1
|
Zhang S, Hu W, Zhao Y, Liao Y, Zha K, Zhang W, Yu C, Liao J, Li H, Zhou W, Cao F, Mi B, Liu G. Bidirectional modulation of glycolysis using a multifunctional nanocomposite hydrogel promotes bone fracture healing in type 2 diabetes mellitus. Bioact Mater 2025; 50:152-170. [PMID: 40256330 PMCID: PMC12008547 DOI: 10.1016/j.bioactmat.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025] Open
Abstract
Fracture healing in patients with type 2 diabetes mellitus (T2D) is markedly impaired, characterized by a prolonged inflammation phase and defective osteoblast differentiation at the fracture site. In this study, we identified aberrant cellular glycolysis at T2D fracture sites, with bone marrow mesenchymal stem cells (BMSCs) exhibiting suppressed glycolysis and macrophages displaying enhanced glycolysis, mediated by the dysregulation of hypoxia-inducible factor-1α (HIF-1α). To rectify these metabolic imbalances, we developed a multifunctional nanocomposite PN@MHV hydrogel. Myricitrin, a flavonoid glycoside, forms the MHV hydrogel by cross-linking with HA-PBA and PVA via hydrogen bonds, and upregulates glycolysis through HIF-1α, thus promoting osteoblast differentiation under high glucose environment. To further regulate the inflammatory microenvironment, we incorporated nanoparticles loaded with PX-478, a HIF-1α specific inhibitor, into the hydrogel, with folic acid covalently modified to target proinflammatory M1 macrophages. This PN@MHV hydrogel bidirectionally regulated glycolysis via HIF-1α, enhancing osteoblast differentiation while attenuating macrophage-mediated inflammation. Comprehensive in vitro and in vivo experiments in a T2D fracture mouse model confirmed the hydrogel's ability to improve the inflammatory microenvironment and accelerate bone healing. Our findings underscore the therapeutic potential of targeting cellular glycolysis as a promising approach for enhancing fracture healing in diabetic patients.
Collapse
Affiliation(s)
- Shengming Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Weixian Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yanzhi Zhao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Yuheng Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Kangkang Zha
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wenqian Zhang
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Chenyan Yu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Jiewen Liao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Hui Li
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Wu Zhou
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Faqi Cao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Bobin Mi
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| | - Guohui Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, China
| |
Collapse
|
2
|
Lu Z, Tan K, Xiang S, Zhang Y, Luo F, Liu X, Zhao X, Ouyang L. Peptide loaded self-healing hydrogel promotes diabetic skin wound healing through macrophage orchestration and inflammation inhibition. Mater Today Bio 2025; 32:101690. [PMID: 40225136 PMCID: PMC11986612 DOI: 10.1016/j.mtbio.2025.101690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 03/19/2025] [Indexed: 04/15/2025] Open
Abstract
Chronic wound is one of the complications of diabetes, and its difficult cure results in increased disability rate and mortality rate, which brings serious psychological and economic burden to patients. Excessive inflammation is one of the key reasons for poor tissue healing in chronic diabetic wounds. Herewith, the development of wound dressings with anti-inflammation and promoting tissue repair is of great significance for the treatment of chronic diabetic wounds. In this work, the Ac2-26 (Ac) peptide was loaded into the hyaluronic acid (HA) complex hydrogel for diabetic wound therapy. The hydrogel containing Ac had good mechanical properties, self-healing properties, and adhesion. It could down-regulate the M1/M2 phenotype of macrophages effectively, thereby promoting collagen type Ⅲ (COL-Ⅲ) secretion and migration of L929 and angiogenesis of HUVECs. Furthermore, the hydrogel containing Ac could restore the oxidative phosphorylation process and down-regulated toll-like receptor signaling pathway and inflammatory gene expression in the pathological environment of diabetes, showing a superior anti-inflammatory effect to ultimately promote the collagen deposition and angiogenesis in tissues for wounds repair. The HA complex hydrogel containing Ac demonstrated a good potential for clinical application in diabetic wound repair.
Collapse
Affiliation(s)
- Ziyi Lu
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Kaijia Tan
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Shuwen Xiang
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Yuchen Zhang
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Fangliang Luo
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xingdan Liu
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Xiaoli Zhao
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Liping Ouyang
- Shanghai Key Laboratory of Flexible Medical Robotics, Tongren Hospital, Institute of Medical Robotics, Shanghai Jiao Tong University, Shanghai, China
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| |
Collapse
|
3
|
Bauer TM, Moon J, Shadiow J, Buckley S, Gallagher KA. Mechanisms of Impaired Wound Healing in Type 2 Diabetes: The Role of Epigenetic Factors. Arterioscler Thromb Vasc Biol 2025; 45:632-642. [PMID: 40109262 PMCID: PMC12018132 DOI: 10.1161/atvbaha.124.321446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Despite decades of research, impaired extremity wound healing in type 2 diabetes remains a significant driver of patient morbidity, mortality, and health care costs. Advances in surgical and medical therapies, including the advent of endovascular interventions for peripheral artery disease and topical therapies developed to promote wound healing, have not reduced the frequency of lower leg amputations for nonhealing wounds in type 2 diabetes. This brief report is aimed at reviewing the roles of various cell types in tissue repair and summarizing the known dysfunctions of these cell types in diabetic foot ulcers. Recent advances in our understanding of the epigenetic regulation in immune cells identified to be altered in type 2 diabetes are summarized, and particular attention is paid to the developing research defining the epigenetic regulation of structural cells, including keratinocytes, fibroblasts, and endothelial cells. Gaps in knowledge are highlighted, and potential future directions are suggested based on the current state of the field.
Collapse
Affiliation(s)
- Tyler M. Bauer
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Jadie Moon
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - James Shadiow
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Sam Buckley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Katherine A. Gallagher
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Zhao H, Lv J, Chen B, He F, Wang Q, Xie D, Koyama H, Zhang C, Cheng J. RAGE deficiency obstructs high uric acid-induced oxidative stress and inflammatory response. Int Immunopharmacol 2025; 151:114316. [PMID: 39987631 DOI: 10.1016/j.intimp.2025.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Hyperuricemia is a metabolic disorder primarily associated with gout and implicated in various metabolic inflammatory diseases. While the role of monosodium urate crystals triggering inflammation has been well-documented, recent findings suggest that soluble high uric acid (HUA) also induces pro-inflammatory cytokine production in human monocytes. However, the comprehensive effects of HUA levels on macrophage dysfunction and the underlying mechanisms remain underexplored. This study employs urate oxidase knockout (UOX-KO) and receptor for advanced glycation end products deficiency (RAGE-/-) mouse models to elucidate macrophage function and its mechanistic pathways. Our results demonstrate that HUA promotes M1 polarization and migration of macrophages while impairing their phagocytic ability. This process is mediated through the high mobility group box 1 (HMGB1)-RAGE- ROS axis. Notably, RAGE deficiency in bone marrow-derived cells partially mediates these effects. Pathologically, elevated HMGB1 and monocyte chemoattractant protein 1 levels in pancreatic islets increases macrophage infiltration in UOX-KO mice. Treatment with the FPS-ZM1, as a pharmacological RAGE inhibitor, effectively decreases serum UA levels, ameliorates islet inflammation and insulin resistance. These findings suggest that soluble HUA serves as a pro-inflammatory trigger through the HMGB1-RAGE-ROS axis, and that RAGE inhibition may mitigate these effects by decreasing inflammatory macrophage infiltration in the islets. Additionally, the influence of UA on macrophages extends beyond gout, potentially contributing to the pathogenesis of other metabolic inflammatory conditions, such as atherosclerosis, non-alcoholic steatohepatitis, obesity, and hyperlipidemia.
Collapse
Affiliation(s)
- Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jiamin Lv
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Binyang Chen
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Furong He
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qiang Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hidenori Koyama
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China.
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan.
| |
Collapse
|
5
|
Jaiswal A, Halasz L, Williams DL, Osborne T. Setdb2 Regulates Inflammatory Trigger-Induced Trained Immunity of Macrophages Through Two Different Epigenetic Mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.644013. [PMID: 40166182 PMCID: PMC11956931 DOI: 10.1101/2025.03.18.644013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
"Trained immunity" of innate immune cells occurs through a sequential two-step process where an initial pathogenic or sterile inflammatory trigger is followed by an amplified response to a later un-related secondary pathogen challenge. The memory effect is mediated at least in part through epigenetic modifications of the chromatin landscape. Here, we investigated the role of the epigenetic modifier Setdb2 in microbial (β-glucan) or sterile trigger (Western-diet-WD/oxidized-LDL-oxLDL)-induced trained immunity of macrophages. Using genetic mouse models and genomic analysis, we uncovered a critical role of Setdb2 in regulating proinflammatory and metabolic pathway reprogramming. We further show that Setdb2 regulates trained immunity through two different complementary mechanisms: one where it positively regulates glycolytic and inflammatory pathway genes via enhancer-promoter looping, and is independent of its enzymatic activity; while the second mechanism is associated with both increased promoter associated H3K9 methylation and repression of interferon response pathway genes. Interestingly, while both mechanisms occur in response to pathogenic training, only the chromatin-looping mechanism operates in response to the sterile inflammatory stimulus. These results reveal a previously unknown bifurcation in the downstream pathways that distinguishes between pathogenic and sterile inflammatory signaling responses associated with the innate immune memory response and may provide potential therapeutic opportunities to target cytokine vs. interferon pathways to limit complications of chronic inflammation.
Collapse
|
6
|
Jiang X, Wu Z, Tan X, Lin Y, Xing H, Xuan Y, Ma D, Cui X. High-affinity uric acid clearance based on motile β-CD/F-127 polyrotaxane microspheres for enhanced diabetic wound repair. Carbohydr Polym 2025; 351:123128. [PMID: 39779032 DOI: 10.1016/j.carbpol.2024.123128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/26/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
Hyperuricemia-related diabetic wounds are notoriously difficult to treat due to elevated uric acid (UA) levels, excessive reactive oxygen species (ROS), and chronic inflammation. Current therapies often fail to address these underlying causes, underscoring the need for innovative approaches that not only clear UA but also mitigate inflammation and promote tissue regeneration. In this study, we developed a polyrotaxane-based microsphere (HPR MS) system conjugated with 4,5-diamino-2-thiouracil (DT) to achieve high-affinity UA clearance without increasing cytotoxicity. By leveraging the molecular motility of the polyrotaxane structure, featuring β-cyclodextrin (β-CD) shuttles along the F-127 axis, we significantly improved the molecular recognition between DT and UA for enhanced UA absorption efficiency. In vitro experiments confirmed that HPR/DT MS rapidly reduced UA levels compared to control groups. Using a type 2 diabetic wound model, HPR/DT MS treatment effectively reduced UA levels, suppressed COX-2 expression, and transformed the immune microenvironment from a pro-inflammatory to a regenerative state in vivo. This was accompanied by enhanced M2 macrophage polarization, angiogenesis, and improved blood perfusion, resulting in accelerated wound healing. Overall, these findings highlight HPR/DT MS as a promising therapeutic strategy for hyperuricemia-related diabetic wounds, targeting the core pathological factors to improve wound repair.
Collapse
Affiliation(s)
- Xinlin Jiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zipeng Wu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Xiaoru Tan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yichen Lin
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Hui Xing
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yinglin Xuan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Dong Ma
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Xin Cui
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Institute of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
7
|
Song J, Wu Y, Chen Y, Sun X, Zhang Z. Epigenetic regulatory mechanism of macrophage polarization in diabetic wound healing (Review). Mol Med Rep 2025; 31:2. [PMID: 39422035 PMCID: PMC11551531 DOI: 10.3892/mmr.2024.13367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetic wounds represent a significant complication of diabetes and present a substantial challenge to global public health. Macrophages are crucial effector cells that play a pivotal role in the pathogenesis of diabetic wounds, through their polarization into distinct functional phenotypes. The field of epigenetics has emerged as a rapidly advancing research area, as this phenomenon has the potential to markedly affect gene expression, cellular differentiation, tissue development and susceptibility to disease. Understanding epigenetic mechanisms is crucial to further exploring disease pathogenesis. A growing body of scientific evidence has highlighted the pivotal role of epigenetics in the regulation of macrophage phenotypes. Various epigenetic mechanisms, such as DNA methylation, histone modification and non‑coding RNAs, are involved in the modulation of macrophage phenotype differentiation in response to the various environmental stimuli present in diabetic wounds. The present review provided an overview of the various changes that take place in macrophage phenotypes and functions within diabetic wounds and discussed the emerging role of epigenetic modifications in terms of regulating macrophage plasticity in diabetic wounds. It is hoped that this synthesis of information will facilitate the elucidation of diabetic wound pathogenesis and the identification of potential therapeutic targets.
Collapse
Affiliation(s)
- Jielin Song
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Yuqing Wu
- The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Yunli Chen
- The First Clinical Medical College, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510000, P.R. China
| | - Xu Sun
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| | - Zhaohui Zhang
- Department of Traditional Chinese Medicine Surgery, The Second Affiliated Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300000, P.R. China
| |
Collapse
|
8
|
Zhang L, Lou K, Zhang Y, Leng Y, Huang Y, Liao X, Liu X, Feng S, Feng G. Tools for regulating metabolic diseases: extracellular vesicles from adipose macrophages. Front Endocrinol (Lausanne) 2024; 15:1510712. [PMID: 39735643 PMCID: PMC11674605 DOI: 10.3389/fendo.2024.1510712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 11/20/2024] [Indexed: 12/31/2024] Open
Abstract
Metabolic diseases have gradually become one of the most significant global medical burdens. Diseases such as obesity, diabetes, and metabolic syndrome, along with their complications, are clinically categorized as metabolic diseases. Long-term oral medication significantly reduces patient compliance and quality of life. Therefore, alternative therapies that intervene at the cellular level or target the root causes of metabolic diseases might help change this predicament. Research has found that extracellular vesicles derived from adipose macrophages can effectively regulate metabolic diseases by influencing the disease's development. This regulation is likely related to the role of these extracellular vesicles as important mediators in modulating adipose tissue function and insulin sensitivity, and their involvement in the crosstalk between adipocytes and macrophages. This review aims to describe the regulation of metabolic diseases mediated by adipose macrophage-derived extracellular vesicles, with a focus on their involvement in adipocyte crosstalk, the regulation of metabolism-related autoimmunity, and their potential as therapeutic agents for metabolic diseases, providing new avenues for diagnosis and treatment.
Collapse
Affiliation(s)
- Liang Zhang
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Kecheng Lou
- Department of Urology, Lanxi People’s Hospital, Jinhua, Zhejiang, China
| | - Yunmeng Zhang
- Department of Anesthesiology, Jiujiang College Hospital, Jiujiang, Jiangxi, China
| | - Yuanjing Leng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Yuqing Huang
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Xinxin Liao
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Xiaoliang Liu
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Shangzhi Feng
- Department of Urology, Jiujiang University Clinic College/Hospital, Jiujiang, Jiangxi, China
| | - Guoqiang Feng
- Department of Rehabilitation, Jiujiang College Hospital, Jiujiang, Jiangxi, China
| |
Collapse
|
9
|
Chen Z, Zou Y, Sun H, He Y, Ye K, Li Y, Qiu L, Mai Y, Chen X, Mao Z, Yi C, Wang W. Engineered Enucleated Mesenchymal Stem Cells Regulating Immune Microenvironment and Promoting Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412253. [PMID: 39295480 DOI: 10.1002/adma.202412253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Indexed: 09/21/2024]
Abstract
Persistent excessive inflammation caused by neutrophil and macrophage dysfunction in the wound bed leads to refractory response during wound healing. However, previous studies using cytokines or drugs often suffer from short half-lives and limited targeting, resulting in unsatisfactory therapeutic effects. Herein, the enucleated mesenchymal stem cell is engineered by aptamer bioorthogonal chemistry to modify the cell membrane and mRNA loading in the cell cytoplasm as a novel delivery vector (Cargocyte) with accurate targeting and sustained cytokine secretion. Cargocytes can successfully reduce NETosis by targeting the nuclear chromatin protein DEK protein with aptamers and sustaining interleukin (IL)-4 expression to overcome the challenges associated with the high cost and short half-life of IL-4 protein and significantly prevent the transition of macrophages into the M1 phenotype. Therapeutic effects have been demonstrated in murine and porcine wound models and have powerful potential to improve wound immune microenvironments effectively. Overall, the use of engineered enucleated mesenchymal stem cells as a delivery system may be a promising approach for wound healing.
Collapse
Affiliation(s)
- Zhengtai Chen
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Yang Zou
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Hanxiao Sun
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Yan He
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Kai Ye
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Yi Li
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Lihong Qiu
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Yuexue Mai
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Xinghong Chen
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Chenggang Yi
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
| | - Wei Wang
- Department of Plastic Surgery, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, 310000, China
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, Zhejiang, 311215, China
| |
Collapse
|
10
|
He X, Peng L, Zhou L, Liu H, Hao Y, Li Y, Lv Z, Zeng B, Guo X, Guo R. A biphasic drug-releasing microneedle with ROS scavenging and angiogenesis for the treatment of diabetic ulcers. Acta Biomater 2024; 189:270-285. [PMID: 39362454 DOI: 10.1016/j.actbio.2024.09.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Diabetic ulcers are one of the common complications in diabetic patients. Delayed wound healing is associated with persistent pro-inflammatory M1 polarization, reduced angiogenesis and increased reactive oxygen species (ROS) in the microenvironment. Wound healing consists of multiple phases and therefore requires treatment tailored to each phase. In this study, a biphasic drug-releasing microneedle (MN) was fabricated to achieve early ROS scavenging and late accelerated angiogenesis to promote wound healing. Vascular endothelial growth factor (VEGF) was first encapsulated in methacryloylated sulfonated chitosan (SCSMA) microspheres (V@MP), and then V@MP was loaded into hyaluronic acid (HA) microneedles along with cerium dioxide nanoparticles (CONPs). Rapid dissolution of HA rapidly releases the CONPs to clear ROS, whereas the V@MP stays in the wound. SCSMA slow degradation prolongs the release of VEGF, thereby promoting angiogenesis. In vitro and in vivo studies have shown that this biphasic drug-releasing smart microneedle improves cell proliferation and migration, effectively scavenges ROS, promotes angiogenesis and tissue regeneration, and synergistically promotes M2 macrophage polarization. It provides a new delivery mode for nano-enzymes and growth factors that could be multifunctional and synergistic in the treatment of diabetic ulcers. STATEMENT OF SIGNIFICANCE: In our study, we present a microneedle (V@MP/C@MN) that can release drugs biphasically, which showed good repair ability in diabetic ulcer model. Large amounts of CONPs were rapidly released to alleviate oxidative stress during the inflammation of the wound, and V@MP stayed in the wound for a long period of time to release VEGF and promote angiogenesis in the late stage of wound healing. The results indicated that V@MP/C@MN could promote cell proliferation and migration, effectively scavenge ROS, promote angiogenesis and tissue regeneration, and synergistically promote M2 macrophage polarization, which could play a multifunctional and synergistic role in the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Xinyue He
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Lianghong Peng
- Department of Ophthalmology, General Hospital of Southern Theater Command, PLA, Guangzhou 510010, China
| | - Liming Zhou
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Huiling Liu
- Head Department of Oral and Maxillofacial Surgery, Leiden University Medical Centre, Amsterdam, De Boelelaan 1117, the Netherlands
| | - Yifan Hao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yuhan Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Zijin Lv
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Baohui Zeng
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China
| | - Xinmin Guo
- Department of Ultrasound, Guangzhou Red Cross Hospital of Jinan University, Guangzhou 510220, China.
| | - Rui Guo
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Key Laboratory of Regenerative Medicine of Ministry of Education, Guangdong Provincial Engineering and Technological Research Centre for Drug Carrier Development, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
11
|
Mangum KD, denDekker A, Li Q, Tsoi LC, Joshi AD, Melvin WJ, Wolf SJ, Moon JY, Audu CO, Shadiow J, Obi AT, Wasikowski R, Barrett EC, Bauer TM, Boyer K, Ahmed Z, Davis FM, Gudjonsson J, Gallagher KA. The STAT3/SETDB2 axis dictates NF-κB-mediated inflammation in macrophages during wound repair. JCI Insight 2024; 9:e179017. [PMID: 39435663 PMCID: PMC11530128 DOI: 10.1172/jci.insight.179017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 08/23/2024] [Indexed: 10/23/2024] Open
Abstract
Macrophage transition from an inflammatory to reparative phenotype after tissue injury is controlled by epigenetic enzymes that regulate inflammatory gene expression. We have previously identified that the histone methyltransferase SETDB2 in macrophages drives tissue repair by repressing NF-κB-mediated inflammation. Complementary ATAC-Seq and RNA-Seq of wound macrophages isolated from mice deficient in SETDB2 in myeloid cells revealed that SETDB2 suppresses the inflammatory gene program by inhibiting chromatin accessibility at NF-κB-dependent gene promoters. We found that STAT3 was required for SETDB2 expression in macrophages, yet paradoxically, it also functioned as a binding partner of SETDB2 where it repressed SETDB2 activity by inhibiting its interaction with the NF-κB component, RELA, leading to increased RELA/NF-κB-mediated inflammatory gene expression. Furthermore, RNA-Seq in wound macrophages from STAT3-deficient mice corroborated this and revealed STAT3 and SETDB2 transcriptionally coregulate overlapping genes. Finally, in diabetic wound macrophages, STAT3 expression and STAT3/SETDB2 binding were increased. We have identified what we believe to be a novel STAT3/SETDB2 axis that modulates macrophage phenotype during tissue repair and may be an important therapeutic target for nonhealing diabetic wounds.
Collapse
Affiliation(s)
- Kevin D. Mangum
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Aaron denDekker
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Qinmengge Li
- Department of Dermatology
- Department of Computation Medicine and Bioinformatics; and
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Lam C. Tsoi
- Department of Dermatology
- Department of Computation Medicine and Bioinformatics; and
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan, USA
| | - Amrita D. Joshi
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - William J. Melvin
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Sonya J. Wolf
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Jadie Y. Moon
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Christopher O. Audu
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - James Shadiow
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Andrea T. Obi
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | | | - Emily C. Barrett
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Tyler M. Bauer
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | - Kylie Boyer
- Section of Vascular Surgery, Department of Surgery
| | - Zara Ahmed
- Section of Vascular Surgery, Department of Surgery
| | - Frank M. Davis
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| | | | - Katherine A. Gallagher
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology
| |
Collapse
|
12
|
Witcoski Junior L, de Lima JD, Somensi AG, de Souza Santos LB, Paschoal GL, Uada TS, Bastos TSB, de Paula AGP, Dos Santos Luz RB, Czaikovski AP, Davanso MR, Braga TT. Metabolic reprogramming of macrophages in the context of type 2 diabetes. Eur J Med Res 2024; 29:497. [PMID: 39407333 PMCID: PMC11481356 DOI: 10.1186/s40001-024-02069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Type 2 diabetes (T2D) is associated with insulin resistance and progressive dysfunction of β-pancreatic cells, leading to persistent hyperglycemia. Macrophages play a crucial role in this context, influencing both the development and progression of insulin resistance. These innate immune cells respond to inflammatory stimuli and reprogram their metabolism, directly impacting the pathophysiology of T2D. Macrophages are highly plastic and can adopt either pro-inflammatory or pro-resolutive phenotypic profiles. In T2D, pro-inflammatory macrophages, which rely on glycolysis, exacerbate insulin resistance through increased production of pro-inflammatory cytokines and nitric oxide. In contrast, pro-resolutive macrophages, which prioritize fatty acid metabolism, have different effects on glucose homeostasis. Metaflammation, a chronic low-grade inflammation, is induced by pro-inflammatory macrophages and significantly contributes to the progression of T2D, creating an environment conducive to metabolic dysfunction. This review aims to clarify the contribution of macrophages to the progression of T2D by detailing how their inflammatory responses and metabolic reprogramming influence insulin resistance and the disease's pathophysiology. The review seeks to deepen the understanding of the biochemical and metabolic mechanisms involved, offering broader insights into the impact on the quality of life for millions of patients worldwide.
Collapse
Affiliation(s)
| | | | | | | | | | - Thalita Suemy Uada
- Department of Pharmacology, Federal University of Paraná, Curitiba, PR, Brazil
| | | | | | | | | | | | - Tarcio Teodoro Braga
- Department of Basic Pathology, Federal University of Paraná, Curitiba, PR, Brazil.
| |
Collapse
|
13
|
Xiong W, Zhang X, Hu J, Zou X, Huang H, Qu W, Cai S, Li C, Wei Y, Zhong X, Cai Z, Huang Z. PF-PEG@ASIV-EXO Hydrogel Accelerates Diabetic Wound Healing by Ferroptosis Resistance and Promoting Angiogenesis. ACS Biomater Sci Eng 2024; 10:6263-6285. [PMID: 39311841 DOI: 10.1021/acsbiomaterials.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Astragaloside IV (ASIV) promotes the proliferation of key cells, endothelial progenitor cells (EPCs), during the wound healing process, while exosomes and hydrogels are ideal drug delivery carriers. This study aims to explore the mechanism of action of the "ROS-responsive hydrogel-engineered EPCs-targeted exosomes" composite ASIV delivery system (PF-PEG@ASIV-EXO) in diabetic wound healing. Surface markers of EPCs and PF-PEG@ASIV-EXO were detected separately. The degradation rate of PF-PEG@ASIV-EXO was assessed after coculturing with human dermal fibroblasts (HDF), immortalized human epidermal cells (HaCAT), and human EPCs, and the biocompatibility of EPCs and PF-PEG@ASIV-EXO was evaluated through exosome release and uptake. The effects of PF-PEG@ASIV-EXO on the viability, angiogenesis, ferroptosis, and mitochondria of high-glucose-treated EPCs (HS-EPCs) were investigated. A diabetic wound rat model was established, and the effects of PF-PEG@ASIV-EXO on diabetic wounds were evaluated through HE and Masson staining, as well as levels of VWF, CD31, and ferroptosis in the skin. EPCs were successfully isolated, and PF-PEG@ASIV-EXO was successfully constructed. PF-PEG@ASIV-EXO exhibited a high degradation rate within EPCs, and both EPCs and PF-PEG@ASIV-EXO showed good biocompatibility. PF-PEG@ASIV-EXO promoted the vitality and angiogenesis of EPCs, inhibited ferroptosis, and mitigated mitochondrial damage. Following treatment with PF-PEG@ASIV-EXO, the healing of diabetic rat skin accelerated, accompanied by elevated expression of VWF and CD31, and reduced ferroptosis levels. PF-PEG@ASIV-EXO hydrogel inhibits ferroptosis, promotes angiogenesis, and thereby accelerates the healing of diabetic wounds.
Collapse
Affiliation(s)
- Wu Xiong
- Department of Burns and Plastic Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Xi Zhang
- Clinical Medical School of Hunan University of Chinese Medicine, Hunan Brain Hospital, Changsha 410007, China
| | - Jinhui Hu
- Department of Breast Surgery, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Xiaoling Zou
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Hongyu Huang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Wenjing Qu
- Department of Endocrinology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China
| | - Shimin Cai
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Chengyu Li
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yang Wei
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xingxing Zhong
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zhaoyang Cai
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Zixin Huang
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
14
|
Yang Y, Wu J, Zhou W, Ji G, Dang Y. Protein posttranslational modifications in metabolic diseases: basic concepts and targeted therapies. MedComm (Beijing) 2024; 5:e752. [PMID: 39355507 PMCID: PMC11442990 DOI: 10.1002/mco2.752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/02/2024] [Accepted: 09/03/2024] [Indexed: 10/03/2024] Open
Abstract
Metabolism-related diseases, including diabetes mellitus, obesity, hyperlipidemia, and nonalcoholic fatty liver disease, are becoming increasingly prevalent, thereby posing significant threats to human health and longevity. Proteins, as the primary mediators of biological activities, undergo various posttranslational modifications (PTMs), including phosphorylation, ubiquitination, acetylation, methylation, and SUMOylation, among others, which substantially diversify their functions. These modifications are crucial in the physiological and pathological processes associated with metabolic disorders. Despite advancements in the field, there remains a deficiency in contemporary summaries addressing how these modifications influence processes of metabolic disease. This review aims to systematically elucidate the mechanisms through which PTM of proteins impact the progression of metabolic diseases, including diabetes, obesity, hyperlipidemia, and nonalcoholic fatty liver disease. Additionally, the limitations of the current body of research are critically assessed. Leveraging PTMs of proteins provides novel insights and therapeutic targets for the prevention and treatment of metabolic disorders. Numerous drugs designed to target these modifications are currently in preclinical or clinical trials. This review also provides a comprehensive summary. By elucidating the intricate interplay between PTMs and metabolic pathways, this study advances understanding of the molecular mechanisms underlying metabolic dysfunction, thereby facilitating the development of more precise and effective disease management strategies.
Collapse
Affiliation(s)
- Yunuo Yang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Jiaxuan Wu
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Wenjun Zhou
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Guang Ji
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| | - Yanqi Dang
- Institute of Digestive DiseasesChina‐Canada Center of Research for Digestive Diseases (ccCRDD)Shanghai University of Traditional Chinese MedicineShanghaiChina
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine (Shanghai University of Traditional Chinese Medicine)ShanghaiChina
| |
Collapse
|
15
|
Yu T, Wang L, Cheng Y, Zhang Y, Zhu J, Zhang G, Hu S. Downregulation of Setdb2 promotes alternative activation of macrophages via the PI3K/Akt pathway to attenuate NAFLD after sleeve gastrectomy. Biochem Biophys Res Commun 2024; 726:150264. [PMID: 38905784 DOI: 10.1016/j.bbrc.2024.150264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) stands as the most prevalent hepatic disorder, with bariatric surgery emerging as the most effective intervention for NAFLD remission. Sleeve gastrectomy (SG) has notably ascended as the predominant procedure due to its comparative simplicity and consistent surgical outcomes. Nonetheless, the underlying mechanisms remain unclear. In this study, we probed the therapeutic potential of SG for NAFLD induced by a high-fat diet (HFD) in mice, with a focus on its impact on liver lipid accumulation, macrophage polarization, and the role of the histone methyltransferase Setdb2. SG prompted significant weight loss, diminished liver size and liver-to-body weight ratio, and enhanced liver function, evidenced by reduced serum levels of triglycerides (TG), total cholesterol (T-CHO), alanine aminotransferase (ALT), and aspartate aminotransferase (AST). Histological examination confirmed a reduction in liver lipid accumulation. Additionally, flow cytometry unveiled an increased proportion of M2 macrophages and a decrease in Setdb2 expression was shown in the SG group, suggesting an association between Setdb2 levels and postsurgical macrophage polarization. Furthermore, the conditional knockout of Setdb2 in mice further mitigated HFD-induced steatosis and promoted the M2 macrophage phenotype. Mechanistically, Setdb2 knockout in bone marrow-derived macrophages (BMDMs) favored M2 polarization, with RNA sequencing and western blotting analyses corroborating the upregulation of the PI3K/Akt signaling pathway. The effects of Setdb2 on macrophage activation were nullified by the PI3K inhibitor LY294002, suggesting that Setdb2 facilitates alternative macrophage activation through the PI3K/Akt signaling pathway. These comprehensive findings underscore the potential of SG as a therapeutic intervention for NAFLD by regulating the critical function of Setdb2 in macrophage polarization and activation, thereby offering novel insights into NAFLD pathogenesis and therapeutic targets.
Collapse
Affiliation(s)
- Tianming Yu
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, Shandong Province, China
| | - Le Wang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China
| | - Yang Cheng
- Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250014, Shandong Province, China
| | - Yun Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China; Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, China; Shandong Engineering Research Center of Diagnosis and Treatment Technology for Bariatric and Metabolism-Associated Surgery, The First Affiliated Hospital of Shandong First Medical University, China
| | - Jiankang Zhu
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China; Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, China; Shandong Engineering Research Center of Diagnosis and Treatment Technology for Bariatric and Metabolism-Associated Surgery, The First Affiliated Hospital of Shandong First Medical University, China
| | - Guangyong Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China; Laboratory of Metabolism and Gastrointestinal Tumor, The First Affiliated Hospital of Shandong First Medical University, China; Shandong Engineering Research Center of Diagnosis and Treatment Technology for Bariatric and Metabolism-Associated Surgery, The First Affiliated Hospital of Shandong First Medical University, China.
| | - Sanyuan Hu
- Department of General Surgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China; Diagnosis and Treatment of Bariatric and Metabolism-Associated Surgery, Shandong Provincial Engineering Research Center, China.
| |
Collapse
|
16
|
Clayton SM, Shafikhani SH, Soulika AM. Macrophage and Neutrophil Dysfunction in Diabetic Wounds. Adv Wound Care (New Rochelle) 2024; 13:463-484. [PMID: 38695109 PMCID: PMC11535468 DOI: 10.1089/wound.2023.0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 04/25/2024] [Indexed: 05/25/2024] Open
Abstract
Significance: The incidence of diabetes continues to rise throughout the world in an alarming rate. Diabetic patients often develop diabetic foot ulcers (DFUs), many of which do not heal. Non-healing DFUs are a major cause of hospitalization, amputation, and increased morbidity. Understanding the underlying mechanisms of impaired healing in DFU is crucial for its management. Recent Advances: This review focuses on the recent advancements on macrophages and neutrophils in diabetic wounds and DFUs. In particular, we discuss diabetes-induced dysregulations and dysfunctions of macrophages and neutrophils. Critical Issues: It is well established that diabetic wounds are characterized by stalled inflammation that results in impaired healing. Recent findings in the field suggest that dysregulation of macrophages and neutrophils plays a critical role in impaired healing in DFUs. The delineation of mechanisms that restore macrophage and neutrophil function in diabetic wound healing is the focus of intense investigation. Future Directions: The breadth of recently generated knowledge on the activity of macrophages and neutrophils in diabetic wound healing is impressive. Experimental models have delineated pathways that hold promise for the treatment of diabetic wounds and DFUs. These pathways may be useful targets for further clinical investigation.
Collapse
Affiliation(s)
- Shannon M. Clayton
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| | - Sasha H. Shafikhani
- Department of Internal Medicine, Division of Hematology, Oncology and Cell Therapy, Rush University, Chicago, Illinois, USA
| | - Athena M. Soulika
- Institute for Pediatric Regenerative Medicine, Shriners Hospitals for Children, Sacramento, California, USA
- Department of Dermatology, School of Medicine, University of California Davis, Sacramento, California, USA
| |
Collapse
|
17
|
Melvin WJ, Bauer TM, Mangum KD, Audu CO, Shadiow J, Barrett EC, Joshi AD, Moon JY, Bogle R, Mazumder P, Wolf SJ, Kunke SL, Gudjonsson JE, Davis FM, Gallagher KA. The histone methyltransferase Mixed-lineage-leukemia-1 drives T cell phenotype via Notch signaling in diabetic tissue repair. JCI Insight 2024; 9:e179012. [PMID: 39250432 PMCID: PMC11463913 DOI: 10.1172/jci.insight.179012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 08/15/2024] [Indexed: 09/11/2024] Open
Abstract
Immune cell-mediated inflammation is important in normal tissue regeneration but can be pathologic in diabetic wounds. Limited literature exists on the role of CD4+ T cells in normal or diabetic wound repair; however, the imbalance of CD4+ Th17/Tregs has been found to promote inflammation in other diabetic tissues. Here, using human tissue and murine transgenic models, we identified that the histone methyltransferase Mixed-lineage-leukemia-1 (MLL1) directly regulates the Th17 transcription factor RORγ via an H3K4me3 mechanism and increases expression of Notch receptors and downstream Notch signaling. Furthermore, we found that Notch receptor signaling regulates CD4+ Th cell differentiation and is critical for normal wound repair, and loss of upstream Notch pathway mediators or receptors in CD4+ T cells resulted in the loss of CD4+ Th cell differentiation in wounds. In diabetes, MLL1 and Notch-receptor signaling was upregulated in wound CD4+ Th cells, driving CD4+ T cells toward the Th17 cell phenotype. Treatment of diabetic wound CD4+ T cells with a small molecule inhibitor of MLL1 (MI-2) yielded a significant reduction in CD4+ Th17 cells and IL-17A. This is the first study to our knowledge to identify the MLL1-mediated mechanisms responsible for regulating the Th17/Treg balance in normal and diabetic wounds and to define the complex role of Notch signaling in CD4+ T cells in wounds, where increased or decreased Notch signaling both result in pathologic wound repair. Therapeutic targeting of MLL1 in diabetic CD4+ Th cells may decrease pathologic inflammation through regulation of CD4+ T cell differentiation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sonya J. Wolf
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Steven L. Kunke
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Katherine A. Gallagher
- Section of Vascular Surgery, Department of Surgery
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
18
|
Wang J, Feng J, Ni Y, Wang Y, Zhang T, Cao Y, Zhou M, Zhao C. Histone modifications and their roles in macrophage-mediated inflammation: a new target for diabetic wound healing. Front Immunol 2024; 15:1450440. [PMID: 39229271 PMCID: PMC11368794 DOI: 10.3389/fimmu.2024.1450440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/02/2024] [Indexed: 09/05/2024] Open
Abstract
Impaired wound healing is one of the main clinical complications of type 2 diabetes (T2D) and a major cause of lower limb amputation. Diabetic wounds exhibit a sustained inflammatory state, and reducing inflammation is crucial to diabetic wounds management. Macrophages are key regulators in wound healing, and their dysfunction would cause exacerbated inflammation and poor healing in diabetic wounds. Gene regulation caused by histone modifications can affect macrophage phenotype and function during diabetic wound healing. Recent studies have revealed that targeting histone-modifying enzymes in a local, macrophage-specific manner can reduce inflammatory responses and improve diabetic wound healing. This article will review the significance of macrophage phenotype and function in wound healing, as well as illustrate how histone modifications affect macrophage polarization in diabetic wounds. Targeting macrophage phenotype with histone-modifying enzymes may provide novel therapeutic strategies for the treatment of diabetic wound healing.
Collapse
Affiliation(s)
- Jing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Ni
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
19
|
Lu H, Suo Z, Lin J, Cong Y, Liu Z. Monocyte-macrophages modulate intestinal homeostasis in inflammatory bowel disease. Biomark Res 2024; 12:76. [PMID: 39095853 PMCID: PMC11295551 DOI: 10.1186/s40364-024-00612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Monocytes and macrophages play an indispensable role in maintaining intestinal homeostasis and modulating mucosal immune responses in inflammatory bowel disease (IBD). Although numerous studies have described macrophage properties in IBD, the underlying mechanisms whereby the monocyte-macrophage lineage modulates intestinal homeostasis during gut inflammation remain elusive. MAIN BODY In this review, we decipher the cellular and molecular mechanisms governing the generation of intestinal mucosal macrophages and fill the knowledge gap in understanding the origin, maturation, classification, and functions of mucosal macrophages in intestinal niches, particularly the phagocytosis and bactericidal effects involved in the elimination of cell debris and pathogens. We delineate macrophage-mediated immunoregulation in the context of producing pro-inflammatory and anti-inflammatory cytokines, chemokines, toxic mediators, and macrophage extracellular traps (METs), and participating in the modulation of epithelial cell proliferation, angiogenesis, and fibrosis in the intestine and its accessory tissues. Moreover, we emphasize that the maturation of intestinal macrophages is arrested at immature stage during IBD, and the deficiency of MCPIP1 involves in the process via ATF3-AP1S2 signature. In addition, we confirmed the origin potential of IL-1B+ macrophages and defined C1QB+ macrophages as mature macrophages. The interaction crosstalk between the intestine and the mesentery has been described in this review, and the expression of mesentery-derived SAA2 is upregulated during IBD, which contributes to immunoregulation of macrophage. Moreover, we also highlight IBD-related susceptibility genes (e.g., RUNX3, IL21R, GTF2I, and LILRB3) associated with the maturation and functions of macrophage, which provide promising therapeutic opportunities for treating human IBD. CONCLUSION In summary, this review provides a comprehensive, comprehensive, in-depth and novel description of the characteristics and functions of macrophages in IBD, and highlights the important role of macrophages in the molecular and cellular process during IBD.
Collapse
Affiliation(s)
- Huiying Lu
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Zhimin Suo
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
| | - Jian Lin
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
20
|
Mangum KD, Li Q, Bauer TM, Wolf SJ, Shadiow J, Moon JY, Barrett EC, Joshi AD, Ahmed Z, Wasikowski R, Boyer K, Obi AT, Davis FM, Chang L, Tsoi LC, Gudjonsson J, Gallagher KA. Epigenetic Alteration of Smooth Muscle Cells Regulates Endothelin-Dependent Blood Pressure and Hypertensive Arterial Remodeling. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.09.24310178. [PMID: 39040193 PMCID: PMC11261912 DOI: 10.1101/2024.07.09.24310178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Long-standing hypertension (HTN) affects multiple organ systems and leads to pathologic arterial remodeling, which is driven largely by smooth muscle cell (SMC) plasticity. Although genome wide association studies (GWAS) have identified numerous variants associated with changes in blood pressure in humans, only a small percentage of these variants actually cause HTN. In order to identify relevant genes important in SMC function in HTN, we screened three separate human GWAS and Mendelian randomization studies to identify SNPs located within non-coding gene regions, focusing on genes encoding epigenetic enzymes, as these have been recently identified to control SMC fate in cardiovascular disease. We identified SNPs rs62059712 and rs74480102 in the promoter of the human JMJD3 gene and show that the minor C allele increases JMJD3 transcription in SMCs via increased SP1 binding to the JMJD3 promoter. Using our novel SMC-specific Jmjd3-deficient murine model ( Jmjd3 flox/flox Myh11 CreERT ), we show that loss of Jmjd3 in SMCs results in HTN, mechanistically, due to decreased EDNRB expression and a compensatory increase in EDNRA expression. As a translational corollary, through single cell RNA-sequencing (scRNA-seq) of human arteries, we found strong correlation between JMJD3 and EDNRB expression in SMCs. Further, we identified that JMJD3 is required for SMC-specific gene expression, and loss of JMJD3 in SMCs in the setting of HTN results in increased arterial remodeling by promoting the SMC synthetic phenotype. Our findings link a HTN-associated human DNA variant with regulation of SMC plasticity, revealing therapeutic targets that may be used in the screening and/or personalized treatment of HTN.
Collapse
|
21
|
Kim HY, Kang YJ, Kim DH, Jang J, Lee SJ, Kim G, Koh HB, Ko YE, Shin HM, Lee H, Yoo TH, Lee WW. Uremic toxin indoxyl sulfate induces trained immunity via the AhR-dependent arachidonic acid pathway in end-stage renal disease (ESRD). eLife 2024; 12:RP87316. [PMID: 38980302 PMCID: PMC11233136 DOI: 10.7554/elife.87316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024] Open
Abstract
Trained immunity is the long-term functional reprogramming of innate immune cells, which results in altered responses toward a secondary challenge. Despite indoxyl sulfate (IS) being a potent stimulus associated with chronic kidney disease (CKD)-related inflammation, its impact on trained immunity has not been explored. Here, we demonstrate that IS induces trained immunity in monocytes via epigenetic and metabolic reprogramming, resulting in augmented cytokine production. Mechanistically, the aryl hydrocarbon receptor (AhR) contributes to IS-trained immunity by enhancing the expression of arachidonic acid (AA) metabolism-related genes such as arachidonate 5-lipoxygenase (ALOX5) and ALOX5 activating protein (ALOX5AP). Inhibition of AhR during IS training suppresses the induction of IS-trained immunity. Monocytes from end-stage renal disease (ESRD) patients have increased ALOX5 expression and after 6 days training, they exhibit enhanced TNF-α and IL-6 production to lipopolysaccharide (LPS). Furthermore, healthy control-derived monocytes trained with uremic sera from ESRD patients exhibit increased production of TNF-α and IL-6. Consistently, IS-trained mice and their splenic myeloid cells had increased production of TNF-α after in vivo and ex vivo LPS stimulation compared to that of control mice. These results provide insight into the role of IS in the induction of trained immunity, which is critical during inflammatory immune responses in CKD patients.
Collapse
Affiliation(s)
- Hee Young Kim
- Department of Microbiology and Immunology, Seoul National University College of MedicineSeoulRepublic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Yeon Jun Kang
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Dong Hyun Kim
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Jiyeon Jang
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Su Jeong Lee
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Gwanghun Kim
- Department of Biomedical Sciences, College of Medicine and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
| | - Hee Byung Koh
- Department of Internal Medicine, College of Medicine, Yonsei UniversitySeoulRepublic of Korea
| | - Ye Eun Ko
- Department of Internal Medicine, College of Medicine, Yonsei UniversitySeoulRepublic of Korea
| | - Hyun Mu Shin
- Department of Biomedical Sciences, College of Medicine and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
- Wide River Institute of Immunology, Seoul National UniversityHongcheonRepublic of Korea
| | - Hajeong Lee
- Division of Nephrology, Department of Internal Medicine, Seoul National University HospitalSeoulRepublic of Korea
| | - Tae-Hyun Yoo
- Division of Nephrology, Department of Internal Medicine, Yonsei University College of MedicineSeoulRepublic of Korea
| | - Won-Woo Lee
- Department of Microbiology and Immunology, Seoul National University College of MedicineSeoulRepublic of Korea
- Institute of Endemic Diseases, Seoul National University Medical Research Center, Seoul National University College of MedicineSeoulRepublic of Korea
- Laboratory of Autoimmunity and Inflammation (LAI), Department of Biomedical Sciences, and BK21Plus Biomedical Science Project, Seoul National University College of MedicineSeoulRepublic of Korea
- Seoul National University Cancer Research Institute; Ischemic/Hypoxic Disease Institute, Seoul National University Medical Research Center, Seoul National University Hospital Biomedical Research InstituteSeoulRepublic of Korea
| |
Collapse
|
22
|
Moon JY, Gallagher KA. Scavengers in islets fuel diabetic autoimmunity. Immunity 2024; 57:1448-1451. [PMID: 38986438 DOI: 10.1016/j.immuni.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024]
Abstract
Autoreactive lymphocytes that infiltrate the pancreatic islet environment and target β cells are primary drivers of type 1 diabetes. In this issue of Immunity, Srivastava et al.1 examine the role of the islet microenvironment in autoimmunity and find that the scavenging receptor CXCL16 on islet-resident macrophages uptakes oxidized low-density lipoproteins and promotes the differentiation and survival of infiltrating pathogenic CD8+ T cells.
Collapse
Affiliation(s)
- Jadie Y Moon
- Department of Immunology, University of Michigan, Ann Arbor, MI, USA
| | - Katherine A Gallagher
- Department of Immunology, University of Michigan, Ann Arbor, MI, USA; Department of Surgery, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
23
|
Pei M, Li P, Guo X, Wen M, Gong Y, Wang P, Fan Z, Wang L, Wang X, Ren W. Sustained Release of Hydrogen and Magnesium Ions Mediated by a Foamed Gelatin-Methacryloyl Hydrogel for the Repair of Bone Defects in Diabetes. ACS Biomater Sci Eng 2024; 10:4411-4424. [PMID: 38913499 DOI: 10.1021/acsbiomaterials.4c00162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Diabetic bone defects, exacerbated by hyperglycemia-induced inflammation and oxidative stress, present significant therapeutic challenges. This study introduces a novel injectable scaffold, MgH2@PLGA/F-GM, consisting of foamed gelatin-methacryloyl (GelMA) and magnesium hydride (MgH2) microspheres encapsulated in poly(lactic-co-glycolic acid) (PLGA). This scaffold is uniquely suited for diabetic bone defects, conforming to complex shapes and fostering an environment conducive to tissue regeneration. As it degrades, Mg(OH)2 is released and dissolved by PLGA's acidic byproducts, releasing therapeutic Mg2+ ions. These ions are instrumental in macrophage phenotype modulation, inflammation reduction, and angiogenesis promotion, all vital for diabetic bone healing. Additionally, hydrogen (H2) released during degradation mitigates oxidative stress by diminishing reactive oxygen species (ROS). This multifaceted approach not only reduces ROS and inflammation but also enhances M2 macrophage polarization and cell migration, culminating in improved angiogenesis and bone repair. This scaffold presents an innovative strategy for addressing the complexities of diabetic bone defect treatment.
Collapse
Affiliation(s)
- Mengyu Pei
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Peizhe Li
- Research Institute of Plastic Surgery, Shandong Second Medical University, Weifang, Shandong 261000, China
| | - Xueqiang Guo
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Mengnan Wen
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Yan Gong
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Pei Wang
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Zhenlin Fan
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Lei Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| | - Xiansong Wang
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
- Shanghai Key Laboratory of Tissue Engineering, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Wenjie Ren
- The Third Affiliated Hospital of Xinxiang Medical University, Institutes of Health Central Plain, Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang 453003, China
| |
Collapse
|
24
|
Las Heras K, Garcia-Orue I, Rancan F, Igartua M, Santos-Vizcaino E, Hernandez RM. Modulating the immune system towards a functional chronic wound healing: A biomaterials and Nanomedicine perspective. Adv Drug Deliv Rev 2024; 210:115342. [PMID: 38797316 DOI: 10.1016/j.addr.2024.115342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/29/2024]
Abstract
Chronic non-healing wounds persist as a substantial burden for healthcare systems, influenced by factors such as aging, diabetes, and obesity. In contrast to the traditionally pro-regenerative emphasis of therapies, the recognition of the immune system integral role in wound healing has significantly grown, instigating an approach shift towards immunological processes. Thus, this review explores the wound healing process, highlighting the engagement of the immune system, and delving into the behaviors of innate and adaptive immune cells in chronic wound scenarios. Moreover, the article investigates biomaterial-based strategies for the modulation of the immune system, elucidating how the adjustment of their physicochemical properties or their synergistic combination with other agents such as drugs, proteins or mesenchymal stromal cells can effectively modulate the behaviors of different immune cells. Finally this review explores various strategies based on synthetic and biological nanostructures, including extracellular vesicles, to finely tune the immune system as natural immunomodulators or therapeutic nanocarriers with promising biophysical properties.
Collapse
Affiliation(s)
- Kevin Las Heras
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itxaso Garcia-Orue
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Fiorenza Rancan
- Department of Dermatology, Venereology und Allergology,Clinical Research Center for Hair and Skin Science, Charité - Universitätsmedizin Berlin
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV-EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Institute of Health Carlos III, Madrid, Spain.
| |
Collapse
|
25
|
Audu CO, Wolf SJ, Joshi AD, Moon JY, Melvin WJ, Sharma SB, Davis FM, Obi AT, Wasikowski R, Tsoi LC, Barrett EC, Mangum KD, Bauer TM, Kunkel SL, Moore BB, Gallagher KA. Histone demethylase JARID1C/KDM5C regulates Th17 cells by increasing IL-6 expression in diabetic plasmacytoid dendritic cells. JCI Insight 2024; 9:e172959. [PMID: 38912581 PMCID: PMC11383169 DOI: 10.1172/jci.insight.172959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 05/10/2024] [Indexed: 06/25/2024] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are first responders to tissue injury, where they prime naive T cells. The role of pDCs in physiologic wound repair has been examined, but little is known about pDCs in diabetic wound tissue and their interactions with naive CD4+ T cells. Diabetic wounds are characterized by increased levels of inflammatory IL-17A cytokine, partly due to increased Th17 CD4+ cells. This increased IL-17A cytokine, in excess, impairs tissue repair. Here, using human tissue and murine wound healing models, we found that diabetic wound pDCs produced excess IL-6 and TGF-β and that these cytokines skewed naive CD4+ T cells toward a Th17 inflammatory phenotype following cutaneous injury. Further, we identified that increased IL-6 cytokine production by diabetic wound pDCs is regulated by a histone demethylase, Jumonji AT-rich interactive domain 1C histone demethylase (JARID1C). Decreased JARID1C increased IL-6 transcription in diabetic pDCs, and this process was regulated upstream by an IFN-I/TYK2/JAK1,3 signaling pathway. When inhibited in nondiabetic wound pDCs, JARID1C skewed naive CD4+ T cells toward a Th17 phenotype and increased IL-17A production. Together, this suggests that diabetic wound pDCs are epigenetically altered to increase IL-6 expression that then affects T cell phenotype. These findings identify a therapeutically manipulable pathway in diabetic wounds.
Collapse
Affiliation(s)
- Christopher O Audu
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, Michigan, USA
| | - Sonya J Wolf
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Amrita D Joshi
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Jadie Y Moon
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - William J Melvin
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Sriganesh B Sharma
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Frank M Davis
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Andrea T Obi
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Rachel Wasikowski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Lam C Tsoi
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Emily C Barrett
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Kevin D Mangum
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Tyler M Bauer
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Steven L Kunkel
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pathology, School of Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Beth B Moore
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Katherine A Gallagher
- Section of Vascular Surgery, Department of Surgery, and
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
26
|
Zhai X, Hu H, Hu M, Ji S, Lei T, Wang X, Zhu Z, Dong W, Teng C, Wei W. A nano-composite hyaluronic acid-based hydrogel efficiently antibacterial and scavenges ROS for promoting infected diabetic wound healing. Carbohydr Polym 2024; 334:122064. [PMID: 38553247 DOI: 10.1016/j.carbpol.2024.122064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 04/02/2024]
Abstract
Diabetic wound infection brings chronic pain to patients and the therapy remains a crucial challenge owing to the disruption of the internal microenvironment. Herein, we report a nano-composite hydrogel (ZnO@HN) based on ZnO nanoparticles and a photo-trigging hyaluronic acid which is modified by o-nitrobenzene (NB), to accelerate infected diabetic wound healing. The diameter of the prepared ZnO nanoparticle is about 50 nm. X-ray photoelectron spectroscopy (XPS) analysis reveals that the coordinate bond binds ZnO in the hydrogel, rather than simple physical restraint. ZnO@HN possesses efficient antioxidant capacity and it can scavenge DPPH about 40 % in 2 h and inhibit H2O2 >50 % in 8 h. The nano-composite hydrogel also exhibits satisfactory antibacterial capacity (58.35 % against E. coli and 64.03 % against S. aureus for 6 h). In vitro tests suggest that ZnO@HN is biocompatible and promotes cell proliferation. In vivo experiments reveal that the hydrogel can accelerate the formation of new blood vessels and hair follicles. Histological analysis exhibits decreased macrophages, increased myofibroblasts, downregulated TNF-α expression, and enhanced VEGFA expression during wound healing. In conclusion, ZnO@HN could be a promising candidate for treating intractable infected diabetic skin defection.
Collapse
Affiliation(s)
- Xinrang Zhai
- Department of Orthopedics, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China
| | - Honghua Hu
- Department of Orthopedics, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Miner Hu
- Department of Cardiology, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Shunxian Ji
- Department of Orthopedics, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Tao Lei
- Department of Orthopedics, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Xiaozhao Wang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Hangzhou 314400, China
| | - Zhiqiang Zhu
- Department of Orthopedics, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China
| | - Wei Dong
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, Jiangsu 210094, China.
| | - Chong Teng
- Department of Orthopedics, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China.
| | - Wei Wei
- Department of Orthopedics, the Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang 322000, China; Liangzhu Laboratory, Zhejiang University, 1369 West Wenyi Road, Hangzhou 311121, China; Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
27
|
Reeder TL, Zarlenga DS, Zeigler AL, Dyer RM. Transcriptional responses consistent with perturbation in dermo-epidermal homeostasis in septic sole ulceration. J Dairy Sci 2024:S0022-0302(24)00843-9. [PMID: 38825108 DOI: 10.3168/jds.2023-24578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 06/04/2024]
Abstract
The aim of this study was to evaluate transcriptional changes in sole epidermis and dermis of bovine claws with septic sole ulceration of the lateral claw. Assessment included changes in transcripts orchestrating epidermal homeostatic processes including epidermal proliferation, differentiation, inflammation, and cell signaling. Sole epidermis and dermis was removed from region 4 of lesion-bearing lateral and lesion-free medial claws of pelvic limbs in multiparous, lactating Holstein cows. Control sole epidermis and dermis was obtained from region 4 of lateral claws of normal pelvic limbs. Transcript abundances were evaluated by real-time QPCR and relative expression analyzed by ANOVA. Relative to normal lateral claws, sole epidermis and dermis in ulcer-bearing claws exhibited downregulation of genes associated with growth factors, growth factor receptors, activator protein 1 (AP-1) and proto-oncogene (CMYC) transcription components, cell cycle elements, lateral cell-to-cell signaling elements and structures of early and late keratinocyte differentiation. These changes were accompanied by upregulation of pro-inflammatory transcripts interleukin 1 α (IL1A), interleukin1 β (IL1B), interleukin 1 receptor 1 (IL1R1), inducible nitric oxide synthase (NOS2), the inflammasome components NOD like receptor protein 3 (NLRP3), pyrin and caspase recruitment domain (PYCARD), and caspase-1 interleukin converting enzyme (CASPASE), the matrix metalloproteinases (MMP2 and MMP9), and anti-inflammatory genes interleukin 1 receptor antagonist (IL1RN) and interleukin1 receptor 2 (IL1R2). Transcript abundance varied across epidermis and dermis from the ulcer center, margin and epidermis and dermis adjacent to the lesion. Sole epidermis and dermis of lesion-free medial claws exhibited changes paralleling those in the adjacent lateral claws in an environment lacking inflammatory transcripts and downregulated IL1A, interleukin 18 (IL18), tumor necrosis factor α (TNFA) and NOS2. These data imply perturbations in signal pathways driving epidermal proliferation and differentiation are associated with, but not inevitably linked to epidermis and dermis inflammation. Further work is warranted to better define the role of crushing tissue injury, sepsis, metalloproteinase activity, and inflammation in sole ulceration.
Collapse
Affiliation(s)
- T L Reeder
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19717-1303
| | - D S Zarlenga
- Animal Parasitic Disease Laboratory, Beltsville Agriculture Research Center, United States Department of Agriculture, Agriculture Research Service, Beltsville, MD 20705-2350
| | - A L Zeigler
- Comparative Medicine Institute, Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27695
| | - R M Dyer
- Department of Animal and Food Sciences, College of Agriculture and Natural Resources, University of Delaware, Newark, DE 19717-1303.
| |
Collapse
|
28
|
Ju CC, Liu XX, Liu LH, Guo N, Guan LW, Wu JX, Liu DW. Epigenetic modification: A novel insight into diabetic wound healing. Heliyon 2024; 10:e28086. [PMID: 38533007 PMCID: PMC10963386 DOI: 10.1016/j.heliyon.2024.e28086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 03/04/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Wound healing is an intricate and fine regulatory process. In diabetic patients, advanced glycation end products (AGEs), excessive reactive oxygen species (ROS), biofilm formation, persistent inflammation, and angiogenesis regression contribute to delayed wound healing. Epigenetics, the fast-moving science in the 21st century, has been up to date and associated with diabetic wound repair. In this review, we go over the functions of epigenetics in diabetic wound repair in retrospect, covering transcriptional and posttranscriptional regulation. Among these, we found that histone modification is widely involved in inflammation and angiogenesis by affecting macrophages and endothelial cells. DNA methylation is involved in factors regulation in wound repair but also affects the differentiation phenotype of cells in hyperglycemia. In addition, noncodingRNA regulation and RNA modification in diabetic wound repair were also generalized. The future prospects for epigenetic applications are discussed in the end. In conclusion, the study suggests that epigenetics is an integral regulatory mechanism in diabetic wound healing.
Collapse
Affiliation(s)
- Cong-Cong Ju
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Xiao-Xiao Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| | - Li-hua Liu
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Nan Guo
- Nanchang University, Nanchang, Jiangxi, PR China
| | - Le-wei Guan
- Huankui Academy, Nanchang University, Nanchang, Jiangxi, PR China
| | - Jun-xian Wu
- Nanchang University, Nanchang, Jiangxi, PR China
| | - De-Wu Liu
- Medical Center of Burn Plastic and Wound Repair, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, PR China
| |
Collapse
|
29
|
Mahana Y, Ariyoshi M, Nozawa RS, Shibata S, Nagao K, Obuse C, Shirakawa M. Structural evidence for protein-protein interaction between the non-canonical methyl-CpG-binding domain of SETDB proteins and C11orf46. Structure 2024; 32:304-315.e5. [PMID: 38159574 DOI: 10.1016/j.str.2023.12.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/26/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024]
Abstract
SETDB1 and SETDB2 mediate trimethylation of histone H3 lysine 9 (H3K9), an epigenetic hallmark of repressive chromatin. They contain a non-canonical methyl-CpG-binding domain (MBD) and bifurcated SET domain, implying interplay between H3K9 trimethylation and DNA methylation in SETDB functions. Here, we report the crystal structure of human SETDB2 MBD bound to the cysteine-rich domain of a zinc-binding protein, C11orf46. SETDB2 MBD comprises the conserved MBD core and a unique N-terminal extension. Although the MBD core has the conserved basic concave surface for DNA binding, it utilizes it for recognition of the cysteine-rich domain of C11orf46. This interaction involves the conserved arginine finger motif and the unique N-terminal extension of SETDB2 MBD, with a contribution from intermolecular β-sheet formation. Thus, the non-canonical MBD of SETDB1/2 seems to have lost methylated DNA-binding ability but gained a protein-protein interaction surface. Our findings provide insight into the molecular assembly of SETDB-associated repression complexes.
Collapse
Affiliation(s)
- Yutaka Mahana
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan
| | - Mariko Ariyoshi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan.
| | - Ryu-Suke Nozawa
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Sachiko Shibata
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Koji Nagao
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Chikashi Obuse
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan
| | - Masahiro Shirakawa
- Department of Molecular Engineering, Graduate School of Engineering, Kyoto University, Nishikyo-Ku, Kyoto 615-8510, Japan.
| |
Collapse
|
30
|
Liu J, Chen Z, Liu H, Qin S, Li M, Shi L, Zhou C, Liao T, Li C, Lv Q, Liu M, Zou M, Deng Y, Wang Z, Wang L. Nickel-Based Metal-Organic Frameworks Promote Diabetic Wound Healing via Scavenging Reactive Oxygen Species and Enhancing Angiogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2305076. [PMID: 37909382 DOI: 10.1002/smll.202305076] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 09/28/2023] [Indexed: 11/03/2023]
Abstract
Chronic diabetic wounds remain a worldwide challenge for both the clinic and research. Given the vicious circle of oxidative stress and inflammatory response as well as the impaired angiogenesis of the diabetic wound tissues, the wound healing process is disturbed and poorly responds to the current treatments. In this work, a nickel-based metal-organic framework (MOF, Ni-HHTP) with excellent antioxidant activity and proangiogenic function is developed to accelerate the healing process of chronic diabetic wounds. The Ni-HHTP can mimic the enzymatic catalytic activities of antioxidant enzymes to eliminate multi-types of reactive species through electron transfer reactions, which protects cells from oxidative stress-related damage. Moreover, this Ni-based MOF can promote cell migration and angiogenesis by activating transforming growth factor-β1 (TGF-β1) in vitro and reprogram macrophages to the anti-inflammatory phenotype. Importantly, Ni-HHTP effectively promotes the healing process of diabetic wounds by suppressing the inflammatory response and enhancing angiogenesis in vivo. This study reports a versatile and promising MOF-based nanozyme for diabetic wound healing, which may be extended in combination with other wound dressings to enhance the management of diabetic or non-healing wounds.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhongyin Chen
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Huan Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Sumei Qin
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Mingyi Li
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Cheng Zhou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Tao Liao
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan, 430062, China
| | - Qiying Lv
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Miaodeng Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meizhen Zou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Deng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
31
|
Yang Y, Yang Y, Jiang J, Wu Z, Sun J, Zhi H, Chen S, Kuai L, Li B, Dong H. Arginine-Nanoenzyme with Timely Angiogenesis for Promoting Diabetic Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9640-9655. [PMID: 38364050 DOI: 10.1021/acsami.3c13072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
The successful treatment of diabetic wounds requires strategies that promote anti-inflammation, angiogenesis, and re-epithelialization of the wound. Excessive oxidative stress in diabetic ulcers (DUs) inhibits cell proliferation and hinders timely vascular formation and macrophage polarization from pro-inflammatory M1 to anti-inflammatory M2, resulting in a persistent inflammatory environment and a nonhealing wound. We designed arginine-nanoenzyme (FTA) with mimic-catalase and arginine-loading. 2,3,4-trihydroxy benzaldehyde and arginine (Arg) were connected by a Schiff base bond, and the nanoassembly of Arg to FTA was driven by the coordination force between a ferric ion and polyphenol and noncovalent bond force such as a hydrogen bond. FTA could remove excess reactive oxygen species at the wound site in situ and convert it to oxygen to improve hypoxia. Meanwhile, Arg was released and catalytically metabolized by NO synthase in M1 to promote vascular repair in the early phase. In the late phase, the metabolite of Arg catalyzed by arginase in M2 was mainly ornithine, which played a vital role in promoting tissue repair, which implemented angiogenesis timely and prevented hypertrophic scars. Mechanistically, FTA activated the cAMP signaling pathway combined with reducing inflammation and ameliorating angiogenesis, which resulted in excellent therapeutic effects on a DU mice model.
Collapse
Affiliation(s)
- Yan Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yushan Yang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jingsi Jiang
- Shanghai Skin Disease Hospital of Tongji University, Shanghai 200443, China
| | - Zongzhou Wu
- Department of Medical Cosmetology, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiuyuan Sun
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hui Zhi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - ShiYu Chen
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| | - Le Kuai
- Department of Dermatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
- Institute of Dermatology, Shanghai Academy of Traditional Chinese Medicine, Shanghai 201203, China
| | - Bin Li
- Shanghai Skin Disease Hospital of Tongji University, Shanghai 200443, China
| | - Haiqing Dong
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration, Ministry of Education, Tongji Hospital, the Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
32
|
Chen Y, Zhang X, Wang Q, Du C, Dong CM. Wound microenvironment regulatory poly(L-glutamic acid) composite hydrogels containing metal ion-coordinated nanoparticles for effective hemostasis and wound healing. Biomater Sci 2024; 12:1211-1227. [PMID: 38240342 DOI: 10.1039/d3bm01978k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Regulating the wound microenvironment to promote proliferation, vascularization, and wound healing is challenging for hemostats and wound dressings. Herein, polypeptide composite hydrogels have been simply fabricated by mixing a smaller amount of metal ion-coordinated nanoparticles into dopamine-modified poly(L-glutamic acid) (PGA), which had a microporous size of 10-16 μm, photothermal conversion ability, good biocompatibility, and multiple biological activities. In vitro scratch healing of fibroblast L929 cells and the tube formation of HUVECs provide evidence that the PGA composite hydrogels could promote cell proliferation, migration, and angiogenesis with the assistance of mild photothermia. Moreover, these composite hydrogels plus mild photothermia could effectively eliminate reactive oxygen species (ROS), alleviate inflammation, and polarize the pro-inflammatory M1 macrophage phenotype into the pro-healing M2 phenotype to accelerate wound healing, as assessed by means of fluorescent microscopy, flow cytometry, and quantitative real-time polymerase chain reaction (qRT-PCR). Meanwhile, a rat liver bleeding model illustrates that the composite hydrogels reduced the blood loss ratio to about 10% and shortened the hemostasis time to about 25 s better than commercial chitosan-based hemostats. Furthermore, the full-thickness rat skin defect models showcase that the composite hydrogels plus mild photothermia could proheal wounds completely with a fast healing rate, optimal neovascularization, and collagen deposition. Therefore, the biodegradable polypeptide PGA composite hydrogels are promising as potent wound hemostats and dressings.
Collapse
Affiliation(s)
- Yanzheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Xueliang Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Qing Wang
- Department of Stomatology, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, P. R. China
| | - Chang Du
- Clinical Cancer Institute, Center for Translational Medicine, Naval Military Medical University, Shanghai, 200433, P. R. China.
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
33
|
Geara P, Dilworth FJ. Epigenetic integration of signaling from the regenerative environment. Curr Top Dev Biol 2024; 158:341-374. [PMID: 38670712 DOI: 10.1016/bs.ctdb.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Skeletal muscle has an extraordinary capacity to regenerate itself after injury due to the presence of tissue-resident muscle stem cells. While these muscle stem cells are the primary contributor to the regenerated myofibers, the process occurs in a regenerative microenvironment where multiple different cell types act in a coordinated manner to clear the damaged myofibers and restore tissue homeostasis. In this regenerative environment, immune cells play a well-characterized role in initiating repair by establishing an inflammatory state that permits the removal of dead cells and necrotic muscle tissue at the injury site. More recently, it has come to be appreciated that the immune cells also play a crucial role in communicating with the stem cells within the regenerative environment to help coordinate the timing of repair events through the secretion of cytokines, chemokines, and growth factors. Evidence also suggests that stem cells can help modulate the extent of the inflammatory response by signaling to the immune cells, demonstrating a cross-talk between the different cells in the regenerative environment. Here, we review the current knowledge on the innate immune response to sterile muscle injury and provide insight into the epigenetic mechanisms used by the cells in the regenerative niche to integrate the cellular cross-talk required for efficient muscle repair.
Collapse
Affiliation(s)
- Perla Geara
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States
| | - F Jeffrey Dilworth
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, WI, United States.
| |
Collapse
|
34
|
He W, Mu X, Wu X, Liu Y, Deng J, Liu Y, Han F, Nie X. The cGAS-STING pathway: a therapeutic target in diabetes and its complications. BURNS & TRAUMA 2024; 12:tkad050. [PMID: 38312740 PMCID: PMC10838060 DOI: 10.1093/burnst/tkad050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/22/2023] [Accepted: 10/09/2023] [Indexed: 02/06/2024]
Abstract
Diabetic wound healing (DWH) represents a major complication of diabetes where inflammation is a key impediment to proper healing. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway has emerged as a central mediator of inflammatory responses to cell stress and damage. However, the contribution of cGAS-STING activation to impaired healing in DWH remains understudied. In this review, we examine the evidence that cGAS-STING-driven inflammation is a critical factor underlying defective DWH. We summarize studies revealing upregulation of the cGAS-STING pathway in diabetic wounds and discuss how this exacerbates inflammation and senescence and disrupts cellular metabolism to block healing. Partial pharmaceutical inhibition of cGAS-STING has shown promise in damping inflammation and improving DWH in preclinical models. We highlight key knowledge gaps regarding cGAS-STING in DWH, including its relationships with endoplasmic reticulum stress and metal-ion signaling. Elucidating these mechanisms may unveil new therapeutic targets within the cGAS-STING pathway to improve healing outcomes in DWH. This review synthesizes current understanding of how cGAS-STING activation contributes to DWH pathology and proposes future research directions to exploit modulation of this pathway for therapeutic benefit.
Collapse
Affiliation(s)
- Wenjie He
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingrui Mu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Xingqian Wu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Ye Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Junyu Deng
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Yiqiu Liu
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| | - Felicity Han
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Xuqiang Nie
- Key Lab of the Basic Pharmacology of the Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- College of Pharmacy, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, No. 6 Xuefu West Road, Xinpu New District, Zunyi 563006, China
| |
Collapse
|
35
|
Zhu W, Liu L, Wu J, Gao R, Fu L, Yang X, Zou Y, Zhang S, Luo D. SMYD3 activates the TCA cycle to promote M1-M2 conversion in macrophages. Int Immunopharmacol 2024; 127:111329. [PMID: 38091832 DOI: 10.1016/j.intimp.2023.111329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 01/18/2024]
Abstract
BACKGROUND SMYD3 refers to a histone lysine methyltransferase from the SMYD family, which acts as a gene transcriptional regulator chiefly through catalysis of the histone subunit 3 at lysine 4 trimethylation (H3K4me3). Great progress has been made that epigenetic modification plays a pivotal role in regulating macrophage polarization. However, the effects of the histone lysine methyltransferase SMYD3 on macrophage polarization and phenotypic switching are unclear. RESULTS We found that LPS/IFN-γ-stimulated macrophages gradually transformed from M1 to M2 in the late stage, and SMYD3 played a key role in this process. As demonstrated by RNA-seq assessment, SMYD3 prominently activated a metabolic pathway known as TCA cycle inside macrophages during M1-M2 conversion. Besides, by modifying H3K4me3 histone, the target genes regulated by SMYD3 were identified via the ChIP-seq assessment, including citrate synthase (CS), succinate dehydrogenase complex subunit C (SDHC) and pyruvate carboxylase (PC). SMYD3 activated the transcriptional activities of the metabolic enzymes CS, SDHC and PC through H3K4me3 by causing the aggregation of citrate, an intramacrophage metabolite, and the depletion of succinate. And additionally, it facilitated the generation of ROS, as well as the expressions of genes associated with mitochondrial respiratory chain complexes. This increased ROS production ultimately induced mitophagy, triggering the M1 to M2 phenotype switch in the macrophages. CONCLUSIONS Our study provides a detailed intrinsic mechanism in the macrophage phenotypic transition process, in short, SMYD3 promotes the M1-M2 conversion of macrophages by activating the TCA cycle through the simultaneous regulation of the transcriptional activities of the metabolic enzymes CS, SDHC and PC.
Collapse
Affiliation(s)
- Wenqiang Zhu
- Department of Pathology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, China
| | - Lina Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Jinjing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Renzhuo Gao
- Queen Marry College, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Liying Fu
- Queen Marry College, College of Medicine, Nanchang University, Nanchang 330006, China
| | - Xiaohong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China
| | - Yang Zou
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Shuhua Zhang
- Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China.
| | - Daya Luo
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
36
|
Tao M, Shi Y, Chen H, Li J, Wang Y, Ma X, Du L, Wang Y, Yang X, Hu Y, Zhou X, Zhong Q, Yan D, Qiu A, Zhuang S, Liu N. The disruptor of telomeric silencing 1-like (DOT1L) promotes peritoneal fibrosis through the upregulation and activation of protein tyrosine kinases. MOLECULAR BIOMEDICINE 2024; 5:3. [PMID: 38172378 PMCID: PMC10764708 DOI: 10.1186/s43556-023-00161-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
The disruptor of telomeric silencing 1-like (DOT1L), a specific histone methyltransferase that catalyzed methylation of histone H3 on lysine 79, was associated with the pathogenesis of many diseases, but its role in peritoneal fibrosis remained unexplored. Here, we examined the role of DOT1L in the expression and activation of protein tyrosine kinases and development of peritoneal fibrosis. We found that a significant rise of DOT1L expression in the fibrotic peritoneum tissues from long-term PD patients and mice. Inhibition of DOT1L significantly attenuated the profibrotic phenotypic differentiation of mesothelial cells and macrophages, and alleviated peritoneal fibrosis. Mechanistically, RNA sequencing and proteomic analysis indicated that DOT1L was mainly involved in the processes of protein tyrosine kinase binding and extracellular matrix structural constituent in the peritoneum. Chromatin immunoprecipitation (ChIP) showed that intranuclear DOT1L guided H3K79me2 to upregulate EGFR in mesothelial cells and JAK3 in macrophages. Immunoprecipitation and immunofluorescence showed that extranuclear DOT1L could interact with EGFR and JAK3, and maintain the activated signaling pathways. In summary, DOT1L promoted the expression and activation of tyrosine kinases (EGFR in mesothelial cells and JAK3 in macrophages), promoting cells differentiate into profibrotic phenotype and thus peritoneal fibrosis. We provide the novel mechanism of dialysis-related peritoneal fibrosis (PF) and the new targets for clinical drug development. DOT1L inhibitor had the PF therapeutic potential.
Collapse
Affiliation(s)
- Min Tao
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yingfeng Shi
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Hui Chen
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Jinqing Li
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yi Wang
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xiaoyan Ma
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Lin Du
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yishu Wang
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xinyu Yang
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Yan Hu
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Xun Zhou
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Qin Zhong
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Danying Yan
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Andong Qiu
- Shanghai Key Laboratory of Maternal and Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shougang Zhuang
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
- Department of Medicine, Rhode Island Hospital and Alpert Medical School, Brown University, Providence, RI, USA
| | - Na Liu
- Department of Nephrology, Pudong New District, Shanghai East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China.
| |
Collapse
|
37
|
Sun D, Chang Q, Lu F. Immunomodulation in diabetic wounds healing: The intersection of macrophage reprogramming and immunotherapeutic hydrogels. J Tissue Eng 2024; 15:20417314241265202. [PMID: 39071896 PMCID: PMC11283672 DOI: 10.1177/20417314241265202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/12/2024] [Indexed: 07/30/2024] Open
Abstract
Diabetic wound healing presents a significant clinical challenge due to the interplay of systemic metabolic disturbances and local inflammation, which hinder the healing process. Macrophages undergo a phenotypic shift from M1 to M2 during wound healing, a transition pivotal for effective tissue repair. However, in diabetic wounds, the microenvironment disrupts this phenotypic polarization, perpetuating inflammation, and impeding healing. Reprograming macrophages to restore their M2 phenotype offers a potential avenue for modulating the wound immune microenvironment and promoting healing. This review elucidates the mechanisms underlying impaired macrophage polarization toward the M2 phenotype in diabetic wounds and discusses novel strategies, including epigenetic and metabolic interventions, to promote macrophage conversion to M2. Hydrogels, with their hydrated 3D cross-linked structure, closely resemble the physiological extracellular matrix and offer advantageous properties such as biocompatibility, tunability, and versatility. These characteristics make hydrogels promising candidates for developing immunomodulatory materials aimed at addressing diabetic wounds. Understanding the role of hydrogels in immunotherapy, particularly in the context of macrophage reprograming, is essential for the development of advanced wound care solutions. This review also highlights recent advancements in immunotherapeutic hydrogels as a step toward precise and effective treatments for diabetic wounds.
Collapse
Affiliation(s)
- Dan Sun
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Qiang Chang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Feng Lu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Lu Y, Sun Q, Guan Q, Zhang Z, He Q, He J, Ji Z, Tian W, Xu X, Liu Y, Yin Y, Zheng C, Lian S, Xu B, Wang P, Jiang R, Sun B. The XOR-IDH3α axis controls macrophage polarization in hepatocellular carcinoma. J Hepatol 2023; 79:1172-1184. [PMID: 37473847 DOI: 10.1016/j.jhep.2023.06.022] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 05/30/2023] [Accepted: 06/21/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND & AIMS Tumor-associated macrophages (TAMs) are indispensable in the hepatocellular carcinoma (HCC) tumor microenvironment. Xanthine oxidoreductase (XOR), also known as xanthine dehydrogenase (XDH), participates in purine metabolism, uric acid production, and macrophage polarization to a pro-inflammatory phenotype. However, the role of XOR in HCC-associated TAMs is unclear. METHODS We evaluated the XOR level in macrophages isolated from HCC tissues and paired adjacent tissues. We established diethylnitrosamine/carbon tetrachloride (CCl4)-induced and orthotopically implanted HCC mouse models using mice with Xdh-specific depletion in the myeloid cell lineage (Xdhf/fLyz2cre) or Kupffer cells (Xdhf/fClec4fcre). We determined metabolic differences using specific methodologies, including metabolomics and metabolic flux. RESULTS We found that XOR expression was downregulated in HCC TAMs and positively correlated with patient survival, which was strongly related to the characteristics of the tumor microenvironment, especially hypoxia. Using HCC-inflicted mice (Xdhf/fLyz2cre and Xdhf/fClec4fcre), we revealed that XOR loss in monocyte-derived TAMs rather than Kupffer cells promoted their M2 polarization and CD8+ T-cell exhaustion, which exacerbated HCC progression. In addition, the tricarboxylic acid cycle was disturbed, and the generation of α-ketoglutarate was enhanced within XOR-depleted macrophages. XOR inhibited α-ketoglutarate production by interacting with IDH3α catalytic sites (K142 and Q139). The increased IDH3α activity caused increased adenosine and kynurenic acid production in TAMs, which enhanced the immunosuppressive effects of TAMs and CD8+ T cells. CONCLUSIONS The XOR-IDH3α axis mediates TAM polarization and HCC progression and may be a small-molecule therapeutic or immunotherapeutic target against suppressive HCC TAMs. IMPACT AND IMPLICATIONS Immunotherapies have been widely applied to the treatment of hepatocellular carcinoma (HCC), but to date they have been associated with unsatisfactory efficacy. The tumor microenvironment of HCC is full of different infiltrating immune cells. Tumor-associated macrophages (TAMs) are vital components in the tumor microenvironment and are involved in HCC progression. Herein, we confirm the downregulation of XOR expression in TAMs isolated from human HCC. The loss of XOR in monocyte-derived macrophages increases IDH3 activity and results in an increase in α-ketoglutarate production, which can promote M2-like polarization. Additionally, XOR-null TAMs derived from monocytes promote CD8+ T-cell exhaustion via the upregulation of immunosuppressive metabolites, including adenosine and kynurenic acid. Given the prevalence and high rate of incidence of HCC and the need for improved therapeutic options for patients, our findings identify potential therapeutic targets that may be further studied to develop improved therapies.
Collapse
Affiliation(s)
- Yijun Lu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qikai Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qifei Guan
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zechuan Zhang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Qifeng He
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Jianbo He
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Zetao Ji
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Wenfang Tian
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoliang Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yang Liu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Yin Yin
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Chang Zheng
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Senlin Lian
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China
| | - Bing Xu
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Pin Wang
- Department of Gastroenterology, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Runqiu Jiang
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China.
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, China; Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
39
|
Chen Y, Hung FY, Sugimoto K. Epigenomic reprogramming in plant regeneration: Locate before you modify. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102415. [PMID: 37437389 DOI: 10.1016/j.pbi.2023.102415] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/04/2023] [Accepted: 06/14/2023] [Indexed: 07/14/2023]
Abstract
Plants possess remarkable abilities for regeneration, and this developmental capability is strongly influenced by environmental conditions. Previous research has highlighted the positive effects of wound signaling and warm temperature on plant regeneration, and recent studies suggest that light and nutrient signals also influence the regenerative efficiencies. Several epigenetic factors, such as histone acetyl-transferases (HATs), POLYCOMB REPRESSIVE COMPLEX 2 (PRC2), and H2A variants, play crucial roles in regulating the expression of genes implicated in plant regeneration. However, how these epigenetic factors recognize specific genomic regions to regulate regeneration genes is still unclear. In this article, we describe the latest studies of epigenetic regulation and discuss the functional coordination between transcription factors and epigenetic modifiers in plant regeneration.
Collapse
Affiliation(s)
- Yu Chen
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Fu-Yu Hung
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan.
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Hongo 7-3-1, Bunkyo-ku, Tokyo, 113-0033 Japan.
| |
Collapse
|
40
|
Low R, Ha SD, Sleapnicov N, Maneesh P, Kim SO. Prolonged Inhibition of the MEK1/2-ERK Signaling Axis Primes Interleukin-1 Beta Expression through Histone 3 Lysine 9 Demethylation in Murine Macrophages. Int J Mol Sci 2023; 24:14428. [PMID: 37833877 PMCID: PMC10572145 DOI: 10.3390/ijms241914428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/18/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Macrophages undergo different cellular states upon activation that can be hyporesponsive (tolerated) or hyperresponsive (primed or trained) to subsequent stimuli. Epigenetic modifications are known to play key roles in determining these cellular states. However, little is known about the role of signaling pathways that lead to these epigenetic modifications. Here, we examined the effects of various inhibitors targeting key signaling pathways induced by lipopolysaccharide (LPS) on tolerance and priming in murine macrophages. We found that a prolonged inhibition (>18 h) of the mitogen-activated protein kinase (MEK)1/2-extracellular signal-regulated kinase (ERK)1/2 signaling axis reversed tolerance and primed cells in expressing interleukin (IL)-1β and other inflammatory cytokines such as IL-6, tumor necrosis factor (TNF)α, and CXCL10. The ectopic expression of catalytically active and inactive MEK1 mutants suppressed and enhanced IL-1β expression, respectively. A transcriptomic analysis showed that cells primed by the MEK1/2 inhibitor U0126 expressed higher levels of gene sets associated with immune responses and cytokine/chemokine production, but expressed lower levels of genes with cell cycle progression, chromosome organization, and heterochromatin formation than non-primed cells. Of interest, the mRNA expressions of the histone 3 lysine 9 (H3K9) methyltransferase Suv39h1 and the H3K9 methylation reader Cbx5 were substantially suppressed, whereas the H3K9 demethylase Kdm7a was enhanced, suggesting a role of the MEK1/2-ERK signaling axis in H3K9 demethylation. The H3K9 trimethylation levels in the genomic regions of IL-1β, TNFα, and CXCL10 were decreased by U0126. Also, the H3K9 methyltransferase inhibitor BIX01294 mimicked the U0126 training effects and the overexpression of chromobox homolog (CBX)5 prevented the U0126 training effects in both RAW264.7 cells and bone-marrow-derived macrophages. Collectively, these data suggest that the prolonged inhibition of the MEK1/2-ERK signaling axis reverses tolerance and primed macrophages likely through decreasing the H3K9 methylation levels.
Collapse
Affiliation(s)
| | | | | | | | - Sung Ouk Kim
- Department of Microbiology and Immunology, University of Western Ontario, London, ON N6G 2V4, Canada; (R.L.); (S.-D.H.); (N.S.); (P.M.)
| |
Collapse
|
41
|
Dam P, Celik M, Ustun M, Saha S, Saha C, Kacar EA, Kugu S, Karagulle EN, Tasoglu S, Buyukserin F, Mondal R, Roy P, Macedo MLR, Franco OL, Cardoso MH, Altuntas S, Mandal AK. Wound healing strategies based on nanoparticles incorporated in hydrogel wound patches. RSC Adv 2023; 13:21345-21364. [PMID: 37465579 PMCID: PMC10350660 DOI: 10.1039/d3ra03477a] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 07/20/2023] Open
Abstract
The intricate, tightly controlled mechanism of wound healing that is a vital physiological mechanism is essential to maintaining the skin's natural barrier function. Numerous studies have focused on wound healing as it is a massive burden on the healthcare system. Wound repair is a complicated process with various cell types and microenvironment conditions. In wound healing studies, novel therapeutic approaches have been proposed to deliver an effective treatment. Nanoparticle-based materials are preferred due to their antibacterial activity, biocompatibility, and increased mechanical strength in wound healing. They can be divided into six main groups: metal NPs, ceramic NPs, polymer NPs, self-assembled NPs, composite NPs, and nanoparticle-loaded hydrogels. Each group shows several advantages and disadvantages, and which material will be used depends on the type, depth, and area of the wound. Better wound care/healing techniques are now possible, thanks to the development of wound healing strategies based on these materials, which mimic the extracellular matrix (ECM) microenvironment of the wound. Bearing this in mind, here we reviewed current studies on which NPs have been used in wound healing and how this strategy has become a key biotechnological procedure to treat skin infections and wounds.
Collapse
Affiliation(s)
- Paulami Dam
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Merve Celik
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Merve Ustun
- Graduate School of Sciences and Engineering, Koç University Istanbul 34450 Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Sayantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Chirantan Saha
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Elif Ayse Kacar
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Senanur Kugu
- Graduate Program of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
| | - Elif Naz Karagulle
- Biomedical Engineering Graduate Program, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Savaş Tasoglu
- Mechanical Engineering Department, School of Engineering, Koç University Istanbul Turkey
- Koç University Translational Medicine Research Center (KUTTAM), Koç University Istanbul Turkey
| | - Fatih Buyukserin
- Department of Biomedical Engineering, TOBB University of Economics and Technology Ankara 06560 Turkey
| | - Rittick Mondal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
| | - Priya Roy
- Department of Law, Raiganj University North Dinajpur West Bengal India
| | - Maria L R Macedo
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
| | - Octávio L Franco
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Marlon H Cardoso
- Laboratório de Purificação de Proteínas e suas Funções Biológicas, Universidade Federal de Mato Grosso do Sul, Cidade Universitária 79070900 Campo Grande Mato Grosso do Sul 70790160 Brazil
- S-inova Biotech, Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco Campo Grande 79117900 Brazil
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília Brasília DF Brazil
| | - Sevde Altuntas
- Experimental Medicine Research and Application Center, University of Health Sciences Turkey Istanbul 34662 Turkey
- Department of Tissue Engineering, Institution of Health Sciences, University of Health Sciences Turkey Istanbul Turkey
| | - Amit Kumar Mandal
- Chemical Biology Laboratory, Department of Sericulture, Raiganj University North Dinajpur West Bengal India
- Centre for Nanotechnology Sciences (CeNS), Raiganj University North Dinajpur West Bengal India
| |
Collapse
|
42
|
Bernard Q, Goumeidane M, Chaumond E, Robbe-Saule M, Boucaud Y, Esnault L, Croué A, Jullien J, Marsollier L, Marion E. Type-I interferons promote innate immune tolerance in macrophages exposed to Mycobacterium ulcerans vesicles. PLoS Pathog 2023; 19:e1011479. [PMID: 37428812 PMCID: PMC10358927 DOI: 10.1371/journal.ppat.1011479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 06/13/2023] [Indexed: 07/12/2023] Open
Abstract
Buruli ulcer is a chronic infectious disease caused by Mycobacterium ulcerans. The pathogen persistence in host skin is associated with the development of ulcerative and necrotic lesions leading to permanent disabilities in most patients. However, few of diagnosed cases are thought to resolve through an unknown self-healing process. Using in vitro and in vivo mouse models and M. ulcerans purified vesicles and mycolactone, we showed that the development of an innate immune tolerance was only specific to macrophages from mice able to heal spontaneously. This tolerance mechanism depends on a type I interferon response and can be induced by interferon beta. A type I interferon signature was further detected during in vivo infection in mice as well as in skin samples from patients under antibiotics regiment. Our results indicate that type I interferon-related genes expressed in macrophages may promote tolerance and healing during infection with skin damaging pathogen.
Collapse
Affiliation(s)
- Quentin Bernard
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | | | - Emmanuel Chaumond
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Marie Robbe-Saule
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Yan Boucaud
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Lucille Esnault
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Anne Croué
- Laboratoire d'anatomo-pathologie, CHU Angers, Angers, France
| | | | - Laurent Marsollier
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| | - Estelle Marion
- Univ Angers, Nantes Université, INSERM, Immunology and New Concepts in ImmunoTherapy, INCIT, UMR 1302, Angers, France
| |
Collapse
|
43
|
Sonobe S, Kitabatake M, Hara A, Konda M, Ouji-Sageshima N, Terada-Ikeda C, Furukawa R, Imakita N, Oda A, Takeda M, Takamura S, Inoue S, Kunkel SL, Kawaguchi M, Ito T. THE CRITICAL ROLE OF THE HISTONE MODIFICATION ENZYME SETDB2 IN THE PATHOGENESIS OF ACUTE RESPIRATORY DISTRESS SYNDROME. Shock 2023; 60:137-145. [PMID: 37195726 PMCID: PMC10417228 DOI: 10.1097/shk.0000000000002145] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
ABSTRACT Introduction: Acute respiratory distress syndrome (ARDS) is a severe hypoxemic respiratory failure with a high in-hospital mortality. However, the molecular mechanisms underlying ARDS remain unclear. Recent findings have indicated that the onset of severe inflammatory diseases, such as sepsis, is regulated by epigenetic changes. We investigated the role of epigenetic changes in ARDS pathogenesis using mouse models and human samples. Methods: Acute respiratory distress syndrome was induced in a mouse model (C57BL/6 mice, myeloid cell or vascular endothelial cell [VEC]-specific SET domain bifurcated 2 [Setdb2]-deficient mice [Setdb2 ff Lyz2 Cre+ or Setdb2 ff Tie2 Cre+ ], and Cre - littermates) by intratracheal administration of lipopolysaccharide (LPS). Analyses were performed at 6 and 72 h after LPS administration. Sera and lung autopsy specimens from ARDS patients were examined. Results: In the murine ARDS model, we observed high expression of the histone modification enzyme SET domain bifurcated 2 ( Setdb2 ) in the lungs. In situ hybridization examination of the lungs revealed Setdb2 expression in macrophages and VECs. The histological score and albumin level of bronchoalveolar lavage fluid were significantly increased in Setdb2 ff Tie2 Cre+ mice following LPS administration compared with Setdb2 ff Tie2 Cre- mice, whereas there was no significant difference between the control and Setdb2 ff Lyz2 Cre+ mice. Apoptosis of VECs was enhanced in Setdb2 ff Tie2 Cre+ mice. Among the 84 apoptosis-related genes, the expression of TNF receptor superfamily member 10b ( Tnfrsf10b ) was significantly higher in Setdb2 ff Tie2 Cre+ mice than in control mice. Acute respiratory distress syndrome patients' serum showed higher SETDB2 levels than those of healthy volunteers. SETDB2 levels were negatively correlated with the partial pressure of oxygen in arterial blood/fraction of inspiratory oxygen concentration ratio. Conclusion: Acute respiratory distress syndrome elevates Setdb2 , apoptosis of VECs, and vascular permeability. Elevation of histone methyltransferase Setdb2 suggests the possibility to histone change and epigenetic modification. Thus, Setdb2 may be a novel therapeutic target for controlling the pathogenesis of ARDS.
Collapse
Affiliation(s)
- Shota Sonobe
- Department of Immunology, Nara Medical University, Kashihara, Japan
- Department of Anesthesiology, Nara Medical University, Kashihara, Japan
| | | | - Atsushi Hara
- Department of Immunology, Nara Medical University, Kashihara, Japan
| | - Makiko Konda
- Department of Immunology, Nara Medical University, Kashihara, Japan
- Department of Anesthesiology, Nara Medical University, Kashihara, Japan
| | | | | | - Ryutaro Furukawa
- Department of Immunology, Nara Medical University, Kashihara, Japan
- Center for Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Natsuko Imakita
- Department of Immunology, Nara Medical University, Kashihara, Japan
- Center for Infectious Diseases, Nara Medical University, Kashihara, Japan
| | - Akihisa Oda
- Department of Pediatrics, Nara Medical University, Kashihara, Japan
| | - Maiko Takeda
- Department of Diagnostic Pathology, Nara Medical University, Kashihara, Japan
| | - Shiki Takamura
- Laboratory for Immunological Memory, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Satoki Inoue
- Department of Anesthesiology, Fukushima Medical University, Fukushima, Japan
| | - Steven L. Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | | | - Toshihiro Ito
- Department of Immunology, Nara Medical University, Kashihara, Japan
| |
Collapse
|
44
|
Loevenich S, Montaldo NP, Wickenhagen A, Sherstova T, van Loon B, Boyartchuk V, Anthonsen MW. Human metapneumovirus driven IFN-β production antagonizes macrophage transcriptional induction of IL1-β in response to bacterial pathogens. Front Immunol 2023; 14:1173605. [PMID: 37435074 PMCID: PMC10330783 DOI: 10.3389/fimmu.2023.1173605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 06/12/2023] [Indexed: 07/13/2023] Open
Abstract
Human metapneumovirus (HMPV) is a pneumovirus that may cause severe respiratory disease in humans. HMPV infection has been found to increase susceptibility to bacterial superinfections leading to increased morbidity and mortality. The molecular mechanisms underlying HMPV-mediated increase in bacterial susceptibility are poorly understood and largely understudied. Type I interferons (IFNs), while critical for antiviral defenses, may often have detrimental effects by skewing the host immune response and cytokine output of immune cells. It is currently unknown if HMPV skews the inflammatory response in human macrophages triggered by bacterial stimuli. Here we report that HMPV pre-infection impacts production of specific cytokines. HMPV strongly suppresses IL-1β transcription in response to LPS or heat-killed Pseudomonas aeruginosa and Streptococcus pneumonia, while enhancing mRNA levels of IL-6, TNF-α and IFN-β. We demonstrate that in human macrophages the HMPV-mediated suppression of IL-1β transcription requires TANK-binding kinase 1 (TBK1) and signaling via the IFN-β-IFNAR axis. Interestingly, our results show that HMPV pre-infection did not impair the LPS-stimulated activation of NF-κB and HIF-1α, transcription factors that stimulate IL-1β mRNA synthesis in human cells. Furthermore, we determined that sequential HMPV-LPS treatment resulted in accumulation of the repressive epigenetic mark H3K27me3 at the IL1B promoter. Thus, for the first time we present data revealing the molecular mechanisms by which HMPV shapes the cytokine output of human macrophages exposed to bacterial pathogens/LPS, which appears to be dependent on epigenetic reprogramming at the IL1B promoter leading to reduced synthesis of IL-1β. These results may improve current understanding of the role of type I IFNs in respiratory disease mediated not only by HMPV, but also by other respiratory viruses that are associated with superinfections.
Collapse
Affiliation(s)
- Simon Loevenich
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Biotechnology and Nanomedicine, SINTEF Industry, Trondheim, Norway
| | - Nicola P. Montaldo
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Arthur Wickenhagen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Department of Viroscience, Erasmus Medical Center, Rotterdam, Netherlands
| | - Tatyana Sherstova
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Barbara van Loon
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Victor Boyartchuk
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
- Clinic of Surgery, St Olav Hospital HF, Trondheim, Norway
| | - Marit W. Anthonsen
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| |
Collapse
|
45
|
Zhao P, Cai Z, Zhang X, Liu M, Xie F, Liu Z, Lu S, Ma X. Hydrogen Attenuates Inflammation by Inducing Early M2 Macrophage Polarization in Skin Wound Healing. Pharmaceuticals (Basel) 2023; 16:885. [PMID: 37375833 DOI: 10.3390/ph16060885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
The heterogeneous and highly plastic cell populations of macrophages are important mediators of cellular responses during all stages of wound healing, especially in the inflammatory stage. Molecular hydrogen (H2), which has potent antioxidant and anti-inflammatory effects, has been shown to promote M2 polarization in injury and disease. However, more in vivo time series studies of the role of M1-to-M2 polarization in wound healing are needed. In the current study, we performed time series experiments on a dorsal full-thickness skin defect mouse model in the inflammatory stage to examine the effects of H2 inhalation. Our results revealed that H2 could promote very early M1-to-M2 polarization (on days 2-3 post wounding, 2-3 days earlier than in conventional wound healing), without disturbing the functions of the M1 phenotype. Time series analysis of the transcriptome, blood cell counts, and multiple cytokines further indicated that peripheral blood monocytes were a source of H2-induced M2 macrophages and that the functions of H2 in macrophage polarization were not only dependent on its antioxidant effects. Therefore, we believe that H2 could reduce inflammation in wound care by shifting early macrophage polarization in clinical settings.
Collapse
Affiliation(s)
- Pengxiang Zhao
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Zisong Cai
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Xujuan Zhang
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Mengyu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Fei Xie
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Ziyi Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Shidong Lu
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| | - Xuemei Ma
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
- Beijing Molecular Hydrogen Research Center, Beijing 100124, China
- Beijing International Science and Technology Cooperation Base of Antivirus Drug, Beijing 100124, China
| |
Collapse
|
46
|
Wu X, Xu M, Geng M, Chen S, Little PJ, Xu S, Weng J. Targeting protein modifications in metabolic diseases: molecular mechanisms and targeted therapies. Signal Transduct Target Ther 2023; 8:220. [PMID: 37244925 PMCID: PMC10224996 DOI: 10.1038/s41392-023-01439-y] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/01/2023] [Accepted: 04/06/2023] [Indexed: 05/29/2023] Open
Abstract
The ever-increasing prevalence of noncommunicable diseases (NCDs) represents a major public health burden worldwide. The most common form of NCD is metabolic diseases, which affect people of all ages and usually manifest their pathobiology through life-threatening cardiovascular complications. A comprehensive understanding of the pathobiology of metabolic diseases will generate novel targets for improved therapies across the common metabolic spectrum. Protein posttranslational modification (PTM) is an important term that refers to biochemical modification of specific amino acid residues in target proteins, which immensely increases the functional diversity of the proteome. The range of PTMs includes phosphorylation, acetylation, methylation, ubiquitination, SUMOylation, neddylation, glycosylation, palmitoylation, myristoylation, prenylation, cholesterylation, glutathionylation, S-nitrosylation, sulfhydration, citrullination, ADP ribosylation, and several novel PTMs. Here, we offer a comprehensive review of PTMs and their roles in common metabolic diseases and pathological consequences, including diabetes, obesity, fatty liver diseases, hyperlipidemia, and atherosclerosis. Building upon this framework, we afford a through description of proteins and pathways involved in metabolic diseases by focusing on PTM-based protein modifications, showcase the pharmaceutical intervention of PTMs in preclinical studies and clinical trials, and offer future perspectives. Fundamental research defining the mechanisms whereby PTMs of proteins regulate metabolic diseases will open new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Xiumei Wu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China
| | - Mengyun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Mengya Geng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Shuo Chen
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Peter J Little
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Woolloongabba, QLD, 4102, Australia
- Sunshine Coast Health Institute and School of Health and Behavioural Sciences, University of the Sunshine Coast, Birtinya, QLD, 4575, Australia
| | - Suowen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Jianping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Department of Endocrinology and Metabolism, Guangdong Provincial Key Laboratory of Diabetology, The Third Affiliated Hospital of Sun Yat-sen University, 510000, Guangzhou, China.
- Bengbu Medical College, Bengbu, 233000, China.
| |
Collapse
|
47
|
Xiong Y, Lin Z, Bu P, Yu T, Endo Y, Zhou W, Sun Y, Cao F, Dai G, Hu Y, Lu L, Chen L, Cheng P, Zha K, Shahbazi MA, Feng Q, Mi B, Liu G. A Whole-Course-Repair System Based on Neurogenesis-Angiogenesis Crosstalk and Macrophage Reprogramming Promotes Diabetic Wound Healing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2212300. [PMID: 36811203 DOI: 10.1002/adma.202212300] [Citation(s) in RCA: 149] [Impact Index Per Article: 74.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Indexed: 05/12/2023]
Abstract
Diabetic wound (DW) therapy is currently a big challenge in medicine and strategies to enhance neurogenesis and angiogenesis have appeared to be a promising direction. However, the current treatments have failed to coordinate neurogenesis and angiogenesis simultaneously, leading to an increased disability rate caused by DWs. Herein, a whole-course-repair system is introduced by a hydrogel to concurrently achieve a mutually supportive cycle of neurogenesis-angiogenesis under a favorable immune-microenvironment. This hydrogel can first be one-step packaged in a syringe for later in situ local injections to cover wounds long-termly for accelerated wound healing via the synergistic effect of magnesium ions (Mg2+ ) and engineered small extracellular vesicles (sEVs). The self-healing and bio-adhesive properties of the hydrogel make it an ideal physical barrier for DWs. At the inflammation stage, the formulation can recruit bone marrow-derived mesenchymal stem cells to the wound sites and stimulate them toward neurogenic differentiation, while providing a favorable immune microenvironment via macrophage reprogramming. At the proliferation stage of wound repair, robust angiogenesis occurs by the synergistic effect of the newly differentiated neural cells and the released Mg2+ , allowing a regenerative neurogenesis-angiogenesis cycle to take place at the wound site. This whole-course-repair system provides a novel platform for combined DW therapy.
Collapse
Affiliation(s)
- Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Ze Lin
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Pengzhen Bu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Tao Yu
- Department of Orthopaedics, School of Medicine, Ruijin Hospital, Shanghai Jiao Tong University, Shanghai, 200025, P. R. China
| | - Yori Endo
- Department of Plastic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02152, USA
| | - Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Yun Sun
- Department of neurosurgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Faqi Cao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Guandong Dai
- Department of Orthopaedics, Pingshan District People's Hospital of Shenzhen, Pingshan General Hospital of Southern Medical University, Shenzhen, Guangdong, 518118, P. R. China
| | - Yiqiang Hu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Li Lu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Lang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Peng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Kangkang Zha
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Mohammad-Ali Shahbazi
- Department of Biomedical Engineering, University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education College of Bioengineering, Chongqing University, Chongqing, 400044, P. R. China
| | - Bobin Mi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, P. R. China
| |
Collapse
|
48
|
Kuang C, Xia M, An G, Liu C, Hu C, Zhang J, Liu Z, Meng B, Su P, Xia J, Guo J, Zhu Y, Liu X, Wu X, Shen Y, Feng X, He Y, Li J, Qiu L, Zhou J, Zhou W. Excessive serine from the bone marrow microenvironment impairs megakaryopoiesis and thrombopoiesis in Multiple Myeloma. Nat Commun 2023; 14:2093. [PMID: 37055385 PMCID: PMC10102122 DOI: 10.1038/s41467-023-37699-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 03/27/2023] [Indexed: 04/15/2023] Open
Abstract
Thrombocytopenia is a major complication in a subset of patients with multiple myeloma (MM). However, little is known about its development and significance during MM. Here, we show thrombocytopenia is linked to poor prognosis in MM. In addition, we identify serine, which is released from MM cells into the bone marrow microenvironment, as a key metabolic factor that suppresses megakaryopoiesis and thrombopoiesis. The impact of excessive serine on thrombocytopenia is mainly mediated through the suppression of megakaryocyte (MK) differentiation. Extrinsic serine is transported into MKs through SLC38A1 and downregulates SVIL via SAM-mediated tri-methylation of H3K9, ultimately leading to the impairment of megakaryopoiesis. Inhibition of serine utilization or treatment with TPO enhances megakaryopoiesis and thrombopoiesis and suppresses MM progression. Together, we identify serine as a key metabolic regulator of thrombocytopenia, unveil molecular mechanisms governing MM progression, and provide potential therapeutic strategies for treating MM patients by targeting thrombocytopenia.
Collapse
Affiliation(s)
- Chunmei Kuang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Meijuan Xia
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Gang An
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - CuiCui Liu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Cong Hu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jingyu Zhang
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Zhenhao Liu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Bin Meng
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Pei Su
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jiliang Xia
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Jiaojiao Guo
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yinghong Zhu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xing Liu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Xuan Wu
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
| | - Yi Shen
- Department of Orthopaedic Surgery, Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiangling Feng
- Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Yanjuan He
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jian Li
- Department of Hematology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lugui Qiu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Jiaxi Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China.
| | - Wen Zhou
- Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Geriatric Disorders, Key Laboratory for Carcinogenesis and Invasion, Chinese Ministry of Education, Key Laboratory of Carcinogenesis, Chinese Ministry of Health, Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
| |
Collapse
|
49
|
Xia W, Liu Y, Jiang X, Li M, Zheng S, Zhang Z, Huang X, Luo S, Khoong Y, Hou M, Zan T. Lean adipose tissue macrophage derived exosome confers immunoregulation to improve wound healing in diabetes. J Nanobiotechnology 2023; 21:128. [PMID: 37046252 PMCID: PMC10091677 DOI: 10.1186/s12951-023-01869-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Chronic non-healing wounds, a prevalent complication of diabetes, are associated with increased mortality in diabetic patients. Excessive accumulation of M1 macrophages in diabetic wounds promotes inflammation and results in dysregulated tissue repair. Adipose tissue macrophages (ATMs) derived from healthy lean donors have the ability to improve glucose tolerance and insulin sensitivity, as well as modulate inflammation. MicroRNAs (miRs), which can be packaged into exosomes (Exos) and secreted from cells, serve as essential regulators of macrophage polarization. Here, we revealed that ATMs isolated from lean mice secrete miRs-containing Exos, which modulate macrophage polarization and promote rapid diabetic wound healing when administered to diabetes-prone db/db mice. The miRs sequence of tissue samples from wounds treated with Exos secreted by lean ATMs (ExosLean) revealed that miR-222-3p was up-regulated. Further analyses showed that inhibiting miR-222-3p using a miR inhibitor impaired the macrophage-reprogramming effect of ExosLean. In the excisional skin wound mouse model, locally inhibiting miR-222-3p disrupted healing dynamics and failed to modulate macrophage polarization. Mechanistic studies revealed a connection between miR-222-3p, Bcl2l11/Bim, an inflammatory response effector, macrophage polarization, and diabetic wound healing. In summary, ExosLean act as positive regulators of macrophage polarization by regulating miR levels in wounds and accelerating wound healing, and thus have important implications for wound management in diabetes.
Collapse
Affiliation(s)
- Wenzheng Xia
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yunhan Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xingyu Jiang
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Minxiong Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shengwu Zheng
- Department of Burn and Plastic Surgery, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, China
| | - Zewei Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xin Huang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Shenying Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yimin Khoong
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Meng Hou
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
50
|
Cai F, Chen W, Zhao R, Liu Y. Mechanisms of Nrf2 and NF-κB pathways in diabetic wound and potential treatment strategies. Mol Biol Rep 2023; 50:5355-5367. [PMID: 37029875 DOI: 10.1007/s11033-023-08392-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/15/2023] [Indexed: 04/09/2023]
Abstract
The issue of delayed wound healing or nonhealing in diabetic patients presents a challenge for modern medicine. A number of attempts have been made to understand the mechanisms behind diabetic wound. In a hyperglycemic environment, increased intracellular reactive oxygen species (ROS) disturb the balance between oxidation and antioxidant, causing the wound environment to deteriorate. It has been established that the nuclear factor E2-related factor 2 (Nrf2) and nuclear factor-kappa B (NF-κB) pathways play an important role in regulating inflammation and oxidative stress. Several potential treatment strategies involving Nrf2 and/or NF-κB pathways have been explored in previous studies. Hence, we analyzed mechanisms and changes in Nrf2 and NF-κB pathways in response to oxidative stress and inflammation in diabetic environment. Additionally, we reviewed potential treatment strategies from the past five years for diabetic wound by Nrf2 and/or NF-κB pathways, including receptor agonists, vitamins, hormones, exosomes, drugs, plants, and biomaterials. It may be useful to develop drugs to promote diabetic wound healing.
Collapse
Affiliation(s)
- Feiyu Cai
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Wenjiao Chen
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Ruomei Zhao
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yi Liu
- Department of Burns and Plastic Surgery & Wound Repair Surgery, the Lanzhou University Second Hospital, Lanzhou, Gansu, China.
| |
Collapse
|