphoproteins, while later phases were marked by inhibition of downstream mTOR signaling through P70S6K. CONCLUSIONS Short-term versus long-term ethanol exposures differentially altered white matter glial protein expression and signaling through mTOR's downstream mediators that have known roles in myelin maintenance. These findings suggest that strategic targeting of mTOR signaling dysregulation may be critical for maintaining the functional integrity of white matter and ultimately preventing long-term ARBD-related cognitive impairment.
Collapse
Affiliation(s)
- Ming Tong
- Department of Medicine, Rhode Island Hospital, Brown University Health, and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Camilla Homans
- Molecular Pharmacology, Physiology, and Biotechnology Graduate Program, Brown University, Providence, RI 02903, USA
| | - William Pelit
- Department of Chemistry, Brown University, Providence, RI 02903, USA
| | - Busra Delikkaya
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Brown University Health, The Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
| | - Suzanne M. de la Monte
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital, Brown University Health, The Providence VA Medical Center, and the Warren Alpert Medical School of Brown University, Providence, RI 02903, USA;
- Departments of Neurosurgery and Neurology, Rhode Island Hospital, Brown University Health, and The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| |
Collapse
|
2
|
Yamada S, Nagafuchi Y, Yamada M, Suzuki H, Natsumoto B, Ota M, Takazawa I, Hatano H, Kono M, Harada H, Shoda H, Okamura T, Kosaki K, Fujio K. A novel functional IKBKE variant activating NFAT in a patient with polyarthritis and a remittent fever. Front Immunol 2024; 15:1475179. [PMID: 39524436 PMCID: PMC11544129 DOI: 10.3389/fimmu.2024.1475179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Background IKBKE is a negative regulator of T cell activation and one of the key activators of type I interferon (IFN) and NFκB signaling via non-classical pathways. The upstream single nucleotide polymorphism of IKBKE (rs2297550-G) is a genome-wide association study risk variant of systemic lupus erythematosus, and is associated with decreased IKBKE expression in T cells by expression quantitative trait locus analysis. Case presentation A 48-year-old female had a remittent fever, arthritis, and oral ulcers for 20 years. She had a poor response to corticosteroids or disease-modifying antirheumatic drugs, including the tumor necrosis factor-α antagonist, etanercept, and the anti-interleukin-6 receptor antibody, tocilizumab. Method She participated in the Initiative on Rare and Undiagnosed Disease (IRUD), and whole-exome sequencing (WES) was performed. Functional analyses were conducted by transfecting the identified variants into reporter cells to assess the activation of NFAT and NFκB signaling. Additionally, peripheral blood RNA- sequencing (RNA-seq) data were compared with those from healthy individuals to evaluate the gene expression profiles of immune cells. Result WES identified a novel heterozygous c.1877G>A, p(Cys626Tyr) variant in IKBKE. Functional analysis indicated that this variant led to increased activity of NFAT (p = 0.015) and decreased activity of NFκB and type I IFN (p = 0.00068 and 0.00044, respectively). The patient had a remarkably low proportion of Naïve CD4 T cells. RNA-seq of peripheral blood immune cell subsets revealed significant differences in gene expression, especially in T cells. Conclusion A novel functional heterozygous variant in IKBKE is described in a patient with a remittent fever and arthritis. The data suggest that IKBKE is an important negative regulator of inflammation, particularly in T cells, and this IKBKE variant might be the underlying cause of a novel autoinflammatory pathology.
Collapse
Affiliation(s)
- Saeko Yamada
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yasuo Nagafuchi
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mamiko Yamada
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Hisato Suzuki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
- Department of Medical Genetics, Institute of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Bunki Natsumoto
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Mineto Ota
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ikuo Takazawa
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Hatano
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masanori Kono
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Harada
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hirofumi Shoda
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomohisa Okamura
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Department of Functional Genomics and Immunological Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kenjiro Kosaki
- Center for Medical Genetics, Keio University School of Medicine, Tokyo, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Wang X, Kang C, Guo W, Yuan L, Zhang H, Zhang Q, Xiao Q, Hao W. Chlormequat chloride induced activation of calmodulin mediated PI3K/AKT signaling pathway led to impaired sperm quality in pubertal mice. Food Chem Toxicol 2024; 185:114475. [PMID: 38286265 DOI: 10.1016/j.fct.2024.114475] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/09/2024] [Accepted: 01/20/2024] [Indexed: 01/31/2024]
Abstract
Chlormequat chloride (CCC), as a widely used plant growth regulator, can cause impaired sperm quality and decreased testosterone synthesis in pubertal rats, but the underlying mechanism remains unclear. The purpose of this study was to elucidate the toxicokinetics and tissue distribution of CCC, as well as the possible mechanism of CCC-induced impairment in sperm quality. The concentration of CCC reached its peak 1 h after a single dose (200 mg/kg·bw) administration in mice plasma, and a bimodal phenomenon appeared in the testes, liver, and epididymis. In vivo, 200 mg/kg CCC caused testicular damage and impaired sperm quality in pubertal mice, and the expression of p-tyrosine and GSK3α decreased in cauda epididymidis, sperm and testes. CCC also caused the down-regulation of AKAP4 and the up-regulation of calmodulin (CaM), and activated the PI3K/AKT signaling pathway in the testes. In vitro, CCC reduced the levels of p-tyrosine, AKAP4 and GSK3α, increased the level of CaM and activated the PI3K/AKT signaling pathway in GC-1 cells. CaM antagonist (W-7 hydrochloride) and PI3K inhibitor (LY294002) can effectively improve the expression of GSK3α and AKAP4 by suppressing the PI3K/AKT signaling pathway in GC-1 cells treated with CCC. It was indicated that CCC induced impairment in sperm quality might be partially related to the activation of PI3K/AKT signaling pathway mediated by CaM.
Collapse
Affiliation(s)
- Xiaoxia Wang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Chenping Kang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Wanqian Guo
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Lilan Yuan
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Haoran Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qiong Zhang
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China
| | - Qianqian Xiao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| | - Weidong Hao
- Department of Toxicology, School of Public Health, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Toxicological Research and Risk Assessment for Food Safety, Beijing, 100191, PR China.
| |
Collapse
|
4
|
Hu J, Fu S, Zhan Z, Zhang J. Advancements in dual-target inhibitors of PI3K for tumor therapy: Clinical progress, development strategies, prospects. Eur J Med Chem 2024; 265:116109. [PMID: 38183777 DOI: 10.1016/j.ejmech.2023.116109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/24/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
Phosphoinositide 3-kinases (PI3Ks) modify lipids by the phosphorylation of inositol phospholipids at the 3'-OH position, thereby participating in signal transduction and exerting effects on various physiological processes such as cell growth, metabolism, and organism development. PI3K activation also drives cancer cell growth, survival, and metabolism, with genetic dysregulation of this pathway observed in diverse human cancers. Therefore, this target is considered a promising potential therapeutic target for various types of cancer. Currently, several selective PI3K inhibitors and one dual-target PI3K inhibitor have been approved and launched on the market. However, the majority of these inhibitors have faced revocation or voluntary withdrawal of indications due to concerns regarding their adverse effects. This article provides a comprehensive review of the structure and biological functions, and clinical status of PI3K inhibitors, with a specific emphasis on the development strategies and structure-activity relationships of dual-target PI3K inhibitors. The findings offer valuable insights and future directions for the development of highly promising dual-target drugs targeting PI3K.
Collapse
Affiliation(s)
- Jiarui Hu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Siyu Fu
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Zixuan Zhan
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jifa Zhang
- Department of Neurology, Joint Research Institution of Altitude Health and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; State Key Laboratory of Biotherapy and Cancer Center, Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
5
|
Buchacher T, Shetty A, Koskela SA, Smolander J, Kaukonen R, Sousa AGG, Junttila S, Laiho A, Rundquist O, Lönnberg T, Marson A, Rasool O, Elo LL, Lahesmaa R. PIM kinases regulate early human Th17 cell differentiation. Cell Rep 2023; 42:113469. [PMID: 38039135 PMCID: PMC10765319 DOI: 10.1016/j.celrep.2023.113469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 09/23/2023] [Accepted: 11/03/2023] [Indexed: 12/03/2023] Open
Abstract
The serine/threonine-specific Moloney murine leukemia virus (PIM) kinase family (i.e., PIM1, PIM2, and PIM3) has been extensively studied in tumorigenesis. PIM kinases are downstream of several cytokine signaling pathways that drive immune-mediated diseases. Uncontrolled T helper 17 (Th17) cell activation has been associated with the pathogenesis of autoimmunity. However, the detailed molecular function of PIMs in human Th17 cell regulation has yet to be studied. In the present study, we comprehensively investigated how the three PIMs simultaneously alter transcriptional gene regulation during early human Th17 cell differentiation. By combining PIM triple knockdown with bulk and scRNA-seq approaches, we found that PIM deficiency promotes the early expression of key Th17-related genes while suppressing Th1-lineage genes. Further, PIMs modulate Th cell signaling, potentially via STAT1 and STAT3. Overall, our study highlights the inhibitory role of PIMs in human Th17 cell differentiation, thereby suggesting their association with autoimmune phenotypes.
Collapse
Affiliation(s)
- Tanja Buchacher
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland.
| | - Ankitha Shetty
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Saara A Koskela
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Johannes Smolander
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Riina Kaukonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - António G G Sousa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Sini Junttila
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Asta Laiho
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Olof Rundquist
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Alexander Marson
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Omid Rasool
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland
| | - Laura L Elo
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland
| | - Riitta Lahesmaa
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland; InFLAMES Research Flagship Center, University of Turku, 20520 Turku, Finland; Institute of Biomedicine, University of Turku, 20520 Turku, Finland.
| |
Collapse
|
6
|
Yadav Y, Sharma M, Dey CS. PP1γ regulates neuronal insulin signaling and aggravates insulin resistance leading to AD-like phenotypes. Cell Commun Signal 2023; 21:82. [PMID: 37085815 PMCID: PMC10120118 DOI: 10.1186/s12964-023-01071-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/08/2023] [Indexed: 04/23/2023] Open
Abstract
BACKGROUND PP1γ is one of the isoforms of catalytic subunit of a Ser/Thr phosphatase PP1. The role of PP1γ in cellular regulation is largely unknown. The present study investigated the role of PP1γ in regulating neuronal insulin signaling and insulin resistance in neuronal cells. PP1 was inhibited in mouse neuroblastoma cells (N2a) and human neuroblastoma cells (SH-SY5Y). The expression of PP1α and PP1γ was determined in insulin resistant N2a, SH-SY5Y cells and in high-fat-diet-fed-diabetic mice whole-brain-lysates. PP1α and PP1γ were silenced by siRNA in N2a and SH-SY5Y cells and effect was tested on AKT isoforms, AS160 and GSK3 isoforms using western immunoblot, GLUT4 translocation by confocal microscopy and glucose uptake by fluorescence-based assay. RESULTS Results showed that, in one hand PP1γ, and not PP1α, regulates neuronal insulin signaling and insulin resistance by regulating phosphorylation of AKT2 via AKT2-AS160-GLUT4 axis. On the other hand, PP1γ regulates phosphorylation of GSK3β via AKT2 while phosphorylation of GSK3α via MLK3. Imbalance in this regulation results into AD-like phenotype. CONCLUSION PP1γ acts as a linker, regulating two pathophysiological conditions, neuronal insulin resistance and AD. Video Abstract.
Collapse
Affiliation(s)
- Yamini Yadav
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Medha Sharma
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India
| | - Chinmoy Sankar Dey
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi, New Delhi, 110016, India.
| |
Collapse
|
7
|
de la Monte SM, Tong M, Delikkaya B. Differential Early Mechanistic Frontal Lobe Responses to Choline Chloride and Soy Isoflavones in an Experimental Model of Fetal Alcohol Spectrum Disorder. Int J Mol Sci 2023; 24:7595. [PMID: 37108779 PMCID: PMC10145811 DOI: 10.3390/ijms24087595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/07/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Fetal alcohol spectrum disorder (FASD) is the most common preventable cause of neurodevelopmental defects, and white matter is a major target of ethanol neurotoxicity. Therapeutic interventions with choline or dietary soy could potentially supplement public health preventive measures. However, since soy contains abundant choline, it would be important to know if its benefits are mediated by choline or isoflavones. We compared early mechanistic responses to choline and the Daidzein+Genistein (D+G) soy isoflavones in an FASD model using frontal lobe tissue to assess oligodendrocyte function and Akt-mTOR signaling. Long Evans rat pups were binge administered 2 g/Kg of ethanol or saline (control) on postnatal days P3 and P5. P7 frontal lobe slice cultures were treated with vehicle (Veh), Choline chloride (Chol; 75 µM), or D+G (1 µM each) for 72 h without further ethanol exposures. The expression levels of myelin oligodendrocyte proteins and stress-related molecules were measured by duplex enzyme-linked immunosorbent assays (ELISAs), and mTOR signaling proteins and phosphoproteins were assessed using 11-plex magnetic bead-based ELISAs. Ethanol's main short-term effects in Veh-treated cultures were to increase GFAP and relative PTEN phosphorylation and reduce Akt phosphorylation. Chol and D+G significantly modulated the expression of oligodendrocyte myelin proteins and mediators of insulin/IGF-1-Akt-mTOR signaling in both control and ethanol-exposed cultures. In general, the responses were more robust with D+G; the main exception was that RPS6 phosphorylation was significantly increased by Chol and not D+G. The findings suggest that dietary soy, with the benefits of providing complete nutrition together with Choline, could be used to help optimize neurodevelopment in humans at risk for FASD.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, The Warren Alpert Medical School of Brown University, Providence, RI 02903, USA
| | | | | |
Collapse
|
8
|
Samim Khan S, Janrao S, Srivastava S, Bala Singh S, Vora L, Kumar Khatri D. GSK-3β: An exuberating neuroinflammatory mediator in Parkinson's disease. Biochem Pharmacol 2023; 210:115496. [PMID: 36907495 DOI: 10.1016/j.bcp.2023.115496] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
Neuroinflammation is a critical degradative condition affecting neurons in the brain. Progressive neurodegenerative conditions such as Alzheimer's disease and Parkinson's disease (PD) have been strongly linked to neuroinflammation. The trigger point for inflammatory conditions in the cells and body is the physiological immune system. The immune response mediated by glial cells and astrocytes can rectify the physiological alterations occurring in the cell for the time being but prolonged activation leads to pathological progression. The proteins mediating such an inflammatory response, as per the available literature, are undoubtedly GSK-3β, NLRP3, TNF, PPARγ, and NF-κB, along with a few other mediatory proteins. NLRP3 inflammasome is undeniably a principal instigator of the neuroinflammatory response, but the regulatory pathways controlling its activation are still unclear, besides less clarity for the interplay between different inflammatory proteins. Recent reports have suggested the involvement of GSK-3β in regulating NLRP3 activation, but the exact mechanistic pathway remains vague. In the current review, we attempt to provide an elaborate description of crosstalk between inflammatory markers and GSK-3β mediated neuroinflammation progression, linking it to regulatory transcription factors and posttranslational modification of proteins. The recent clinical therapeutic advances targeting these proteins are also discussed in parallel to provide a comprehensive view of the progress made in PD management and lacunas still existing in the field.
Collapse
Affiliation(s)
- Sabiya Samim Khan
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Sushmita Janrao
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| | - Shashi Bala Singh
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| | - Dharmendra Kumar Khatri
- Molecular & Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| |
Collapse
|
9
|
de la Monte SM. Malignant Brain Aging: The Formidable Link Between Dysregulated Signaling Through Mechanistic Target of Rapamycin Pathways and Alzheimer's Disease (Type 3 Diabetes). J Alzheimers Dis 2023; 95:1301-1337. [PMID: 37718817 PMCID: PMC10896181 DOI: 10.3233/jad-230555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Malignant brain aging corresponds to accelerated age-related declines in brain functions eventually derailing the self-sustaining forces that govern independent vitality. Malignant brain aging establishes the path toward dementing neurodegeneration, including Alzheimer's disease (AD). The full spectrum of AD includes progressive dysfunction of neurons, oligodendrocytes, astrocytes, microglia, and the microvascular systems, and is mechanistically driven by insulin and insulin-like growth factor (IGF) deficiencies and resistances with accompanying deficits in energy balance, increased cellular stress, inflammation, and impaired perfusion, mimicking the core features of diabetes mellitus. The underlying pathophysiological derangements result in mitochondrial dysfunction, abnormal protein aggregation, increased oxidative and endoplasmic reticulum stress, aberrant autophagy, and abnormal post-translational modification of proteins, all of which are signature features of both AD and dysregulated insulin/IGF-1-mechanistic target of rapamycin (mTOR) signaling. This article connects the dots from benign to malignant aging to neurodegeneration by reviewing the salient pathologies associated with initially adaptive and later dysfunctional mTOR signaling in the brain. Effective therapeutic and preventive measures must be two-pronged and designed to 1) address complex and shifting impairments in mTOR signaling through the re-purpose of effective anti-diabetes therapeutics that target the brain, and 2) minimize the impact of extrinsic mediators of benign to malignant aging transitions, e.g., inflammatory states, obesity, systemic insulin resistance diseases, and repeated bouts of general anesthesia, by minimizing exposures or implementing neuroprotective measures.
Collapse
Affiliation(s)
- Suzanne M. de la Monte
- Departments of Pathology and Laboratory Medicine, Medicine, Neurology and Neurosurgery, Rhode Island Hospital, Lifespan Academic Institutions, and the Warren Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
10
|
Vidal S, Bouzaher YH, El Motiam A, Seoane R, Rivas C. Overview of the regulation of the class IA PI3K/AKT pathway by SUMO. Semin Cell Dev Biol 2022; 132:51-61. [PMID: 34753687 DOI: 10.1016/j.semcdb.2021.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022]
Abstract
The phosphatidylinositol-3-kinase (PI3K)/AKT pathway is a major regulator of metabolism, migration, survival, proliferation, and antiviral immunity. Both an overactivation and an inhibition of the PI3K/AKT pathway are related to different pathologies. Activation of this signaling pathway is tightly controlled through a multistep process and its deregulation can be associated with aberrant post-translational modifications including SUMOylation. Here, we review the complex modulation of the PI3K/AKT pathway by SUMOylation and we discuss its putative incvolvement in human disease.
Collapse
Affiliation(s)
- Santiago Vidal
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain
| | - Yanis Hichem Bouzaher
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain
| | - Ahmed El Motiam
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain; Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health Systems, Department of Ophthalmology and Vision Science, and Department of Lab Medicine and Pathobiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Rocío Seoane
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain
| | - Carmen Rivas
- Centro de Investigación en Medicina Molecular y Enfermedades Crónicas (CIMUS), Universidade de Santiago de Compostela, Instituto de Investigaciones Sanitarias (IDIS), 15706 Santiago de Compostela, Spain; Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Cantoblanco, 28049 Madrid, Spain.
| |
Collapse
|
11
|
Chen KQ, Wei BH, Hao SL, Yang WX. The PI3K/AKT signaling pathway: How does it regulate development of Sertoli cells and spermatogenic cells? Histol Histopathol 2022; 37:621-636. [PMID: 35388905 DOI: 10.14670/hh-18-457] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The PI3K/AKT signaling pathway is one of the most crucial regulatory mechanisms in animal cells, which can mainly regulate proliferation, survival and anti-apoptosis in cell lines. In the seminiferous epithelium, most studies were concentrated on the role of PI3K/AKT signaling in immature Sertoli cells (SCs) and spermatogonia stem cells (SSCs). PI3K/AKT signaling can facilitate the proliferation and anti-apoptosis of immature Sertoli cells and spermatogenic cells. Besides, in mature Sertoli cells, this pathway can disintegrate the structure of the blood-testis barrier (BTB) via regulatory protein synthesis and the cytoskeleton of Sertoli cells. All of these effects can directly and indirectly maintain and promote spermatogenesis in male testis.
Collapse
Affiliation(s)
- Kuang-Qi Chen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Bang-Hong Wei
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Shuang-Li Hao
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Wan-Xi Yang
- The Sperm Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Das A, Bhattacharya B, Roy S. Decrypting a path based approach for identifying the interplay between PI3K and GSK3 signaling cascade from the perspective of cancer. Genes Dis 2022; 9:868-888. [PMID: 35685456 PMCID: PMC9170611 DOI: 10.1016/j.gendis.2021.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 11/27/2022] Open
Abstract
Cancer is one of those leading diseases worldwide, which takes millions of lives every year. Researchers are continuously looking for specific approaches to eradicate the deadly disease, ensuring minimal adverse effects along with more therapeutic significance. Targeting of different aberrantly regulated signaling pathways, involved in cancer, is surely one of the revolutionary chemotherapeutic approach. In this instance, GSK3 and PI3K signaling cascades are considered as important role player for both the oncogenic activation and inactivation which further leads to cancer proliferation and metastasis. In this review, we have discussed the potential role of GSK3 and PI3K signaling in cancer, and we further established the crosstalk between PI3K and GSK3 signaling, through showcasing their cross activation, cross inhibition and convergence pathways in association with cancer. We also exhibited the effect of GSK3 on the efficacy of PI3K inhibitors to overcome the drug resistance and preventing the cell proliferation, metastasis in a combinatorial way with GSK3 inhibitors for a better treatment strategy in clinical settings.
Collapse
Affiliation(s)
- Abhijit Das
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| | - Barshana Bhattacharya
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| | - Souvik Roy
- Department of Pharmacology, NSHM Knowledge Campus, Kolkata- Group of Institutions, Kolkata 700053, India
| |
Collapse
|
13
|
Zhang Q, Liu W, Wang H, Zhou H, Bulek K, Chen X, Zhang CJ, Zhao J, Zhang R, Liu C, Kang Z, Bermel RA, Dubyak G, Abbott DW, Xiao TS, Nagy LE, Li X. TH17 cells promote CNS inflammation by sensing danger signals via Mincle. Nat Commun 2022; 13:2406. [PMID: 35504893 PMCID: PMC9064974 DOI: 10.1038/s41467-022-30174-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 04/20/2022] [Indexed: 01/21/2023] Open
Abstract
The C-type lectin receptor Mincle is known for its important role in innate immune cells in recognizing pathogen and damage associated molecular patterns. Here we report a T cell-intrinsic role for Mincle in the pathogenesis of experimental autoimmune encephalomyelitis (EAE). Genomic deletion of Mincle in T cells impairs TH17, but not TH1 cell-mediated EAE, in alignment with significantly higher expression of Mincle in TH17 cells than in TH1 cells. Mechanistically, dying cells release β-glucosylceramide during inflammation, which serves as natural ligand for Mincle. Ligand engagement induces activation of the ASC-NLRP3 inflammasome, which leads to Caspase8-dependent IL-1β production and consequentially TH17 cell proliferation via an autocrine regulatory loop. Chemical inhibition of β-glucosylceramide synthesis greatly reduces inflammatory CD4+ T cells in the central nervous system and inhibits EAE progression in mice. Taken together, this study indicates that sensing of danger signals by Mincle on TH17 cells plays a critical role in promoting CNS inflammation.
Collapse
Affiliation(s)
- Quanri Zhang
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Weiwei Liu
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Han Wang
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Hao Zhou
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
- Division of Transplant Surgery, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Katarzyna Bulek
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
- Department of Immunology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Xing Chen
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Cun-Jin Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Medical School and the State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing, Jiangsu, China
| | - Junjie Zhao
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Renliang Zhang
- Proteomics and Metabolomics Core, Department of Research Core Services, Lerner Research Institute, Cleveland, OH, USA
| | - Caini Liu
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA
| | - Zizhen Kang
- Department of Pathology, University of Iowa, Iowa, IA, USA
| | - Robert A Bermel
- Mellen Center for Multiple Sclerosis, Cleveland Clinic, Cleveland, OH, USA
| | - George Dubyak
- Department of Physiology and Biophysics, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Derek W Abbott
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Tsan Sam Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH, USA
| | - Laura E Nagy
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA.
- Department of Gastroenterology and Hepatology, Cleveland Clinic, Cleveland, OH, United States.
- Department of Molecular Medicine, Case Western Reserve University, Cleveland, OH, United States.
| | - Xiaoxia Li
- Department of Inflammation and Immunity, Cleveland Clinic, Lerner Research Institute, Cleveland, OH, USA.
| |
Collapse
|
14
|
CSNK2 in cancer: pathophysiology and translational applications. Br J Cancer 2022; 126:994-1003. [PMID: 34773100 PMCID: PMC8980014 DOI: 10.1038/s41416-021-01616-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 12/13/2022] Open
Abstract
Protein kinase CSNK2 (CK2) is a pleiotropic serine/threonine kinase frequently dysregulated in solid and hematologic malignancies. To consolidate a wide range of biological and clinically oriented data from this unique kinase in cancer, this systematic review summarises existing knowledge from in vitro, in vivo and pre-clinical studies on CSNK2 across 24 different human cancer types. CSNK2 mRNA transcripts, protein levels and activity were found to be routinely upregulated in cancer, and commonly identified phosphotargets included AKT, STAT3, RELA, PTEN and TP53. Phenotypically, it frequently influenced evasion of apoptosis, enhancement of proliferation, cell invasion/metastasis and cell cycle control. Clinically, it held prognostic significance across 14 different cancers, and its inhibition in xenograft experiments resulted in a positive treatment response in 12. In conjunction with commentary on preliminary studies of CSNK2 inhibitors in humans, this review harmonises an extensive body of CSNK2 data in cancer and reinforces its emergence as an attractive target for cancer therapy. Continuing to investigate CSNK2 will be crucial to advancing our understanding of CSNK2 biology, and offers the promise of important new discoveries scientifically and clinically.
Collapse
|
15
|
The Effects of Sishen Wan on T Cell Responses in Mice Models of Ulcerative Colitis Induced by Dextran Sodium Sulfate. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9957709. [PMID: 34956391 PMCID: PMC8702314 DOI: 10.1155/2021/9957709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Currently, it is unclear whether Sishen Wan (SSW) could modulate the balance of Th1 cells, Th17 cells, and Tregs and we evaluated the effects of SSW on T cell responses in mice models of ulcerative colitis (UC). The mice models of acute UC (4% dextran sodium sulfate (DSS), 8 days) and chronic UC (3% DSS, 16 days) with SSW were assayed. Colon tissues were collected for immunohistochemical analysis, enzyme linked immunosorbent assay (ELISA), and flow cytometry (FCM). The expressions of cytokines associated with Tregs, transcription factors of Th17 cells, the frequencies of Th1 cells, Th17 cells, and Tregs, and the functional plasticity of Th17 cells were detected. The frequency of IFN-γ+ T cells was not changed significantly with SSW treatment in acute DSS. In chronic models, the frequency of IFN-γ+ T cells was downregulated with SSW. Meanwhile, the levels of RORγt and the frequency of IL-17A+ Th17 cells showed no significant differences after SSW treatment. Despite no significant effect on the transdifferentiation of Th17 cells in chronic UC models, SSW transdifferentiated Th17 cells into IL-10+ Th17 cells and downregulated IFN-γ+ Th17 cells/IL-10+ Th17 cells in acute DSS. Moreover, there were no significant changes of cytokines secreted by Tregs in acute DSS after SSW treatment, but SSW facilitated the expressions of IL-10 and IL-35, as well as development of IL-10+ Tregs in chronic DSS. SSW showed depressive effects on the immunoreaction of Th17 cells and might promote the conversion of Th17 cells into IL-10+ Th17 cells in acute UC, while it inhibited the excessive reaction of Th1 cells, facilitated the development of Tregs, and enhanced the anti-inflammatory effects in chronic UC.
Collapse
|
16
|
Huang N, Dong H, Luo Y, Shao B. Th17 Cells in Periodontitis and Its Regulation by A20. Front Immunol 2021; 12:742925. [PMID: 34557201 PMCID: PMC8453085 DOI: 10.3389/fimmu.2021.742925] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a prevalent chronic disease that results in loss of periodontal ligament and bone resorption. Triggered by pathogens and prolonged inflammation, periodontitis is modulated by the immune system, especially pro-inflammatory cells, such as T helper (Th) 17 cells. Originated from CD4+ Th cells, Th17 cells play a central role for they drive and regulate periodontal inflammation. Cytokines secreted by Th17 cells are also major players in the pathogenesis of periodontitis. Given the importance of Th17 cells, modulators of Th17 cells are of great clinical potential and worth of discussion. This review aims to provide an overview of the current understanding of the effect of Th17 cells on periodontitis, as well as a brief discussion of current and potential therapies targeting Th17 cells. Lastly, we highlight this article by summarizing the causal relationship between A20 (encoded by TNFAIP3), an anti-inflammatory molecule, and Th17 cell differentiation.
Collapse
Affiliation(s)
- Ning Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hao Dong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuqi Luo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Wu F, Chen Z, Liu J, Hou Y. The Akt-mTOR network at the interface of hematopoietic stem cell homeostasis. Exp Hematol 2021; 103:15-23. [PMID: 34464661 DOI: 10.1016/j.exphem.2021.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are immature blood cells that exhibit multilineage differentiation capacity. Homeostasis is critical for HSC potential and lifelong hematopoiesis, and HSC homeostasis is tightly governed by both intrinsic molecular networks and microenvironmental signals. The evolutionarily conserved serine/threonine protein kinase B (PKB, also referred to as Akt)-mammalian target of rapamycin (mTOR) pathway is universal to nearly all multicellular organisms and plays an integral role in most cellular processes. Emerging evidence has revealed a central role of the Akt-mTOR network in HSC homeostasis, because it responds to multiple intracellular and extracellular signals and regulates various downstream targets, eventually affecting several cellular processes, including the cell cycle, mitochondrial metabolism, and protein synthesis. Dysregulated Akt-mTOR signaling greatly affects HSC self-renewal, maintenance, differentiation, survival, autophagy, and aging, as well as transformation of HSCs to leukemia stem cells. Here, we review recent works and provide an advanced understanding of how the Akt-mTOR network regulates HSC homeostasis, thus offering insights into future clinical applications.
Collapse
Affiliation(s)
- Feng Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhe Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.
| | - Yu Hou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
18
|
Abo-Al-Ela HG. The emerging regulatory roles of noncoding RNAs in immune function of fish: MicroRNAs versus long noncoding RNAs. Mol Genet Genomics 2021; 296:765-781. [PMID: 33904988 DOI: 10.1007/s00438-021-01786-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
The genome could be considered as raw data expressed in proteins and various types of noncoding RNAs (ncRNAs). However, a large portion of the genome is dedicated to ncRNAs, which in turn represent a considerable amount of the transcriptome. ncRNAs are modulated on levels of type and amount whenever any physiological process occurs or as a response to external modulators. ncRNAs, typically forming complexes with other partners, are key molecules that influence diverse cellular processes. Based on the knowledge of mammalian biology, ncRNAs are known to regulate and control diverse trafficking pathways and cellular activities. Long noncoding RNAs (lncRNAs) notably have diverse and more regulatory roles than microRNAs. Expanding these studies on fish has derived the same conclusion with relevance to other species, including invertebrates, explored the potentials to harness such types of RNA to further understand the biology of such organisms, and opened gates for applying recent technologies, such as RNA interference and delivering micromolecules as microRNAs to living cells and possibly to target organs. These technologies should improve aquaculture productivity and fish health, as well as help understand fish biology.
Collapse
Affiliation(s)
- Haitham G Abo-Al-Ela
- Genetics and Biotechnology, Department of Aquaculture, Faculty of Fish Resources, Suez University, 43518, Suez, Egypt.
| |
Collapse
|
19
|
Guo K, Zhang X. Cytokines that Modulate the Differentiation of Th17 Cells in Autoimmune Uveitis. J Immunol Res 2021; 2021:6693542. [PMID: 33816637 PMCID: PMC7990547 DOI: 10.1155/2021/6693542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/01/2021] [Accepted: 03/04/2021] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence has suggested that T helper 17 (Th17) cells play a central role in the pathogenesis of ocular immune disease. The association between pathogenic Th17 cells and the development of uveitis has been confirmed in experimental and clinical studies. Several cytokines affect the initiation and stabilization of the differentiation of Th17 cells. Therefore, understanding the mechanism of related cytokines in the differentiation of Th17 cells is important for exploring the pathogenesis and the potential therapeutic targets of uveitis. This article briefly describes the structures, mechanisms, and targeted drugs of cytokines-including interleukin (IL)-6, transforming growth factor-β1 (TGF-β1), IL-1β, IL-23, IL-27, IL-35, IL-2, IL-4, IL-21, and interferon (IFN)-γ-which have an important influence on the differentiation of Th17 cells and discusses their potential as therapeutic targets for treating autoimmune uveitis.
Collapse
Affiliation(s)
- Kailei Guo
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| | - Xiaomin Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin 300384, China
| |
Collapse
|
20
|
Rizk M, Saker Z, Harati H, Fares Y, Bahmad HF, Nabha S. Deciphering the roles of glycogen synthase kinase 3 (GSK3) in the treatment of autism spectrum disorder and related syndromes. Mol Biol Rep 2021; 48:2669-2686. [PMID: 33650079 DOI: 10.1007/s11033-021-06237-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Autism spectrum disorder (ASD) is a complex and multifactorial neurodevelopmental disorder characterized by the presence of restricted interests and repetitive behaviors besides deficits in social communication. Syndromic ASD is a subset of ASD caused by underlying genetic disorders, most commonly Fragile X Syndrome (FXS) and Rett Syndrome (RTT). Various mutations and consequent malfunctions in core signaling pathways have been identified in ASD, including glycogen synthase kinase 3 (GSK3). A growing body of evidence suggests a key role of GSK3 dysregulation in the pathogenesis of ASD and its related disorders. Here, we provide a synopsis of the implication of GSK3 in ASD, FXS, and RTT as a promising therapeutic target for the treatment of ASD.
Collapse
Affiliation(s)
- Mahdi Rizk
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Zahraa Saker
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hayat Harati
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Youssef Fares
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.,Department of Neurosurgery, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Hisham F Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology and Laboratory Medicine, Mount Sinai Medical Center, 4300 Alton Rd, Miami Beach, FL, 33140, USA
| | - Sanaa Nabha
- Neuroscience Research Center, Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon.
| |
Collapse
|
21
|
Van Den Eeckhout B, Tavernier J, Gerlo S. Interleukin-1 as Innate Mediator of T Cell Immunity. Front Immunol 2021; 11:621931. [PMID: 33584721 PMCID: PMC7873566 DOI: 10.3389/fimmu.2020.621931] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/08/2020] [Indexed: 12/19/2022] Open
Abstract
The three-signal paradigm tries to capture how the innate immune system instructs adaptive immune responses in three well-defined actions: (1) presentation of antigenic peptides in the context of MHC molecules, which allows for a specific T cell response; (2) T cell co-stimulation, which breaks T cell tolerance; and (3) secretion of polarizing cytokines in the priming environment, thereby specializing T cell immunity. The three-signal model provides an empirical framework for innate instruction of adaptive immunity, but mainly discusses STAT-dependent cytokines in T cell activation and differentiation, while the multi-faceted roles of type I IFNs and IL-1 cytokine superfamily members are often neglected. IL-1α and IL-1β are pro-inflammatory cytokines, produced following damage to the host (release of DAMPs) or upon innate recognition of PAMPs. IL-1 activity on both DCs and T cells can further shape the adaptive immune response with variable outcomes. IL-1 signaling in DCs promotes their ability to induce T cell activation, but also direct action of IL-1 on both CD4+ and CD8+ T cells, either alone or in synergy with prototypical polarizing cytokines, influences T cell differentiation under different conditions. The activities of IL-1 form a direct bridge between innate and adaptive immunity and could therefore be clinically translatable in the context of prophylactic and therapeutic strategies to empower the formation of T cell immunity. Understanding the modalities of IL-1 activity during T cell activation thus could hold major implications for rational development of the next generation of vaccine adjuvants.
Collapse
Affiliation(s)
- Bram Van Den Eeckhout
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jan Tavernier
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Orionis Biosciences BV, Ghent, Belgium
| | - Sarah Gerlo
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| |
Collapse
|
22
|
Silva-García O, Cortés-Vieyra R, Mendoza-Ambrosio FN, Ramírez-Galicia G, Baizabal-Aguirre VM. GSK3α: An Important Paralog in Neurodegenerative Disorders and Cancer. Biomolecules 2020; 10:E1683. [PMID: 33339170 PMCID: PMC7765659 DOI: 10.3390/biom10121683] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/18/2022] Open
Abstract
The biological activity of the enzyme glycogen synthase kinase-3 (GSK3) is fulfilled by two paralogs named GSK3α and GSK3β, which possess both redundancy and specific functions. The upregulated activity of these proteins is linked to the development of disorders such as neurodegenerative disorders (ND) and cancer. Although various chemical inhibitors of these enzymes restore the brain functions in models of ND such as Alzheimer's disease (AD), and reduce the proliferation and survival of cancer cells, the particular contribution of each paralog to these effects remains unclear as these molecules downregulate the activity of both paralogs with a similar efficacy. Moreover, given that GSK3 paralogs phosphorylate more than 100 substrates, the simultaneous inhibition of both enzymes has detrimental effects during long-term inhibition. Although the GSK3β kinase function has usually been taken as the global GSK3 activity, in the last few years, a growing interest in the study of GSK3α has emerged because several studies have recognized it as the main GSK3 paralog involved in a variety of diseases. This review summarizes the current biological evidence on the role of GSK3α in AD and various types of cancer. We also provide a discussion on some strategies that may lead to the design of the paralog-specific inhibition of GSK3α.
Collapse
Affiliation(s)
- Octavio Silva-García
- Departamento de Química Teórica, Universidad del Papaloapan, Oaxaca 68301, Mexico; (F.N.M.-A.); (G.R.-G.)
| | - Ricarda Cortés-Vieyra
- Centro de Investigación Biomédica de Michoacán, Instituto Mexicano del Seguro Social, Michoacán 58000, Mexico;
| | | | - Guillermo Ramírez-Galicia
- Departamento de Química Teórica, Universidad del Papaloapan, Oaxaca 68301, Mexico; (F.N.M.-A.); (G.R.-G.)
| | - Víctor M. Baizabal-Aguirre
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Michoacán 58893, Mexico
| |
Collapse
|
23
|
GSK-3-TSC axis governs lysosomal acidification through autophagy and endocytic pathways. Cell Signal 2020; 71:109597. [DOI: 10.1016/j.cellsig.2020.109597] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/06/2020] [Accepted: 03/06/2020] [Indexed: 12/16/2022]
|
24
|
Deregulated PTEN/PI3K/AKT/mTOR signaling in prostate cancer: Still a potential druggable target? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118731. [PMID: 32360668 DOI: 10.1016/j.bbamcr.2020.118731] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/13/2023]
Abstract
Although the prognosis of patients with localized prostate cancer is good after surgery, with a favorable response to androgen deprivation therapy, about one third of them invariably relapse, and progress to castration-resistant prostate cancer. Overall, prostate cancer therapies remain scarcely effective, thus it is mandatory to devise alternative treatments enhancing the efficacy of surgical castration and hormone administration. Dysregulation of the phosphoinositide 3-kinase pathway has attracted growing attention in prostate cancer due to the highly frequent association of epigenetic and post-translational modifications as well as to genetic alterations of both phosphoinositide 3-kinase and PTEN to onset and/or progression of this malignancy, and to resistance to canonical androgen-deprivation therapy. Here we provide a summary of the biological functions of the major players of this cascade and their deregulation in prostate cancer, summarizing the results of preclinical and clinical studies with PI3K signaling inhibitors and the reasons of failure independent from genomic changes.
Collapse
|
25
|
Marineau A, Khan KA, Servant MJ. Roles of GSK-3 and β-Catenin in Antiviral Innate Immune Sensing of Nucleic Acids. Cells 2020; 9:cells9040897. [PMID: 32272583 PMCID: PMC7226782 DOI: 10.3390/cells9040897] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 04/03/2020] [Accepted: 04/05/2020] [Indexed: 12/23/2022] Open
Abstract
The rapid activation of the type I interferon (IFN) antiviral innate immune response relies on ubiquitously expressed RNA and DNA sensors. Once engaged, these nucleotide-sensing receptors use distinct signaling modules for the rapid and robust activation of mitogen-activated protein kinases (MAPKs), the IκB kinase (IKK) complex, and the IKK-related kinases IKKε and TANK-binding kinase 1 (TBK1), leading to the subsequent activation of the activator protein 1 (AP1), nuclear factor-kappa B (NF-κB), and IFN regulatory factor 3 (IRF3) transcription factors, respectively. They, in turn, induce immunomodulatory genes, allowing for a rapid antiviral cellular response. Unlike the MAPKs, the IKK complex and the IKK-related kinases, ubiquitously expressed glycogen synthase kinase 3 (GSK-3) α and β isoforms are active in unstimulated resting cells and are involved in the constitutive turnover of β-catenin, a transcriptional coactivator involved in cell proliferation, differentiation, and lineage commitment. Interestingly, studies have demonstrated the regulatory roles of both GSK-3 and β-catenin in type I IFN antiviral innate immune response, particularly affecting the activation of IRF3. In this review, we summarize current knowledge on the mechanisms by which GSK-3 and β-catenin control the antiviral innate immune response to RNA and DNA virus infections.
Collapse
Affiliation(s)
- Alexandre Marineau
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C3J7, Canada;
| | - Kashif Aziz Khan
- Department of Biology, York University, Toronto, ON M3J1P3, Canada;
| | - Marc J. Servant
- Faculty of Pharmacy, Université de Montréal, Montréal, QC H3C3J7, Canada;
- Réseau Québécois de Recherche sur les Médicaments (RQRM), Montréal, QC H3T1C5, Canada
- Correspondence: ; Tel.: +1-514-343-7966
| |
Collapse
|
26
|
Liu W, Stachura P, Xu HC, Umesh Ganesh N, Cox F, Wang R, Lang KS, Gopalakrishnan J, Häussinger D, Homey B, Lang PA, Pandyra AA. Repurposing the serotonin agonist Tegaserod as an anticancer agent in melanoma: molecular mechanisms and clinical implications. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:38. [PMID: 32085796 PMCID: PMC7035645 DOI: 10.1186/s13046-020-1539-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/05/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND New therapies are urgently needed in melanoma particularly in late-stage patients not responsive to immunotherapies and kinase inhibitors. METHODS Drug screening, IC50 determinations as well as synergy assays were detected by the MTT assay. Apoptosis using Annexin V and 7AAD staining was assessed using flow cytometry. TUNEL staining was performed using immunocytochemistry. Changes in phosphorylation of key molecules in PI3K/Akt/mTOR and other relevant pathways were detected by western blot as well as immunocytochemistry. To assess in vivo anti-tumor activity of Tegaserod, syngeneic intravenous and subcutaneous melanoma xenografts were used. Immunocytochemical staining was performed to detect expression of active Caspase-3, cleaved Caspase 8 and p-S6 in tumors. Evaluation of immune infiltrates was carried out by flow cytometry. RESULTS Using a screen of 770 pharmacologically active and/or FDA approved drugs, we identified Tegaserod (Zelnorm, Zelmac) as a compound with novel anti-cancer activity which induced apoptosis in murine and human malignant melanoma cell lines. Tegaserod (TM) is a serotonin receptor 4 agonist (HTR4) used in the treatment of irritable bowel syndrome (IBS). TM's anti-melanoma apoptosis-inducing effects were uncoupled from serotonin signaling and attributed to PI3K/Akt/mTOR signaling inhibition. Specifically, TM blunted S6 phosphorylation in both BRAFV600E and BRAF wildtype (WT) melanoma cell lines. TM decreased tumor growth and metastases as well as increased survival in an in vivo syngeneic immune-competent model. In vivo, TM also caused tumor cell apoptosis, blunted PI3K/Akt/mTOR signaling and decreased S6 phosphorylation. Furthermore TM decreased the infiltration of immune suppressive regulatory CD4+CD25+ T cells and FOXP3 and ROR-γt positive CD4+ T cells. Importantly, TM synergized with Vemurafenib, the standard of care drug used in patients with late stage disease harboring the BRAFV600E mutation and could be additively or synergistically combined with Cobimetinib in both BRAFV600E and BRAF WT melanoma cell lines in inducing anti-cancer effects. CONCLUSION Taken together, we have identified a drug with anti-melanoma activity in vitro and in vivo that has the potential to be combined with the standard of care agent Vemurafenib and Cobimetinib in both BRAFV600E and BRAF WT melanoma.
Collapse
Affiliation(s)
- Wei Liu
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Paweł Stachura
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Haifeng C Xu
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany.,Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Nikkitha Umesh Ganesh
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Fiona Cox
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Ruifeng Wang
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Karl S Lang
- Institute of Immunology, Medical Faculty, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Jay Gopalakrishnan
- Institute of Human Genetics, Heinrich-Heine-University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Dieter Häussinger
- Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany
| | - Bernhard Homey
- Department of Dermatology, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Philipp A Lang
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Aleksandra A Pandyra
- Department of Molecular Medicine II, Medical Faculty, Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany. .,Department of Gastroenterology, Hepatology and Infectious Diseases, Heinrich-Heine-University, Moorenstrasse 5, 40225, Düsseldorf, Germany.
| |
Collapse
|
27
|
Low-density lipoprotein receptor-related protein 6-mediated signaling pathways and associated cardiovascular diseases: diagnostic and therapeutic opportunities. Hum Genet 2020; 139:447-459. [PMID: 32076828 DOI: 10.1007/s00439-020-02124-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022]
Abstract
Low-density lipoprotein receptor-related protein 6 (LRP6) is a member of the low-density lipoprotein receptors (LDLRs) family and accumulating evidence points to the critical role of LRP6 in cardiovascular health and homeostasis. In addition to presenting the well-appreciated roles in canonical signaling regulating blood pressure, blood glucose, lipid metabolism, atherosclerosis, cardiac valve disease, cardiac development, Alzheimer's disease and tumorigenesis, LRP6 also inhibits non-canonical Wnt signals that promote arterial smooth muscle cell proliferation and vascular calcification. Noticeably, the role of LRP6 is displayed in cardiometabolic disease, an increasingly important clinical burden with aging and obesity. The prospect for cardiovascular diseases treatment via targeting LRP6-mediated signaling pathways may improve central blood pressure and lipid metabolism, and reduce neointima formation and myocardial ischemia-reperfusion injury. Thus, a deep and comprehensive understanding of LRP6 structure, function and signaling pathways will contribute to clinical diagnosis, therapy and new drug development for LRP6-related cardiovascular diseases.
Collapse
|
28
|
An expanding GSK3 network: implications for aging research. GeroScience 2019; 41:369-382. [PMID: 31313216 DOI: 10.1007/s11357-019-00085-z] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/02/2019] [Indexed: 10/26/2022] Open
Abstract
The last few decades of longevity research have been very exciting. We now know that longevity and healthspan can be manipulated across species, from unicellular eukaryotes to nonhuman primates, and that while aging itself is inevitable, how we age is malleable. Numerous dietary, genetic, and pharmacological studies now point to links between metabolism and growth regulation as a central aspect in determining longevity and, perhaps more importantly, health with advancing age. Here, we focus on a relatively new player in aging studies GSK3, glycogen synthase kinase, a key factor in growth and metabolism whose name fails to convey the extensive breadth of its role in cellular adaptation. First, we provide a brief overview of GSK3, touching on those aspects that are likely relevant to aging. Then, we outline the role of GSK3 in cellular functions including growth signaling, cell fate, and metabolism. Next, we describe evidence demonstrating a direct role for GSK3 in a range of age-related diseases, despite the fact that they differ considerably in their etiology and pathology. Finally, we discuss the role that GSK3 may play in normative aging and how GSK3 might be a suitable target to oppose age-related disease vulnerability.
Collapse
|
29
|
Wang X, Teng F, Lu J, Mu D, Zhang J, Yu J. Expression and prognostic role of IKBKE and TBK1 in stage I non-small cell lung cancer. Cancer Manag Res 2019; 11:6593-6602. [PMID: 31406474 PMCID: PMC6642623 DOI: 10.2147/cmar.s204924] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The inhibitors of nuclear factor kappa-B kinase subunit epsilon (IKBKE) and TANK-binding kinase 1 (TBK1) are important members of the nonclassical IKK family that share the kinase domain. They are important oncogenes for activation of several signaling pathways in several tumors. This study aims to explore the expression of IKBKE and TBK1 and their prognostic role in stage I non-small cell lung cancer (NSCLC). PATIENTS AND METHODS A total of 142 surgically resected stage I NSCLC patients were enrolled and immunohistochemistry of IKBKE and TBK1 was performed. RESULTS IKBKE and TBK1 were expressed in 121 (85.2%) and 114 (80.3%) of stage I NSCLC patients respectively. IKBKE expression was significantly associated with TBK1 expression (P=0.004). Furthermore, multivariate regression analyses showed there was a significant relationship between patients with risk factors, the recurrence pattern of metastasis and IKBKE+/TBK1+ co-expression (P=0.032 and P=0.022, respectively). In Kaplan-Meier survival curve analyses, the IKBKE+/TBK1+ co-expression subgroup was significantly associated with poor overall survival (P=0.014). CONCLUSIONS This is the first study to investigate the relationship between IKBKE and TBK1 expression and clinicopathologic characteristics in stage I NSCLC patients. IKBKE+/TBK1+ co-expression was significantly obvious in patients with risk factors and with recurrence pattern of distant metastasis. Furthermore, IKBKE+/TBK1+ is also an effective prognostic predictor for poor overall survival.
Collapse
Affiliation(s)
- Xin Wang
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei430060, People’s Republic of China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250117, People’s Republic of China
| | - Feifei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250117, People’s Republic of China
| | - Jie Lu
- Department of Neurosurgery, Shandong Province Qianfoshan Hospital of Shandong University, Jinan, Shandong250014, People’s Republic of China
| | - Dianbin Mu
- Department of Pathology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250117, People’s Republic of China
| | - Jianbo Zhang
- Department of Pathology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250117, People’s Republic of China
| | - Jinming Yu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei430060, People’s Republic of China
- Department of Radiation Oncology, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, Shandong250117, People’s Republic of China
| |
Collapse
|
30
|
Kang S, Pu JL. WITHDRAWN: Low Density Lipoprotein Receptor Related Protein 6-mediated Cardiovascular Diseases and associated signaling pathways. Can J Cardiol 2019. [DOI: 10.1016/j.cjca.2019.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
31
|
Louis C, Ngo D, D'Silva DB, Hansen J, Phillipson L, Jousset H, Novello P, Segal D, Lawlor KE, Burns CJ, Wicks IP. Therapeutic Effects of a
TANK
‐Binding Kinase 1 Inhibitor in Germinal Center–Driven Collagen‐Induced Arthritis. Arthritis Rheumatol 2018; 71:50-62. [DOI: 10.1002/art.40670] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 07/12/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Cynthia Louis
- The Walter and Eliza Hall Institute of Medical Research and the University of Melbourne Parkville Victoria Australia
| | - Devi Ngo
- The Walter and Eliza Hall Institute of Medical Research and the University of Melbourne Parkville Victoria Australia
| | - Damian B. D'Silva
- The Walter and Eliza Hall Institute of Medical Research and the University of Melbourne Parkville Victoria Australia
| | - Jacinta Hansen
- The Walter and Eliza Hall Institute of Medical Research and the University of Melbourne Parkville Victoria Australia
| | - Louisa Phillipson
- The Walter and Eliza Hall Institute of Medical Research and the University of Melbourne Parkville Victoria Australia
| | - Helene Jousset
- The Walter and Eliza Hall Institute of Medical Research and the University of Melbourne Parkville Victoria Australia
| | - Patrizia Novello
- The Walter and Eliza Hall Institute of Medical Research and the University of Melbourne Parkville Victoria Australia
| | - David Segal
- The Walter and Eliza Hall Institute of Medical Research and the University of Melbourne Parkville Victoria Australia
| | - Kate E. Lawlor
- The Walter and Eliza Hall Institute of Medical Research and the University of Melbourne Parkville Victoria Australia
| | - Christopher J. Burns
- The Walter and Eliza Hall Institute of Medical Research, the University of Melbourne and the Bio21 Institute Parkville Victoria Australia
| | - Ian P. Wicks
- The Walter and Eliza Hall Institute of Medical Research, the University of Melbourne and Royal Melbourne Hospital Parkville Victoria Australia
| |
Collapse
|
32
|
Lin X, Sun Q, Zhou L, He M, Dong X, Lai M, Liu M, Su Y, Jia C, Han Z, Liu S, Zheng H, Jiang Y, Ling H, Li M, Chen J, Zou Z, Bai X. Colonic epithelial mTORC1 promotes ulcerative colitis through COX-2-mediated Th17 responses. Mucosal Immunol 2018; 11:1663-1673. [PMID: 30082707 DOI: 10.1038/s41385-018-0018-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 01/29/2018] [Accepted: 02/17/2018] [Indexed: 02/07/2023]
Abstract
The functional role of colonic epithelium in the pathogenesis of ulcerative colitis (UC) remains unclear. Here, we reveal a novel mechanism by which colonic epithelia recruit T helper-17 (Th17) cells during the onset of UC. mTOR complex 1 (mTORC1) was hyper-activated in colonic epithelia of UC mice. While colonic epithelial TSC1 (mTORC1 negative regulator) disruption induced constitutive mTORC1 activation in the colon epithelia and aggravated UC, RPTOR (essential mTORC1 component) depletion inactivated mTORC1 and ameliorated UC. TSC1 deficiency enhanced, whereas RPTOR ablation reduced the expression of cyclooxygenase 2 (COX-2), interleukin-1 (IL-1), IL-6, and IL-23, as well as Th17 infiltration in the colon. Importantly, inhibition of COX-2 reversed the elevation in the expression of these proinflammatory mediators induced by TSC1 deficiency, and subsequently reduced the symptoms and pathological characteristics of UC in mouse models. Mechanistically, mTORC1 activates COX-2 transcription via phosphorylating STAT3 and enhancing it's binding to the COX-2 promoter. Consistently, enhanced mTORC1 activity and COX2 expression, as well as strong positive correlation between each other, were observed in colonic epithelial tissues of UC patients. Collectively, our study demonstrates an essential role of epithelial mTORC1 in UC pathogenesis and establishes a novel link between colonic epithelium, Th17 responses, and UC development.
Collapse
Affiliation(s)
- Xiaojun Lin
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Qiuyi Sun
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Ling Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Minhong He
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Xiaoying Dong
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Mingqiang Lai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Miao Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Yongchun Su
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Chunhong Jia
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Zelong Han
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Side Liu
- Department of Gastroenterology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Hang Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, 510515, Guangzhou, China
| | - Yu Jiang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Hui Ling
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, 7054, USA
| | - Mangmang Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China
| | - Juan Chen
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China.
| | - Zhipeng Zou
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China.
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, 510515, Guangzhou, China.
| |
Collapse
|
33
|
Roles for the IKK-Related Kinases TBK1 and IKKε in Cancer. Cells 2018; 7:cells7090139. [PMID: 30223576 PMCID: PMC6162516 DOI: 10.3390/cells7090139] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/11/2018] [Accepted: 09/13/2018] [Indexed: 01/21/2023] Open
Abstract
While primarily studied for their roles in innate immune response, the IκB kinase (IKK)-related kinases TANK-binding kinase 1 (TBK1) and IKKε also promote the oncogenic phenotype in a variety of cancers. Additionally, several substrates of these kinases control proliferation, autophagy, cell survival, and cancer immune responses. Here we review the involvement of TBK1 and IKKε in controlling different cancers and in regulating responses to cancer immunotherapy.
Collapse
|
34
|
Qian X, Aboushousha R, van de Wetering C, Chia SB, Amiel E, Schneider RW, van der Velden JLJ, Lahue KG, Hoagland DA, Casey DT, Daphtary N, Ather JL, Randall MJ, Aliyeva M, Black KE, Chapman DG, Lundblad LKA, McMillan DH, Dixon AE, Anathy V, Irvin CG, Poynter ME, Wouters EFM, Vacek PM, Henket M, Schleich F, Louis R, van der Vliet A, Janssen-Heininger YMW. IL-1/inhibitory κB kinase ε-induced glycolysis augment epithelial effector function and promote allergic airways disease. J Allergy Clin Immunol 2018; 142:435-450.e10. [PMID: 29108965 PMCID: PMC6278819 DOI: 10.1016/j.jaci.2017.08.043] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 06/30/2017] [Accepted: 08/23/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Emerging studies suggest that enhanced glycolysis accompanies inflammatory responses. Virtually nothing is known about the relevance of glycolysis in patients with allergic asthma. OBJECTIVES We sought to determine whether glycolysis is altered in patients with allergic asthma and to address its importance in the pathogenesis of allergic asthma. METHODS We examined alterations in glycolysis in sputum samples from asthmatic patients and primary human nasal cells and used murine models of allergic asthma, as well as primary mouse tracheal epithelial cells, to evaluate the relevance of glycolysis. RESULTS In a murine model of allergic asthma, glycolysis was induced in the lungs in an IL-1-dependent manner. Furthermore, administration of IL-1β into the airways stimulated lactate production and expression of glycolytic enzymes, with notable expression of lactate dehydrogenase A occurring in the airway epithelium. Indeed, exposure of mouse tracheal epithelial cells to IL-1β or IL-1α resulted in increased glycolytic flux, glucose use, expression of glycolysis genes, and lactate production. Enhanced glycolysis was required for IL-1β- or IL-1α-mediated proinflammatory responses and the stimulatory effects of IL-1β on house dust mite (HDM)-induced release of thymic stromal lymphopoietin and GM-CSF from tracheal epithelial cells. Inhibitor of κB kinase ε was downstream of HDM or IL-1β and required for HDM-induced glycolysis and pathogenesis of allergic airways disease. Small interfering RNA ablation of lactate dehydrogenase A attenuated HDM-induced increases in lactate levels and attenuated HDM-induced disease. Primary nasal epithelial cells from asthmatic patients intrinsically produced more lactate compared with cells from healthy subjects. Lactate content was significantly higher in sputum supernatants from asthmatic patients, notably those with greater than 61% neutrophils. A positive correlation was observed between sputum lactate and IL-1β levels, and lactate content correlated negatively with lung function. CONCLUSIONS Collectively, these findings demonstrate that IL-1β/inhibitory κB kinase ε signaling plays an important role in HDM-induced glycolysis and pathogenesis of allergic airways disease.
Collapse
Affiliation(s)
- Xi Qian
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Reem Aboushousha
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Cheryl van de Wetering
- Department of Pulmonology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Shi B Chia
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Eyal Amiel
- Department of Medical Laboratory and Radiation, University of Vermont College of Nursing and Health Sciences, Burlington, Vt
| | - Robert W Schneider
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Jos L J van der Velden
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Karolyn G Lahue
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Daisy A Hoagland
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Dylan T Casey
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Nirav Daphtary
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Jennifer L Ather
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Matthew J Randall
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Minara Aliyeva
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Kendall E Black
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - David G Chapman
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vt; Woolcock Institute of Medical Research, Sydney Medical School, University of Sydney, Sydney, Australia
| | - Lennart K A Lundblad
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - David H McMillan
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Anne E Dixon
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Vikas Anathy
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Charles G Irvin
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Matthew E Poynter
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vt
| | - Emiel F M Wouters
- Department of Pulmonology, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Pamela M Vacek
- Medical Biostatistics Unit, University of Vermont College of Medicine, Burlington, Vt
| | - Monique Henket
- Department of Respiratory Medicine, CHU Sart-TilmanB35, Liege, Belgium
| | - Florence Schleich
- Department of Respiratory Medicine, CHU Sart-TilmanB35, Liege, Belgium
| | - Renaud Louis
- Department of Respiratory Medicine, CHU Sart-TilmanB35, Liege, Belgium
| | - Albert van der Vliet
- Department of Pathology and Laboratory Medicine, University of Vermont College of Medicine, Burlington, Vt
| | | |
Collapse
|
35
|
Aweida D, Rudesky I, Volodin A, Shimko E, Cohen S. GSK3-β promotes calpain-1-mediated desmin filament depolymerization and myofibril loss in atrophy. J Cell Biol 2018; 217:3698-3714. [PMID: 30061109 PMCID: PMC6168250 DOI: 10.1083/jcb.201802018] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 06/06/2018] [Accepted: 07/16/2018] [Indexed: 12/16/2022] Open
Abstract
Phosphorylation by protein kinase GSK3-β is essential for desmin filament depolymerization by calpain-1 and the resulting myofibril destruction in muscle atrophy. Myofibril breakdown is a fundamental cause of muscle wasting and inevitable sequel of aging and disease. We demonstrated that myofibril loss requires depolymerization of the desmin cytoskeleton, which is activated by phosphorylation. Here, we developed a mass spectrometry–based kinase-trap assay and identified glycogen synthase kinase 3-β (GSK3-β) as responsible for desmin phosphorylation. GSK3-β inhibition in mice prevented desmin phosphorylation and depolymerization and blocked atrophy upon fasting or denervation. Desmin was phosphorylated by GSK3-β 3 d after denervation, but depolymerized only 4 d later when cytosolic Ca2+ levels rose. Mass spectrometry analysis identified GSK3-β and the Ca2+-specific protease, calpain-1, bound to desmin and catalyzing its disassembly. Consistently, calpain-1 down-regulation prevented loss of phosphorylated desmin and blocked atrophy. Thus, phosphorylation of desmin filaments by GSK3-β is a key molecular event required for calpain-1–mediated depolymerization, and the subsequent myofibril destruction. Consequently, GSK3-β represents a novel drug target to prevent myofibril breakdown and atrophy.
Collapse
Affiliation(s)
- Dina Aweida
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Inga Rudesky
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | | | - Eitan Shimko
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| | - Shenhav Cohen
- Faculty of Biology, Technion Institute of Technology, Haifa, Israel
| |
Collapse
|
36
|
Takeda A, Yamada H, Hasegawa E, Arima M, Notomi S, Myojin S, Yoshimura T, Hisatomi T, Enaida H, Yanai R, Kimura K, Ishibashi T, Sonoda KH. Crucial role of P2X 7 receptor for effector T cell activation in experimental autoimmune uveitis. Jpn J Ophthalmol 2018; 62:398-406. [PMID: 29572578 DOI: 10.1007/s10384-018-0587-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 03/05/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE To investigate the roles of P2X7 receptors (P2RX7) in the pathogenesis of experimental autoimmune uveoretinitis (EAU). STUDY DESIGN Experimental. METHODS Either wild-type (P2rx7 +/+ ) or P2rx7-deficient (P2rx7 -∕- ) mice were immunized with interphotoreceptor retinoid-binding protein (IRBP) peptide 1-20. Severity of EAU was evaluated clinically and histopathologically. The induction of IRBP-specific proliferation and cytokines in draining lymph nodes was assessed by enzyme-linked immunosorbent assays (ELISA). The frequency of activation markers was examined by flow cytometry. Furthermore, inhibitory roles of systemic administration of Brilliant Blue G (BBG), an antagonist for P2RX7, in EAU were also assessed in the wild-type mice. RESULTS The severity of EAU in P2rx7 -∕- mice was reduced as compared with that in P2rx7 +/+ mice, both clinically and histopathologically. IRBP-specific proliferation in P2rx7 -∕- on day 16 was slightly decreased compared to that in P2rx7 +/+ mice. The induction of IRBP-specific interferon (IFN)-γ and interleukin (IL)-17 in P2rx7 -∕- mice on day 16 was lower than that in P2rx7 +/+ mice. The up-regulation of surface expression of activation markers such as CD25, CD44, and CD69 in response to TCR stimulation in P2rx7 -∕- mice was decreased as compared with that in P2rx7 +/+ mice. Furthermore, neutralization of P2RX7 in vivo by BBG suppressed EAU clinically and histopathologically. IRBP-specific IFN-γ and IL-17 induction in BBG-treated mice was significantly lower than that in vehicle-treated mice. CONCLUSION The results suggest that P2RX7 is a novel preventative therapeutic target for uveitis as it suppresses the effector functions of both Th1 and Th17 cell responses.
Collapse
Affiliation(s)
- Atsunobu Takeda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan. .,Clinical Research Center, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan.
| | - Hisakata Yamada
- Division of Host Defense, Research Center for Prevention of Infectious Diseases, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan.,Clinical Research Center, National Hospital Organization, Kyushu Medical Center, Fukuoka, Japan
| | - Eiichi Hasegawa
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Mitsuru Arima
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Shoji Notomi
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Sayaka Myojin
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Takeru Yoshimura
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Toshio Hisatomi
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Hiroshi Enaida
- Department of Ophthalmology, Faculty of Medicine, Saga University, Saga, Saga, Japan
| | - Ryoji Yanai
- Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Kazuhiro Kimura
- Department of Ophthalmology, Graduate School of Medicine, Yamaguchi University, Ube, Yamaguchi, Japan
| | - Tatsuro Ishibashi
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | - Koh-Hei Sonoda
- Department of Ophthalmology, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| |
Collapse
|
37
|
Szymonowicz K, Oeck S, Malewicz NM, Jendrossek V. New Insights into Protein Kinase B/Akt Signaling: Role of Localized Akt Activation and Compartment-Specific Target Proteins for the Cellular Radiation Response. Cancers (Basel) 2018; 10:cancers10030078. [PMID: 29562639 PMCID: PMC5876653 DOI: 10.3390/cancers10030078] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 12/19/2022] Open
Abstract
Genetic alterations driving aberrant activation of the survival kinase Protein Kinase B (Akt) are observed with high frequency during malignant transformation and cancer progression. Oncogenic gene mutations coding for the upstream regulators or Akt, e.g., growth factor receptors, RAS and phosphatidylinositol-3-kinase (PI3K), or for one of the three Akt isoforms as well as loss of the tumor suppressor Phosphatase and Tensin Homolog on Chromosome Ten (PTEN) lead to constitutive activation of Akt. By activating Akt, these genetic alterations not only promote growth, proliferation and malignant behavior of cancer cells by phosphorylation of various downstream signaling molecules and signaling nodes but can also contribute to chemo- and radioresistance in many types of tumors. Here we review current knowledge on the mechanisms dictating Akt’s activation and target selection including the involvement of miRNAs and with focus on compartmentalization of the signaling network. Moreover, we discuss recent advances in the cross-talk with DNA damage response highlighting nuclear Akt target proteins with potential involvement in the regulation of DNA double strand break repair.
Collapse
Affiliation(s)
- Klaudia Szymonowicz
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany.
| | - Sebastian Oeck
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany.
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Nathalie M Malewicz
- Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University of Duisburg-Essen Medical School, 45122 Essen, Germany.
| |
Collapse
|
38
|
Louis C, Burns C, Wicks I. TANK-Binding Kinase 1-Dependent Responses in Health and Autoimmunity. Front Immunol 2018; 9:434. [PMID: 29559975 PMCID: PMC5845716 DOI: 10.3389/fimmu.2018.00434] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/19/2018] [Indexed: 01/05/2023] Open
Abstract
The pathogenesis of autoimmune diseases, such as rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE) is driven by genetic predisposition and environmental triggers that lead to dysregulated immune responses. These include the generation of pathogenic autoantibodies and aberrant production of inflammatory cytokines. Current therapies for RA and other autoimmune diseases reduce inflammation by targeting inflammatory mediators, most of which are innate response cytokines, resulting in generalized immunosuppression. Overall, this strategy has been very successful, but not all patients respond, responses can diminish over time and numerous side effects can occur. Therapies that target the germinal center (GC) reaction and/or antibody-secreting plasma cells (PC) potentially provide a novel approach. TANK-binding kinase 1 (TBK1) is an IKK-related serine/threonine kinase best characterized for its involvement in innate antiviral responses through the induction of type I interferons. TBK1 is also gaining attention for its roles in humoral immune responses. In this review, we discuss the role of TBK1 in immunological pathways involved in the development and maintenance of antibody responses, with particular emphasis on its potential relevance in the pathogenesis of humoral autoimmunity. First, we review the role of TBK1 in the induction of type I IFNs. Second, we highlight how TBK1 mediates inducible T cell co-stimulator signaling to the GC T follicular B helper population. Third, we discuss emerging evidence on the contribution of TBK1 to autophagic pathways and the potential implications for immune cell function. Finally, we discuss the therapeutic potential of TBK1 inhibition in autoimmunity.
Collapse
Affiliation(s)
- Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Chris Burns
- Chemical Biology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ian Wicks
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Rheumatology Unit, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
39
|
Silva-García O, Rico-Mata R, Maldonado-Pichardo MC, Bravo-Patiño A, Valdez-Alarcón JJ, Aguirre-González J, Baizabal-Aguirre VM. Glycogen Synthase Kinase 3α Is the Main Isoform That Regulates the Transcription Factors Nuclear Factor-Kappa B and cAMP Response Element Binding in Bovine Endothelial Cells Infected with Staphylococcus aureus. Front Immunol 2018; 9:92. [PMID: 29434603 PMCID: PMC5796901 DOI: 10.3389/fimmu.2018.00092] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/12/2018] [Indexed: 01/04/2023] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a constitutive enzyme implicated in the regulation of cytokine expression and the inflammatory response during bacterial infections. Mammals have two GSK3 isoforms named GSK3α and GSK3β that plays different but often overlapping functions. Although the role of GSK3β in cytokine regulation during the inflammatory response caused by bacteria is well described, GSK3α has not been found to participate in this process. Therefore, we tested if GSK3α may act as a regulatory isoform in the cytokine expression by bovine endothelial cells infected with Staphylococcus aureus because this bacterium is one of the major pathogens that cause tissue damage associated with inflammatory dysfunction. Interestingly, although both isoforms were phosphorylated–inactivated, we consistently observed a higher phosphorylation of GSK3α at Ser21 than that of GSK3β at Ser9 after bacterial challenge. During a temporal course of infection, we characterized a molecular switch from pro-inflammatory cytokine expression (IL-8), promoted by nuclear factor-kappa B (NF-κB), at an early stage (2 h) to an anti-inflammatory cytokine expression (IL-10), promoted by cAMP response element binding (CREB), at a later stage (6 h). We observed an indirect effect of GSK3α activity on NF-κB activation that resulted in a low phosphorylation of CREB at Ser133, a decreased interaction between CREB and the co-activator CREB-binding protein (CBP), and a lower expression level of IL-10. Gene silencing of GSK3α and GSK3β with siRNA indicated that GSK3α knockout promoted the interaction between CREB and CBP that, in turn, increased the expression of IL-10, reduced the interaction of NF-κB with CBP, and reduced the expression of IL-8. These results indicate that GSK3α functions as the primary isoform that regulates the expression of IL-10 in endothelial cells infected with S. aureus.
Collapse
Affiliation(s)
- Octavio Silva-García
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Rosa Rico-Mata
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - María Cristina Maldonado-Pichardo
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Alejandro Bravo-Patiño
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Juan J Valdez-Alarcón
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | | | - Víctor M Baizabal-Aguirre
- Centro Multidisciplinario de Estudios en Biotecnología, Facultad de Medicina Veterinaria y Zootecnia, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| |
Collapse
|
40
|
Tran CW, Saibil SD, Le Bihan T, Hamilton SR, Lang KS, You H, Lin AE, Garza KM, Elford AR, Tai K, Parsons ME, Wigmore K, Vainberg MG, Penninger JM, Woodgett JR, Mak TW, Ohashi PS. Glycogen Synthase Kinase-3 Modulates Cbl-b and Constrains T Cell Activation. THE JOURNAL OF IMMUNOLOGY 2017; 199:4056-4065. [DOI: 10.4049/jimmunol.1600396] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 10/05/2017] [Indexed: 11/19/2022]
|
41
|
Hermida MA, Dinesh Kumar J, Leslie NR. GSK3 and its interactions with the PI3K/AKT/mTOR signalling network. Adv Biol Regul 2017; 65:5-15. [PMID: 28712664 DOI: 10.1016/j.jbior.2017.06.003] [Citation(s) in RCA: 308] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 06/23/2017] [Indexed: 01/01/2023]
Abstract
Glycogen Synthase Kinase-3 (GSK3 or GSK-3) is a promiscuous protein kinase and its phosphorylation of its diverse substrates has major influences on many areas of physiology and pathology, including cellular metabolism, lineage commitment and neuroscience. GSK3 was one of the first identified substrates of the heavily studied oncogenic kinase AKT, phosphorylation by which inhibits GSK3 activity via the formation of an autoinhibitory pseudosubstrate sequence. This has led to investigation of the role of GSK3 inhibition as a key component of the cellular responses to growth factors and insulin, which stimulate the class I PI 3-Kinases and in turn AKT activity and GSK3 phosphorylation. GSK3 has been shown to phosphorylate several upstream and downstream components of the PI3K/AKT/mTOR signalling network, including AKT itself, RICTOR, TSC1 and 2, PTEN and IRS1 and 2, with the potential to apply feedback control within the network. However, it has been clear for some time that functionally distinct, insulated pools of GSK3 exist which are regulated independently, so that for some GSK3 substrates such as β-catenin, phosphorylation by GSK3 is not controlled by input from PI3K and AKT. Instead, as almost all GSK3 substrates require a priming phosphorylated residue to be 4 amino acids C-terminal to the Ser/Thr phosphorylated by GSK3, the predominant form of regulation of the activity of GSK3 often appears to be through control over these priming events, specific to individual substrates. Therefore, a major role of GSK3 can be viewed as an amplifier of the electrostatic effects on protein function which are caused by these priming phosphorylation events. Here we discuss these different aspects to GSK3 regulation and function, and the functions of GSK3 as it integrates with signalling through the PI3K-AKT-mTOR signalling axis.
Collapse
Affiliation(s)
- Miguel A Hermida
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK
| | - J Dinesh Kumar
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK
| | - Nick R Leslie
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh EH14 4AS, UK.
| |
Collapse
|
42
|
AKT/PKB Signaling: Navigating the Network. Cell 2017; 169:381-405. [PMID: 28431241 DOI: 10.1016/j.cell.2017.04.001] [Citation(s) in RCA: 2577] [Impact Index Per Article: 322.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 03/29/2017] [Accepted: 03/31/2017] [Indexed: 12/14/2022]
Abstract
The Ser and Thr kinase AKT, also known as protein kinase B (PKB), was discovered 25 years ago and has been the focus of tens of thousands of studies in diverse fields of biology and medicine. There have been many advances in our knowledge of the upstream regulatory inputs into AKT, key multifunctional downstream signaling nodes (GSK3, FoxO, mTORC1), which greatly expand the functional repertoire of AKT, and the complex circuitry of this dynamically branching and looping signaling network that is ubiquitous to nearly every cell in our body. Mouse and human genetic studies have also revealed physiological roles for the AKT network in nearly every organ system. Our comprehension of AKT regulation and functions is particularly important given the consequences of AKT dysfunction in diverse pathological settings, including developmental and overgrowth syndromes, cancer, cardiovascular disease, insulin resistance and type 2 diabetes, inflammatory and autoimmune disorders, and neurological disorders. There has also been much progress in developing AKT-selective small molecule inhibitors. Improved understanding of the molecular wiring of the AKT signaling network continues to make an impact that cuts across most disciplines of the biomedical sciences.
Collapse
|
43
|
Zhang J, Tian M, Xia Z, Feng P. Roles of IκB kinase ε in the innate immune defense and beyond. Virol Sin 2016; 31:457-465. [PMID: 28063014 DOI: 10.1007/s12250-016-3898-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/22/2016] [Indexed: 12/26/2022] Open
Abstract
IκB kinase ε (IKKε) is a non-canonical IκB kinase that is extensively studied in the context of innate immune response. Recently, significant progress has been made in understanding the role of IKKε in interferon (IFN) signaling. In addition to its roles in innate immunity, recent studies also demonstrate that IKKε is a key regulator of the adaptive immune response. Specifically, IKKε functions as a negative feedback kinase to curtail CD8 T cell response, implying that it can be a potential therapeutic target to boost antiviral and antitumor T cell immunity. In this review, we highlight the roles of IKKε in regulating IFN signaling and T cell immunity, and discuss a few imminent questions that remain to be answered.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, 90033, USA.
| | - Mao Tian
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, 90033, USA
| | - Zanxian Xia
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, 410008, China
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, 90033, USA
| |
Collapse
|
44
|
Zubair H, Azim S, Srivastava SK, Ahmad A, Bhardwaj A, Khan MA, Patel GK, Arora S, Carter JE, Singh S, Singh AP. Glucose Metabolism Reprogrammed by Overexpression of IKKε Promotes Pancreatic Tumor Growth. Cancer Res 2016; 76:7254-7264. [PMID: 27923829 DOI: 10.1158/0008-5472.can-16-1666] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/19/2016] [Accepted: 10/04/2016] [Indexed: 02/06/2023]
Abstract
Aberrant expression of the kinase IKKε in pancreatic ductal adenocarcinoma (PDAC) has been associated with poor prognosis. In this study, we define a pathobiologic function for IKKε in reprogramming glucose metabolism and driving progression in PDAC. Silencing IKKε in PDAC cells, which overexpressed it endogenously, was sufficient to reduce malignant cell growth, clonogenic potential, glucose consumption, lactate secretion, and expression of genes involved in glucose metabolism, without impacting the basal oxygen consumption rate. IKKε silencing also attenuated c-Myc in a manner associated with diminished signaling through an AKT/GSK3β/c-MYC phosphorylation cascade that promoted MYC nuclear accumulation. In an orthotopic mouse model, IKKε-silenced PDAC exhibited a relative reduction in glucose uptake, tumorigenicity, and metastasis. Overall, our findings offer a preclinical mechanistic rationale to target IKKε to improve the therapeutic management of PDAC in patients. Cancer Res; 76(24); 7254-64. ©2016 AACR.
Collapse
Affiliation(s)
- Haseeb Zubair
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Shafquat Azim
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Sanjeev Kumar Srivastava
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Aamir Ahmad
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Arun Bhardwaj
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Mohammad Aslam Khan
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Girijesh Kumar Patel
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - Sumit Arora
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama
| | - James Elliot Carter
- Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Seema Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama.,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| | - Ajay Pratap Singh
- Department of Oncologic Sciences, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama. .,Department of Biochemistry and Molecular Biology, College of Medicine, University of South Alabama, Mobile, Alabama
| |
Collapse
|
45
|
Bou-Dargham MJ, Khamis ZI, Cognetta AB, Sang QXA. The Role of Interleukin-1 in Inflammatory and Malignant Human Skin Diseases and the Rationale for Targeting Interleukin-1 Alpha. Med Res Rev 2016; 37:180-216. [PMID: 27604144 DOI: 10.1002/med.21406] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 07/19/2016] [Accepted: 07/23/2016] [Indexed: 12/11/2022]
Abstract
Inflammation plays a major role in the induction and progression of several skin diseases. Overexpression of the major epidermal proinflammatory cytokines interleukin (IL) 1 alpha (IL-1α) and 1 beta (IL-1β) is positively correlated with symptom exacerbation and disease progression in psoriasis, atopic dermatitis, neutrophilic dermatoses, skin phototoxicity, and skin cancer. IL-1β and the interleukin-1 receptor I (IL-1RI) have been used as a therapeutic target for some autoinflammatory skin diseases; yet, their system-wide effects limit their clinical usage. Based on the local effects of extracellular IL-1α and its precursor, pro-IL-1α, we hypothesize that this isoform is a promising drug target for the treatment and prevention of many skin diseases. This review provides an overview on IL-1α and IL-β functions, and their contribution to inflammatory and malignant skin diseases. We also discuss the current treatment regimens, and ongoing clinical trials, demonstrating the potential of targeting IL-1α, and not IL-1β, as a more effective strategy to prevent or treat the onset and progression of various skin diseases.
Collapse
Affiliation(s)
- Mayassa J Bou-Dargham
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306
| | - Zahraa I Khamis
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306.,Department of Chemistry and Biochemistry, Lebanese University, Faculty of Sciences, Hadath-Beirut, Lebanon
| | - Armand B Cognetta
- Dermatology Associates of Tallahassee and Division of Dermatology, Florida State University College of Medicine, Tallahassee, FL, 32308
| | - Qing-Xiang Amy Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL, 32306.,Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32306
| |
Collapse
|
46
|
Zhang J, Feng H, Zhao J, Feldman ER, Chen SY, Yuan W, Huang C, Akbari O, Tibbetts SA, Feng P. IκB Kinase ε Is an NFATc1 Kinase that Inhibits T Cell Immune Response. Cell Rep 2016; 16:405-418. [PMID: 27346349 DOI: 10.1016/j.celrep.2016.05.083] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/11/2016] [Accepted: 05/19/2016] [Indexed: 02/05/2023] Open
Abstract
Activation of nuclear factor of activated T cells (NFAT) is crucial for immune responses. IKKε is an IκB kinase (IKK)-related kinase, and the function of IKKε remains obscure in T cells, despite its abundant expression. We report that IKKε inhibits NFAT activation and T cell responses by promoting NFATc1 phosphorylation. During T cell activation, IKKε was transiently activated to phosphorylate NFATc1. Loss of IKKε elevated T cell antitumor and antiviral immunity and, therefore, reduced tumor development and persistent viral infection. IKKε was activated in CD8(+) T cells of mice bearing melanoma or persistently infected with a model herpesvirus. These results collectively show that IKKε promotes NFATc1 phosphorylation and inhibits T cell responses, identifying IKKε as a crucial negative regulator of T cell activation and a potential target for immunotherapy.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Hao Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA; Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Jun Zhao
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Emily R Feldman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA.
| |
Collapse
|
47
|
Martin BN, Wang C, Zhang CJ, Kang Z, Gulen MF, Zepp JA, Zhao J, Bian G, Do JS, Min B, Pavicic PG, El-Sanadi C, Fox PL, Akitsu A, Iwakura Y, Sarkar A, Wewers MD, Kaiser WJ, Mocarski ES, Rothenberg ME, Hise AG, Dubyak GR, Ransohoff RM, Li X. T cell-intrinsic ASC critically promotes T(H)17-mediated experimental autoimmune encephalomyelitis. Nat Immunol 2016; 17:583-92. [PMID: 26998763 DOI: 10.1038/ni.3389] [Citation(s) in RCA: 126] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023]
Abstract
Interleukin 1β (IL-1β) is critical for the in vivo survival, expansion and effector function of IL-17-producing helper T (T(H)17) cells during autoimmune responses, including experimental autoimmune encephalomyelitis (EAE). However, the spatiotemporal role and cellular source of IL-1β during EAE pathogenesis are poorly defined. In the present study, we uncovered a T cell-intrinsic inflammasome that drives IL-1β production during T(H)17-mediated EAE pathogenesis. Activation of T cell antigen receptors induced expression of pro-IL-1β, whereas ATP stimulation triggered T cell production of IL-1β via ASC-NLRP3-dependent caspase-8 activation. IL-1R was detected on T(H)17 cells but not on type 1 helper T (T(H)1) cells, and ATP-treated T(H)17 cells showed enhanced survival compared with ATP-treated T(H)1 cells, suggesting autocrine action of T(H)17-derived IL-1β. Together these data reveal a critical role for IL-1β produced by a T(H)17 cell-intrinsic ASC-NLRP3-caspase-8 inflammasome during inflammation of the central nervous system.
Collapse
Affiliation(s)
- Bradley N Martin
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.,Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Chenhui Wang
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.,Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Cun-jin Zhang
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA.,Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China.,Department of Immunology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Zizhen Kang
- Shanghai Institute of Immunology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Muhammet Fatih Gulen
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Jarod A Zepp
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Junjie Zhao
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Guanglin Bian
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Jeong-su Do
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Booki Min
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Paul G Pavicic
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Caroline El-Sanadi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Paul L Fox
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Aoi Akitsu
- Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki, Noda, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Yamazaki, Noda, Japan
| | - Anasuya Sarkar
- Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - Mark D Wewers
- Davis Heart and Lung Research Institute, Ohio State University College of Medicine, Columbus, Ohio, USA
| | - William J Kaiser
- Department of Microbiology and Immunology, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Edward S Mocarski
- Department of Microbiology and Immunology, Emory Vaccine Center, Atlanta, Georgia, USA
| | - Marc E Rothenberg
- Division of Allergy and Immunology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Amy G Hise
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio, USA
| | - George R Dubyak
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Richard M Ransohoff
- Department of Neurosciences, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| | - Xiaoxia Li
- Department of Immunology, Cleveland Clinic Lerner Research Institute, Cleveland, Ohio, USA
| |
Collapse
|
48
|
Göktuna SI, Shostak K, Chau TL, Heukamp LC, Hennuy B, Duong HQ, Ladang A, Close P, Klevernic I, Olivier F, Florin A, Ehx G, Baron F, Vandereyken M, Rahmouni S, Vereecke L, van Loo G, Büttner R, Greten FR, Chariot A. The Prosurvival IKK-Related Kinase IKKε Integrates LPS and IL17A Signaling Cascades to Promote Wnt-Dependent Tumor Development in the Intestine. Cancer Res 2016; 76:2587-99. [PMID: 26980769 DOI: 10.1158/0008-5472.can-15-1473] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 02/13/2016] [Indexed: 11/16/2022]
Abstract
Constitutive Wnt signaling promotes intestinal cell proliferation, but signals from the tumor microenvironment are also required to support cancer development. The role that signaling proteins play to establish a tumor microenvironment has not been extensively studied. Therefore, we assessed the role of the proinflammatory Ikk-related kinase Ikkε in Wnt-driven tumor development. We found that Ikkε was activated in intestinal tumors forming upon loss of the tumor suppressor Apc Genetic ablation of Ikkε in β-catenin-driven models of intestinal cancer reduced tumor incidence and consequently extended survival. Mechanistically, we attributed the tumor-promoting effects of Ikkε to limited TNF-dependent apoptosis in transformed intestinal epithelial cells. In addition, Ikkε was also required for lipopolysaccharide (LPS) and IL17A-induced activation of Akt, Mek1/2, Erk1/2, and Msk1. Accordingly, genes encoding pro-inflammatory cytokines, chemokines, and anti-microbial peptides were downregulated in Ikkε-deficient tissues, subsequently affecting the recruitment of tumor-associated macrophages and IL17A synthesis. Further studies revealed that IL17A synergized with commensal bacteria to trigger Ikkε phosphorylation in transformed intestinal epithelial cells, establishing a positive feedback loop to support tumor development. Therefore, TNF, LPS, and IL17A-dependent signaling pathways converge on Ikkε to promote cell survival and to establish an inflammatory tumor microenvironment in the intestine upon constitutive Wnt activation. Cancer Res; 76(9); 2587-99. ©2016 AACR.
Collapse
Affiliation(s)
- Serkan Ismail Göktuna
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liege, Liège, Belgium. Laboratory of Medical Chemistry, GIGA Molecular Biology of Diseases, University of Liege, Liège, Belgium. Department of Molecular Biology and Genetics, Bilkent University, Bilkent, Ankara, Turkey
| | - Kateryna Shostak
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liege, Liège, Belgium. Laboratory of Medical Chemistry, GIGA Molecular Biology of Diseases, University of Liege, Liège, Belgium
| | - Tieu-Lan Chau
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liege, Liège, Belgium. Laboratory of Medical Chemistry, GIGA Molecular Biology of Diseases, University of Liege, Liège, Belgium
| | - Lukas C Heukamp
- Institute for Pathology-University Hospital Cologne, Germany
| | - Benoit Hennuy
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liege, Liège, Belgium. GIGA Transcriptomic Facility, University of Liege, CHU, Sart-Tilman, Liège, Belgium
| | - Hong-Quan Duong
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liege, Liège, Belgium. Laboratory of Medical Chemistry, GIGA Molecular Biology of Diseases, University of Liege, Liège, Belgium
| | - Aurélie Ladang
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liege, Liège, Belgium. Laboratory of Medical Chemistry, GIGA Molecular Biology of Diseases, University of Liege, Liège, Belgium
| | - Pierre Close
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liege, Liège, Belgium. Laboratory of Cancer Signaling, GIGA Molecular Biology of Diseases, University of Liege, Liège, Belgium
| | - Iva Klevernic
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liege, Liège, Belgium. Laboratory of Medical Chemistry, GIGA Molecular Biology of Diseases, University of Liege, Liège, Belgium
| | - Fabrice Olivier
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liege, Liège, Belgium. Animal Facility, Liège, University of Liege, Belgium
| | | | - Grégory Ehx
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liege, Liège, Belgium. Unit of Hematology and Department of Medicine, Division of Hematology, GIGA-I, University of Liege, Liège, Belgium
| | - Frédéric Baron
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liege, Liège, Belgium. Unit of Hematology and Department of Medicine, Division of Hematology, GIGA-I, University of Liege, Liège, Belgium
| | - Maud Vandereyken
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liege, Liège, Belgium. Unit of Immunology and Infectious Diseases, GIGA Molecular Biology of Diseases, University of Liege, Liège, Belgium
| | - Souad Rahmouni
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liege, Liège, Belgium. Unit of Immunology and Infectious Diseases, GIGA Molecular Biology of Diseases, University of Liege, Liège, Belgium
| | - Lars Vereecke
- Inflammation Research Centre (IRC), VIB, Ghent, Belgium. Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Geert van Loo
- Inflammation Research Centre (IRC), VIB, Ghent, Belgium. Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | | | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, 60596 Frankfurt am Main, Germany
| | - Alain Chariot
- Interdisciplinary Cluster for Applied Genoproteomics (GIGA), University of Liege, Liège, Belgium. Laboratory of Medical Chemistry, GIGA Molecular Biology of Diseases, University of Liege, Liège, Belgium. Walloon Excellence in Life Sciences and Biotechnology (WELBIO), University of Liege, Liège, Belgium.
| |
Collapse
|
49
|
Glycogen synthase kinase 3β inhibition promotes human iTreg differentiation and suppressive function. Immunol Res 2016; 62:60-70. [PMID: 25752456 DOI: 10.1007/s12026-015-8635-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Induced regulatory T cells (iTregs) are essential to maintain immunological tolerance, immune homeostasis and prevention of autoimmunity. Some studies suggest that glycogen synthase kinase 3β (GSK3β) is involved in the mouse iTreg differentiation; however, whether GSK3β inhibits or enhances iTreg differentiation is still a matter of controversy. To address this issue, we have utilized human naïve CD4(+) T cells and investigated whether GSK3 activity changes during iTreg differentiation and whether altering GSK3 activity influences the development of iTregs and its suppressive function. As a constitutively activated kinase, during iTreg differentiation GSK3β became quickly deactivated (phosphorylated at serine 9), which is dependent on MAPK pathway rather than PI3-kinase/Akt pathway. Our results indicated that inhibition of GSK3β by specific inhibitors, SB216763 or TDZD-8, promoted the differentiation of iTreg and increased their suppressive activity. In contrast, overexpression of GSK3β significantly inhibited iTreg differentiation. Furthermore, GSK3β inhibition enhanced iTreg differentiation through the TGF-β/Smad3 pathway. Taken together, this study demonstrates that inhibition of GSK3β enhances human iTreg differentiation and its suppressive activity, and provides a rationale to target GSK3β as a novel immunotherapeutic strategy.
Collapse
|
50
|
Shi JH, Sun SC. TCR signaling to NF-κB and mTORC1: Expanding roles of the CARMA1 complex. Mol Immunol 2015; 68:546-57. [PMID: 26260210 PMCID: PMC4679546 DOI: 10.1016/j.molimm.2015.07.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/07/2015] [Accepted: 07/19/2015] [Indexed: 12/25/2022]
Abstract
Naïve T-cell activation requires signals from both the T-cell receptor (TCR) and the costimulatory molecule CD28. A central mediator of the TCR and CD28 signals is the scaffold protein CARMA1, which functions by forming a complex with partner proteins, Bcl10 and MALT1. A well-known function of the CARMA1 signaling complex is to mediate activation of IκB kinase (IKK) and its target transcription factor NF-κB, thereby promoting T-cell activation and survival. Recent evidence suggests that CARMA1 also mediates TCR/CD28-stimulated activation of the IKK-related kinase TBK1, which plays a role in regulating the homeostasis and migration of T cells. Moreover, the CARMA1 complex connects the TCR/CD28 signals to the activation of mTORC1, a metabolic kinase regulating various aspects of T-cell functions. This review will discuss the mechanism underlying the activation of the CARMA1-dependent signaling pathways and their roles in regulating T-cell functions.
Collapse
Affiliation(s)
- Jian-hong Shi
- Central Laboratory, Affiliated Hospital of Hebei University, 212 Yuhua East Road, Baoding 071000, China
| | - Shao-Cong Sun
- Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston, TX 77030, USA; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX 77030, USA.
| |
Collapse
|