1
|
Sim MJW, Li B, Long EO. Peptide-specific natural killer cell receptors. OXFORD OPEN IMMUNOLOGY 2025; 6:iqaf003. [PMID: 40297637 PMCID: PMC12036969 DOI: 10.1093/oxfimm/iqaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/30/2025] Open
Abstract
Class I and II human leukocyte antigens (HLA-I and HLA-II) present peptide antigens for immunosurveillance by T cells. HLA molecules also form ligands for a plethora of innate, germline-encoded receptors. Many of these receptors engage HLA molecules in a peptide sequence independent manner, with binding sites outside the peptide binding groove. However, some receptors, typically expressed on natural killer (NK) cells, engage the HLA presented peptide directly. Remarkably, some of these receptors display exquisite specificity for peptide sequences, with the capacity to detect sequences conserved in pathogens. Here, we review evidence for peptide-specific NK cell receptors (PSNKRs) and discuss their potential roles in immunity.
Collapse
Affiliation(s)
- Malcolm J W Sim
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Beining Li
- Centre for Immuno-Oncology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ, United Kingdom
| | - Eric O Long
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, 20852, United States of America
| |
Collapse
|
2
|
Arnaiz-Villena A, Suarez-Trujillo F, Ruiz-del-Valle V, Juarez I, Vaquero-Yuste C, Martin-Villa JM, Lledo T. The MHC (Major Histocmpatibility Complex) Exceptional Molecules of Birds and Their Relationship to Diseases. Int J Mol Sci 2025; 26:3767. [PMID: 40332403 PMCID: PMC12028091 DOI: 10.3390/ijms26083767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/14/2025] [Accepted: 04/08/2025] [Indexed: 05/08/2025] Open
Abstract
There are about 5000 species of Passeriformes birds, which are half of the extant ones. Their class I MHC molecules are found to be different from all other studied vertebrates, including other bird species; i.e., amino acid residues 10 and 96 are not the seven canonic residues extant in all other vertebrate molecules. Thus, the canonic residues in MHC class I vertebrate molecules are reduced to five. These differences have physical effects in MHC (Major Histocompatibility Complex) class I alpha chain interaction with beta-2-microglobulin but have yet unknown functional effects. Also, introns show specific Passeriformes distinction both in size and invariance. The studies reviewed in this paper on MHC structure have been done in wild birds that cover most of the world's passerine habitats. In this context, we are going to expose the most commonly occurring bird diseases with the caveat that MHC and disease linkage pathogenesis is not resolved. In addition, this field is poorly studied in birds; however, common bird diseases like malaria and Marek's disease are linked to MHC. On the other hand, the main established function of MHC molecules is presenting microbial and other antigens to T cells in order to start immune responses, and they also may modulate the immune system through NK receptors and other receptors (non-classical class I MHC molecules). Also, structural and polymorphic differences between classical class I molecules and non-classical class I molecules are at present not clear, and their definition is blurred. These passerine exceptional MHC class I molecules may influence linkage to diseases, transplantation, and other MHC presentation and self-protection functions. Further studies in more Passeriformes species are ongoing and needed.
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Department of Immunology, School of Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
3
|
Tadros DM, Racle J, Gfeller D. Predicting MHC-I ligands across alleles and species: how far can we go? Genome Med 2025; 17:25. [PMID: 40114147 PMCID: PMC11927126 DOI: 10.1186/s13073-025-01450-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND CD8+ T-cell activation is initiated by the recognition of epitopes presented on class I major histocompatibility complex (MHC-I) molecules. Identifying such epitopes is useful for molecular understanding of cellular immune responses and can guide the development of personalized vaccines for various diseases including cancer. For a few hundred common human and mouse MHC-I alleles, large datasets of ligands are available and machine learning MHC-I ligand predictors trained on such data reach high prediction accuracy. However, for the vast majority of other MHC-I alleles, no ligand is known. METHODS We capitalize on an expanded architecture of our MHC-I ligand predictor (MixMHCpred3.0) to systematically assess the extent to which predictions of MHC-I ligands can be applied to MHC-I alleles that currently lack known ligand data. RESULTS Our results reveal high prediction accuracy for most MHC-I alleles in human and in laboratory mouse strains, but significantly lower accuracy in other species. Our work further outlines some of the molecular determinants of MHC-I ligand prediction accuracy across alleles and species. Robust benchmarking on external data shows that our MHC-I ligand predictor demonstrates competitive performance relative to other state-of-the-art MHC-I ligand predictors and can be used for CD8+ T-cell epitope predictions. CONCLUSIONS Our work provides a valuable tool for predicting antigen presentation across all human and mouse MHC-I alleles. MixMHCpred3.0 tool is available at https://github.com/GfellerLab/MixMHCpred .
Collapse
Affiliation(s)
- Daniel M Tadros
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, 1011, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - Julien Racle
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
- Agora Cancer Research Centre, Lausanne, 1011, Switzerland
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland.
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.
- Agora Cancer Research Centre, Lausanne, 1011, Switzerland.
- Swiss Cancer Center Leman (SCCL), Lausanne, Switzerland.
| |
Collapse
|
4
|
Grant OA, Iacoangeli A, Zwamborn RAJ, van Rheenen W, Byrne R, Van Eijk KR, Kenna K, van Vugt JJFA, Cooper-Knock J, Kenna B, Vural A, Topp S, Campos Y, Weber M, Smith B, Dobson R, van Es MA, Vourc'h P, Corcia P, de Carvalho M, Gotkine M, Panades MP, Mora JS, Mill J, Garton F, McRae A, Wray NR, Shaw PJ, Landers JE, Glass JD, Shaw CE, Basak N, Hardiman O, Van Damme P, McLaughlin RL, van den Berg LH, Veldink JH, Al-Chalabi A, Al Khleifat A. Sex-specific DNA methylation differences in Amyotrophic lateral sclerosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.22.624866. [PMID: 39651197 PMCID: PMC11623544 DOI: 10.1101/2024.11.22.624866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Sex is an important covariate in all genetic and epigenetic research due to its role in the incidence, progression and outcome of many phenotypic characteristics and human diseases. Amyotrophic lateral sclerosis (ALS) is a motor neuron disease with a sex bias towards higher incidence in males. Here, we report for the first time a blood-based epigenome-wide association study meta-analysis in 9274 individuals after stringent quality control (5529 males and 3975 females). We identified a total of 226 ALS saDMPs (sex-associated DMPs) annotated to a total of 159 unique genes. These ALS saDMPs were depleted at transposable elements yet significantly enriched at enhancers and slightly enriched at 3'UTRs. These ALS saDMPs were enriched for transcription factor motifs such as ESR1 and REST. Moreover, we identified an additional 10 genes associated with ALS saDMPs through chromatin loop interactions, suggesting a potential regulatory role for these saDMPs on distant genes. Furthermore, we investigated the relationship between DNA methylation at specific CpG sites and overall survival in ALS using Cox proportional hazards models. We identified two ALS saDMPs, cg14380013 and cg06729676, that showed significant associations with survival. Overall, our study reports a reliable catalogue of sex-associated ALS saDMPs in ALS and elucidates several characteristics of these sites using a large-scale dataset. This resource will benefit future studies aiming to investigate the role of sex in the incidence, progression and risk for ALS.
Collapse
|
5
|
Sun W, Gao C, Gladkov GT, Roseto I, Carrere L, Parsons EM, Gasca-Capote C, Frater J, Fidler S, Yu XG, Lichterfeld M. Footprints of innate immune activity during HIV-1 reservoir cell evolution in early-treated infection. J Exp Med 2024; 221:e20241091. [PMID: 39466203 PMCID: PMC11519379 DOI: 10.1084/jem.20241091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/29/2024] Open
Abstract
Antiretroviral treatment (ART) initiation during the early stages of HIV-1 infection is associated with a higher probability of maintaining drug-free viral control during subsequent treatment interruptions, for reasons that remain unclear. Using samples from a randomized-controlled human clinical trial evaluating therapeutic HIV-1 vaccines, we here show that early ART commencement is frequently associated with accelerated and efficient selection of genome-intact HIV-1 proviruses in repressive chromatin locations during the first year after treatment initiation. This selection process was unaffected by vaccine-induced HIV-1-specific T cell responses. Single-cell proteogenomic profiling demonstrated that cells harboring intact HIV-1 displayed a discrete phenotypic signature of immune selection by innate immune responses, characterized by a slight but significant upregulation of HLA-C, HLA-G, the IL-10 receptor, and other markers involved in innate immune regulation. Together, these results suggest an accelerated immune selection of viral reservoir cells during early-treated HIV-1 infection that seems at least partially driven by innate immune responses.
Collapse
Affiliation(s)
- Weiwei Sun
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Gregory Takashi Gladkov
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Isabelle Roseto
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Leah Carrere
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Elizabeth M. Parsons
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Carmen Gasca-Capote
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - John Frater
- Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah Fidler
- Department of Infectious Disease, Imperial College and Imperial College NIHR Biomedical Research Centre, London, UK
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
6
|
Liu Q, Wu P, Lei J, Bai P, Zhong P, Yang M, Wei P. Old concepts, new tricks: How peptide vaccines are reshaping cancer immunotherapy? Int J Biol Macromol 2024; 279:135541. [PMID: 39270889 DOI: 10.1016/j.ijbiomac.2024.135541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
Over the past few decades, research on cancer immunotherapy has firmly established immune cells as key players in effective cancer treatment. Peptide vaccines directly targeting immune cells have demonstrated immense potential due to their specificity and applicability. However, developing peptide vaccines to generate tumor-reactive T cells remains challenging, primarily due to suboptimal immunogenicity and overcoming the immunosuppressive tumor microenvironment (TME). In this review, we discuss various elements of effective peptide vaccines, including antigen selection, peptide epitope optimization, vaccine adjuvants, and the combination of multiple immunotherapies, in addition to recent advances in tumor neoantigens as well as epitopes bound by non-classical human leukocyte antigen (HLA) molecules, to increase the understanding of cancer peptide vaccines and provide multiple references for the design of subsequent T cell-based peptide vaccines.
Collapse
Affiliation(s)
- Qingyang Liu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Peihua Wu
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Jun Lei
- Hubei Key Laboratory of Cell Homeostasis, State Key Laboratory of Virology, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China; Department of Laboratory Medicine, Xixi Hospital of Hangzhou, Hangzhou, China
| | - Peng Bai
- In Vivo Pharmacology Unit, WuXi AppTec, Nantong, Jiangsu, China
| | - Peiluan Zhong
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China
| | - Min Yang
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| | - Pengcheng Wei
- Guangxi Key Laboratory of Special Biomedicine, School of Medicine, Guangxi University, Nanning 530004, China.
| |
Collapse
|
7
|
Heldager Pedersen N, Nascimento Melsted W, Scheike T, Eriksen JO, Reznitsky FM, Bzorek M, Lænkholm AV, Hviid TVF. Effect modification between HLA-F and CD56 markers reveals differences in survival for triple-negative breast cancer patients. Hum Immunol 2024; 85:111152. [PMID: 39405828 DOI: 10.1016/j.humimm.2024.111152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/01/2024] [Accepted: 10/01/2024] [Indexed: 12/14/2024]
Abstract
Triple-negative breast cancer (TNBC) is usually aggressive and challenging to treat. With high tumour immunogenicity TNBC patients might benefit from immunotherapy. We evaluated heterogeneous immune profiles of individual tumours in relation to clinical development to identify immune markers and their mutual expression. We assessed 122 biopsies from patients with primary TNBC tumours by automated image analysis of immunohistochemically stained tissue microarrays. Tumour-infiltrating lymphocytes (TILs), expression of HLA I molecules (HLA-ABC, HLA-G, HLA-E, HLA-F) and their mutual associations, as well as associations with other immune response markers (PD-L1, FOXP3, CD4, CD8, CD56) were investigated together with survival outcomes. Analysis of effect modification between HLA-F and CD56 showed longer disease-free survival and time-to-recurrence for tumours with low expression of both markers. TILs were significantly associated with tumour grade and with HLA-F, PD-L1, FOXP3 and CD8 expression, and were significantly associated with longer disease-free survival, also in multivariate analysis. Expression of all immune markers was positively correlated with each other, except CD56. The study highlights the complex immune regulation in TNBC stressing the importance of evaluating the immune landscape of individual tumours to identify patients that can benefit from immunotherapy. The finding of an effect modulation between HLA-F and CD56 is one aspect.
Collapse
Affiliation(s)
- Nanna Heldager Pedersen
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Department of Clinical Biochemistry, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Wenna Nascimento Melsted
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Department of Clinical Biochemistry, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Scheike
- Department of Biostatistics, University of Copenhagen, Copenhagen, Denmark
| | - Jens Ole Eriksen
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Frances M Reznitsky
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Michael Bzorek
- Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Anne-Vibeke Lænkholm
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark; Department of Surgical Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Thomas Vauvert F Hviid
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Department of Clinical Biochemistry, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
8
|
Luo X, Shi J, Wang S, Jin X. The role of circular RNA targeting IGF2BPs in cancer-a potential target for cancer therapy. J Mol Med (Berl) 2024; 102:1297-1314. [PMID: 39287635 DOI: 10.1007/s00109-024-02488-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/01/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Circular RNAs (circRNAs) are an interesting class of conserved single-stranded RNA molecules derived from exon or intron sequences produced by the reverse splicing of precursor mRNA. CircRNAs play important roles as microRNA sponges, gene splicing and transcriptional regulators, RNA-binding protein sponges, and protein/peptide translation factors. Abnormal functions of circRNAs and RBPs in tumor progression have been widely reported. Insulin-like growth factor-2 mRNA-binding proteins (IGF2BPs) are a highly conserved family of RBPs identified in humans that function as post-transcriptional fine-tuners of target transcripts. Emerging evidence suggests that IGF2BPs regulate the processing and metabolism of RNA, including its stability, translation, and localization, and participate in a variety of cellular functions and pathophysiology. In this review, we have summarized the roles and molecular mechanisms of circRNAs and IGF2BPs in cancer development and progression. In addition, we briefly introduce the role of other RNAs and IGF2BPs in cancer, discuss the current clinical applications and challenges faced by circRNAs and IGF2BPs, and propose future directions for this promising research field.
Collapse
Affiliation(s)
- Xia Luo
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Jiaxin Shi
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Siyuan Wang
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xiaofeng Jin
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
9
|
Hu Z, Zhang Q, He Z, Jia X, Zhang W, Cao X. MHC1/LILRB1 axis as an innate immune checkpoint for cancer therapy. Front Immunol 2024; 15:1421092. [PMID: 38911856 PMCID: PMC11190085 DOI: 10.3389/fimmu.2024.1421092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 05/27/2024] [Indexed: 06/25/2024] Open
Abstract
Immune checkpoint blockades (ICBs) have revolutionized cancer therapy through unleashing anti-tumor adaptive immunity. Despite that, they are usually effective only in a small subset of patients and relapse can occur in patients who initially respond to the treatment. Recent breakthroughs in this field have identified innate immune checkpoints harnessed by cancer cells to escape immunosurveillance from innate immunity. MHC1 appears to be such a molecule expressed on cancer cells which can transmit a negative signal to innate immune cells through interaction with leukocyte immunoglobulin like receptor B1 (LILRB1). The review aims to summarize the current understanding of MHC1/LILRB1 axis on mediating cancer immune evasion with an emphasis on the therapeutic potential to block this axis for cancer therapy. Nevertheless, one should note that this field is still in its infancy and more studies are warranted to further verify the effectiveness and safety in clinical as well as the potential to combine with existing immune checkpoints.
Collapse
Affiliation(s)
- Ziyi Hu
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Qiaodong Zhang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Zehua He
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaojian Jia
- Department of Addiction Medicine, Shenzhen Clinical Research Center for Mental Disorders, Shenzhen Kangning Hospital & Shenzhen Mental Health Center, Shenzhen, China
| | - Wencan Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Cao
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Chen Y, Zeng Z, Chen Z, Yuan N, Ye X, Zhang C, Xia N, Luo W. A new mechanism of antibody diversity: formation of the natural antibodies containing LAIR1 and LILRB1 extracellular domains. Antib Ther 2024; 7:157-163. [PMID: 38933531 PMCID: PMC11200687 DOI: 10.1093/abt/tbae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Indexed: 06/28/2024] Open
Abstract
The recent discovery of public antibodies targeting Plasmodium falciparum-encoded repetitive interspersed families of polypeptides (RIFINs), which contain extracellular immunoglobulin-like domains from LAIR1 or LILRB1, constitutes a significant step forward in comprehending the reactivity of the Plasmodium parasite. These antibodies arise from unique B cell clones and demonstrate extensive cross-reactivity through their interaction with P. falciparum RIFINs. LAIR1 and LILRBs are specialized type I transmembrane glycoproteins, classified as immune inhibitory receptors, restricted to primates and mainly found on hematopoietic cells. They are instrumental in modulating interactions within the tumor microenvironment and across the immune system, and are increasingly recognized as important in anti-cancer immunotherapy and pathogen defense. The presence of LAIR1/LILRB1-containing antibodies offers new insights into malaria parasite evasion strategies and the immune system's response. Additionally, the innovative method of integrating extra exons into the antibody switch region is a noteworthy advancement, enriching the strategies for the generation of a varied array of bispecific and multispecific antibodies.
Collapse
Affiliation(s)
- Yuanzhi Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Zhiren Zeng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Ziyou Chen
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Na Yuan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Xinya Ye
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| | - Chengcheng Zhang
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
- Department of Developmental Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
- Research Unit of Frontier Technology of Structural Vaccinology, Chinese Academy of Medical Sciences, Xiamen 361102, China
| | - Wenxin Luo
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Public Health and School of Life Sciences, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, Xiamen University, Xiamen 361102, China
| |
Collapse
|
11
|
Achón Buil B, Rentsch NH, Weber RZ, Rickenbach C, Halliday SJ, Hotta A, Tackenberg C, Rust R. Beneath the radar: immune-evasive cell sources for stroke therapy. Trends Mol Med 2024; 30:223-238. [PMID: 38272713 DOI: 10.1016/j.molmed.2023.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
Stem cell therapy is an emerging treatment paradigm for stroke patients with remaining neurological deficits. While allogeneic cell transplants overcome the manufacturing constraints of autologous grafts, they can be rejected by the recipient's immune system, which identifies foreign cells through the human leukocyte antigen (HLA) system. The heterogeneity of HLA molecules in the human population would require a very high number of cell lines, which may still be inadequate for patients with rare genetic HLAs. Here, we outline key progress in genetic HLA engineering in pluripotent stem and derived cells to evade the host's immune system, reducing the number of allogeneic cell lines required, and examine safety measures explored in both preclinical studies and upcoming clinical trials.
Collapse
Affiliation(s)
- Beatriz Achón Buil
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Nora H Rentsch
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Rebecca Z Weber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Chiara Rickenbach
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Stefanie J Halliday
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Akitsu Hotta
- Center for iPS cell Research and Application, Kyoto University, Kyoto, Japan
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland; Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, USA; Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, 1501 San Pablo St, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Mikhaylov V, Brambley CA, Keller GLJ, Arbuiso AG, Weiss LI, Baker BM, Levine AJ. Accurate modeling of peptide-MHC structures with AlphaFold. Structure 2024; 32:228-241.e4. [PMID: 38113889 PMCID: PMC10872456 DOI: 10.1016/j.str.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/17/2023] [Accepted: 11/22/2023] [Indexed: 12/21/2023]
Abstract
Major histocompatibility complex (MHC) proteins present peptides on the cell surface for T cell surveillance. Reliable in silico prediction of which peptides would be presented and which T cell receptors would recognize them is an important problem in structural immunology. Here, we introduce an AlphaFold-based pipeline for predicting the three-dimensional structures of peptide-MHC complexes for class I and class II MHC molecules. Our method demonstrates high accuracy, outperforming existing tools in class I modeling accuracy and class II peptide register prediction. We validate its performance and utility with new experimental data on a recently described cancer neoantigen/wild-type peptide pair and explore applications toward improving peptide-MHC binding prediction.
Collapse
Affiliation(s)
- Victor Mikhaylov
- The Simons Center for Systems Biology, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA.
| | - Chad A Brambley
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Grant L J Keller
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Alyssa G Arbuiso
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Laura I Weiss
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Arnold J Levine
- The Simons Center for Systems Biology, Institute for Advanced Study, 1 Einstein Drive, Princeton, NJ 08540, USA
| |
Collapse
|
13
|
Ravindranath MH, Ravindranath NM, Amato-Menker CJ, El Hilali F, Filippone EJ. Diversity in the HLA-I Recognition of HLA-F Monoclonal Antibodies: HLA-F or HLA-Ib Monospecific, HLA-E or HLA-G Bispecific Antibodies with or without HLA-Ia Reactivity. Antibodies (Basel) 2024; 13:8. [PMID: 38390869 PMCID: PMC10885067 DOI: 10.3390/antib13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 11/06/2023] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
Previous investigators have used various anti-HLA-F monoclonal antibodies (mAbs) to demonstrate that the tissue distribution of HLA-F is highly restricted. Notably, these mAbs differed in their immunodiagnostic capabilities. Specifically, mAbs Fpep1.1 and FG1 detected HLA-F intracellularly in B cells but not on the cell surface, whereas mAb 3D11 detected HLA-F on the cell surface. The presence of HLA-F on T cells was recognized by mAb FG1 but not by mAb Fpep1.1. mAb 3D11 detected HLA-F on the cell surface of activated B cells and on peripheral blood lymphocytes, but not on the normal cells. Importantly, mAb 3D11 revealed that HLA-F exists as a heavy chain (HC) monomer, rather than as an HC associated with B2m. Although these mAbs are believed to be specific to HLA-F, their monospecificity has not been formally established, which is critical for immunodiagnostic and therapeutic purposes. Previously, we investigated the diversity of HLA class I reactivities of anti-HLA-E mAbs using HLA-I coated multiplex bead assays on a Luminex platform. We reported that more than 80% of the HLA-E mAbs were cross-reactive with other HLA-I molecules, with exceptionally few truly HLA-E-monospecific mAbs. In the present investigation, we generated IgG mAbs against HCs of HLA-F in Balb/C mice and examined the cross-reactivity of anti-HLA-F mAbs with other HLA-I alleles using a multiplex bead assay on the Luminex platform. Beads coated with an array of HLA homo- and heterodimers of different HLA-Ia (HLA-A, HLA-B, and HLA-C) and Ib (HLA-E, HLA-F, and HLA-G) alleles were used to examine the binding of the anti-HLA-F mAbs. Only two mAbs were HLA-F monospecific, and five were HLA-Ib restricted. Several anti-HLA-F mAbs cross-reacted with HLA-E (n = 4), HLA-G (n = 3), HLA-Ia alleles (n = 9), HLA-G and HLA-Ia (n = 2), and HLA-Ib and HLA-Ia (n = 6). This monospecificity and polyreactivity were corroborated by the presence of HLA-F monospecific and HLA-I-shared sequences. This study emphasizes the need to monitor the mono-specificity of HLA-F for reliable immunodiagnostics and passive immunotherapy.
Collapse
Affiliation(s)
- Mepur H Ravindranath
- Department of Hematology and Oncology, Children's Hospital, Los Angeles, CA 90027, USA
- Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
| | - Narendranath M Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA
| | - Carly J Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibnou Zohr University, Agadir 80000, Morocco
| | - Edward J Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA
| |
Collapse
|
14
|
Lim WC, Marques Da Costa ME, Godefroy K, Jacquet E, Gragert L, Rondof W, Marchais A, Nhiri N, Dalfovo D, Viard M, Labaied N, Khan AM, Dessen P, Romanel A, Pasqualini C, Schleiermacher G, Carrington M, Zitvogel L, Scoazec JY, Geoerger B, Salmon J. Divergent HLA variations and heterogeneous expression but recurrent HLA loss-of- heterozygosity and common HLA-B and TAP transcriptional silencing across advanced pediatric solid cancers. Front Immunol 2024; 14:1265469. [PMID: 38318504 PMCID: PMC10839790 DOI: 10.3389/fimmu.2023.1265469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/06/2023] [Indexed: 02/07/2024] Open
Abstract
The human leukocyte antigen (HLA) system is a major factor controlling cancer immunosurveillance and response to immunotherapy, yet its status in pediatric cancers remains fragmentary. We determined high-confidence HLA genotypes in 576 children, adolescents and young adults with recurrent/refractory solid tumors from the MOSCATO-01 and MAPPYACTS trials, using normal and tumor whole exome and RNA sequencing data and benchmarked algorithms. There was no evidence for narrowed HLA allelic diversity but discordant homozygosity and allele frequencies across tumor types and subtypes, such as in embryonal and alveolar rhabdomyosarcoma, neuroblastoma MYCN and 11q subtypes, and high-grade glioma, and several alleles may represent protective or susceptibility factors to specific pediatric solid cancers. There was a paucity of somatic mutations in HLA and antigen processing and presentation (APP) genes in most tumors, except in cases with mismatch repair deficiency or genetic instability. The prevalence of loss-of-heterozygosity (LOH) ranged from 5.9 to 7.7% in HLA class I and 8.0 to 16.7% in HLA class II genes, but was widely increased in osteosarcoma and glioblastoma (~15-25%), and for DRB1-DQA1-DQB1 in Ewing sarcoma (~23-28%) and low-grade glioma (~33-50%). HLA class I and HLA-DR antigen expression was assessed in 194 tumors and 44 patient-derived xenografts (PDXs) by immunochemistry, and class I and APP transcript levels quantified in PDXs by RT-qPCR. We confirmed that HLA class I antigen expression is heterogeneous in advanced pediatric solid tumors, with class I loss commonly associated with the transcriptional downregulation of HLA-B and transporter associated with antigen processing (TAP) genes, whereas class II antigen expression is scarce on tumor cells and occurs on immune infiltrating cells. Patients with tumors expressing sufficient HLA class I and TAP levels such as some glioma, osteosarcoma, Ewing sarcoma and non-rhabdomyosarcoma soft-tissue sarcoma cases may more likely benefit from T cell-based approaches, whereas strategies to upregulate HLA expression, to expand the immunopeptidome, and to target TAP-independent epitopes or possibly LOH might provide novel therapeutic opportunities in others. The consequences of HLA class II expression by immune cells remain to be established. Immunogenetic profiling should be implemented in routine to inform immunotherapy trials for precision medicine of pediatric cancers.
Collapse
Affiliation(s)
- Wan Ching Lim
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- School of Data Sciences, Perdana University, Kuala Lumpur, Malaysia
| | | | - Karine Godefroy
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Eric Jacquet
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Loren Gragert
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA, United States
| | - Windy Rondof
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Naima Nhiri
- Institut de Chimie des Substances Naturelles, CNRS UPR2301, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Davide Dalfovo
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Mathias Viard
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
| | - Nizar Labaied
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Asif M. Khan
- School of Data Sciences, Perdana University, Kuala Lumpur, Malaysia
| | - Philippe Dessen
- Bioinformatics Platform, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Alessandro Romanel
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, Trento, Italy
| | - Claudia Pasqualini
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Gudrun Schleiermacher
- INSERM U830, Recherche Translationnelle en Oncologie Pédiatrique (RTOP), and SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), PSL Research University, Institut Curie, Paris, France
| | - Mary Carrington
- Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, United States
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, United States
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA, United States
| | - Laurence Zitvogel
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Jean-Yves Scoazec
- Department of Pathology and Laboratory Medicine, Translational Research Laboratory and Biobank, AMMICA, INSERM US23/CNRS UMS3655, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Birgit Geoerger
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Jerome Salmon
- INSERM U1015, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
15
|
Suttichet TB, Chamnanphon M, Pongpanich M, Chokyakorn S, Kupatawintu P, Srichomthong C, Chetruengchai W, Chuntakaruk H, Rungrotmongkol T, Chariyavilaskul P, Shotelersuk V, Praditpornsilpa K. HLA-B*46:01:01:01 and HLA-DRB1*09:01:02:01 are associated with anti-rHuEPO-induced pure red cell aplasia. Sci Rep 2023; 13:22759. [PMID: 38123661 PMCID: PMC10733298 DOI: 10.1038/s41598-023-50211-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
Treatment of anemia in patients with chronic kidney disease (CKD) with recombinant human erythropoietin (rHuEPO) can be disrupted by a severe complication, anti-rHuEPO-induced pure red cell aplasia (PRCA). Specific HLA genotypes may have played a role in the high incidence of PRCA in Thai patients (1.7/1,000 patient years vs. 0.03/10,000 patient years in Caucasians). We conducted a case-control study in 157 CKD patients with anti-rHuEPO-induced PRCA and 56 controls. The HLA typing was determined by sequencing using a highly accurate multiplex single-molecule, real-time, long-read sequencing platform. Four analytical models were deployed: Model 1 (additive: accounts for the number of alleles), Model 2 (dominant: accounts for only the presence or absence of alleles), Model 3 (adjusted additive with rHuEPO types) and Model 4 (adjusted dominant with rHuEPO types). HLA-B*46:01:01:01 and DRB1*09:01:02:01 were found to be independent risk markers for anti-rHuEPO-induced PRCA in all models [OR (95%CI), p-values for B*46:01:01:01: 4.58 (1.55-13.51), 0.006; 4.63 (1.56-13.75), 0.006; 5.72 (1.67-19.67), 0.006; and 5.81 (1.68-20.09), 0.005; for DRB1*09:01:02:01: 3.99 (1.28-12.49), 0.017, 4.50 (1.32-15.40), 0.016, 3.42 (1.09-10.74), 0.035, and 3.75 (1.08-13.07), 0.038, in Models 1-4, respectively. HLA-B*46:01:01:01 and DRB1*09:01:02:01 are susceptible alleles for anti-rHuEPO-induced PRCA. These findings support the role of HLA genotyping in helping to monitor patients receiving rHuEPO treatment.
Collapse
Affiliation(s)
- Thitima Benjachat Suttichet
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Monpat Chamnanphon
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Monnat Pongpanich
- Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Faculty of Science, Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand
| | - Sarun Chokyakorn
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Chalurmpon Srichomthong
- Department of Pediatrics, Faculty of Medicine, Center of Excellence for Medical Genomics, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Wanna Chetruengchai
- Department of Pediatrics, Faculty of Medicine, Center of Excellence for Medical Genomics, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Hathaichanok Chuntakaruk
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok, Thailand
| | - Pajaree Chariyavilaskul
- Center of Excellence in Clinical Pharmacokinetics and Pharmacogenomics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
- Department of Pharmacology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| | - Vorasuk Shotelersuk
- Department of Pediatrics, Faculty of Medicine, Center of Excellence for Medical Genomics, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Kearkiat Praditpornsilpa
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
16
|
Nersesian S, Carter EB, Lee SN, Westhaver LP, Boudreau JE. Killer instincts: natural killer cells as multifactorial cancer immunotherapy. Front Immunol 2023; 14:1269614. [PMID: 38090565 PMCID: PMC10715270 DOI: 10.3389/fimmu.2023.1269614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
Natural killer (NK) cells integrate heterogeneous signals for activation and inhibition using germline-encoded receptors. These receptors are stochastically co-expressed, and their concurrent engagement and signaling can adjust the sensitivity of individual cells to putative targets. Against cancers, which mutate and evolve under therapeutic and immunologic pressure, the diversity for recognition provided by NK cells may be key to comprehensive cancer control. NK cells are already being trialled as adoptive cell therapy and targets for immunotherapeutic agents. However, strategies to leverage their naturally occurring diversity and agility have not yet been developed. In this review, we discuss the receptors and signaling pathways through which signals for activation or inhibition are generated in NK cells, focusing on their roles in cancer and potential as targets for immunotherapies. Finally, we consider the impacts of receptor co-expression and the potential to engage multiple pathways of NK cell reactivity to maximize the scope and strength of antitumor activities.
Collapse
Affiliation(s)
- Sarah Nersesian
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Emily B. Carter
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Stacey N. Lee
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | | | - Jeanette E. Boudreau
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
17
|
Paganini J, Faux P, Beley S, Picard C, Chiaroni J, Di Cristofaro J. HLA-F transcriptional and protein differential expression according to its genetic polymorphisms. HLA 2023; 102:578-589. [PMID: 37166140 DOI: 10.1111/tan.15087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 03/21/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023]
Abstract
Many specificities single out HLA-F: its structure, expression regulation at cell membrane and function. HLA-F mRNA is detected in the most cell types and the protein is localized in the ER and Golgi apparatus. When expressed at cell surface, HLA-F may be associated to β2-microglobulin and peptide or expressed as an open-conformer molecule. HLA-F reaches the membrane upon activation of different primary cell types and cell-lines. HLA-F has its highest affinity for the KIR3DS1-activating NK receptor, but also binds inhibitory immune receptors. Some studies reported that HLA-F expression is associated with its genotype. Higher HLA-F mRNA expression associated with F*01:01:02, and 3 noncoding SNPs, rs1362126, rs2523405, and rs2523393, located in HLA-F-AS1 or upstream the HLA-F sequence were associated with HLA-F mRNA expression. Given the implication of HLA-F in many clinical setting, and the undisclosed process of its expression regulation, we aim to confirm the effect of the aforementioned SNPs with HLA-F transcriptional and protein expression. We analyzed the distribution, frequency and linkage disequilibrium of these SNPs at worldwide scale in the 1000 Genomes Project samples. Influence on the genotype of each SNP on HLA-F expression was explored using RNAseq data from the 1000 Genomes Project, and using Q-PCR and intracellular cytometry in PBMC from healthy individuals. Our results show that the SNPs under studied displayed remarkably different allelic proportion according to geography and confirm that rs1362126, rs2523405, and rs2523393 displayed the most concordant results, with the highest effect size and a double-dose effect.
Collapse
Affiliation(s)
| | - Pierre Faux
- GenPhySE, Université de Toulouse, INRAE, INPT, INP-ENVT, Castanet Tolosan, France
- Aix Marseille University, CNRS, EFS, ADES, UMR7268, Marseille, France
| | - Sophie Beley
- Aix Marseille University, CNRS, EFS, ADES, UMR7268, Marseille, France
- Etablissement Français du Sang PACA Corse, Marseille, France
| | - Christophe Picard
- Aix Marseille University, CNRS, EFS, ADES, UMR7268, Marseille, France
- Etablissement Français du Sang PACA Corse, Marseille, France
| | - Jacques Chiaroni
- Aix Marseille University, CNRS, EFS, ADES, UMR7268, Marseille, France
- Etablissement Français du Sang PACA Corse, Marseille, France
| | - Julie Di Cristofaro
- Aix Marseille University, CNRS, EFS, ADES, UMR7268, Marseille, France
- Etablissement Français du Sang PACA Corse, Marseille, France
| |
Collapse
|
18
|
Zeller T, Münnich IA, Windisch R, Hilger P, Schewe DM, Humpe A, Kellner C. Perspectives of targeting LILRB1 in innate and adaptive immune checkpoint therapy of cancer. Front Immunol 2023; 14:1240275. [PMID: 37781391 PMCID: PMC10533923 DOI: 10.3389/fimmu.2023.1240275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023] Open
Abstract
Immune checkpoint blockade is a compelling approach in tumor immunotherapy. Blocking inhibitory pathways in T cells has demonstrated clinical efficacy in different types of cancer and may hold potential to also stimulate innate immune responses. A novel emerging potential target for immune checkpoint therapy is leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1). LILRB1 belongs to the superfamily of leukocyte immunoglobulin-like receptors and exerts inhibitory functions. The receptor is expressed by a variety of immune cells including macrophages as well as certain cytotoxic lymphocytes and contributes to the regulation of different immune responses by interaction with classical as well as non-classical human leukocyte antigen (HLA) class I molecules. LILRB1 has gained increasing attention as it has been demonstrated to function as a phagocytosis checkpoint on macrophages by recognizing HLA class I, which represents a 'Don't Eat Me!' signal that impairs phagocytic uptake of cancer cells, similar to CD47. The specific blockade of the HLA class I:LILRB1 axis may provide an option to promote phagocytosis by macrophages and also to enhance cytotoxic functions of T cells and natural killer (NK) cells. Currently, LILRB1 specific antibodies are in different stages of pre-clinical and clinical development. In this review, we introduce LILRB1 and highlight the features that make this immune checkpoint a promising target for cancer immunotherapy.
Collapse
Affiliation(s)
- Tobias Zeller
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Ira A. Münnich
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Roland Windisch
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Patricia Hilger
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Denis M. Schewe
- Medical Faculty, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Humpe
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| | - Christian Kellner
- Division of Transfusion Medicine, Cell Therapeutics and Haemostaseology, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
19
|
Papúchová H, Saxtorph MH, Hallager T, Jepsen IE, Eriksen JO, Persson G, Funck T, Weisdorf I, Macklon N, Larsen LG, Hviid TVF. Opposing impacts of HLA-G haplotypes PROMO-G010104-UTR-3 and PROMO-G010101b/c-UTR-4 on risk of recurrent implantation failure. Reprod Biomed Online 2023; 47:103225. [PMID: 37330336 DOI: 10.1016/j.rbmo.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 06/19/2023]
Abstract
RESEARCH QUESTION The human leukocyte antigen (HLA) class Ib molecules HLA-F and HLA-G are implicated in pregnancy success, but how do HLA-G and HLA-F genetic polymorphisms impact recurrent implantation failure (RIF)? DESIGN Prospective cohort study at a fertility clinic including a cohort of 84 women experiencing RIF and 35 IVF controls to assess the influence of HLA-G haplotypes and diplotypes and HLA-F single nucleotide polymorphisms (SNP) on RIF. RESULTS Over-representation trends for HLA-F SNP genotypes rs1362126, rs2523405 and rs2523393, previously linked with a short time-to-pregnancy, were detected in female control groups compared with RIF patients with no identified pathology linked to infertility. The HLA-G promoter haplotype PROMO-G010101b/c linked with the HLA-G 3'-untranslated region (3'UTR) haplotype UTR-4, which previously has been associated with positive IVF outcome and pregnancy success, was less frequent in the RIF group. For RIF patients carrying the UTR-4 haplotype, the odds ratio (OR) was 0.27 (95% CI 0.12-0.66; P = 0.0044, Pc = 0.026). The HLA-G PROMO-G010104-UTR-3 haplotype was associated with an increased risk of RIF. For RIF patients carrying the UTR-3 haplotype, the OR was 5.86 (95% CI 1.52-26.23; P = 0.0115, Pc = 0.069). CONCLUSIONS These results show that specific HLA-G haplotypes based on the promoter region and the 3'UTR are either associated with an increased risk of reduced fertility, including the manifestation of RIF, and lower chance of achieving pregnancy, or with a reduced risk of experiencing RIF.
Collapse
Affiliation(s)
- Henrieta Papúchová
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| | - Malene Hviid Saxtorph
- Department of Clinical Medicine, University of Copenhagen, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Denmark; Department of Gynecology, Obstetrics and Fertility, Zealand University Hospital, Denmark
| | - Trine Hallager
- The ReproHealth Research Consortium, Zealand University Hospital, Denmark; Department of Pathology, Zealand University Hospital, Denmark
| | - Ida E Jepsen
- Department of Clinical Medicine, University of Copenhagen, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Denmark; Department of Gynecology, Obstetrics and Fertility, Zealand University Hospital, Denmark
| | - Jens O Eriksen
- The ReproHealth Research Consortium, Zealand University Hospital, Denmark; Department of Pathology, Zealand University Hospital, Denmark
| | - Gry Persson
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| | - Tina Funck
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| | - Iben Weisdorf
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| | - Nicholas Macklon
- Department of Clinical Medicine, University of Copenhagen, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Denmark; Department of Gynecology, Obstetrics and Fertility, Zealand University Hospital, Denmark; London Women's Clinic, London, UK
| | - Lise Grupe Larsen
- The ReproHealth Research Consortium, Zealand University Hospital, Denmark; Department of Pathology, Zealand University Hospital, Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark; The ReproHealth Research Consortium, Zealand University Hospital, Denmark.
| |
Collapse
|
20
|
Ravindranath MH, Ravindranath NM, Selvan SR, Hilali FE, Amato-Menker CJ, Filippone EJ. Cell Surface B2m-Free Human Leukocyte Antigen (HLA) Monomers and Dimers: Are They Neo-HLA Class and Proto-HLA? Biomolecules 2023; 13:1178. [PMID: 37627243 PMCID: PMC10452486 DOI: 10.3390/biom13081178] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cell surface HLA-I molecules (Face-1) consist of a polypeptide heavy chain (HC) with two groove domains (G domain) and one constant domain (C-domain) as well as a light chain, B2-microglobulin (B2m). However, HCs can also independently emerge unfolded on the cell surface without peptides as B2m-free HC monomers (Face-2), B2m-free HC homodimers (Face 3), and B2m-free HC heterodimers (Face-4). The transport of these HLA variants from ER to the cell surface was confirmed by antiviral antibiotics that arrest the release of newly synthesized proteins from the ER. Face-2 occurs at low levels on the normal cell surface of the lung, bronchi, epidermis, esophagus, breast, stomach, ilium, colorectum, gall bladder, urinary bladder, seminal vesicles ovarian epithelia, endometrium, thymus, spleen, and lymphocytes. They are upregulated on immune cells upon activation by proinflammatory cytokines, anti-CD3 antibodies, antibiotics (e.g., ionomycin), phytohemagglutinin, retinoic acid, and phorbol myristate acetate. Their density on the cell surface remains high as long as the cells remain in an activated state. After activation-induced upregulation, the Face-2 molecules undergo homo- and hetero-dimerization (Face-3 and Face-4). Alterations in the redox environment promote dimerization. Heterodimerization can occur among and between the alleles of different haplotypes. The glycosylation of these variants differ from that of Face-1, and they may occur with bound exogenous peptides. Spontaneous arthritis occurs in HLA-B27+ mice lacking B2m (HLA-B27+ B2m-/-) but not in HLA-B27+ B2m+/- mice. The mice with HLA-B27 in Face-2 spontaneous configuration develop symptoms such as changes in nails and joints, hair loss, and swelling in paws, leading to ankyloses. Anti-HC-specific mAbs delay disease development. Some HLA-I polyreactive mAbs (MEM series) used for immunostaining confirm the existence of B2m-free variants in several cancer cells. The upregulation of Face-2 in human cancers occurs concomitantly with the downregulation of intact HLAs (Face-1). The HLA monomeric and dimeric variants interact with inhibitory and activating ligands (e.g., KIR), growth factors, cytokines, and neurotransmitters. Similarities in the amino acid sequences of the HLA-I variants and HLA-II β-chain suggest that Face-2 could be the progenitor of both HLA classes. These findings may support the recognition of these variants as a neo-HLA class and proto-HLA.
Collapse
Affiliation(s)
- Mepur H. Ravindranath
- Department of Hematology and Oncology, Children’s Hospital, Los Angeles, CA 90027, USA
- Terasaki Foundation Laboratory, Santa Monica, CA 90064, USA
| | - Narendranath M. Ravindranath
- Norris Dental Science Center, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90089, USA;
| | - Senthamil R. Selvan
- Division of Immunology and Hematology Devices, OHT 7: Office of In Vitro Diagnostics, Office of Product Evaluation and Quality, Center for Devices and Radiological Health, Food and Drug Administration (FDA), Silver Spring, MD 20993, USA;
| | - Fatiha El Hilali
- Medico-Surgical, Biomedicine and Infectiology Research Laboratory, The Faculty of Medicine and Pharmacy of Laayoune & Agadir, Ibnou Zohr University, Agadir 80000, Morocco;
| | - Carly J. Amato-Menker
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA;
| | - Edward J. Filippone
- Division of Nephrology, Department of Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA 19145, USA;
| |
Collapse
|
21
|
Sun Y, Young MC, Woodward CH, Danon JN, Truong HV, Gupta S, Winters TJ, Font-Burgada J, Burslem GM, Sgourakis NG. Universal open MHC-I molecules for rapid peptide loading and enhanced complex stability across HLA allotypes. Proc Natl Acad Sci U S A 2023; 120:e2304055120. [PMID: 37310998 PMCID: PMC10288639 DOI: 10.1073/pnas.2304055120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/18/2023] [Indexed: 06/15/2023] Open
Abstract
The polymorphic nature and intrinsic instability of class I major histocompatibility complex (MHC-I) and MHC-like molecules loaded with suboptimal peptides, metabolites, or glycolipids presents a fundamental challenge for identifying disease-relevant antigens and antigen-specific T cell receptors (TCRs), hindering the development of autologous therapeutics. Here, we leverage the positive allosteric coupling between the peptide and light chain (β2 microglobulin, β2m) subunits for binding to the MHC-I heavy chain (HC) through an engineered disulfide bond bridging conserved epitopes across the HC/β2m interface, to generate conformationally stable, peptide-receptive molecules named "open MHC-I." Biophysical characterization shows that open MHC-I molecules are properly folded protein complexes of enhanced thermal stability compared to the wild type when loaded with low- to moderate-affinity peptides. Using solution NMR, we characterize the effects of the disulfide bond on the conformation and dynamics of the MHC-I structure, ranging from local changes in β2m-interacting sites of the peptide-binding groove to long-range effects on the α2-1 helix and α3 domain. The interchain disulfide bond stabilizes MHC-I molecules in an open conformation to promote peptide exchange across multiple human leukocyte antigen (HLA) allotypes, covering representatives from five HLA-A supertypes, six HLA-B supertypes, and oligomorphic HLA-Ib molecules. Our structure-guided design, combined with conditional β-peptide ligands, provides a universal platform to generate ready-to-load MHC-I systems of enhanced stability, enabling a range of approaches to screen antigenic epitope libraries and probe polyclonal TCR repertoires covering highly polymorphic HLA-I allotypes, as well as oligomorphic nonclassical molecules.
Collapse
Affiliation(s)
- Yi Sun
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Michael C. Young
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Claire H. Woodward
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Julia N. Danon
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Hau V. Truong
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Sagar Gupta
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Trenton J. Winters
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Joan Font-Burgada
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA19111
| | - George M. Burslem
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
- Department of Cancer Biology and Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Nikolaos G. Sgourakis
- Center for Computational and Genomic Medicine, Department of Pathology and Laboratory Medicine, The Children’s Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
22
|
Nabbi A, Danesh A, Espin-Garcia O, Pedersen S, Wellum J, Fu LH, Paulson JN, Geoerger B, Marshall LV, Trippett T, Rossato G, Pugh TJ, Hutchinson KE. Multimodal immunogenomic biomarker analysis of tumors from pediatric patients enrolled to a phase 1-2 study of single-agent atezolizumab. NATURE CANCER 2023; 4:502-515. [PMID: 37038005 PMCID: PMC10132976 DOI: 10.1038/s43018-023-00534-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/24/2023] [Indexed: 04/12/2023]
Abstract
We report herein an exploratory biomarker analysis of refractory tumors collected from pediatric patients before atezolizumab therapy (iMATRIX-atezolizumab, NCT02541604 ). Elevated levels of CD8+ T cells and PD-L1 were associated with progression-free survival and a diverse baseline infiltrating T-cell receptor repertoire was prognostic. Differential gene expression analysis revealed elevated expression of CALCA (preprocalcitonin) and CCDC183 (highly expressed in testes) in patients who experienced clinical activity, suggesting that tumor neoantigens from these genes may contribute to immune response. In patients who experienced partial response or stable disease, elevated Igα2 expression correlated with T- and B-cell infiltration, suggesting that tertiary lymphoid structures existed in these patients' tumors. Consensus gene co-expression network analysis identified core cellular pathways that may play a role in antitumor immunity. Our study uncovers features associated with response to immune-checkpoint inhibition in pediatric patients with cancer and provides biological and translational insights to guide prospective biomarker profiling in future clinical trials.
Collapse
Affiliation(s)
- Arash Nabbi
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Arnavaz Danesh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Osvaldo Espin-Garcia
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Epidemiology and Biostatistics, Western University, London, Ontario, Canada
- Dalla Lana School of Public Health and Department of Statistical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Stephanie Pedersen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Johanna Wellum
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Lingyan Helen Fu
- Clinical Biomarker Operations, Product Development Oncology, Genentech, South San Francisco, CA, USA
| | - Joseph N Paulson
- Department of Biostatistics, Product Development, Genentech, South San Francisco, CA, USA
| | - Birgit Geoerger
- Gustave Roussy Cancer Centre, Department of Pediatric and Adolescent Oncology, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Lynley V Marshall
- The Royal Marsden NHS Foundation Trust and the Institute of Cancer Research, London, UK
| | - Tanya Trippett
- Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gianluca Rossato
- Product Development Clinical Oncology, F. Hoffmann-La Roche, Basel, Switzerland
| | - Trevor J Pugh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| | | |
Collapse
|
23
|
Sun Y, Young MC, Woodward CH, Danon JN, Truong H, Gupta S, Winters TJ, Burslem G, Sgourakis NG. Universal open MHC-I molecules for rapid peptide loading and enhanced complex stability across HLA allotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533266. [PMID: 36993702 PMCID: PMC10055308 DOI: 10.1101/2023.03.18.533266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The polymorphic nature and intrinsic instability of class I major histocompatibility complex (MHC-I) and MHC-like molecules loaded with suboptimal peptides, metabolites, or glycolipids presents a fundamental challenge for identifying disease-relevant antigens and antigen-specific T cell receptors (TCRs), hindering the development of autologous therapeutics. Here, we leverage the positive allosteric coupling between the peptide and light chain (β 2 microglobulin, β 2 m) subunits for binding to the MHC-I heavy chain (HC) through an engineered disulfide bond bridging conserved epitopes across the HC/β 2 m interface, to generate conformationally stable, open MHC-I molecules. Biophysical characterization shows that open MHC-I molecules are properly folded protein complexes of enhanced thermal stability compared to the wild type, when loaded with low- to intermediate-affinity peptides. Using solution NMR, we characterize the effects of the disulfide bond on the conformation and dynamics of the MHC-I structure, ranging from local changes in β 2 m interacting sites of the peptide binding groove to long-range effects on the α 2-1 helix and α 3 domain. The interchain disulfide bond stabilizes empty MHC-I molecules in a peptide-receptive, open conformation to promote peptide exchange across multiple human leucocyte antigen (HLA) allotypes, covering representatives from five HLA-A, six HLA-B supertypes, and oligomorphic HLA-Ib molecules. Our structural design, combined with conditional β-peptide ligands, provides a universal platform for generating ready-to-load MHC-I systems of enhanced stability, enabling a range of approaches to screen antigenic epitope libraries and probe polyclonal TCR repertoires in the context of highly polymorphic HLA-I allotypes, as well as oligomorphic nonclassical molecules. Significance Statement We outline a structure-guided approach for generating conformationally stable, open MHC-I molecules with enhanced ligand exchange kinetics spanning five HLA-A, all HLA-B supertypes, and oligomorphic HLA-Ib allotypes. We present direct evidence of positive allosteric cooperativity between peptide binding and β 2 m association with the heavy chain by solution NMR and HDX-MS spectroscopy. We demonstrate that covalently linked β 2 m serves as a conformational chaperone to stabilize empty MHC-I molecules in a peptide-receptive state, by inducing an open conformation and preventing intrinsically unstable heterodimers from irreversible aggregation. Our study provides structural and biophysical insights into the conformational properties of MHC-I ternary complexes, which can be further applied to improve the design of ultra-stable, universal ligand exchange systems in a pan-HLA allelic setting.
Collapse
|
24
|
Mikhaylov V, Levine AJ. Accurate modeling of peptide-MHC structures with AlphaFold. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531396. [PMID: 36945436 PMCID: PMC10028922 DOI: 10.1101/2023.03.06.531396] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Major histocompatibility complex (MHC) proteins present peptides on the cell surface for T-cell surveillance. Reliable in silico prediction of which peptides would be presented and which T-cell receptors would recognize them is an important problem in structural immunology. Here, we introduce an AlphaFold-based pipeline for predicting the three-dimensional structures of peptide-MHC complexes for class I and class II MHC molecules. Our method demonstrates high accuracy, outperforming existing tools in class I modeling precision and class II peptide register prediction. We explore applications of this method towards improving peptide-MHC binding prediction.
Collapse
Affiliation(s)
- Victor Mikhaylov
- Institute for Advanced Study, 1 Einstein Dr., Princeton, NJ 08540
| | - Arnold J Levine
- Institute for Advanced Study, 1 Einstein Dr., Princeton, NJ 08540
| |
Collapse
|
25
|
Nakayama M, Marchi H, Dmitrieva AM, Chakraborty A, Merl-Pham J, Hennen E, Le Gleut R, Ruppert C, Guenther A, Kahnert K, Behr J, Hilgendorff A, Hauck SM, Adler H, Staab-Weijnitz CA. Quantitative proteomics of differentiated primary bronchial epithelial cells from chronic obstructive pulmonary disease and control identifies potential novel host factors post-influenza A virus infection. Front Microbiol 2023; 13:957830. [PMID: 36713229 PMCID: PMC9875134 DOI: 10.3389/fmicb.2022.957830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) collectively refers to chronic and progressive lung diseases that cause irreversible limitations in airflow. Patients with COPD are at high risk for severe respiratory symptoms upon influenza virus infection. Airway epithelial cells provide the first-line antiviral defense, but whether or not their susceptibility and response to influenza virus infection changes in COPD have not been elucidated. Therefore, this study aimed to compare the susceptibility of COPD- and control-derived airway epithelium to the influenza virus and assess protein changes during influenza virus infection by quantitative proteomics. Materials and methods The presence of human- and avian-type influenza A virus receptor was assessed in control and COPD lung sections as well as in fully differentiated primary human bronchial epithelial cells (phBECs) by lectin- or antibody-based histochemical staining. PhBECs were from COPD lungs, including cells from moderate- and severe-stage diseases, and from age-, sex-, smoking, and history-matched control lung specimens. Protein profiles pre- and post-influenza virus infection in vitro were directly compared using quantitative proteomics, and selected findings were validated by qRT-PCR and immunoblotting. Results The human-type influenza receptor was more abundant in human airways than the avian-type influenza receptor, a property that was retained in vitro when differentiating phBECs at the air-liquid interface. Proteomics of phBECs pre- and post-influenza A virus infection with A/Puerto Rico/8/34 (PR8) revealed no significant differences between COPD and control phBECs in terms of flu receptor expression, cell type composition, virus replication, or protein profile pre- and post-infection. Independent of health state, a robust antiviral response to influenza virus infection was observed, as well as upregulation of several novel influenza virus-regulated proteins, including PLSCR1, HLA-F, CMTR1, DTX3L, and SHFL. Conclusion COPD- and control-derived phBECs did not differ in cell type composition, susceptibility to influenza virus infection, and proteomes pre- and post-infection. Finally, we identified novel influenza A virus-regulated proteins in bronchial epithelial cells that might serve as potential targets to modulate the pathogenicity of infection and acute exacerbations.
Collapse
Affiliation(s)
- Misako Nakayama
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hannah Marchi
- Core Facility Statistical Consulting, Helmholtz Zentrum München, Munich, Germany,Faculty of Business Administration and Economics, Bielefeld University, Bielefeld, Germany
| | - Anna M. Dmitrieva
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ashesh Chakraborty
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Juliane Merl-Pham
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Elisabeth Hennen
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Ronan Le Gleut
- Core Facility Statistical Consulting, Helmholtz Zentrum München, Munich, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), Giessen, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Medizinische Klinik II, Member of the German Center of Lung Research (DZL), Giessen, Germany
| | - Kathrin Kahnert
- Department of Medicine V, Ludwig Maximilian University (LMU) Munich, Member of the German Center of Lung Research, University Hospital, Munich, Germany
| | - Jürgen Behr
- Department of Medicine V, Ludwig Maximilian University (LMU) Munich, Member of the German Center of Lung Research, University Hospital, Munich, Germany
| | - Anne Hilgendorff
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefanie M. Hauck
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, Neuherberg, Germany
| | - Heiko Adler
- Research Unit Lung Repair and Regeneration, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Institute of Asthma and Allergy Prevention, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,*Correspondence: Heiko Adler,
| | - Claudia A. Staab-Weijnitz
- Institute of Lung Health and Immunity and Comprehensive Pneumology Center with the CPC-M BioArchive, Helmholtz Zentrum München, Member of the German Center of Lung Research (DZL), Munich, Germany,Claudia A. Staab-Weijnitz, ; https://orcid.org/0000-0002-1211-7834
| |
Collapse
|
26
|
Silencing of circCRIM1 Drives IGF2BP1-Mediated NSCLC Immune Evasion. Cells 2023; 12:cells12020273. [PMID: 36672208 PMCID: PMC9856323 DOI: 10.3390/cells12020273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/17/2022] [Accepted: 12/25/2022] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Circular RNAs (circRNAs) have been found to have significant impacts on non-small cell lung cancer (NSCLC) progression through various mechanisms. However, the mechanism of circRNAs modulating tumor immune evasion in NSCLC has yet to be well-revealed. MATERIALS AND METHODS Through analyzing the expression profiles of circRNAs in NSCLC tissues, RNA FISH, pull-down assay, mass spectrometry analysis, and RIP, circCRIM1 was identified, and its interaction with IGF2BP1 was confirmed. The effects of circCRIM1 on modulating tumor immune evasion were explored via co-culture in vitro and in tumor xenograft models. Subsequently, we evaluated the regulatory effects of circCRIM1 on IGF2BP1 and screened its target genes through RNA sequencing. Finally, we explored the underlying molecular mechanisms that circCRIM1 could regulate the stability of target mRNA. RESULTS circCRIM1 was downregulated in NSCLC, and its expression was positively correlated with favorable prognoses. Furthermore, circCRIM1 was more stable than its linear transcript and was mainly localized in the cytoplasm. Mechanistically, circCRIM1 destabilized HLA-F mRNA via competitive binding to IGF2BP1. Importantly, the overexpression of circCRIM1 suppressed the immune evasion of NSCLC and promoted the expressions of Granzyme B, IFN-γ, and TNF-α of CD8+ T and NK cell in vitro co-culture assays and tumor xenograft models. CONCLUSIONS This study identifies circCRIM1 as a new tumor suppressor that inhibits tumor immune evasion through a competitive combination with IGF2BP1 to destabilize HLA-F mRNA.
Collapse
|
27
|
Zeng L, Chen K, Xiao F, Zhu CY, Bai JY, Tan S, Long L, Wang Y, Zhou Q. Potential common molecular mechanisms between Sjögren syndrome and inclusion body myositis: a bioinformatic analysis and in vivo validation. Front Immunol 2023; 14:1161476. [PMID: 37153570 PMCID: PMC10160489 DOI: 10.3389/fimmu.2023.1161476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/07/2023] [Indexed: 05/09/2023] Open
Abstract
Background Inclusion body myositis (IBM) is a slowly progressive inflammatory myopathy that typically affects the quadriceps and finger flexors. Sjögren's syndrome (SS), an autoimmune disorder characterized by lymphocytic infiltration of exocrine glands has been reported to share common genetic and autoimmune pathways with IBM. However, the exact mechanism underlying their commonality remains unclear. In this study, we investigated the common pathological mechanisms involved in both SS and IBM using a bioinformatic approach. Methods IBM and SS gene expression profiles were obtained from the Gene Expression Omnibus (GEO). SS and IBM coexpression modules were identified using weighted gene coexpression network analysis (WGCNA), and differentially expressed gene (DEG) analysis was applied to identify their shared DEGs. The hidden biological pathways were revealed using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Furthermore, protein-protein interaction (PPI) networks, cluster analyses, and hub shared gene identification were conducted. The expression of hub genes was validated by reverse transcription quantitative polymerase chain reaction (RT-qPCR). We then analyzed immune cell abundance patterns in SS and IBM using single-sample gene set enrichment analysis (ssGSEA) and investigated their association with hub genes. Finally, NetworkAnalyst was used to construct a common transcription factor (TF)-gene network. Results Using WGCNA, we found that 172 intersecting genes were closely related to viral infection and antigen processing/presentation. Based on DEG analysis, 29 shared genes were found to be upregulated and enriched in similar biological pathways. By intersecting the top 20 potential hub genes from the WGCNA and DEG sets, three shared hub genes (PSMB9, CD74, and HLA-F) were derived and validated to be active transcripts, which all exhibited diagnostic values for SS and IBM. Furthermore, ssGSEA showed similar infiltration profiles in IBM and SS, and the hub genes were positively correlated with the abundance of immune cells. Ultimately, two TFs (HDGF and WRNIP1) were identified as possible key TFs. Conclusion Our study identified that IBM shares common immunologic and transcriptional pathways with SS, such as viral infection and antigen processing/presentation. Furthermore, both IBM and SS have almost identical immune infiltration microenvironments, indicating similar immune responses may contribute to their association.
Collapse
Affiliation(s)
- Li Zeng
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Kai Chen
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Feng Xiao
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Chun-yan Zhu
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jia-ying Bai
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Song Tan
- Department of Neurology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, Chengdu, China
| | - Li Long
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Qiao Zhou, ; Yi Wang, ; Li Long,
| | - Yi Wang
- Department of Critical Care Medicine, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Qiao Zhou, ; Yi Wang, ; Li Long,
| | - Qiao Zhou
- Department of Rheumatology and Immunology, Sichuan Academy of Medical Science and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
- *Correspondence: Qiao Zhou, ; Yi Wang, ; Li Long,
| |
Collapse
|
28
|
Fiouane S, Chebbo M, Beley S, Paganini J, Picard C, D'Journo X, Thomas P, Chiaroni J, Chanez P, Gras D, Di Cristofaro J. Mobilisation of HLA-F on the surface of bronchial epithelial cells and platelets in asthmatic patients. HLA 2022; 100:491-499. [PMID: 35988034 PMCID: PMC9804204 DOI: 10.1111/tan.14782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/26/2022] [Accepted: 08/16/2022] [Indexed: 01/05/2023]
Abstract
Uncontrolled inflammation of the airways in chronic obstructive lung diseases leads to exacerbation, accelerated lung dysfunction and respiratory insufficiency. Among these diseases, asthma affects 358 million people worldwide. Human bronchial epithelium cells (HBEC) express both anti-inflammatory and activating molecules, and their deregulated expression contribute to immune cell recruitment and activation, especially platelets (PLT) particularly involved in lung tissue inflammation in asthma context. Previous results supported that HLA-G dysregulation in lung tissue is associated with immune cell activation. We investigated here HLA-F expression, reported to be mobilised on immune cell surface upon activation and displaying its highest affinity for the KIR3DS1-activating NK receptor. We explored HLA-F transcriptional expression in HBEC; HLA-F total expression in PBMC and HBEC collected from healthy individuals at rest and upon chemical activation and HLA-F membrane expression in PBMC, HBEC and PLT collected from healthy individuals at rest and upon chemical activation. We compared HLA-F transcriptional expression in HBEC from healthy individuals and asthmatic patients and its surface expression in HBEC and PLT from healthy individuals and asthmatic patients. Our results support that HLA-F is expressed by HBEC and PLT under healthy physiological conditions and is retained in cytoplasm, barely expressed on the surface, as previously reported in immune cells. In both cell types, HLA-F reaches the surface in the inflammatory asthma context whereas no effect is observed at the transcriptional level. Our study suggests that HLA-F surface expression is a ubiquitous post-transcriptional process in activated cells. It may be of therapeutic interest in controlling lung inflammation.
Collapse
Affiliation(s)
- Sabrina Fiouane
- CNRS, EFS, ADES, UMR7268Aix Marseille UniversityMarseilleFrance,Etablissement Français du Sang PACA CorseMarseilleFrance
| | - Mohamad Chebbo
- INSERM 1263, INRAE 1260, C2VNAix Marseille UniversityMarseilleFrance
| | - Sophie Beley
- CNRS, EFS, ADES, UMR7268Aix Marseille UniversityMarseilleFrance,Etablissement Français du Sang PACA CorseMarseilleFrance
| | | | - Christophe Picard
- CNRS, EFS, ADES, UMR7268Aix Marseille UniversityMarseilleFrance,Etablissement Français du Sang PACA CorseMarseilleFrance
| | - Xavier‐Benoît D'Journo
- Department of Thoracic Surgery, North HospitalAix‐Marseille University and Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | - Pascal‐Alexandre Thomas
- Department of Thoracic Surgery, North HospitalAix‐Marseille University and Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | - Jacques Chiaroni
- CNRS, EFS, ADES, UMR7268Aix Marseille UniversityMarseilleFrance,Etablissement Français du Sang PACA CorseMarseilleFrance
| | - Pascal Chanez
- INSERM 1263, INRAE 1260, C2VNAix Marseille UniversityMarseilleFrance,Clinique des Bronches, Allergies et SommeilNorth Hospital, Assistance Publique‐Hôpitaux de MarseilleMarseilleFrance
| | - Delphine Gras
- INSERM 1263, INRAE 1260, C2VNAix Marseille UniversityMarseilleFrance
| | - Julie Di Cristofaro
- CNRS, EFS, ADES, UMR7268Aix Marseille UniversityMarseilleFrance,Etablissement Français du Sang PACA CorseMarseilleFrance
| |
Collapse
|
29
|
Hu Y, Lu X, Qiu W, Liu H, Wang Q, Chen Y, Liu W, Feng F, Sun H. The Role of Leukocyte Immunoglobulin-Like Receptors Focusing on the Therapeutic Implications of the Subfamily B2. Curr Drug Targets 2022; 23:1430-1452. [PMID: 36017847 DOI: 10.2174/1389450123666220822201605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/21/2022] [Indexed: 01/25/2023]
Abstract
The leukocyte immunoglobulin (Ig)-like receptors (LILRs) are constituted by five inhibitory subpopulations (LILRB1-5) and six stimulatory subpopulations (LILRA1-6). The LILR populations substantially reside in immune cells, especially myeloid cells, functioning as a regulator in immunosuppressive and immunostimulatory responses, during which the nonclassical major histocompatibility complex (MHC) class I molecules are widely involved. In addition, LILRs are also distributed in certain tumor cells, implicated in the malignancy progression. Collectively, the suppressive Ig-like LILRB2 is relatively well-studied to date. Herein, we summarized the whole family of LILRs and their biologic function in various diseases upon ligation to the critical ligands, therefore providing more information on their potential roles in these pathological processes and giving the clinical significance of strategies targeting LILRs.
Collapse
Affiliation(s)
- Yanyu Hu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Xin Lu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Weimin Qiu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Hui Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Qinghua Wang
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Yao Chen
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China
| | - Wenyuan Liu
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,Department of Pharmaceutical Analysis, Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| | - Feng Feng
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, People's Republic of China.,Jiangsu Food and Pharmaceuticals Science College, Institute of Food and Pharmaceuticals Research, 223005, People's Republic of China
| | - Haopeng Sun
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, People's Republic of China
| |
Collapse
|
30
|
Oliveira MLG, Castelli EC, Veiga‐Castelli LC, Pereira ALE, Marcorin L, Carratto TMT, Souza AS, Andrade HS, Simões AL, Donadi EA, Courtin D, Sabbagh A, Giuliatti S, Mendes‐Junior CT. Genetic diversity of the
LILRB1
and
LILRB2
coding regions in an admixed Brazilian population sample. HLA 2022; 100:325-348. [DOI: 10.1111/tan.14725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/02/2022] [Accepted: 06/24/2022] [Indexed: 11/27/2022]
Affiliation(s)
| | - Erick C. Castelli
- Pathology Department, School of Medicine São Paulo State University (UNESP) Botucatu State of São Paulo Brazil
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine São Paulo State University (UNESP) Botucatu State of São Paulo Brazil
| | - Luciana C. Veiga‐Castelli
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Alison Luis E. Pereira
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Letícia Marcorin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Thássia M. T. Carratto
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Andreia S. Souza
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine São Paulo State University (UNESP) Botucatu State of São Paulo Brazil
| | - Heloisa S. Andrade
- Molecular Genetics and Bioinformatics Laboratory, School of Medicine São Paulo State University (UNESP) Botucatu State of São Paulo Brazil
| | - Aguinaldo L. Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Eduardo A. Donadi
- Departamento de Clínica Médica, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | | | | | - Silvana Giuliatti
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| | - Celso Teixeira Mendes‐Junior
- Departamento de Química, Laboratório de Pesquisas Forenses e Genômicas, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto Universidade de São Paulo Ribeirão Preto SP Brazil
| |
Collapse
|
31
|
Aguilar-Cazares D, Chavez-Dominguez R, Marroquin-Muciño M, Perez-Medina M, Benito-Lopez JJ, Camarena A, Rumbo-Nava U, Lopez-Gonzalez JS. The systemic-level repercussions of cancer-associated inflammation mediators produced in the tumor microenvironment. Front Endocrinol (Lausanne) 2022; 13:929572. [PMID: 36072935 PMCID: PMC9441602 DOI: 10.3389/fendo.2022.929572] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/01/2022] [Indexed: 12/15/2022] Open
Abstract
The tumor microenvironment is a dynamic, complex, and redundant network of interactions between tumor, immune, and stromal cells. In this intricate environment, cells communicate through membrane-membrane, ligand-receptor, exosome, soluble factors, and transporter interactions that govern cell fate. These interactions activate the diverse and superfluous signaling pathways involved in tumor promotion and progression and induce subtle changes in the functional activity of infiltrating immune cells. The immune response participates as a selective pressure in tumor development. In the early stages of tumor development, the immune response exerts anti-tumor activity, whereas during the advanced stages, the tumor establishes mechanisms to evade the immune response, eliciting a chronic inflammation process that shows a pro-tumor effect. The deregulated inflammatory state, in addition to acting locally, also triggers systemic inflammation that has repercussions in various organs and tissues that are distant from the tumor site, causing the emergence of various symptoms designated as paraneoplastic syndromes, which compromise the response to treatment, quality of life, and survival of cancer patients. Considering the tumor-host relationship as an integral and dynamic biological system, the chronic inflammation generated by the tumor is a communication mechanism among tissues and organs that is primarily orchestrated through different signals, such as cytokines, chemokines, growth factors, and exosomes, to provide the tumor with energetic components that allow it to continue proliferating. In this review, we aim to provide a succinct overview of the involvement of cancer-related inflammation at the local and systemic level throughout tumor development and the emergence of some paraneoplastic syndromes and their main clinical manifestations. In addition, the involvement of these signals throughout tumor development will be discussed based on the physiological/biological activities of innate and adaptive immune cells. These cellular interactions require a metabolic reprogramming program for the full activation of the various cells; thus, these requirements and the by-products released into the microenvironment will be considered. In addition, the systemic impact of cancer-related proinflammatory cytokines on the liver-as a critical organ that produces the leading inflammatory markers described to date-will be summarized. Finally, the contribution of cancer-related inflammation to the development of two paraneoplastic syndromes, myelopoiesis and cachexia, will be discussed.
Collapse
Affiliation(s)
- Dolores Aguilar-Cazares
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Rodolfo Chavez-Dominguez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Marroquin-Muciño
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Mario Perez-Medina
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Laboratorio de Quimioterapia Experimental, Departamento de Bioquimica, Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, Mexico City, Mexico
| | - Jesus J. Benito-Lopez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
- Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Human Leukocyte Antigen (HLA), Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Uriel Rumbo-Nava
- Clinica de Neumo-Oncologia, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| |
Collapse
|
32
|
Arnaiz-Villena A, Suarez-Trujillo F, Juarez I, Rodríguez-Sainz C, Palacio-Gruber J, Vaquero-Yuste C, Molina-Alejandre M, Fernández-Cruz E, Martin-Villa JM. Evolution and molecular interactions of major histocompatibility complex (MHC)-G, -E and -F genes. Cell Mol Life Sci 2022; 79:464. [PMID: 35925520 PMCID: PMC9352621 DOI: 10.1007/s00018-022-04491-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022]
Abstract
Classical HLA (Human Leukocyte Antigen) is the Major Histocompatibility Complex (MHC) in man. HLA genes and disease association has been studied at least since 1967 and no firm pathogenic mechanisms have been established yet. HLA-G immune modulation gene (and also -E and -F) are starting the same arduous way: statistics and allele association are the trending subjects with the same few results obtained by HLA classical genes, i.e., no pathogenesis may be discovered after many years of a great amount of researchers' effort. Thus, we believe that it is necessary to follow different research methodologies: (1) to approach this problem, based on how evolution has worked maintaining together a cluster of immune-related genes (the MHC) in a relatively short chromosome area since amniotes to human at least, i.e., immune regulatory genes (MHC-G, -E and -F), adaptive immune classical class I and II genes, non-adaptive immune genes like (C2, C4 and Bf) (2); in addition to using new in vitro models which explain pathogenetics of HLA and disease associations. In fact, this evolution may be quite reliably studied during about 40 million years by analyzing the evolution of MHC-G, -E, -F, and their receptors (KIR-killer-cell immunoglobulin-like receptor, NKG2-natural killer group 2-, or TCR-T-cell receptor-among others) in the primate evolutionary lineage, where orthology of these molecules is apparently established, although cladistic studies show that MHC-G and MHC-B genes are the ancestral class I genes, and that New World apes MHC-G is paralogous and not orthologous to all other apes and man MHC-G genes. In the present review, we outline past and possible future research topics: co-evolution of adaptive MHC classical (class I and II), non-adaptive (i.e., complement) and modulation (i.e., non-classical class I) immune genes may imply that the study of full or part of MHC haplotypes involving several loci/alleles instead of single alleles is important for uncovering HLA and disease pathogenesis. It would mainly apply to starting research on HLA-G extended haplotypes and disease association and not only using single HLA-G genetic markers.
Collapse
Affiliation(s)
- Antonio Arnaiz-Villena
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain.
| | - Fabio Suarez-Trujillo
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Ignacio Juarez
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Carmen Rodríguez-Sainz
- Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, Madrid, Spain
| | - José Palacio-Gruber
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Christian Vaquero-Yuste
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Marta Molina-Alejandre
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| | - Eduardo Fernández-Cruz
- Instituto de Investigaciones Sanitarias Gregorio Marañón, Hospital Gregorio Marañón, Madrid, Spain
| | - José Manuel Martin-Villa
- Departamento de Inmunología, Facultad de Medicina, Universidad Complutense de Madrid, Pabellón 5, planta 4. Avda. Complutense s/n, 28040, Madrid, Spain
| |
Collapse
|
33
|
Wei XW, Zhang YC, Wu F, Tian FJ, Lin Y. The role of extravillous trophoblasts and uterine NK cells in vascular remodeling during pregnancy. Front Immunol 2022; 13:951482. [PMID: 37408837 PMCID: PMC10319396 DOI: 10.3389/fimmu.2022.951482] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/01/2022] [Indexed: 07/07/2023] Open
Abstract
Successful embryo implantation requires both a receptive endometrium and competent blastocysts. After implantation, the maternal decidua undergoes a series of changes, including uterine spiral artery (SA) remodeling to accommodate the fetus and provide nutrients and oxygen for the fetus to survive. Uterine spiral arteries transform from small-diameter, high-resistance arteries to large-diameter and low-resistance arteries during pregnancy. This transformation includes many changes, such as increased permeability and dilation of vessels, phenotypic switching and migration of vascular smooth muscle cells (VSMCs), transient loss of endothelial cells (ECs), endovascular invasion of extravillous trophoblasts (EVTs), and presence of intramural EVT, which are regulated by uterine NK (uNK) cells and EVTs. In this review, we mainly focus on the separate and combined roles of uNK cells and EVTs in uterine SA remodeling in establishing and maintaining pregnancy. New insight into related mechanisms will help us better understand the pathogenesis of pregnancy complications such as recurrent pregnancy loss (RPL) and preeclampsia (PE).
Collapse
Affiliation(s)
- Xiao-Wei Wei
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yu-Chen Zhang
- Department of Obstetrics and Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University of Medicine, Shanghai, China
| | - Fan Wu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Fu-Ju Tian
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Birth Defects and Rare Diseases, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Lin
- Shanghai Sixth People’s Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Suzuki S, Morishima S, Murata M, Tanaka M, Shigenari A, Ito S, Kanga U, Kulski JK, Morishima Y, Shiina T. Sequence Variations Within HLA-G and HLA-F Genomic Segments at the Human Leukocyte Antigen Telomeric End Associated With Acute Graft-Versus-Host Disease in Unrelated Bone Marrow Transplantation. Front Immunol 2022; 13:938206. [PMID: 35935961 PMCID: PMC9351719 DOI: 10.3389/fimmu.2022.938206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Acute graft-versus-host disease (aGVHD) is defined as a syndrome of an immunological response of graft to the host that occurs early after allogeneic hematopoietic stem cell transplantation (HCT). This disease is frequently observed even in HCT matched for human leukocyte antigen (HLA) alleles at multiple gene loci. Although the HLA region represents complex and diverse genomic characteristics, detailed association analysis is required for the identification of uncharacterized variants that are strongly associated with aGVHD. We genotyped three loci, OR2H2, HLA-F-AS1, and HLA-G, that are located in the 460 kb of HLA telomeric region and statistically analyzed the genotypes including HLA-DPB1 with clinical and transplantation outcomes using 338 unrelated bone marrow transplantation (UR-BMT) patient–donor pairs who were matched for HLA-A, HLA-B, HLA-C, HLA-DRB1, and HLA-DQB1 (HLA-10/10). Multivariate analyses demonstrated that HLA-F-AS1 and HLA-DPB1 mismatches were associated with grade II–IV aGVHD (hazard ratio (HR), 1.76; 95% CI, 1.07–2.88; p = 0.026; and HR, 1.59; CI, 1.02–2.49; p = 0.042, respectively). There was no confounding between HLA-F-AS1 and HLA-DPB1 (p = 0.512), suggesting that the HLA-F-AS1 mismatch has a strong effect on aGVHD independently of HLA-DPB1. Moreover, a stratified analysis suggested possible associations of HLA-F-AS1, HLA-DPB1, and/or HLA-G mismatches with grade II–IV aGVHD and the more severe grade III–IV aGVHD. These findings provide new insights into understanding the molecular mechanism of aGVHD caused by HLA-matched UR-BMT.
Collapse
Affiliation(s)
- Shingo Suzuki
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Satoko Morishima
- Division of Endocrinology, Diabetes and Metabolism, Hematology, Rheumatology, Second Department of Internal Medicine, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| | - Makoto Murata
- Department of Hematology and Oncology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masafumi Tanaka
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Atsuko Shigenari
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Sayaka Ito
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Uma Kanga
- Clinical Immunogenetics Laboratory, Centre for Excellence in Molecular Medicine, Department of Transplant Immunology and Immunogenetics, All India Institute of Medical Sciences, New Delhi, India
| | - Jerzy K. Kulski
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- Faculty of Health and Medical Sciences, The University of Western Australia Medical School, Crawley, WA, Australia
| | - Yasuo Morishima
- Department of Promotion for Blood and Marrow Transplantation, Aichi Medical University School of Medicine, Nagakute, Japan
- Department of Hematology and Oncology, Nakagami Hospital, Okinawa, Japan
| | - Takashi Shiina
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
- *Correspondence: Takashi Shiina,
| |
Collapse
|
35
|
Papúchová H, Saxtorph MH, Hallager T, Jepsen IE, Eriksen JO, Persson G, Funck T, Weisdorf I, Macklon NS, Larsen LG, Hviid TVF. Endometrial HLA-F expression is influenced by genotypes and correlates differently with immune cell infiltration in IVF and recurrent implantation failure patients. Hum Reprod 2022; 37:1816-1834. [PMID: 35689445 DOI: 10.1093/humrep/deac118] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 05/01/2022] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Is human leukocyte antigen (HLA)-F protein expressed in mid-secretory endometrium, and are its expression levels influenced by HLA-F gene polymorphisms and correlated with the abundance of uterine natural killer (uNK) cells and anti-inflammatory M2 macrophages? SUMMARY ANSWER HLA-F protein is expressed in mid-secretory endometrium, and levels are correlated with immune cell infiltration, plasma progesterone concentrations and HLA-F single-nucleotide polymorphisms (SNPs), however, women experiencing recurrent implantation failure (RIF) show differences when compared to women attending their first IVF treatment. WHAT IS KNOWN ALREADY The immunomodulatory HLA class Ib molecules HLA-G and HLA-F are expressed on the extravillous trophoblast cells and interact with receptors on maternal immune cells. Little is known regarding HLA-F expression in endometrial stroma and HLA-F function; furthermore, HLA-F and HLA-G SNP genotypes and haplotypes have been correlated with differences in time-to-pregnancy. STUDY DESIGN, SIZE, DURATION Primary endometrial stromal cell (ESC) cultures (n = 5) were established from endometrial biopsies from women attending IVF treatment at a fertility clinic. Basic HLA-F and HLA-G protein expression by the ESCs were investigated. A prospective controlled cohort study was performed including 85 women with a history of RIF and 36 control women beginning their first fertility treatment and with no history of RIF. In some analyses, the RIF group was divided into unknown cause, male infertility, female infertility, and both female and male infertility. Endometrial biopsies and blood samples were obtained the day equivalent to embryo transfer in a hormone-substituted cycle. PARTICIPANTS/MATERIALS, SETTING, METHODS HLA protein expression by ESCs was characterized using flow cytometry and western blot. In the cohort study, the specific immune markers HLA-F and HLA-G, CD56 and CD16 (NK cells), CD163 (M2 macrophages), FOXP3 (regulatory T cells) and CD138 (plasma cells) were analysed by immunohistochemistry and a digital image analysis system in endometrial biopsies. Endometrial receptivity was assessed by an endometrial receptivity array test (the ERA® test). Endometrial biopsies were examined according to modified Noyes' criteria. SNPs at the HLA-F gene and HLA-G haplotypes were determined. MAIN RESULTS AND THE ROLE OF CHANCE HLA-F protein is expressed in the endometrium at the time of implantation. Furthermore, the HLA-F protein levels were different according to the womeńs HLA-F SNP genotypes and diplotypes, which have previously been correlated with differences in time-to-pregnancy. Endometrial HLA-F was positively correlated with anti-inflammatory CD163+ M2 macrophage infiltration and CD56+ uNK cell abundance for the entire cohort. However, this was not the case for CD56+ in the female infertility RIF subgroup. HLA-F levels in the endometrial stroma were negatively correlated with plasma progesterone concentrations in the RIF subgroup with known female infertility. Conversely, HLA-F and progesterone were positively correlated in the RIF subgroup with infertility of the male partner and no infertility diagnosis of the woman indicating interconnections between progesterone, HLA-F and immune cell infiltration. Glandular sHLA-G expression was also positively correlated with uNK cell abundance in the RIF subgroup with no female infertility but negatively correlated in the RIF subgroup with a female infertility diagnosis. LARGE SCALE DATA Immunohistochemistry analyses of endometrial biopsies and DNA sequencing of HLA genes. Data will be shared upon reasonable request to the corresponding author. LIMITATIONS, REASONS FOR CAUTION The control group of women attending their first IVF treatment had an anticipated good prognosis but was not proven fertile. A significant age difference between the RIF group and the IVF group reflects the longer treatment period for women with a history of RIF. The standardization of hormonal endometrial preparation, which allowed consistent timing of endometrial and blood sampling, might be a strength because a more uniform hormonal background may more clearly show an influence on the immune marker profile and HLA class Ib levels in the endometrium by other factors, for example genetic polymorphisms. However, the immune marker profile might be different during a normal cycle. WIDER IMPLICATIONS OF THE FINDINGS The findings further highlight the importance of HLA-F and HLA-G at the implantation site and in early pregnancy for pregnancy success. Diagnostic measures and modulation of the complex interactions between HLA class Ib molecules, maternal immune cells and hormonal factors may have potential to improve fertility treatment. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the Region Zealand Health Sciences Research Foundation and the Zealand University Hospital through the ReproHealth Research Consortium ZUH. The authors declared there are no conflicts of interest.
Collapse
Affiliation(s)
- Henrieta Papúchová
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| | - Malene Hviid Saxtorph
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Obstetrics and Gynaecology, The Fertility Clinic, Zealand University Hospital, Denmark
| | - Trine Hallager
- The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Ida E Jepsen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Obstetrics and Gynaecology, The Fertility Clinic, Zealand University Hospital, Denmark
| | - Jens O Eriksen
- The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Gry Persson
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| | - Tina Funck
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| | - Iben Weisdorf
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| | - Nicholas S Macklon
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Obstetrics and Gynaecology, The Fertility Clinic, Zealand University Hospital, Denmark.,London Women's Clinic, London, UK
| | - Lise Grupe Larsen
- The ReproHealth Research Consortium, Zealand University Hospital, Denmark.,Department of Pathology, Zealand University Hospital, Roskilde, Denmark
| | - Thomas Vauvert F Hviid
- Department of Clinical Biochemistry, Centre for Immune Regulation and Reproductive Immunology (CIRRI), Zealand University Hospital, Roskilde, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,The ReproHealth Research Consortium, Zealand University Hospital, Denmark
| |
Collapse
|
36
|
Jung G, Hernández-Illán E, Lozano JJ, Sidorova J, Muñoz J, Okada Y, Quintero E, Hernandez G, Jover R, Carballal S, Cuatrecasas M, Moreno L, Diaz M, Ocaña T, Sánchez A, Rivero L, Ortiz O, Llach J, Castells A, Pellisé M, Goel A, Batlle E, Balaguer F. Epigenome-Wide DNA Methylation Profiling of Normal Mucosa Reveals HLA-F Hypermethylation as a Biomarker Candidate for Serrated Polyposis Syndrome. J Mol Diagn 2022; 24:674-686. [PMID: 35447336 DOI: 10.1016/j.jmoldx.2022.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/08/2022] [Accepted: 03/04/2022] [Indexed: 11/16/2022] Open
Abstract
Serrated polyposis syndrome (SPS) is associated with a high risk for colorectal cancer. Intense promoter hypermethylation is a frequent molecular finding in the serrated pathway and may be present in normal mucosa, predisposing to the formation of serrated lesions. To identify novel biomarkers for SPS, fresh-frozen samples of normal mucosa from 50 patients with SPS and 19 healthy individuals were analyzed by using the 850K BeadChip Technology (Infinium). Aberrant methylation levels were correlated with gene expression using a next-generation transcriptome profiling tool. Two validation steps were performed on independent cohorts: first, on formalin-fixed, paraffin-embedded tissue of the normal mucosa; and second, on 24 serrated lesions. The most frequently hypermethylated genes were HLA-F, SLFN12, HLA-DMA, and RARRES3; and the most frequently hypomethylated genes were PIWIL1 and ANK3 (Δβ = 10%; P < 0.05). Expression levels of HLA-F, SLFN12, and HLA-DMA were significantly different between SPS patients and healthy individuals and correlated well with the methylation status of the corresponding differentially methylated region (fold change, >20%; r > 0.55; P < 0.001). Significant hypermethylation of CpGs in the gene body of HLA-F was also found in serrated lesions (Δβ = 23%; false discovery rate = 0.01). Epigenome-wide methylation profiling has revealed numerous differentially methylated CpGs in normal mucosa from SPS patients. Significant hypermethylation of HLA-F is a novel biomarker candidate for SPS.
Collapse
Affiliation(s)
- Gerhard Jung
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | | | - Juan J Lozano
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Bioinformatics Platform, CIBEREHD, Barcelona, Spain
| | - Julia Sidorova
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Bioinformatics Platform, CIBEREHD, Barcelona, Spain
| | - Jenifer Muñoz
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain
| | - Yasuyuki Okada
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, Biomedical Research Center, Monrovia, California; Department of Gastroenterology and Oncology, Tokushima University Graduate School, Tokushima, Japan
| | - Enrique Quintero
- Department of Gastroenterology, University Hospital of the Canary Islands, Santa Cruz de Tenerife, Spain
| | - Goretti Hernandez
- Department of Gastroenterology, University Hospital of the Canary Islands, Santa Cruz de Tenerife, Spain
| | - Rodrigo Jover
- Servicio de Medicina Digestiva, Hospital General Universitario de Alicante, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Alicante, Spain
| | - Sabela Carballal
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Miriam Cuatrecasas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain; Pathology Department, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Lorena Moreno
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Mireia Diaz
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Teresa Ocaña
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ariadna Sánchez
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Liseth Rivero
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Oswaldo Ortiz
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Joan Llach
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Antoni Castells
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Maria Pellisé
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute, Biomedical Research Center, Monrovia, California; City of Hope Comprehensive Cancer Center, Duarte, California
| | - Eduard Batlle
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Francesc Balaguer
- Gastroenterology Department, Hospital Clínic de Barcelona, Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Barcelona, Spain; Faculty of Medicine, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
37
|
Liu F, Cocker ATH, Pugh JL, Djaoud Z, Parham P, Guethlein LA. Natural LILRB1 D1-D2 variants show frequency differences in populations and bind to HLA class I with various avidities. Immunogenetics 2022; 74:513-525. [PMID: 35562487 PMCID: PMC9103611 DOI: 10.1007/s00251-022-01264-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/02/2022] [Indexed: 11/27/2022]
Abstract
Leukocyte immunoglobulin-like receptor B1 (LILRB1) is widely expressed on various immune cells and the engagement of LILRB1 to HLA class I and pathogen-derived proteins can modulate the immune response. In the current study, 108 LILRB1 alleles were identified by screening the LILRB1 locus from the 1000 Genomes Phase 3 database. Forty-six alleles that occurred in three or more individuals encode 28 LILRB1 allotypes, and the inferred LILRB1 allotypes were then grouped into 9 LILRB1 D1-D2 variants for further analysis. We found that variants 1, 2, and 3 represent the three most frequent LILRB1 D1-D2 variants and the nine variants show frequency differences in populations. The binding assay demonstrated that variant 1 bound to HLA class I with the highest avidity, and all tested LILRB1 D1-D2 variants bound to HLA-C with lower avidity than to HLA-A and -B. Locus-specific polymorphisms at positions 183, 189, and 268 in HLA class I and dimorphisms in HLA-A (positions 207 and 253) and in HLA-B (position 194) affect their binding to LILRB1. Notably, the electrostatic interaction plays a critical role in the binding of LILRB1 to HLA class I as revealed by electrostatic analysis and by comparison of different binding avidities caused by polymorphisms at positions 72 and 103 of LILRB1. In this paper, we present a comprehensive study of the population genetics and binding abilities of LILRB1. The data will help us better understand the LILRB1-related diversity of the immune system and lay a foundation for functional studies.
Collapse
Affiliation(s)
- Fuguo Liu
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Alexander T H Cocker
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Jason L Pugh
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Zakia Djaoud
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Peter Parham
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA, 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Lisbeth A Guethlein
- Department of Structural Biology, School of Medicine, Stanford University, Stanford, CA, 94305, USA.
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
38
|
Wong NKY, Dong X, Lin YY, Xue H, Wu R, Lin D, Collins C, Wang Y. Framework of Intrinsic Immune Landscape of Dormant Prostate Cancer. Cells 2022; 11:cells11091550. [PMID: 35563856 PMCID: PMC9105276 DOI: 10.3390/cells11091550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 02/01/2023] Open
Abstract
Androgen deprivation therapy (ADT) is the standard therapy for men with advanced prostate cancer (PCa). PCa often responds to ADT and enters a dormancy period, which can be recognized clinically as a minimal residual disease. However, the majority of these patients will eventually experience a relapse in the form of castration-resistant PCa with poor survival. Therefore, ADT-induced dormancy is a unique time window for treatment that can provide a cure. The study of this well-recognized phase of prostate cancer progression is largely hindered by the scarcity of appropriate clinical tissue and clinically relevant preclinical models. Here, we report the utility of unique and clinically relevant patient-derived xenograft models in the study of the intrinsic immune landscape of dormant PCa. Using data from RNA sequencing, we have reconstructed the immune evasion mechanisms that can be utilized by dormant PCa cells. Since dormant PCa cells need to evade the host immune surveillance for survival, our results provide a framework for further study and for devising immunomodulatory mechanisms that can eliminate dormant PCa cells.
Collapse
Affiliation(s)
- Nelson K. Y. Wong
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Xin Dong
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Yen-Yi Lin
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
| | - Hui Xue
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Rebecca Wu
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Dong Lin
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
| | - Colin Collins
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
| | - Yuzhuo Wang
- Department of Experimental Therapeutics, BC Cancer, 675 W 10th Ave, Vancouver, BC V5Z 1L3 Canada; (N.K.Y.W.); (X.D.); (H.X.); (R.W.); (D.L.)
- Vancouver Prostate Centre, Department of Urologic Sciences, Faculty of Medicine, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada; (Y.-Y.L.); (C.C.)
- Correspondence: ; Tel.: +1-604-675-8013
| |
Collapse
|
39
|
Dirscherl C, Löchte S, Hein Z, Kopicki JD, Harders AR, Linden N, Karner A, Preiner J, Weghuber J, Garcia-Alai M, Uetrecht C, Zacharias M, Piehler J, Lanzerstorfer P, Springer S. Dissociation of β2m from MHC class I triggers formation of noncovalent transient heavy chain dimers. J Cell Sci 2022; 135:jcs259489. [PMID: 35393611 DOI: 10.1242/jcs.259498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 03/30/2022] [Indexed: 11/20/2022] Open
Abstract
At the plasma membrane of mammalian cells, major histocompatibility complex class I molecules (MHC-I) present antigenic peptides to cytotoxic T cells. Following the loss of the peptide and the light chain beta-2 microglobulin (β2m, encoded by B2M), the resulting free heavy chains (FHCs) can associate into homotypic complexes in the plasma membrane. Here, we investigate the stoichiometry and dynamics of MHC-I FHCs assemblies by combining a micropattern assay with fluorescence recovery after photobleaching (FRAP) and with single-molecule co-tracking. We identify non-covalent MHC-I FHC dimers, with dimerization mediated by the α3 domain, as the prevalent species at the plasma membrane, leading a moderate decrease in the diffusion coefficient. MHC-I FHC dimers show increased tendency to cluster into higher order oligomers as concluded from an increased immobile fraction with higher single-molecule colocalization. In vitro studies with isolated proteins in conjunction with molecular docking and dynamics simulations suggest that in the complexes, the α3 domain of one FHC binds to another FHC in a manner similar to that seen for β2m.
Collapse
Affiliation(s)
- Cindy Dirscherl
- School of Science, Jacobs University Bremen, 28759 Bremen, Germany
| | - Sara Löchte
- Department of Biology and Center for Cellular Nanoanalytics, Osnabrück University, 49076 Osnabrück, Germany
| | - Zeynep Hein
- School of Science, Jacobs University Bremen, 28759 Bremen, Germany
| | - Janine-Denise Kopicki
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
| | | | - Noemi Linden
- School of Science, Jacobs University Bremen, 28759 Bremen, Germany
| | - Andreas Karner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Johannes Preiner
- University of Applied Sciences Upper Austria, 4020 Linz, Austria
| | - Julian Weghuber
- University of Applied Sciences Upper Austria, 4600 Wels, Austria
| | - Maria Garcia-Alai
- European Molecular Biology Laboratory, Hamburg Outstation, 22603 Hamburg, Germany
- Centre for Structural Systems Biology, 22607 Hamburg, Germany
| | - Charlotte Uetrecht
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, 20251 Hamburg, Germany
- European XFEL, 22869 Schenefeld, Germany
| | - Martin Zacharias
- Physics Department, Technical University of Munich, 85748 Garching, Germany
| | - Jacob Piehler
- Department of Biology and Center for Cellular Nanoanalytics, Osnabrück University, 49076 Osnabrück, Germany
| | | | | |
Collapse
|
40
|
Pishesha N, Harmand TJ, Ploegh HL. A guide to antigen processing and presentation. Nat Rev Immunol 2022; 22:751-764. [PMID: 35418563 DOI: 10.1038/s41577-022-00707-2] [Citation(s) in RCA: 331] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2022] [Indexed: 12/13/2022]
Abstract
Antigen processing and presentation are the cornerstones of adaptive immunity. B cells cannot generate high-affinity antibodies without T cell help. CD4+ T cells, which provide such help, use antigen-specific receptors that recognize major histocompatibility complex (MHC) molecules in complex with peptide cargo. Similarly, eradication of virus-infected cells often depends on cytotoxic CD8+ T cells, which rely on the recognition of peptide-MHC complexes for their action. The two major classes of glycoproteins entrusted with antigen presentation are the MHC class I and class II molecules, which present antigenic peptides to CD8+ T cells and CD4+ T cells, respectively. This Review describes the essentials of antigen processing and presentation. These pathways are divided into six discrete steps that allow a comparison of the various means by which antigens destined for presentation are acquired and how the source proteins for these antigens are tagged for degradation, destroyed and ultimately displayed as peptides in complex with MHC molecules for T cell recognition.
Collapse
Affiliation(s)
- Novalia Pishesha
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.,Society of Fellows, Harvard University, Cambridge, MA, USA.,Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thibault J Harmand
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Hidde L Ploegh
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Lyu M, Zhou J, Jiao L, Wang Y, Zhou Y, Lai H, Xu W, Ying B. Deciphering a TB-related DNA methylation biomarker and constructing a TB diagnostic classifier. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 27:37-49. [PMID: 34938605 PMCID: PMC8645423 DOI: 10.1016/j.omtn.2021.11.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/16/2021] [Indexed: 02/09/2023]
Abstract
We systemically identified tuberculosis (TB)-related DNA methylation biomarkers and further constructed classifiers for TB diagnosis. TB-related DNA methylation datasets were searched through October 3, 2020. Limma and DMRcate were employed to identify differentially methylated probes (DMPs) and regions (DMRs). Machine learning methods were used to construct classifiers. The performance of the classifiers was evaluated in discovery datasets and a prospective independent cohort. Eighty-nine DMPs and 24 DMRs were identified based on 67 TB patients and 45 healthy controls from 4 datasets. Nine and three DMRs were selected by elastic net regression and logistic regression, respectively. Among the selected DMRs, two regions (chr3: 195635643-195636243 and chr6: 29691631-29692475) were differentially methylated in the independent cohort (p = 4.19 × 10-5 and 0.024, respectively). Among the ten classifiers, the 3-DMR logistic regression classifier exhibited the strongest performance. The sensitivity, specificity, and area under the curve were, respectively, 79.1%, 84.4%, and 0.888 in the discovery datasets and 64.5%, 90.3%, and 0.838 in the independent cohort. The differential diagnostic ability of this classifier was also assessed. Collectively, these data showed that DNA methylation might be a promising TB diagnostic biomarker. The 3-DMR logistic regression classifier is a potential clinical tool for TB diagnosis, and further validation is needed.
Collapse
Affiliation(s)
- Mengyuan Lyu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jian Zhou
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China.,Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Lin Jiao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yili Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongli Lai
- West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, 10-511, 610 University Avenue, Toronto, ON M5G 2M9 Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7 Canada
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan 610041, China.,West China School of Medicine, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
42
|
OUP accepted manuscript. Hum Reprod Update 2022; 28:435-454. [DOI: 10.1093/humupd/dmac007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 12/15/2021] [Indexed: 11/13/2022] Open
|
43
|
Chavez-Dominguez R, Perez-Medina M, Aguilar-Cazares D, Galicia-Velasco M, Meneses-Flores M, Islas-Vazquez L, Camarena A, Lopez-Gonzalez JS. Old and New Players of Inflammation and Their Relationship With Cancer Development. Front Oncol 2021; 11:722999. [PMID: 34881173 PMCID: PMC8645998 DOI: 10.3389/fonc.2021.722999] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 11/04/2021] [Indexed: 12/18/2022] Open
Abstract
Pathogens or genotoxic agents continuously affect the human body. Acute inflammatory reaction induced by a non-sterile or sterile environment is triggered for the efficient elimination of insults that caused the damage. According to the insult, pathogen-associated molecular patterns, damage-associated molecular patterns, and homeostasis-altering molecular processes are released to facilitate the arrival of tissue resident and circulating cells to the injured zone to promote harmful agent elimination and tissue regeneration. However, when inflammation is maintained, a chronic phenomenon is induced, in which phagocytic cells release toxic molecules damaging the harmful agent and the surrounding healthy tissues, thereby inducing DNA lesions. In this regard, chronic inflammation has been recognized as a risk factor of cancer development by increasing the genomic instability of transformed cells and by creating an environment containing proliferation signals. Based on the cancer immunoediting concept, a rigorous and regulated inflammation process triggers participation of innate and adaptive immune responses for efficient elimination of transformed cells. When immune response does not eliminate all transformed cells, an equilibrium phase is induced. Therefore, excessive inflammation amplifies local damage caused by the continuous arrival of inflammatory/immune cells. To regulate the overstimulation of inflammatory/immune cells, a network of mechanisms that inhibit or block the cell overactivity must be activated. Transformed cells may take advantage of this process to proliferate and gradually grow until they become preponderant over the immune cells, preserving, increasing, or creating a microenvironment to evade the host immune response. In this microenvironment, tumor cells resist the attack of the effector immune cells or instruct them to sustain tumor growth and development until its clinical consequences. With tumor development, evolving, complex, and overlapping microenvironments are arising. Therefore, a deeper knowledge of cytokine, immune, and tumor cell interactions and their role in the intricated process will impact the combination of current or forthcoming therapies.
Collapse
Affiliation(s)
- Rodolfo Chavez-Dominguez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Posgrado en Ciencias Biologicas, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Mario Perez-Medina
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico.,Laboratorio de Quimioterapia Experimental, Departamento de Bioquímica, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Dolores Aguilar-Cazares
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Miriam Galicia-Velasco
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Manuel Meneses-Flores
- Departamento de Patología, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Lorenzo Islas-Vazquez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Angel Camarena
- Laboratorio de Human Leukocyte Antigen (HLA), Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| | - Jose S Lopez-Gonzalez
- Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosio Villegas", Mexico City, Mexico
| |
Collapse
|
44
|
Ashenova A, Daniyarov A, Molkenov A, Sharip A, Zinovyev A, Kairov U. Meta-Analysis of Esophageal Cancer Transcriptomes Using Independent Component Analysis. Front Genet 2021; 12:683632. [PMID: 34795689 PMCID: PMC8594933 DOI: 10.3389/fgene.2021.683632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
Independent Component Analysis is a matrix factorization method for data dimension reduction. ICA has been widely applied for the analysis of transcriptomic data for blind separation of biological, environmental, and technical factors affecting gene expression. The study aimed to analyze the publicly available esophageal cancer data using the ICA for identification and comprehensive analysis of reproducible signaling pathways and molecular signatures involved in this cancer type. In this study, four independent esophageal cancer transcriptomic datasets from GEO databases were used. A bioinformatics tool « BiODICA-Independent Component Analysis of Big Omics Data» was applied to compute independent components (ICs). Gene Set Enrichment Analysis (GSEA) and ToppGene uncovered the most significantly enriched pathways. Construction and visualization of gene networks and graphs were performed using the Cytoscape, and HPRD database. The correlation graph between decompositions into 30 ICs was built with absolute correlation values exceeding 0.3. Clusters of components-pseudocliques were observed in the structure of the correlation graph. The top 1,000 most contributing genes of each ICs in the pseudocliques were mapped to the PPI network to construct associated signaling pathways. Some cliques were composed of densely interconnected nodes and included components common to most cancer types (such as cell cycle and extracellular matrix signals), while others were specific to EC. The results of this investigation may reveal potential biomarkers of esophageal carcinogenesis, functional subsystems dysregulated in the tumor cells, and be helpful in predicting the early development of a tumor.
Collapse
Affiliation(s)
- Ainur Ashenova
- Laboratory of Bioinformatics and Systems Biology, National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Asset Daniyarov
- Laboratory of Bioinformatics and Systems Biology, National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Askhat Molkenov
- Laboratory of Bioinformatics and Systems Biology, National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Aigul Sharip
- Laboratory of Bioinformatics and Systems Biology, National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Andrei Zinovyev
- Institut Curie, PSL Research University, INSERM U900, Paris, France
- Laboratory of Advanced Methods for High-dimensional Data Analysis, Lobachevsky University, Nizhny Novgorod, Russia
| | - Ulykbek Kairov
- Laboratory of Bioinformatics and Systems Biology, National Laboratory Astana, Center for Life Sciences, Nazarbayev University, Nur-Sultan, Kazakhstan
| |
Collapse
|
45
|
Xu YF, Du XF, Li ZY, Fang ZP, Zhang FB. Lesion human leukocyte antigen-E is associated with favourable prognosis for patients with oesophageal squamous cell carcinoma. J Int Med Res 2021; 49:3000605211047278. [PMID: 34617814 PMCID: PMC8504691 DOI: 10.1177/03000605211047278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective To investigate the clinical significance of human leukocyte antigen (HLA)-E levels in oesophageal squamous cell carcinoma (ESCC). Methods The levels of HLA-E immunostaining in ESCC lesions and 47 corresponding adjacent normal tissues were measured using immunohistochemistry. The correlation between the levels of immunostaining and clinical parameters was analysed. Results This study analysed 110 paraffin-embedded primary tumour lesions and 47 case–controlled paracancerous tissues that were surgically resected from 110 patients with ESCC. Positive immunostaining for HLA-E was observed in 88.2% (97 of 110) of ESCC lesions and 29.8% (14 of 47) of normal oesophageal tissues. There was no correlation between HLA-E immunostaining in ESCC lesions and clinicopathological characteristics such as lymph node metastasis, tumour–node–metastasis stage and differentiation grade. Kaplan–Meier survival analysis revealed a significantly better prognosis in patients with higher levels of HLA-E immunostaining than in those with lower levels of HLA-E immunostaining; overall survival was 28.6 months (95% confidence interval [CI], 23.2, 34.0) versus 15.3 months (95% CI, 11.5, 19.1), respectively. Furthermore, multivariate analysis showed that the HLA-E level was an independent prognostic factor in patients with ESCC. Conclusion A higher level of HLA-E immunostaining was associated with favourable survival in patients with ESCC.
Collapse
Affiliation(s)
- Yong-Fu Xu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Xue-Feng Du
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Zhen-Yu Li
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Zhe-Ping Fang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
| | - Fa-Biao Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, Zhejiang Province, China
| |
Collapse
|
46
|
Para R, Romero R, Miller D, Galaz J, Done B, Peyvandipour A, Gershater M, Tao L, Motomura K, Ruden DM, Isherwood J, Jung E, Kanninen T, Pique-Regi R, Tarca AL, Gomez-Lopez N. The Distinct Immune Nature of the Fetal Inflammatory Response Syndrome Type I and Type II. Immunohorizons 2021; 5:735-751. [PMID: 34521696 PMCID: PMC9394103 DOI: 10.4049/immunohorizons.2100047] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022] Open
Abstract
Fetal inflammatory response syndrome (FIRS) is strongly associated with neonatal morbidity and mortality and can be classified as type I or type II. Clinically, FIRS type I and type II are considered as distinct syndromes, yet the molecular underpinnings of these fetal inflammatory responses are not well understood because of their low prevalence and the difficulty of postdelivery diagnosis. In this study, we performed RNA sequencing of human cord blood samples from preterm neonates diagnosed with FIRS type I or FIRS type II. We found that FIRS type I was characterized by an upregulation of host immune responses, including neutrophil and monocyte functions, together with a proinflammatory cytokine storm and a downregulation of T cell processes. In contrast, FIRS type II comprised a mild chronic inflammatory response involving perturbation of HLA transcripts, suggestive of fetal semiallograft rejection. Integrating single-cell RNA sequencing-derived signatures with bulk transcriptomic data confirmed that FIRS type I immune responses were mainly driven by monocytes, macrophages, and neutrophils. Last, tissue- and cell-specific signatures derived from the BioGPS Gene Atlas further corroborated the role of myeloid cells originating from the bone marrow in FIRS type I. Collectively, these data provide evidence that FIRS type I and FIRS type II are driven by distinct immune mechanisms; whereas the former involves the innate limb of immunity consistent with host defense, the latter resembles a process of semiallograft rejection. These findings shed light on the fetal immune responses caused by infection or alloreactivity that can lead to deleterious consequences in neonatal life.
Collapse
Affiliation(s)
- Robert Para
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI;
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
- Detroit Medical Center, Detroit, MI
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Jose Galaz
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Azam Peyvandipour
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Meyer Gershater
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Li Tao
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Douglas M Ruden
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Jenna Isherwood
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Tomi Kanninen
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Roger Pique-Regi
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Computer Science, Wayne State University College of Engineering, Detroit, MI; and
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Detroit, MI;
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
47
|
Hazini A, Fisher K, Seymour L. Deregulation of HLA-I in cancer and its central importance for immunotherapy. J Immunother Cancer 2021; 9:e002899. [PMID: 34353849 PMCID: PMC8344275 DOI: 10.1136/jitc-2021-002899] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
It is now well accepted that many tumors undergo a process of clonal selection which means that tumor antigens arising at various stages of tumor progression are likely to be represented in just a subset of tumor cells. This process is thought to be driven by constant immunosurveillance which applies selective pressure by eliminating tumor cells expressing antigens that are recognized by T cells. It is becoming increasingly clear that the same selective pressure may also select for tumor cells that evade immune detection by acquiring deficiencies in their human leucocyte antigen (HLA) presentation pathways, allowing important tumor antigens to persist within cells undetected by the immune system. Deficiencies in antigen presentation pathway can arise by a variety of mechanisms, including genetic and epigenetic changes, and functional antigen presentation is a hard phenomenon to assess using our standard analytical techniques. Nevertheless, it is likely to have profound clinical significance and could well define whether an individual patient will respond to a particular type of therapy or not. In this review we consider the mechanisms by which HLA function may be lost in clinical disease, we assess the implications for current immunotherapy approaches using checkpoint inhibitors and examine the prognostic impact of HLA loss demonstrated in clinical trials so far. Finally, we propose strategies that might be explored for possible patient stratification.
Collapse
Affiliation(s)
- Ahmet Hazini
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Kerry Fisher
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| | - Len Seymour
- Department of Oncology, University of Oxford, Oxford, Oxfordshire, UK
| |
Collapse
|
48
|
Neuchel C, Fürst D, Tsamadou C, Schrezenmeier H, Mytilineos J. Extended loci histocompatibility matching in HSCT-Going beyond classical HLA. Int J Immunogenet 2021; 48:299-316. [PMID: 34109752 DOI: 10.1111/iji.12545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 12/20/2022]
Abstract
Unrelated haematopoietic stem cell transplantation (HSCT) has evolved from an experimental protocol to a potentially curative first-line treatment in a variety of haematologic malignancies. The continuous refinement of treatment protocols and supportive care paired with ongoing achievements in the technological field of histocompatibility testing enabled this transformation. Without a doubt, HLA matching is still the foremost criterion for donor selection in unrelated HSCT. However, HSCT-related treatment complications still occur frequently, often resulting in patients suffering severely or even dying as a consequence of such complications. Current literature indicates that other immune system modulating factors may play a role in the setting of HSCT. In this review, we discuss the current clinical evidence of a possible influence of nonclassical HLA antigens HLA-E, HLA-F, and HLA-G as well as the HLA-like molecules MICA and MICB, in HSCT.
Collapse
Affiliation(s)
- Christine Neuchel
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Daniel Fürst
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Chrysanthi Tsamadou
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Hubert Schrezenmeier
- Institute of Clinical Transfusion Medicine and Immunogenetics Ulm, German Red Cross Blood Transfusion Service, Baden Wuerttemberg-Hessen, and University Hospital Ulm, Ulm, Germany
- Institute of Transfusion Medicine, University of Ulm, Ulm, Germany
| | - Joannis Mytilineos
- ZKRD - Zentrales Knochenmarkspender-Register für Deutschland, German National Bone Marrow Donor Registry, Ulm, Germany
| |
Collapse
|
49
|
Bernal E, Gimeno L, Alcaraz MJ, Quadeer AA, Moreno M, Martínez-Sánchez MV, Campillo JA, Gomez JM, Pelaez A, García E, Herranz M, Hernández-Olivo M, Martínez-Alfaro E, Alcaraz A, Muñoz Á, Cano A, McKay MR, Muro M, Minguela A. Activating Killer-Cell Immunoglobulin-Like Receptors Are Associated With the Severity of Coronavirus Disease 2019. J Infect Dis 2021; 224:229-240. [PMID: 33928374 PMCID: PMC8135764 DOI: 10.1093/infdis/jiab228] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/23/2021] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Etiopathogenesis of the clinical variability of the coronavirus disease 2019 (COVID-19) remains mostly unknown. In this study, we investigate the role of killer cell immunoglobulin-like receptor (KIR)/human leukocyte antigen class-I (HLA-I) interactions in the susceptibility and severity of COVID-19. METHODS We performed KIR and HLA-I genotyping and natural killer cell (NKc) receptors immunophenotyping in 201 symptomatic patients and 210 noninfected controls. RESULTS The NKcs with a distinctive immunophenotype, suggestive of recent activation (KIR2DS4low CD16low CD226low CD56high TIGIThigh NKG2Ahigh), expanded in patients with severe COVID-19. This was associated with a higher frequency of the functional A-telomeric activating KIR2DS4 in severe versus mild and/or moderate patients and controls (83.7%, 55.7% and 36.2%, P < 7.7 × 10-9). In patients with mild and/or moderate infection, HLA-B*15:01 was associated with higher frequencies of activating B-telomeric KIR3DS1 compared with patients with other HLA-B*15 subtypes and noninfected controls (90.9%, 42.9%, and 47.3%; P < .002; Pc = 0.022). This strongly suggests that HLA-B*15:01 specifically presenting severe acute respiratory syndrome coronavirus 2 peptides could form a neoligand interacting with KIR3DS1. Likewise, a putative neoligand for KIR2DS4 could arise from other HLA-I molecules presenting severe acute respiratory syndrome coronavirus 2 peptides expressed on infected an/or activated lung antigen-presenting cells. CONCLUSIONS Our results support a crucial role of NKcs in the clinical variability of COVID-19 with specific KIR/ligand interactions associated with disease severity.
Collapse
Affiliation(s)
- Enrique Bernal
- Infectious Disease Unit, Reina Sofia University Hospital and the Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Lourdes Gimeno
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain.,Human Anatomy Department, University of Murcia, Murcia, Spain
| | - María J Alcaraz
- Infectious Disease Unit, Reina Sofia University Hospital and the Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Ahmed A Quadeer
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Marta Moreno
- Internal Medicine Service, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - María V Martínez-Sánchez
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - José A Campillo
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Jose M Gomez
- Internal Medicine Service, Hospital Universitario Morales Meseguer, Murcia, Spain
| | - Ana Pelaez
- Internal Medicine Service, Hospital Rafael Méndez, Lorca, Spain
| | - Elisa García
- Infectious Disesase Unit, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Maite Herranz
- Internal Medicine Service, Hospital Universitario Morales Meseguer, Murcia, Spain
| | | | | | - Antonia Alcaraz
- Infectious Disease Unit, Reina Sofia University Hospital and the Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Ángeles Muñoz
- Infectious Disease Unit, Reina Sofia University Hospital and the Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Alfredo Cano
- Infectious Disease Unit, Reina Sofia University Hospital and the Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Matthew R McKay
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.,Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Manuel Muro
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| | - Alfredo Minguela
- Immunology Service, Hospital Clínico Universitario Virgen de la Arrixaca (HCUVA) and Instituto Murciano de Investigación Biosanitaria (IMIB), Murcia, Spain
| |
Collapse
|
50
|
Duygu B, Olieslagers TI, Groeneweg M, Voorter CEM, Wieten L. HLA Class I Molecules as Immune Checkpoints for NK Cell Alloreactivity and Anti-Viral Immunity in Kidney Transplantation. Front Immunol 2021; 12:680480. [PMID: 34295330 PMCID: PMC8290519 DOI: 10.3389/fimmu.2021.680480] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 06/14/2021] [Indexed: 12/12/2022] Open
Abstract
Natural killer (NK) cells are innate lymphocytes that can kill diseased- or virally-infected cells, mediate antibody dependent cytotoxicity and produce type I immune-associated cytokines upon activation. NK cells also contribute to the allo-immune response upon kidney transplantation either by promoting allograft rejection through lysis of cells of the transplanted organ or by promoting alloreactive T cells. In addition, they protect against viral infections upon transplantation which may be especially relevant in patients receiving high dose immune suppression. NK cell activation is tightly regulated through the integrated balance of signaling via inhibitory- and activating receptors. HLA class I molecules are critical regulators of NK cell activation through the interaction with inhibitory- as well as activating NK cell receptors, hence, HLA molecules act as critical immune checkpoints for NK cells. In the current review, we evaluate how NK cell alloreactivity and anti-viral immunity are regulated by NK cell receptors belonging to the KIR family and interacting with classical HLA class I molecules, or by NKG2A/C and LILRB1/KIR2DL4 engaging non-classical HLA-E or -G. In addition, we provide an overview of the methods to determine genetic variation in these receptors and their HLA ligands.
Collapse
Affiliation(s)
- Burcu Duygu
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Timo I Olieslagers
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Mathijs Groeneweg
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Christina E M Voorter
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| | - Lotte Wieten
- Department of Transplantation Immunology, Maastricht University Medical Center, Maastricht, Netherlands.,GROW, School for Oncology and Developmental Biology, Maastricht University, Maastricht, Netherlands
| |
Collapse
|