1
|
Chu Q, Li K, He Q, Ren L, Wang J, Wang S, Liu X, Liu Y, He J, Li D, Shao Y. Efficient boosting of Omicron-reactive memory B cells after breakthrough infection protects from repeated exposure. iScience 2025; 28:112278. [PMID: 40264792 PMCID: PMC12013488 DOI: 10.1016/j.isci.2025.112278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/17/2025] [Accepted: 03/19/2025] [Indexed: 04/24/2025] Open
Abstract
Exploring the impact of persistent mutations in SARS-CoV-2 variants and reduced immunity on breakthrough infections (BTIs) is crucial, particularly in understanding how antigen-specific memory B cells (MBCs) respond to new variants. We followed 107 participants who received the ancestral inactivated vaccine and experienced one or two Omicron BTIs over six months. Using flow cytometry, SARS-CoV-2 antigen probes, single-cell RNA sequencing, and B cell receptor (BCR) profiling, we assessed MBCs and immune diversity. Our findings revealed that although neutralizing antibody levels decreased over time, the number of specific MBCs remained stable and matured progressively. Notably, pre-existing Omicron-specific MBCs played a key role in preventing secondary Omicron infections. Differential gene analysis showed enrichment in antigen processing and immune regulation pathways, while clonal lineage analysis revealed more B cell expansion and V(D)J gene-specific rearrangements in high neutralization samples. These results emphasize MBCs' critical role in long-term immunity and inform future vaccination strategies.
Collapse
Affiliation(s)
- Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Kang Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Guangxi Key Laboratory of AIDS Prevention and Treatment, Guangxi Medical University, Nanning 530021, China
| | - Qianxin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Li Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jiguo Wang
- Toroivd Technology Company Limited, Shanghai 200439, China
| | - Shuo Wang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Xiaojing Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Ying Liu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Jiangshan He
- College of Life Sciences, Beijing Normal University, 19 Xinjiekouwai Avenue, Beijing 100875, China
| | - Dan Li
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| | - Yiming Shao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
- Changping Laboratory, Beijing 102299, China
| |
Collapse
|
2
|
Bastos Mendes LF, Dal-Pizzol HR, Prestes G, Saibro Girardi C, Santos L, Gelain DP, Westphal GA, Walz R, Ritter C, Dal-Pizzol F, Fonseca Moreira JC. Prediction of COVID-19 mortality using machine learning strategies and a large-scale panel of plasma inflammatory proteins: A cohort study. Med Intensiva 2025:502200. [PMID: 40185655 DOI: 10.1016/j.medine.2025.502200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/01/2025] [Indexed: 04/07/2025]
Abstract
OBJECTIVE To apply machine learning algorithms to generate models capable of predicting mortality in COVID-19 patients, using a large platform of plasma inflammatory mediators. DESING Prospective, descriptive, cohort study. SETTING 6 intensive care units in 2 hospitals in Southern Brazil. PATIENTS Patients aged > 18 years who were diagnosed with COVID-19 through reverse transcriptase reaction or rapid antigen test. INTERVENTIONS None. MAIN VARIABLES OF INTEREST Demographic and clinical variables, 65 inflammatory biomarkers, mortality. RESULTS Combinations of two or three proteins yield higher predictive value when compared to individual proteins or the full set of the 65 proteins. A proliferation-inducing ligand (APRIL) and cluster of differentiation 40 ligand (CD40L) consistently emerge among the highest-ranking combinations, suggesting a potential synergistic effect in predicting clinical outcomes. The network structure suggested a dysregulated immune response in non-survivors characterized by the failure of regulatory cytokines to temper an overwhelming inflammatory reaction. CONCLUSION Our results highlight the value of feature selection and careful consideration of biomarker combinations to improve prediction accuracy in COVID-19 patients.
Collapse
Affiliation(s)
- Luiz Filipe Bastos Mendes
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Henrique Ritter Dal-Pizzol
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Gabriele Prestes
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil
| | - Carolina Saibro Girardi
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Lucas Santos
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Daniel Pens Gelain
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | | | - Roger Walz
- Center for Applied Neuroscience, University Hospital (HU), Federal University of Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Cristiane Ritter
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil; Intensive Care Unit, Hospital São José, Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Laboratory of Experimental Pathophysiology, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, Santa Catarina, Brazil; Intensive Care Unit, Hospital São José, Criciúma, SC, Brazil.
| | - Jose Claudio Fonseca Moreira
- Departamento de Bioquímica, Centro de Estudos em Estresse Oxidativo, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
3
|
Sahli W, Vitte J, Desnues B. Eosinophils and COVID-19: Insights into immune complexity and vaccine safety. Clin Transl Allergy 2025; 15:e70050. [PMID: 40120088 PMCID: PMC11929522 DOI: 10.1002/clt2.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/23/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025] Open
Abstract
BACKGROUND COVID-19 exhibits a variety of symptoms and may lead to multi-organ failure and death. This clinical complexity is exacerbated by significant immune dysregulation affecting nearly all cells of the innate and adaptive immune system. Granulocytes, including eosinophils, are affected by SARS-CoV-2. OBJECTIVES Eosinophil responses remain poorly understood despite early recognition of eosinopenia as a hallmark feature of COVID-19 severity. RESULTS The heterogeneous nature of eosinophil responses categorizes them as dual-function cells with contradictory effects. Eosinophil activation can suppress virus-induced inflammation by releasing type 2 cytokines like IL-13 and granular proteins with antiviral action such as eosinophil-derived neurotoxins and eosinophil cationic protein, and also by acting as antigen-presenting cells. In contrast, eosinophil accumulation in the lungs can induce tissue damage triggered by cytokines or hormones like IFN-γ and leptin. Additionally, they can affect adaptive immune functions by interacting with T cells through direct formation of membrane complexes or soluble mediator action. Individuals with allergic disorders who have elevated levels of eosinophils in tissues and blood, such as asthma, do not appear to be at an increased risk of developing severe COVID-19 following SARS-CoV-2 infection. However, the SARS-CoV-2 vaccine appears to be associated with complications and eosinophilic infiltrate-induced immunopathogenicity, which can be mitigated by corticosteroid, anti-histamines and anti-IL-5 therapy and avoided by modifying adjuvants or excipients. CONCLUSION This review highlights the importance of eosinophils in COVID-19 and contributes to a better understanding of their role during natural infection and vaccination.
Collapse
Affiliation(s)
- Wided Sahli
- Aix Marseille UniversityMEPHIMarseilleFrance
- IHU‐Méditerranée InfectionMarseilleFrance
| | - Joana Vitte
- Laboratory of ImmunologyUniversity Hospital of ReimsReimsFrance
- INSERM UMR‐S 1250 P3CELLUniversity of ReimsReimsFrance
| | - Benoit Desnues
- Aix Marseille UniversityMEPHIMarseilleFrance
- IHU‐Méditerranée InfectionMarseilleFrance
| |
Collapse
|
4
|
Fahnøe U, Feng S, Underwood AP, Jacobsen K, Ameri A, Blicher TH, Sølund CS, Rosenberg BR, Brix L, Weis N, Bukh J. T cell receptor usage and epitope specificity amongst CD8 + and CD4 + SARS-CoV-2-specific T cells. Front Immunol 2025; 16:1510436. [PMID: 40092978 PMCID: PMC11906682 DOI: 10.3389/fimmu.2025.1510436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/02/2025] [Indexed: 03/19/2025] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has highlighted the critical importance of understanding protective long-lasting immune responses. This study investigates the epitope specificity, T cell receptor (TCR) usage, and phenotypic changes in SARS-CoV-2-specfic CD8+ and CD4+ T cells over time in convalescent individuals with COVID-19. Methods Peripheral blood mononuclear cells (PBMCs) were collected from 28 unvaccinated individuals with primary SARS-CoV-2 infection (6 identified as the D614G variant, clade 20C) and analyzed up to 12 months post-symptom onset. Antigen-specific CD8+ and CD4+ T cells were analyzed using flow cytometry and single-cell RNA sequencing (scRNAseq) using specific dextramer and antibody reagents. TCR clonotypes and activation markers were characterized to explore T cell dynamics. Results SARS-CoV-2-specific CD8+ T cells exhibited waning frequencies long-term, transitioning from memory-like to a naïve-like state. scRNAseq revealed specificity against both spike and non-spike antigens with increased CD95 and CD127 expression over time, indicating that naïve-like T cells may represent stem cell memory T cells, which are multipotent and self-renewing, likely important for long-lived immunity. TCR clonal expansion was observed mainly in memory T cells, with overlapping TCR beta chain (TRB)-complementary determining region 3 (CDR3) sequences between participants, suggesting shared public TCR epitope-specific repertoires against SARS-CoV-2. Further, unique spike-specific CD4+ T cells with high CD95 and CD127 expression were identified, which may play a crucial role in long-term protection. Discussion This study highlights epitope-specificity heterogeneity, with some immunodominant responses, and suggests a potential role for long-lived SARS-CoV-2-specific T cell immunity. Shared TCR repertoires offers insights into cross-reactive and protective T cell clones, providing valuable information for optimizing vaccine strategies against emerging SARS-CoV-2 variants. The findings underscore the critical role of cellular immunity in long-term protection against SARS-CoV-2 and emphasizes the importance of understanding T cell dynamics.
Collapse
Affiliation(s)
- Ulrik Fahnøe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Shan Feng
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Alexander P. Underwood
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | | | | | | | - Christina S. Sølund
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| | - Brad R. Rosenberg
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Nina Weis
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
| |
Collapse
|
5
|
Willscher E, Schultheiß C, Paschold L, Lea Schümann F, Schmidt-Barbo P, Thiele B, Bauer M, Wickenhauser C, Weber T, Binder M. T-cell receptor architecture and clonal tiding provide insight into the transformation trajectory of peripheral T-cell lymphomas. Haematologica 2025; 110:457-469. [PMID: 39219501 PMCID: PMC11788643 DOI: 10.3324/haematol.2024.285395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
While T-cell lymphomas are classified as mature neoplasms, emerging evidence indicates that malignant transformation may occur at an earlier stage of T-cell maturation. In this study, we determined clonal architecture in a broad range of T-cell lymphomas. Our multidimensional profiling indicates that many of these lymphomas do in fact emerge from an immature lymphoid T-cell precursor at a maturation stage prior to V(D)J rearrangement that undergoes branching evolution. Consequently, at single-cell resolution we observed considerable clonal tiding under selective therapeutic pressure. T-cell receptor next-generation sequencing suggested a highly biased usage of TRBV20-1 gene segments as part of multiple antigen receptor rearrangements per patient. The predominance of TRBV20-1 was found across all major T-cell lymphoma subtypes analyzed. This suggested that this particular V gene - independently of complementarity-determining region 3 configuration - may represent a driver of malignant transformation. Together, our data indicate that T-cell lymphomas are derived from immature lymphoid precursors and display considerable intratumoral heterogeneity that may provide the basis for relapse and resistance in these hard-to-treat cancers.
Collapse
MESH Headings
- Humans
- Lymphoma, T-Cell, Peripheral/genetics
- Lymphoma, T-Cell, Peripheral/pathology
- Lymphoma, T-Cell, Peripheral/metabolism
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/pathology
- Cell Transformation, Neoplastic/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Clonal Evolution
- High-Throughput Nucleotide Sequencing
Collapse
Affiliation(s)
- Edith Willscher
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle
| | - Christoph Schultheiß
- Department of Biomedicine, Translational Immuno-Oncology, University of Basel, Basel, Switzerland; Division of Medical Oncology, University Hospital Basel, Basel
| | - Lisa Paschold
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle
| | - Franziska Lea Schümann
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle
| | - Paul Schmidt-Barbo
- Department of Biomedicine, Translational Immuno-Oncology, University of Basel, Basel
| | - Benjamin Thiele
- Department of Biomedicine, Translational Immuno-Oncology, University of Basel, Basel, Switzerland; Division of Medical Oncology, University Hospital Basel, Basel
| | - Marcus Bauer
- Department of Pathology, Martin-Luther-University Halle-Wittenberg, Halle
| | | | - Thomas Weber
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle
| | - Mascha Binder
- Department of Biomedicine, Translational Immuno-Oncology, University of Basel, Basel, Switzerland; Division of Medical Oncology, University Hospital Basel, Basel.
| |
Collapse
|
6
|
Familiar-Macedo D, de Azeredo EL, de Lemos ERS, Damasco PV, de-Oliveira-Pinto LM. Profile of Humoral Immunity and B Cell Pool in Infection with the SARS-CoV-2 Prototype Strain and AZD1222 (ChAdOx nCoV-19) Vaccination. Vaccines (Basel) 2025; 13:101. [PMID: 40006648 PMCID: PMC11860857 DOI: 10.3390/vaccines13020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Understanding the behavior of B cells during infection and vaccination is important for determining protective humoral immunity. We evaluated the profile of humoral immunity and B cell pool in individuals who were acutely infected with SARS-CoV-2, recovered from COVID-19, or received two doses of the AZD1222 vaccine. METHODS Peripheral blood mononuclear cells (PBMCs) from these individuals were subjected to in vitro stimulation to promote the differentiation of B cells into antibody-secreting cells (ASCs), and the ELISpot evaluated the abundance of pan and SARS-CoV-2 Spike S1-reactive IgG+ ASC. Stimulated PBMCs were characterized using flow cytometry. Culture supernatants were assessed for soluble B-cell-activating factors. The IgA and IgG for the S1 were evaluated through ELISA. RESULTS The recovered individuals displayed a robust S1 ASC compared to acute and vaccinated individuals. Although the frequency of total B cells or B cell subsets did not vary among the groups, plasmablast cells were increased in naïve and double-negative B cells in the acute, recovered, and vaccinated individuals. Similar IgA and IgG production appeared to be present in the acute and recovered individuals. During vaccination, more IgG is produced than IgA. In acute patients, BAFF levels were positively correlated with total B cells and IgG+ plasmablast cells but negatively correlated with IgA+ plasmablast cells. CONCLUSIONS Vaccination and natural infection with COVID-19 induce a differential profile and functionality of B cells. We suggest that new vaccines against COVID-19 incorporate molecular adjuvants that regulate B lymphocyte functionality and consider the beneficial aspects of the IgA response in addition to IgG.
Collapse
Affiliation(s)
- Débora Familiar-Macedo
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro 21040-360, Brazil; (D.F.-M.); (E.L.d.A.)
| | - Elzinandes Leal de Azeredo
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro 21040-360, Brazil; (D.F.-M.); (E.L.d.A.)
| | - Elba Regina Sampaio de Lemos
- Laboratório de Hantaviroses e Rickettsioses, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro 21040-360, Brazil;
| | - Paulo Vieira Damasco
- Rede Casa Hospital Rio Laranjeira e Rio Botafogo, Rio de Janeiro 22240-000, Brazil;
- Disciplina de Doenças Infecciosas e Parasitárias, Departamento de Medicina Geral, Universidade Federal do Estado do Rio de Janeiro (UNIRIO), Rio de Janeiro 20270-004, Brazil
- Disciplina de Doenças Infecciosas, Departamento de Medicina Interna, Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro 20551-900, Brazil
| | - Luzia Maria de-Oliveira-Pinto
- Laboratório das Interações Vírus Hospedeiros, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (IOC/Fiocruz), Rio de Janeiro 21040-360, Brazil; (D.F.-M.); (E.L.d.A.)
| |
Collapse
|
7
|
Zhang Y, Han S, Sun Q, Liu T, Wen Z, Yao M, Zhang S, Duan Q, Zhang X, Pang B, Kou Z, Jiang X. Single-cell transcriptome atlas of peripheral immune features to Omicron breakthrough infection under booster vaccination strategies. Front Immunol 2025; 15:1460442. [PMID: 39835127 PMCID: PMC11743671 DOI: 10.3389/fimmu.2024.1460442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction The high percentage of Omicron breakthrough infection in vaccinees is an emerging problem, of which we have a limited understanding of the phenomenon. Methods We performed single-cell transcriptome coupled with T-cell/B-cell receptor (TCR/BCR) sequencing in 15 peripheral blood mononuclear cell (PBMC) samples from Omicron infection and naïve with booster vaccination. Results We found that after breakthrough infection, multiple cell clusters showed activation of the type I IFN pathway and widespread expression of Interferon-stimulated genes (ISGs); T and B lymphocytes exhibited antiviral and proinflammatory-related differentiation features with pseudo-time trajectories; and large TCR clonal expansions were concentrated in effector CD8 T cells, and clonal expansions of BCRs showed a preference for IGHV3. In addition, myeloid cells in the BA.5.2 breakthrough infection with the fourth dose of aerosolized Ad5-nCoV were characterized by enhanced proliferation, chemotactic migration, and antigen presentation. Discussion Collectively, our study informs the comprehensive understandings of immune characterization for Omicron breakthrough infection, revealing the positive antiviral potential induced by booster doses of vaccine and the possible "trained immunity" phenomenon in the fourth dose of aerosolized Ad5-nCoV, providing a basis for the selection of vaccination strategies.
Collapse
MESH Headings
- Humans
- Immunization, Secondary
- COVID-19/immunology
- COVID-19/prevention & control
- COVID-19/genetics
- Single-Cell Analysis
- Transcriptome
- SARS-CoV-2/immunology
- COVID-19 Vaccines/immunology
- COVID-19 Vaccines/administration & dosage
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Leukocytes, Mononuclear/immunology
- Vaccination
- B-Lymphocytes/immunology
- Breakthrough Infections
Collapse
Affiliation(s)
- Yuwei Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Shanshan Han
- School of Public Health and Health Management, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qingshuai Sun
- School of Public Health and Health Management, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tao Liu
- Department of Infectious Disease Control, Yantai Center for Disease Control and Prevention, Yantai, Shandong, China
| | - Zixuan Wen
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
| | - Mingxiao Yao
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Shu Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Qing Duan
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Xiaomei Zhang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Bo Pang
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Zengqiang Kou
- Infectious Disease Prevention and Control Section, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| | - Xiaolin Jiang
- School of Public Health and Health Management, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
- School of Public Health, Weifang Medical University, Weifang, Shandong, China
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, Shandong, China
| |
Collapse
|
8
|
Bowyer S, Allen DJ, Furnham N. Unveiling the ghost: machine learning's impact on the landscape of virology. J Gen Virol 2025; 106. [PMID: 39804261 DOI: 10.1099/jgv.0.002067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
The complexity and speed of evolution in viruses with RNA genomes makes predictive identification of variants with epidemic or pandemic potential challenging. In recent years, machine learning has become an increasingly capable technology for addressing this challenge, as advances in methods and computational power have dramatically improved the performance of models and led to their widespread adoption across industries and disciplines. Nascent applications of machine learning technology to virus research have now expanded, providing new tools for handling large-scale datasets and leading to a reshaping of existing workflows for phenotype prediction, phylogenetic analysis, drug discovery and more. This review explores how machine learning has been applied to and has impacted the study of viruses, before addressing the strengths and limitations of its techniques and finally highlighting the next steps that are needed for the technology to reach its full potential in this challenging and ever-relevant research area.
Collapse
Affiliation(s)
- Sebastian Bowyer
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - David J Allen
- Department of Comparative Biomedical Sciences, Section Infection and Immunity, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Nicholas Furnham
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
9
|
Hanna SJ, Bonami RH, Corrie B, Westley M, Posgai AL, Luning Prak ET, Breden F, Michels AW, Brusko TM. The Type 1 Diabetes T Cell Receptor and B Cell Receptor Repository in the AIRR Data Commons: a practical guide for access, use and contributions through the Type 1 Diabetes AIRR Consortium. Diabetologia 2025; 68:186-202. [PMID: 39467874 PMCID: PMC11663175 DOI: 10.1007/s00125-024-06298-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/19/2024] [Indexed: 10/30/2024]
Abstract
Human molecular genetics has brought incredible insights into the variants that confer risk for the development of tissue-specific autoimmune diseases, including type 1 diabetes. The hallmark cell-mediated immune destruction that is characteristic of type 1 diabetes is closely linked with risk conferred by the HLA class II gene locus, in combination with a broad array of additional candidate genes influencing islet-resident beta cells within the pancreas, as well as function, phenotype and trafficking of immune cells to tissues. In addition to the well-studied germline SNP variants, there are critical contributions conferred by T cell receptor (TCR) and B cell receptor (BCR) genes that undergo somatic recombination to yield the Adaptive Immune Receptor Repertoire (AIRR) responsible for autoimmunity in type 1 diabetes. We therefore created the T1D TCR/BCR Repository (The Type 1 Diabetes T Cell Receptor and B Cell Receptor Repository) to study these highly variable and dynamic gene rearrangements. In addition to processed TCR and BCR sequences, the T1D TCR/BCR Repository includes detailed metadata (e.g. participant demographics, disease-associated parameters and tissue type). We introduce the Type 1 Diabetes AIRR Consortium goals and outline methods to use and deposit data to this comprehensive repository. Our ultimate goal is to facilitate research community access to rich, carefully annotated immune AIRR datasets to enable new scientific inquiry and insight into the natural history and pathogenesis of type 1 diabetes.
Collapse
MESH Headings
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/genetics
- Humans
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/metabolism
- Autoimmunity
Collapse
Affiliation(s)
- Stephanie J Hanna
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK.
| | - Rachel H Bonami
- Department of Medicine, Division of Rheumatology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Nashville, TN, USA
| | - Brian Corrie
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- iReceptor Genomic Services, Summerland, BC, Canada
| | | | - Amanda L Posgai
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA
| | - Eline T Luning Prak
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Felix Breden
- Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
- iReceptor Genomic Services, Summerland, BC, Canada
| | - Aaron W Michels
- Barbara Davis Center for Diabetes, University of Colorado School of Medicine, Aurora, CO, USA.
| | - Todd M Brusko
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA.
- Department of Pediatrics, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA.
- Department of Biochemistry and Molecular Biology, College of Medicine, Diabetes Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Sakakibara S, Liu YC, Ishikawa M, Edahiro R, Shirai Y, Haruna S, El Hussien MA, Xu Z, Li S, Yamaguchi Y, Murakami T, Morita T, Kato Y, Hirata H, Takeda Y, Sugihara F, Naito Y, Motooka D, Tsai CY, Ono C, Matsuura Y, Wing JB, Matsumoto H, Ogura H, Okada M, Kumanogoh A, Okada Y, Standley DM, Kikutani H, Okuzaki D. Clonal landscape of autoantibody-secreting plasmablasts in COVID-19 patients. Life Sci Alliance 2024; 7:e202402774. [PMID: 39288992 PMCID: PMC11408605 DOI: 10.26508/lsa.202402774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
Whereas severe COVID-19 is often associated with elevated autoantibody titers, the underlying mechanism behind their generation has remained unclear. Here we report clonal composition and diversity of autoantibodies in humoral response to SARS-CoV-2. Immunoglobulin repertoire analysis and characterization of plasmablast-derived monoclonal antibodies uncovered clonal expansion of plasmablasts producing cardiolipin (CL)-reactive autoantibodies. Half of the expanded CL-reactive clones exhibited strong binding to SARS-CoV-2 antigens. One such clone, CoV1804, was reactive to both CL and viral nucleocapsid (N), and further showed anti-nucleolar activity in human cells. Notably, antibodies sharing genetic features with CoV1804 were identified in COVID-19 patient-derived immunoglobulins, thereby constituting a novel public antibody. These public autoantibodies had numerous mutations that unambiguously enhanced anti-N reactivity, when causing fluctuations in anti-CL reactivity along with the acquisition of additional self-reactivities, such as anti-nucleolar activity, in the progeny. Thus, potentially CL-reactive precursors may have developed multiple self-reactivities through clonal selection, expansion, and somatic hypermutation driven by viral antigens. Our results revealed the nature of autoantibody production during COVID-19 and provided novel insights into the origin of virus-induced autoantibodies.
Collapse
Affiliation(s)
- Shuhei Sakakibara
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yu-Chen Liu
- Laboratory of Human Immunology (Single Cell Genomics), Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Masakazu Ishikawa
- Laboratory of Human Immunology (Single Cell Genomics), Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Ryuya Edahiro
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yuya Shirai
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Soichiro Haruna
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Marwa Ali El Hussien
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Zichang Xu
- Laboratory of Systems Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Songling Li
- Laboratory of Systems Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yuta Yamaguchi
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Teruaki Murakami
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Takayoshi Morita
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Yasuhiro Kato
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Haruhiko Hirata
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Fuminori Sugihara
- Core Instrumentation Facility, Immunology Frontier Research Center and Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yoko Naito
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Laboratory of Human Immunology (Single Cell Genomics), Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
| | - Chao-Yuan Tsai
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Chikako Ono
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Yoshiharu Matsuura
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - James B Wing
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Human Single Cell Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Hisatake Matsumoto
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroshi Ogura
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Masato Okada
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Atsushi Kumanogoh
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Immunopathology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan
| | - Yukinari Okada
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Osaka, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
- Department of Genome Informatics, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Wakō, japan
| | - Daron M Standley
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Laboratory of Systems Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Advanced Modalities and DDS, Osaka University, Osaka, Japan
| | - Hitoshi Kikutani
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Daisuke Okuzaki
- Laboratory of Human Immunology (Single Cell Genomics), Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka, Japan
- Japan Agency for Medical Research and Development - Core Research for Evolutional Science and Technology (AMED-CREST), Osaka University, Osaka, Japan
| |
Collapse
|
11
|
Zhou D, Luo Y, Ma Q, Xu Y, Yao X. The characteristics of TCR CDR3 repertoire in COVID-19 patients and SARS-CoV-2 vaccine recipients. Virulence 2024; 15:2421987. [PMID: 39468707 PMCID: PMC11540089 DOI: 10.1080/21505594.2024.2421987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/28/2024] [Accepted: 10/22/2024] [Indexed: 10/30/2024] Open
Abstract
The COVID-19 pandemic and large-scale administration of multiple SARS-CoV-2 vaccines have attracted global attention to the short-term and long-term effects on the human immune system. An analysis of the "traces" left by the body's T-cell immune response is needed, especially for the prevention and treatment of breakthrough infections and long COVID-19 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant infections. T-cell receptor complementarity determining region 3 (TCR CDR3) repertoire serves as a target molecule for monitoring the effects, mechanisms, and memory of the T-cell response. Furthermore, it has been extensively applied in the elucidation of the infectious mechanism and vaccine refinement of hepatitis B virus (HBV), influenza virus, human immunodeficiency virus (HIV), and SARS-CoV. Laboratories worldwide have utilized high-throughput sequencing (HTS) and scTCR-seq to characterize, share, and apply the TCR CDR3 repertoire in COVID-19 patients and SARS-CoV-2 vaccine recipients. This article focuses on the comparative analysis of the diversity, clonality, V&J gene usage and pairing, CDR3 length, shared CDR3 sequences or motifs, and other characteristics of TCR CDR3 repertoire. These findings provide molecular targets for evaluating T-cell response effects and short-term and long-term impacts on the adaptive immune system following SARS-CoV-2 infection or vaccination and establish a comparative archive of T-cell response "traces."
Collapse
Affiliation(s)
- Dewei Zhou
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
- Department of Clinical Laboratory, The First People’s Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, China
| | - Yan Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Qingqing Ma
- Department of Central Laboratory, Guizhou Aerospace Hospital, Zunyi, China
| | - Yuanyuan Xu
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, China
| |
Collapse
|
12
|
Yang Y, Miller H, Byazrova MG, Cndotti F, Benlagha K, Camara NOS, Shi J, Forsman H, Lee P, Yang L, Filatov A, Zhai Z, Liu C. The characterization of CD8 + T-cell responses in COVID-19. Emerg Microbes Infect 2024; 13:2287118. [PMID: 37990907 PMCID: PMC10786432 DOI: 10.1080/22221751.2023.2287118] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/19/2023] [Indexed: 11/23/2023]
Abstract
This review gives an overview of the protective role of CD8+ T cells in SARS-CoV-2 infection. The cross-reactive responses intermediated by CD8+ T cells in unexposed cohorts are described. Additionally, the relevance of resident CD8+ T cells in the upper and lower airway during infection and CD8+ T-cell responses following vaccination are discussed, including recent worrisome breakthrough infections and variants of concerns (VOCs). Lastly, we explain the correlation between CD8+ T cells and COVID-19 severity. This review aids in a deeper comprehension of the association between CD8+ T cells and SARS-CoV-2 and broadens a vision for future exploration.
Collapse
Affiliation(s)
- Yuanting Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Heather Miller
- Cytek Biosciences, R&D Clinical Reagents, Fremont, CA, USA
| | - Maria G. Byazrova
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Fabio Cndotti
- Division of Immunology and Allergy, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Kamel Benlagha
- Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Niels Olsen Saraiva Camara
- Laboratory of Human Immunology, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, Brazil
| | - Junming Shi
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Huamei Forsman
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Pamela Lee
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Lu Yang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| | - Alexander Filatov
- Laboratory of Immunochemistry, National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, Russia
| | - Zhimin Zhai
- Department of Hematology, The Second Hospital of Anhui Medical University, Hefei, People’s Republic of China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, Hubei, People’s Republic of China
| |
Collapse
|
13
|
Liu Q, Yang S, Tan Y, Feng W, Wang Q, Qiao J, Yang B, Wang C, Tao J, Wang H, Cui L. Bulk T-cell receptor sequencing confirms clonality in obstetric antiphospholipid syndrome and may as a potential biomarker. Autoimmunity 2024; 57:2360490. [PMID: 38836341 DOI: 10.1080/08916934.2024.2360490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024]
Abstract
The heterogeneity of the T cell receptor (TCR) repertoire critically influences the autoimmune response in obstetric antiphospholipid syndrome (OAPS) and is intimately associated with the prophylaxis of autoimmune disorders. Investigating the TCR diversity patterns in patients with OAPS is thus of paramount clinical importance. This investigation procured peripheral blood specimens from 31 individuals with OAPS, 21 patients diagnosed with systemic lupus erythematosus (SLE), and 22 healthy controls (HC), proceeding with TCR repertoire sequencing. Concurrently, adverse pregnancy outcomes in the OAPS cohort were monitored and documented over an 18-month timeframe. We paid particular attention to disparities in V/J gene utilisation and the prevalence of shared clonotypes amongst OAPS patients and the comparative groups. When juxtaposed with observations from healthy controls and SLE patients, immune repertoire sequencing disclosed irregular T- and B-cell profiles and a contraction of diversity within the OAPS group. Marked variances were found in the genomic rearrangements of the V gene, J gene, and V/J combinations. Utilising a specialised TCRβ repertoire, we crafted a predictive model for OAPS classification with robust discriminative capability (AUC = 0.852). Our research unveils alterations in the TCR repertoire among OAPS patients for the first time, positing potential covert autoimmune underpinnings. These findings nominate the TCR repertoire as a prospective peripheral blood biomarker for the clinical diagnosis of OAPS and may offer valuable insights for advancing the understanding of OAPS immunologic mechanisms and prognostic outcomes.
Collapse
Affiliation(s)
- Qi Liu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Clinical Laboratory, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Shuo Yang
- Department of Clinical Laboratory, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Yuan Tan
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Clinical Laboratory, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Weimin Feng
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Clinical Laboratory, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Qingchen Wang
- Department of Clinical Laboratory, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Jiao Qiao
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Clinical Laboratory, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Boxing Yang
- Department of Clinical Laboratory, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Chong Wang
- Department of Clinical Laboratory, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Jingjin Tao
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Clinical Laboratory, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - He Wang
- Department of Clinical Laboratory, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| | - Liyan Cui
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
- Department of Clinical Laboratory, Peking University Third Hospital, Beijing, China
- Core Unit of National Clinical Research Center for Laboratory Medicine, Peking University Third Hospital, Beijing, China
| |
Collapse
|
14
|
Yang A, Poholek AC. Systems immunology approaches to study T cells in health and disease. NPJ Syst Biol Appl 2024; 10:117. [PMID: 39384819 PMCID: PMC11464710 DOI: 10.1038/s41540-024-00446-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 10/11/2024] Open
Abstract
T cells are dynamically regulated immune cells that are implicated in a variety of diseases ranging from infection, cancer and autoimmunity. Recent advancements in sequencing methods have provided valuable insights in the transcriptional and epigenetic regulation of T cells in various disease settings. In this review, we identify the key sequencing-based methods that have been applied to understand the transcriptomic and epigenomic regulation of T cells in diseases.
Collapse
Affiliation(s)
- Aaron Yang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amanda C Poholek
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Center for Systems Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
15
|
Guo D, Ng JCF, Dunn-Walters DK, Fraternali F. VCAb: a web-tool for structure-guided exploration of antibodies. BIOINFORMATICS ADVANCES 2024; 4:vbae137. [PMID: 39399372 PMCID: PMC11471263 DOI: 10.1093/bioadv/vbae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Motivation Effective responses against immune challenges require antibodies of different isotypes performing specific effector functions. Structural information on these isotypes is essential to engineer antibodies with desired physico-chemical features of their antigen-binding properties, and optimal developability as potential therapeutics. In silico mutational scanning profiles on antibody structures would further pinpoint candidate mutations for enhancing antibody stability and function. Current antibody structure databases lack consistent annotations of isotypes and structural coverage of 3D antibody structures, as well as computed deep mutation profiles. Results The V and C region bearing antibody (VCAb) web-tool is established to clarify these annotations and provides an accessible resource to facilitate antibody engineering and design. VCAb currently provides data on 7,166 experimentally determined antibody structures including both V and C regions from different species. Additionally, VCAb provides annotations of species and isotypes with numbering schemes applied. These information can be interactively queried or downloaded in batch. Availability and implementation VCAb is implemented as a R shiny application to enable interactive data interrogation. The online application is freely accessible https://fraternalilab.cs.ucl.ac.uk/VCAb/. The source code to generate the database and the online application is available open-source at https://github.com/Fraternalilab/VCAb.
Collapse
Affiliation(s)
- Dongjun Guo
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King’s College London, London SE1 1UL, United Kingdom
| | - Joseph Chi-Fung Ng
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
| | - Deborah K Dunn-Walters
- School of Biosciences and Medicine, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Franca Fraternali
- Institute of Structural and Molecular Biology, University College London, London WC1E 6BT, United Kingdom
- Department of Biological Sciences, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| |
Collapse
|
16
|
Marín-Benesiu F, Chica-Redecillas L, Arenas-Rodríguez V, de Santiago E, Martínez-Diz S, López-Torres G, Cortés-Valverde AI, Romero-Cachinero C, Entrala-Bernal C, Fernandez-Rosado FJ, Martínez-González LJ, Alvarez-Cubero MJ. The T-cell repertoire of Spanish patients with COVID-19 as a strategy to link T-cell characteristics to the severity of the disease. Hum Genomics 2024; 18:94. [PMID: 39227859 PMCID: PMC11373388 DOI: 10.1186/s40246-024-00654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND The architecture and dynamics of T cell populations are critical in orchestrating the immune response to SARS-CoV-2. In our study, we used T Cell Receptor sequencing (TCRseq) to investigate TCR repertoires in 173 post-infection COVID-19 patients. METHODS The cohort included 98 mild and 75 severe cases with a median age of 53. We amplified and sequenced the TCR β chain Complementary Determining Region 3 (CDR3b) and performed bioinformatic analyses to assess repertoire diversity, clonality, and V/J allelic usage between age, sex and severity groups. CDR3b amino acid sequence inference was performed by clustering structural motifs and filtering validated reactive CDR3b to COVID-19. RESULTS Our results revealed a pronounced decrease in diversity and an increase in clonal expansion in the TCR repertoires of severe COVID-19 patients younger than 55 years old. These results reflect the observed trends in patients older than 55 years old (both mild and severe). In addition, we identified a significant reduction in the usage of key V alleles (TRBV14, TRBV19, TRBV15 and TRBV6-4) associated with disease severity. Notably, severe patients under 55 years old had allelic patterns that resemble those over 55 years old, accompanied by a skewed frequency of COVID-19-related motifs. CONCLUSIONS Present results suggest that severe patients younger than 55 may have a compromised TCR repertoire contributing to a worse disease outcome.
Collapse
MESH Headings
- Humans
- COVID-19/genetics
- COVID-19/immunology
- COVID-19/virology
- Male
- Middle Aged
- Female
- SARS-CoV-2/immunology
- SARS-CoV-2/genetics
- SARS-CoV-2/pathogenicity
- Severity of Illness Index
- Adult
- Aged
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Spain
- T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell, alpha-beta/genetics
- Receptors, Antigen, T-Cell, alpha-beta/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Alleles
Collapse
Affiliation(s)
- Fernando Marín-Benesiu
- Department of Biochemistry, Molecular Biology III and Inmunology, Faculty of Medicine, University of Granada, Parque Tecnológico de la Salud, Avd. de la Investigación nº 11, Tower C. 11th floor, Granada, 18071, Spain
- Centre for Genomics and Oncological Research: Pfizer, Andalusian Regional Government, GENYO, University of Granada, Parque Tecnológico de la Salud, Granada, Spain
| | - Lucia Chica-Redecillas
- Department of Biochemistry, Molecular Biology III and Inmunology, Faculty of Medicine, University of Granada, Parque Tecnológico de la Salud, Avd. de la Investigación nº 11, Tower C. 11th floor, Granada, 18071, Spain
- Centre for Genomics and Oncological Research: Pfizer, Andalusian Regional Government, GENYO, University of Granada, Parque Tecnológico de la Salud, Granada, Spain
| | - Verónica Arenas-Rodríguez
- Centre for Genomics and Oncological Research: Pfizer, Andalusian Regional Government, GENYO, University of Granada, Parque Tecnológico de la Salud, Granada, Spain
| | - Esperanza de Santiago
- Centre for Genomics and Oncological Research: Pfizer, Andalusian Regional Government, GENYO, University of Granada, Parque Tecnológico de la Salud, Granada, Spain
| | - Silvia Martínez-Diz
- Preventive Medicine and Public Health Service, Hospital Universitario Clínico San Cecilio, Granada, Spain
| | | | | | | | - Carmen Entrala-Bernal
- LORGEN G.P, Ciencias de la Salud - Business Innovation Centre (BIC), Granada, PT, Spain
| | | | - Luis Javier Martínez-González
- Department of Biochemistry, Molecular Biology III and Inmunology, Faculty of Medicine, University of Granada, Parque Tecnológico de la Salud, Avd. de la Investigación nº 11, Tower C. 11th floor, Granada, 18071, Spain.
- Centre for Genomics and Oncological Research: Pfizer, Andalusian Regional Government, GENYO, University of Granada, Parque Tecnológico de la Salud, Granada, Spain.
| | - Maria Jesus Alvarez-Cubero
- Department of Biochemistry, Molecular Biology III and Inmunology, Faculty of Medicine, University of Granada, Parque Tecnológico de la Salud, Avd. de la Investigación nº 11, Tower C. 11th floor, Granada, 18071, Spain
- Centre for Genomics and Oncological Research: Pfizer, Andalusian Regional Government, GENYO, University of Granada, Parque Tecnológico de la Salud, Granada, Spain
- Ibs Granada, Biosanitary Research Institute of Granada, Granada, Spain
| |
Collapse
|
17
|
Markov NS, Ren Z, Senkow KJ, Grant RA, Gao CA, Malsin ES, Sichizya L, Kihshen H, Helmin KA, Jovisic M, Arnold JM, Pérez-Leonor XG, Abdala-Valencia H, Swaminathan S, Nwaezeapu J, Kang M, Rasmussen L, Ozer EA, Lorenzo-Redondo R, Hultquist JF, Simons LM, Rios-Guzman E, Misharin AV, Wunderink RG, Budinger GRS, Singer BD, Morales-Nebreda L. Distinctive evolution of alveolar T cell responses is associated with clinical outcomes in unvaccinated patients with SARS-CoV-2 pneumonia. Nat Immunol 2024; 25:1607-1622. [PMID: 39138384 PMCID: PMC11490290 DOI: 10.1038/s41590-024-01914-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024]
Abstract
The evolution of T cell molecular signatures in the distal lung of patients with severe pneumonia is understudied. Here, we analyzed T cell subsets in longitudinal bronchoalveolar lavage fluid samples from 273 patients with severe pneumonia, including unvaccinated patients infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) or with respiratory failure not linked to pneumonia. In patients with SARS-CoV-2 pneumonia, activation of interferon signaling pathways, low activation of the NF-κB pathway and preferential targeting of spike and nucleocapsid proteins early after intubation were associated with favorable outcomes, whereas loss of interferon signaling, activation of NF-κB-driven programs and specificity for the ORF1ab complex late in disease were associated with mortality. These results suggest that in patients with severe SARS-CoV-2 pneumonia, alveolar T cell interferon responses targeting structural SARS-CoV-2 proteins characterize individuals who recover, whereas responses against nonstructural proteins and activation of NF-κB are associated with poor outcomes.
Collapse
Affiliation(s)
- Nikolay S Markov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ziyou Ren
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Karolina J Senkow
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Rogan A Grant
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Catherine A Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Elizabeth S Malsin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lango Sichizya
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hermon Kihshen
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Kathryn A Helmin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Milica Jovisic
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jason M Arnold
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Xóchitl G Pérez-Leonor
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Hiam Abdala-Valencia
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Suchitra Swaminathan
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Julu Nwaezeapu
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Mengjia Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luke Rasmussen
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Egon A Ozer
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Ramon Lorenzo-Redondo
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Lacy M Simons
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Estefany Rios-Guzman
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Center for Pathogen Genomics and Microbial Evolution, Institute for Global Health, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alexander V Misharin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luisa Morales-Nebreda
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Simpson Querrey Lung Institute for Translational Science, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
18
|
Bardwell B, Bay J, Colburn Z. The clinical applications of immunosequencing. Curr Res Transl Med 2024; 72:103439. [PMID: 38447267 DOI: 10.1016/j.retram.2024.103439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/20/2023] [Accepted: 01/11/2024] [Indexed: 03/08/2024]
Abstract
Technological advances in high-throughput sequencing have opened the door for the interrogation of adaptive immune responses at unprecedented scale. It is now possible to determine the sequences of antibodies or T-cell receptors produced by individual B and T cells in a sample. This capability, termed immunosequencing, has transformed the study of both infectious and non-infectious diseases by allowing the tracking of dynamic changes in B and T cell clonal populations over time. This has improved our understanding of the pathology of cancers, autoimmune diseases, and infectious diseases. However, to date there has been only limited clinical adoption of the technology. Advances over the last decade and on the horizon that reduce costs and improve interpretability could enable widespread clinical use. Many clinical applications have been proposed and, while most are still undergoing research and development, some methods relying on immunosequencing data have been implemented, the most widespread of which is the detection of measurable residual disease. Here, we review the diagnostic, prognostic, and therapeutic applications of immunosequencing for both infectious and non-infectious diseases.
Collapse
Affiliation(s)
- B Bardwell
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA
| | - J Bay
- Department of Medicine, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA
| | - Z Colburn
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA 98431, USA.
| |
Collapse
|
19
|
Abdolmohammadi-Vahid S, Baradaran B, Adcock IM, Mortaz E. Immune checkpoint inhibitors and SARS-CoV2 infection. Int Immunopharmacol 2024; 137:112419. [PMID: 38865755 DOI: 10.1016/j.intimp.2024.112419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) triggers coronavirus disease 2019 (COVID-19), which predominantly targets the respiratory tract. SARS-CoV-2 infection, especially severe COVID-19, is associated with dysregulated immune responses against the virus, including exaggerated inflammatory responses known as the cytokine storm, together with lymphocyte and NK cell dysfunction known as immune cell exhaustion. Overexpression of negative immune checkpoints such as PD-1 and CTLA-4 plays a considerable role in the dysfunction of immune cells upon SARS-CoV-2 infection. Blockade of these checkpoints has been suggested to improve the clinical outcome of COVID-19 patients by promoting potent immune responses against the virus. In the current review, we provide an overview of the potential of checkpoint inhibitors to induce potent immune responses against SARS-CoV-2 and improving the clinical outcome of severe COVID-19 patients.
Collapse
Affiliation(s)
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ian M Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Microbiology & Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, USA; Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
20
|
Schultheiß C, Willscher E, Paschold L, Ackermann C, Escher M, Scholz R, Knapp M, Lützkendorf J, Müller LP, Schulze Zur Wiesch J, Binder M. B cells expressing mutated IGHV1-69-encoded antigen receptors related to virus neutralization show lymphoma-like transcriptomes in patients with chronic HCV infection. Hepatol Commun 2024; 8:e0503. [PMID: 39082968 DOI: 10.1097/hc9.0000000000000503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/11/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Chronic HCV infection leads to a complex interplay with adaptive immune cells that may result in B cell dyscrasias like cryoglobulinemia or lymphoma. While direct-acting antiviral therapy has decreased the incidence of severe liver damage, its effect on extrahepatic HCV manifestations such as B cell dyscrasias is still unclear. METHODS We sequenced B cell receptor (BCR) repertoires in patients with chronic HCV mono-infection and patients with HCV with a sustained virological response (SVR) after direct-acting antiviral therapy. This data set was mined for highly neutralizing HCV antibodies and compared to a diffuse large B cell lymphoma data set. The TKO model was used to test the signaling strength of selected B-BCRs in vitro. Single-cell RNA sequencing of chronic HCV and HCV SVR samples was performed to analyze the transcriptome of B cells with HCV-neutralizing antigen receptors. RESULTS We identified a B cell fingerprint with high richness and somatic hypermutation in patients with chronic HCV and SVR. Convergence to specific immunoglobulin genes produced high-connectivity complementarity-determining region 3 networks. In addition, we observed that IGHV1-69 CDR1 and FR3 mutations characterizing highly neutralizing HCV antibodies corresponded to recurrent point mutations found in clonotypic BCRs of high-grade lymphomas. These BCRs did not show autonomous signaling but a lower activation threshold in an in vitro cell model for the assessment of BCR signaling strength. Single-cell RNA sequencing revealed that B cells carrying these point mutations showed a persisting oncogenic transcriptome signature with dysregulation in signaling nodes such as CARD11, MALT1, RelB, MAPK, and NFAT. CONCLUSIONS We provide evidence that lymphoma-like cells derive from the anti-HCV immune response. In many patients, these cells persist for years after SVR and can be interpreted as a mechanistic basis for HCV-related B cell dyscrasias and increased lymphoma risk even beyond viral elimination.
Collapse
MESH Headings
- Humans
- Hepatitis C, Chronic/immunology
- Hepatitis C, Chronic/genetics
- Hepatitis C, Chronic/complications
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Transcriptome
- B-Lymphocytes/immunology
- Hepacivirus/immunology
- Hepacivirus/genetics
- Sustained Virologic Response
- Lymphoma, Large B-Cell, Diffuse/immunology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/virology
- Antibodies, Neutralizing/immunology
- Complementarity Determining Regions/genetics
- Complementarity Determining Regions/immunology
- Male
- Antiviral Agents/therapeutic use
- Mutation
- Female
- Middle Aged
Collapse
Affiliation(s)
- Christoph Schultheiß
- Divison of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Edith Willscher
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Lisa Paschold
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christin Ackermann
- Infectious Disease Unit, I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Moritz Escher
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Rebekka Scholz
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Maximilian Knapp
- Infectious Disease Unit, I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana Lützkendorf
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Lutz P Müller
- Internal Medicine IV, Department of Hematology/Oncology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Julian Schulze Zur Wiesch
- Infectious Disease Unit, I, Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mascha Binder
- Divison of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
21
|
Davis D, Wizel A, Drier Y. Accurate estimation of pathway activity in single cells for clustering and differential analysis. Genome Res 2024; 34:925-936. [PMID: 38981682 PMCID: PMC11293543 DOI: 10.1101/gr.278431.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/05/2024] [Indexed: 07/11/2024]
Abstract
Inferring which and how biological pathways and gene sets change is a key question in many studies that utilize single-cell RNA sequencing. Typically, these questions are addressed by quantifying the enrichment of known gene sets in lists of genes derived from global analysis. Here we offer SiPSiC, a new method to infer pathway activity in every single cell. This allows more sensitive differential analysis and utilization of pathway scores to cluster cells and compute UMAP or other similar projections. We apply our method to COVID-19, lung adenocarcinoma and glioma data sets, and demonstrate its utility. SiPSiC analysis results are consistent with findings reported in previous studies in many cases, but SiPSiC also reveals the differential activity of novel pathways, enabling us to suggest new mechanisms underlying the pathophysiology of these diseases and demonstrating SiPSiC's high accuracy and sensitivity in detecting biological function and traits. In addition, we demonstrate how it can be used to better classify cells based on activity of biological pathways instead of single genes and its ability to overcome patient-specific artifacts.
Collapse
Affiliation(s)
- Daniel Davis
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Avishai Wizel
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Yotam Drier
- The Lautenberg Center for Immunology and Cancer Research, IMRIC, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| |
Collapse
|
22
|
Shukla N, Shamim U, Agarwal P, Pandey R, Narayan J. From bench to bedside: potential of translational research in COVID-19 and beyond. Brief Funct Genomics 2024; 23:349-362. [PMID: 37986554 DOI: 10.1093/bfgp/elad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/22/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 2019 (COVID-19) have been around for more than 3 years now. However, due to constant viral evolution, novel variants are emerging, leaving old treatment protocols redundant. As treatment options dwindle, infection rates continue to rise and seasonal infection surges become progressively common across the world, rapid solutions are required. With genomic and proteomic methods generating enormous amounts of data to expand our understanding of SARS-CoV-2 biology, there is an urgent requirement for the development of novel therapeutic methods that can allow translational research to flourish. In this review, we highlight the current state of COVID-19 in the world and the effects of post-infection sequelae. We present the contribution of translational research in COVID-19, with various current and novel therapeutic approaches, including antivirals, monoclonal antibodies and vaccines, as well as alternate treatment methods such as immunomodulators, currently being studied and reiterate the importance of translational research in the development of various strategies to contain COVID-19.
Collapse
Affiliation(s)
- Nityendra Shukla
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Uzma Shamim
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Preeti Agarwal
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Rajesh Pandey
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| | - Jitendra Narayan
- CSIR Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Near Jubilee Hall, New Delhi, 110007, India
| |
Collapse
|
23
|
Schmidt-Barbo P, Kalweit G, Naouar M, Paschold L, Willscher E, Schultheiß C, Märkl B, Dirnhofer S, Tzankov A, Binder M, Kalweit M. Detection of disease-specific signatures in B cell repertoires of lymphomas using machine learning. PLoS Comput Biol 2024; 20:e1011570. [PMID: 38954728 PMCID: PMC11249212 DOI: 10.1371/journal.pcbi.1011570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 07/15/2024] [Accepted: 06/07/2024] [Indexed: 07/04/2024] Open
Abstract
The classification of B cell lymphomas-mainly based on light microscopy evaluation by a pathologist-requires many years of training. Since the B cell receptor (BCR) of the lymphoma clonotype and the microenvironmental immune architecture are important features discriminating different lymphoma subsets, we asked whether BCR repertoire next-generation sequencing (NGS) of lymphoma-infiltrated tissues in conjunction with machine learning algorithms could have diagnostic utility in the subclassification of these cancers. We trained a random forest and a linear classifier via logistic regression based on patterns of clonal distribution, VDJ gene usage and physico-chemical properties of the top-n most frequently represented clonotypes in the BCR repertoires of 620 paradigmatic lymphoma samples-nodular lymphocyte predominant B cell lymphoma (NLPBL), diffuse large B cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL)-alongside with 291 control samples. With regard to DLBCL and CLL, the models demonstrated optimal performance when utilizing only the most prevalent clonotype for classification, while in NLPBL-that has a dominant background of non-malignant bystander cells-a broader array of clonotypes enhanced model accuracy. Surprisingly, the straightforward logistic regression model performed best in this seemingly complex classification problem, suggesting linear separability in our chosen dimensions. It achieved a weighted F1-score of 0.84 on a test cohort including 125 samples from all three lymphoma entities and 58 samples from healthy individuals. Together, we provide proof-of-concept that at least the 3 studied lymphoma entities can be differentiated from each other using BCR repertoire NGS on lymphoma-infiltrated tissues by a trained machine learning model.
Collapse
MESH Headings
- Humans
- Machine Learning
- Receptors, Antigen, B-Cell/genetics
- High-Throughput Nucleotide Sequencing/methods
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Computational Biology/methods
- Lymphoma, B-Cell/genetics
- B-Lymphocytes/metabolism
- B-Lymphocytes/immunology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/pathology
- Lymphoma, Large B-Cell, Diffuse/classification
- Algorithms
Collapse
Affiliation(s)
- Paul Schmidt-Barbo
- Department of Biomedicine, Translational Immuno-Oncology, University Hospital Basel, Basel, Switzerland
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
| | - Gabriel Kalweit
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- Neurorobotics Lab, University of Freiburg, Freiburg, Germany
| | - Mehdi Naouar
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- Neurorobotics Lab, University of Freiburg, Freiburg, Germany
| | - Lisa Paschold
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Edith Willscher
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Christoph Schultheiß
- Department of Biomedicine, Translational Immuno-Oncology, University Hospital Basel, Basel, Switzerland
| | - Bruno Märkl
- Pathology, University Hospital Augsburg, Augsburg, Germany
| | | | | | - Mascha Binder
- Department of Biomedicine, Translational Immuno-Oncology, University Hospital Basel, Basel, Switzerland
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- Medical Oncology, University Hospital Basel, Basel, Switzerland
| | - Maria Kalweit
- Collaborative Research Institute Intelligent Oncology (CRIION), Freiburg, Germany
- Neurorobotics Lab, University of Freiburg, Freiburg, Germany
| |
Collapse
|
24
|
Gabernet G, Marquez S, Bjornson R, Peltzer A, Meng H, Aron E, Lee NY, Jensen CG, Ladd D, Polster M, Hanssen F, Heumos S, nf-core community, Yaari G, Kowarik MC, Nahnsen S, Kleinstein SH. nf-core/airrflow: An adaptive immune receptor repertoire analysis workflow employing the Immcantation framework. PLoS Comput Biol 2024; 20:e1012265. [PMID: 39058741 PMCID: PMC11305553 DOI: 10.1371/journal.pcbi.1012265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/07/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) is a valuable experimental tool to study the immune state in health and following immune challenges such as infectious diseases, (auto)immune diseases, and cancer. Several tools have been developed to reconstruct B cell and T cell receptor sequences from AIRR-seq data and infer B and T cell clonal relationships. However, currently available tools offer limited parallelization across samples, scalability or portability to high-performance computing infrastructures. To address this need, we developed nf-core/airrflow, an end-to-end bulk and single-cell AIRR-seq processing workflow which integrates the Immcantation Framework following BCR and TCR sequencing data analysis best practices. The Immcantation Framework is a comprehensive toolset, which allows the processing of bulk and single-cell AIRR-seq data from raw read processing to clonal inference. nf-core/airrflow is written in Nextflow and is part of the nf-core project, which collects community contributed and curated Nextflow workflows for a wide variety of analysis tasks. We assessed the performance of nf-core/airrflow on simulated sequencing data with sequencing errors and show example results with real datasets. To demonstrate the applicability of nf-core/airrflow to the high-throughput processing of large AIRR-seq datasets, we validated and extended previously reported findings of convergent antibody responses to SARS-CoV-2 by analyzing 97 COVID-19 infected individuals and 99 healthy controls, including a mixture of bulk and single-cell sequencing datasets. Using this dataset, we extended the convergence findings to 20 additional subjects, highlighting the applicability of nf-core/airrflow to validate findings in small in-house cohorts with reanalysis of large publicly available AIRR datasets.
Collapse
Affiliation(s)
- Gisela Gabernet
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Susanna Marquez
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Robert Bjornson
- Yale Center for Research Computing, New Haven, Connecticut, United States of America
| | | | - Hailong Meng
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
| | - Edel Aron
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Noah Y. Lee
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - Cole G. Jensen
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
| | - David Ladd
- oNKo-Innate Pty Ltd, Melbourne, Victoria, Australia
| | - Mark Polster
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Germany
| | - Friederike Hanssen
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Germany
| | - Simon Heumos
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Germany
| | | | - Gur Yaari
- Faculty of Engineering, Bar Ilan University, Ramat Gan, Israel
| | - Markus C. Kowarik
- Department of Neurology and Stroke, Center for Neurology, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Hertie Institute for Clinical Brain Research, Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Sven Nahnsen
- Quantitative Biology Center, Eberhard-Karls University of Tübingen, Tübingen, Germany
- Department of Computer Science, Eberhard-Karls University of Tübingen, Tübingen, Germany
- M3 Research Center, University Hospital, Tübingen, Germany
- Institute for Bioinformatics and Medical Informatics (IBMI), Eberhard-Karls University of Tübingen, Tübingen, Germany
| | - Steven H. Kleinstein
- Department of Pathology, Yale School of Medicine, New Haven, Connecticut, United States of America
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, Connecticut, United States of America
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
25
|
Curion F, Theis FJ. Machine learning integrative approaches to advance computational immunology. Genome Med 2024; 16:80. [PMID: 38862979 PMCID: PMC11165829 DOI: 10.1186/s13073-024-01350-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 05/23/2024] [Indexed: 06/13/2024] Open
Abstract
The study of immunology, traditionally reliant on proteomics to evaluate individual immune cells, has been revolutionized by single-cell RNA sequencing. Computational immunologists play a crucial role in analysing these datasets, moving beyond traditional protein marker identification to encompass a more detailed view of cellular phenotypes and their functional roles. Recent technological advancements allow the simultaneous measurements of multiple cellular components-transcriptome, proteome, chromatin, epigenetic modifications and metabolites-within single cells, including in spatial contexts within tissues. This has led to the generation of complex multiscale datasets that can include multimodal measurements from the same cells or a mix of paired and unpaired modalities. Modern machine learning (ML) techniques allow for the integration of multiple "omics" data without the need for extensive independent modelling of each modality. This review focuses on recent advancements in ML integrative approaches applied to immunological studies. We highlight the importance of these methods in creating a unified representation of multiscale data collections, particularly for single-cell and spatial profiling technologies. Finally, we discuss the challenges of these holistic approaches and how they will be instrumental in the development of a common coordinate framework for multiscale studies, thereby accelerating research and enabling discoveries in the computational immunology field.
Collapse
Affiliation(s)
- Fabiola Curion
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Munich, Germany.
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Munich, Germany.
- School of Life Sciences Weihenstephan, Technical University of Munich, Munich, Germany.
| |
Collapse
|
26
|
Suryawanshi P, Patil‐Takbhate B, Athavale P, Mirza S, Tripathy A, Kanitkar S, Shivnitwar S, Barthwal MS, Dole S, Chavan H, Jali P, Pawale S, Kakad D, Kakrani AL, Bhawalkar J, Gandhi M, Chaturvedi S, Karandikar M, Tripathy S. T-cell responses in COVID-19 survivors 6-8 months after infection: A longitudinal cohort study in Pune. Immun Inflamm Dis 2024; 12:e1238. [PMID: 38860770 PMCID: PMC11165687 DOI: 10.1002/iid3.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune response is crucial for disease management, although diminishing immunity raises the possibility of reinfection. METHODS We examined the immunological response to SARS-CoV-2 in a cohort of convalescent COVID-19 patients in matched samples collected at 1 and 6-8 months after infection. The peripheral blood mononuclear cells were isolated from enrolled study participants and flow cytometry analysis was done to assess the lymphocyte subsets of naive, effector, central memory, and effector memory CD4+ or CD8+ T cells in COVID-19 patients at 1 and 6-8 months after infection. Immunophenotypic characterization of immune cell subsets was performed on individuals who were followed longitudinally for 1 month (n = 44) and 6-8 months (n = 25) after recovery from COVID infection. RESULTS We observed that CD4 +T cells in hospitalized SARS-CoV-2 patients tended to decrease, whereas CD8+ T cells steadily recovered after 1 month, while there was a sustained increase in the population of effector T cells and effector memory T cells. Furthermore, COVID-19 patients showed persistently low B cells and a small increase in the NK cell population. CONCLUSION Our findings show that T cell responses were maintained at 6-8 months after infection. This opens new pathways for further research into the long-term effects in COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Poonam Suryawanshi
- Central Research Facility, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Bhagyashri Patil‐Takbhate
- Central Research Facility, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Prachi Athavale
- Department of Microbiology, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Shahzad Mirza
- Department of Microbiology, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | | | - Shubhangi Kanitkar
- Department of General Medicine, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Sachin Shivnitwar
- Department of General Medicine, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Madhusudan S. Barthwal
- Department of Respiratory Medicine, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, Pimpri, (deemed to be University)PuneIndia
| | - Sachin Dole
- Department of Respiratory Medicine, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, Pimpri, (deemed to be University)PuneIndia
| | - Hanumant Chavan
- Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Priyanka Jali
- Central Research Facility, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Sujata Pawale
- Central Research Facility, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Dhanashree Kakad
- Central Research Facility, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Arjun Lal Kakrani
- Department of General Medicine, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Jitendra Bhawalkar
- Department of Community Medicine, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Madhura Gandhi
- Central Research Facility, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | | | - Mahesh Karandikar
- Central Research Facility, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Srikanth Tripathy
- Central Research Facility, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| |
Collapse
|
27
|
Edner NM, Houghton LP, Ntavli E, Rees-Spear C, Petersone L, Wang C, Fabri A, Elfaki Y, Rueda Gonzalez A, Brown R, Kisand K, Peterson P, McCoy LE, Walker LSK. TIGIT +Tfh show poor B-helper function and negatively correlate with SARS-CoV-2 antibody titre. Front Immunol 2024; 15:1395684. [PMID: 38868776 PMCID: PMC11167088 DOI: 10.3389/fimmu.2024.1395684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Circulating follicular helper T cells (cTfh) can show phenotypic alterations in disease settings, including in the context of tissue-damaging autoimmune or anti-viral responses. Using severe COVID-19 as a paradigm of immune dysregulation, we have explored how cTfh phenotype relates to the titre and quality of antibody responses. Severe disease was associated with higher titres of neutralising S1 IgG and evidence of increased T cell activation. ICOS, CD38 and HLA-DR expressing cTfh correlated with serum S1 IgG titres and neutralising strength, and interestingly expression of TIGIT by cTfh showed a negative correlation. TIGIT+cTfh expressed increased IFNγ and decreased IL-17 compared to their TIGIT-cTfh counterparts, and showed reduced capacity to help B cells in vitro. Additionally, TIGIT+cTfh expressed lower levels of CD40L than TIGIT-cTfh, providing a potential explanation for their poor B-helper function. These data identify phenotypic changes in polyclonal cTfh that correlate with specific antibody responses and reveal TIGIT as a marker of cTfh with altered function.
Collapse
Affiliation(s)
- Natalie M. Edner
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Luke P. Houghton
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Elisavet Ntavli
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Chloe Rees-Spear
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Lina Petersone
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Chunjing Wang
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Astrid Fabri
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Yassin Elfaki
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Andrea Rueda Gonzalez
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Rachel Brown
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Kai Kisand
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Pärt Peterson
- Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Laura E. McCoy
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Lucy S. K. Walker
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| |
Collapse
|
28
|
Starshinova A, Borozinets A, Kulpina A, Sereda V, Rubinstein A, Kudryavtsev I, Kudlay D. Bronchial Asthma and COVID-19: Etiology, Pathological Triggers, and Therapeutic Considerations. PATHOPHYSIOLOGY 2024; 31:269-287. [PMID: 38921725 PMCID: PMC11206645 DOI: 10.3390/pathophysiology31020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/20/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
Bronchial asthma (BA) continues to be a difficult disease to diagnose. Various factors have been described in the development of BA, but to date, there is no clear evidence for the etiology of this chronic disease. The emergence of COVID-19 has contributed to the pandemic course of asthma and immunologic features. However, there are no unambiguous data on asthma on the background and after COVID-19. There is correlation between various trigger factors that provoke the development of bronchial asthma. It is now obvious that the SARS-CoV-2 virus is one of the provoking factors. COVID-19 has affected the course of asthma. Currently, there is no clear understanding of whether asthma progresses during or after COVID-19 infection. According to the results of some studies, a significant difference was identified between the development of asthma in people after COVID-19. Mild asthma and moderate asthma do not increase the severity of COVID-19 infection. Nevertheless, oral steroid treatment and hospitalization for severe BA were associated with higher COVID-19 severity. The influence of SARS-CoV-2 infection is one of the protective factors. It causes the development of severe bronchial asthma. The accumulated experience with omalizumab in patients with severe asthma during COVID-19, who received omalizumab during the pandemic, has strongly suggested that continued treatment with omalizumab is safe and may help prevent the severe course of COVID-19. Targeted therapy for asthma with the use of omalizumab may also help to reduce severe asthma associated with COVID-19. However, further studies are needed to prove the effect of omalizumab. Data analysis should persist, based on the results of the course of asthma after COVID-19 with varying degrees of severity.
Collapse
Affiliation(s)
- Anna Starshinova
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia;
| | - Anastasia Borozinets
- Medical Department, I.M. Sechenov First Moscow State Medical University, 197022 Moscow, Russia
| | - Anastasia Kulpina
- Medical Department, Saint Petersburg State Pediatric Medical University, 194100 St. Petersburg, Russia;
| | - Vitaliy Sereda
- Medical Department, Saint Petersburg State University, 199034 St. Petersburg, Russia;
| | - Artem Rubinstein
- Department of immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia;
| | - Igor Kudryavtsev
- Almazov National Medical Research Centre, 197341 St. Petersburg, Russia;
- Department of immunology, Institution of Experimental Medicine, 197376 St. Petersburg, Russia;
| | - Dmitry Kudlay
- Institute of Immunology FMBA of Russia, 115478 Moscow, Russia;
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
29
|
Padoan B, Casar C, Krause J, Schultheiss C, Baumdick ME, Niehrs A, Zecher BF, Pujantell M, Yuki Y, Martin M, Remmerswaal EBM, Dekker T, van der Bom-Baylon ND, Noble JA, Carrington M, Bemelman FJ, van Lier RAW, Binder M, Gagliani N, Bunders MJ, Altfeld M. NKp44/HLA-DP-dependent regulation of CD8 effector T cells by NK cells. Cell Rep 2024; 43:114089. [PMID: 38615318 PMCID: PMC11416720 DOI: 10.1016/j.celrep.2024.114089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/03/2024] [Accepted: 03/26/2024] [Indexed: 04/16/2024] Open
Abstract
Although natural killer (NK) cells are recognized for their modulation of immune responses, the mechanisms by which human NK cells mediate immune regulation are unclear. Here, we report that expression of human leukocyte antigen (HLA)-DP, a ligand for the activating NK cell receptor NKp44, is significantly upregulated on CD8+ effector T cells, in particular in human cytomegalovirus (HCMV)+ individuals. HLA-DP+ CD8+ T cells expressing NKp44-binding HLA-DP antigens activate NKp44+ NK cells, while HLA-DP+ CD8+ T cells not expressing NKp44-binding HLA-DP antigens do not. In line with this, frequencies of HLA-DP+ CD8+ T cells are increased in individuals not encoding for NKp44-binding HLA-DP haplotypes, and contain hyper-expanded CD8+ T cell clones, compared to individuals expressing NKp44-binding HLA-DP molecules. These findings identify a molecular interaction facilitating the HLA-DP haplotype-specific editing of HLA-DP+ CD8+ T cell effector populations by NKp44+ NK cells and preventing the generation of hyper-expanded T cell clones, which have been suggested to have increased potential for autoimmunity.
Collapse
Affiliation(s)
- Benedetta Padoan
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Christian Casar
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jenny Krause
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Center for Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Christoph Schultheiss
- Division of Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, 4031 Basel, Switzerland
| | - Martin E Baumdick
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Annika Niehrs
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Britta F Zecher
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany; I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Maria Pujantell
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Ester B M Remmerswaal
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Tamara Dekker
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Nelly D van der Bom-Baylon
- Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Janelle A Noble
- Department of Pediatrics UCSF, Children's Hospital Oakland Research Institute, Oakland, CA 94609, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Frederike J Bemelman
- Renal Transplant Unit, Division of Internal Medicine, Academic Medical Centre, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, 4031 Basel, Switzerland; Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, 4031 Basel, Switzerland
| | - Nicola Gagliani
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Department of General, Visceral and Thoracic Surgery, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Madeleine J Bunders
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany; III. Department of Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Leibniz Institute of Virology, 20251 Hamburg, Germany; Hamburg Center for Translational Immunology (HCTI), Hamburg, Germany.
| |
Collapse
|
30
|
Luo Y, Zhang Z, Ren J, Dou C, Wen J, Yang Y, Li X, Yan Z, Han Y. SARS-Cov-2 spike induces intestinal barrier dysfunction through the interaction between CEACAM5 and Galectin-9. Front Immunol 2024; 15:1303356. [PMID: 38686388 PMCID: PMC11056506 DOI: 10.3389/fimmu.2024.1303356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024] Open
Abstract
Background Carcinoembryonic antigen-related cell adhesion molecule 5 (CEACAM5), as a typical tumor marker, has been found to exert immunomodulatory effects in many diseases. We previously reported the clinical and molecular evidences supporting that SARS-Cov-2 infected the gastrointestinal (GI) tract and found a reduction of CEACAM5 in COVID-19 patients' feces which associated with gut dysbiosis. Yet the role of CEACAM5 in GI infection is ill-defined. Methods Mice models were established through intraperitoneally injecting with recombinant viral spike-Fc to mimic the intestinal inflammation. We collected duodenum, jejunum, ileum and colon samples after 6h, 2 days, 4 days and 7 days of spike-Fc or control-Fc injection to perform proteomic analysis. Blood was collected from healthy donors and peripheral blood mononuclear cells (PBMC) were separated by density gradient centrifugation, then CD4+ T cells were isolated with magnetic beads and co-cultured with Caco-2 cells. Results In addition to intestinal CEACAM5, the expression of tight junction and the percent of CD4+ T lymphocytes were significantly decreased in spike-Fc group compared to control (p < 0.05), accompanied with increased level of inflammatory factors. The KEGG analysis revealed differentially expressed proteins were mainly enriched in the coronavirus disease (COVID-19), tight junction, focal adhesion, adherens junction and PI3K-Akt signaling pathway. Protein-protein interaction (PPI) network analysis identified the interaction between CEACAM5 and Galectin-9 that was also verified by molecular docking and co-IP assay. We further confirmed a reduction of CEACAM5 in SARS-CoV-2 spike stimulated enterocytes could promote the expression of Galectin-9 protein in CD4+T cells. Then it gave rise to the increasing release of inflammatory factors and increased apoptosis of CD4+T cells by inhibition of PI3K/AKT/mTOR pathway. Ultimately intestinal barrier dysfunction happened. Conclusion Our results indicated that CEACAM5 overexpression and Galectin-9 knockdown played a protective role in intestinal barrier injury upon spike-Fc stimulation. Collectively, our findings identified firstly that SARS-CoV-2 spike induced intestinal barrier dysfunction through the interaction between CEACAM5 and Galectin-9. The result provides potential therapeutic targets in intestinal barrier dysfunction for treating severe COVID patients.
Collapse
Affiliation(s)
- Yingshu Luo
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zhenling Zhang
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jiangnan Ren
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Chunxu Dou
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jiancheng Wen
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yang Yang
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Xiaofeng Li
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Zhixiang Yan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yanzhi Han
- Department of Gastroenterology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| |
Collapse
|
31
|
Clark EA, Talatala ER, Ye W, Davis RJ, Collins SL, Hillel AT, Ramirez-Solano M, Sheng Q, Wanjalla CN, Mallal SA, Gelbard A. Characterizing the T Cell Repertoire in the Proximal Airway in Health and Disease. Laryngoscope 2024; 134:1757-1764. [PMID: 37787469 PMCID: PMC10947968 DOI: 10.1002/lary.31088] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 10/04/2023]
Abstract
OBJECTIVES Recent translational scientific efforts in subglottic stenosis (SGS) support a disease model where epithelial alterations facilitate microbiome displacement, dysregulated immune activation, and localized fibrosis. Given the observed immune cell infiltrate in SGS, we sought to test the hypothesis that SGS cases possessed a low diversity (highly clonal) adaptive immune response when compared with healthy controls. METHODS Single cell RNA sequencing (scRNA-seq) of subglottic mucosal scar in iSGS (n = 24), iLTS (n = 8), and healthy controls (n = 7) was performed. T cell receptor (TCR) sequences were extracted, analyzed, and used to construct repertoire structure, compare diversity, interrogate overlap, and define antigenic targets using the Immunarch bioinformatics pipeline. RESULTS The proximal airway mucosa in health and disease are equally diverse via Hill framework quantitation (iSGS vs. iLTS vs. Control, p > 0.05). Repertoires do not significantly overlap between individuals (Morisita <0.02). Among iSGS patients, clonality of the TCR repertoire is driven by CD8+ T cells, and iSGS patients possess numerous TCRs targeting viral and intercellular pathogens. High frequency clonotypes do not map to known targets in public datasets. CONCLUSION SGS cases do not possess a lower diversity adaptive immune infiltrate when compared with healthy controls. Interestingly, the TCR repertoire in both health and disease contains a restricted number of high frequency clonotypes that do not significantly overlap between individuals. The target of the high frequency clonotypes in health and disease remain unresolved. LEVEL OF EVIDENCE NA Laryngoscope, 134:1757-1764, 2024.
Collapse
Affiliation(s)
- Evan A. Clark
- Department of Otolaryngology-Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Edward R.R. Talatala
- Department of Otolaryngology-Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Wenda Ye
- Department of Otolaryngology-Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Ruth J. Davis
- Department of Otolaryngology-Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
| | - Samuel L. Collins
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Alexander T. Hillel
- Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | | | - Quanhu Sheng
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN
| | - Celestine N. Wanjalla
- Department of Medicine, Division of Infectious Disease, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Simon A. Mallal
- Department of Medicine, Division of Infectious Disease, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Alexander Gelbard
- Department of Otolaryngology-Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
32
|
Zhang Q, Liang Q, Zhang R, Wang N, Xiao X, Shao J, Wang K. Identification of SARS-CoV-2-specific T cell and its receptor. J Hematol Oncol 2024; 17:15. [PMID: 38539271 PMCID: PMC10976674 DOI: 10.1186/s13045-024-01537-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
The T-cell receptor (TCR) repertoires exhibits distinct signatures associated with COVID-19 severity. However, the precise identification of vaccine-induced SARS-CoV-2-specific TCRs and T-cell immunity mechanisms are unknown. We developed a machine-learning model that can differentiate COVID-19 patients from healthy individuals based on TCR sequence features with an accuracy of 95.7%. Additionally, we identified SARS-CoV-2-specific T cells and TCR in HLA-A*02 vaccinated individuals by peptide stimulation. The SARS-CoV-2-specific T cells exhibited higher cytotoxicity and prolonged survival when targeting spike-pulsed cells in vitro or in vivo. The top-performing TCR was further tested for its affinity and cytotoxic effect against SARS-CoV-2-associated epitopes. Furthermore, single-cell RNA sequencing (scRNA-seq), immune repertoire sequencing (IR-seq) and flow cytometry were used to access vaccine-induced cellular immunity, which demonstrated that robust T cell responses (T cell activation, tissue-resident memory T cell (Trm) generation, and TCR clonal expansion) could be induced by intranasal vaccination. In summary, we identified the SARS-CoV-2-associated TCR repertoires profile, specific TCRs and T cell responses. This study provides a theoretical basis for developing effective immunization strategies.
Collapse
Affiliation(s)
- Qian Zhang
- Clinical Research Institute, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Qing Liang
- Clinical Research Institute, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Rui Zhang
- Department of Emergency Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Nan Wang
- Clinical Research Institute, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Xu Xiao
- National Institute for Data Science in Health and Medicine, Xiamen University, Xiamen, 361102, Fujian, China
| | - Jiahao Shao
- Shanghai Engineering Research Center of Intelligent Education and Bigdata, Shanghai Normal University, Shanghai, 200234, China
| | - Kejia Wang
- Clinical Research Institute, The First Affiliated Hospital of Xiamen University, State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, School of Medicine, Xiamen University, Xiamen, 361102, Fujian, China.
| |
Collapse
|
33
|
Wang C, Liu J, Wu Q, Wang Z, Hu B, Bo L. The role of TIM-3 in sepsis: a promising target for immunotherapy? Front Immunol 2024; 15:1328667. [PMID: 38576606 PMCID: PMC10991702 DOI: 10.3389/fimmu.2024.1328667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 03/11/2024] [Indexed: 04/06/2024] Open
Abstract
Sepsis remains a significant cause of mortality and morbidity worldwide, with limited effective treatment options. The T-cell immunoglobulin and mucin domain-containing molecule 3 (TIM-3) has emerged as a potential therapeutic target in various immune-related disorders. This narrative review aims to explore the role of TIM-3 in sepsis and evaluate its potential as a promising target for immunotherapy. We discuss the dynamic expression patterns of TIM-3 during sepsis and its involvement in regulating immune responses. Furthermore, we examine the preclinical studies investigating the regulation of TIM-3 signaling pathways in septic models, highlighting the potential therapeutic benefits and challenges associated with targeting TIM-3. Overall, this review emphasizes the importance of TIM-3 in sepsis pathogenesis and underscores the promising prospects of TIM-3-based immunotherapy as a potential strategy to combat this life-threatening condition.
Collapse
Affiliation(s)
- Changli Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jinhai Liu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Qi Wu
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Zhi Wang
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Baoji Hu
- Department of Anesthesiology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Lulong Bo
- Faculty of Anesthesiology, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
34
|
Xiao J, Luo Y, Li Y, Yao X. The characteristics of BCR-CDR3 repertoire in COVID-19 patients and SARS-CoV-2 vaccinated volunteers. J Med Virol 2024; 96:e29488. [PMID: 38415507 DOI: 10.1002/jmv.29488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024]
Abstract
The global COVID-19 pandemic has caused more than 1 billion infections, and numerous SARS-CoV-2 vaccines developed rapidly have been administered over 10 billion doses. The world is continuously concerned about the cytokine storms induced by the interaction between SARS-CoV-2 and host, long COVID, breakthrough infections postvaccination, and the impact of SARS-CoV-2 variants. BCR-CDR3 repertoire serves as a molecular target for monitoring the antiviral response "trace" of B cells, evaluating the effects, mechanisms, and memory abilities of individual responses to B cells, and has been successfully applied in analyzing the infection mechanisms, vaccine improvement, and neutralizing antibodies preparation of influenza virus, HIV, MERS, and Ebola virus. Based on research on BCR-CDR3 repertoire of COVID-19 patients and volunteers who received different SARS-CoV-2 vaccines in multiple laboratories worldwide, we focus on analyzing the characteristics and changes of BCR-CDR3 repertoire, such as diversity, clonality, V&J genes usage and pairing, SHM, CSR, shared CDR3 clones, as well as the summary on BCR sequences targeting virus-specific epitopes in the preparation and application research of SARS-CoV-2 potential therapeutic monoclonal antibodies. This review provides comparative data and new research schemes for studying the possible mechanisms of differences in B cell response between SARS-CoV-2 infection or vaccination, and supplies a foundation for improving vaccines after SARS-CoV-2 mutations and potential antibody therapy for infected individuals.
Collapse
Affiliation(s)
- Jiaping Xiao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
- Fushun People's Hospital, Zigong, Sichuan, China
| | - Yan Luo
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Yangyang Li
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Xinsheng Yao
- Department of Immunology, Center of Immunomolecular Engineering, Innovation & Practice Base for Graduate Students Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
35
|
Fischer C, Willscher E, Paschold L, Gottschick C, Klee B, Diexer S, Bosurgi L, Dutzmann J, Sedding D, Frese T, Girndt M, Hoell JI, Gekle M, Addo MM, Schulze Zur Wiesch J, Mikolajczyk R, Binder M, Schultheiß C. SARS-CoV-2 vaccination may mitigate dysregulation of IL-1/IL-18 and gastrointestinal symptoms of the post-COVID-19 condition. NPJ Vaccines 2024; 9:23. [PMID: 38316833 PMCID: PMC10844289 DOI: 10.1038/s41541-024-00815-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/24/2024] [Indexed: 02/07/2024] Open
Abstract
The rapid development of safe and effective vaccines helped to prevent severe disease courses after SARS-CoV-2 infection and to mitigate the progression of the COVID-19 pandemic. While there is evidence that vaccination may reduce the risk of developing post-COVID-19 conditions (PCC), this effect may depend on the viral variant. Therapeutic effects of post-infection vaccination have been discussed but the data for individuals with PCC remains inconclusive. In addition, extremely rare side effects after SARS-CoV-2 vaccination may resemble the heterogeneous PCC phenotype. Here, we analyze the plasma levels of 25 cytokines and SARS-CoV-2 directed antibodies in 540 individuals with or without PCC relative to one or two mRNA-based COVID-19 vaccinations as well as in 20 uninfected individuals one month after their initial mRNA-based COVID-19 vaccination. While none of the SARS-CoV-2 naïve individuals reported any persisting sequelae or exhibited PCC-like dysregulation of plasma cytokines, we detected lower levels of IL-1β and IL-18 in patients with ongoing PCC who received one or two vaccinations at a median of six months after infection as compared to unvaccinated PCC patients. This reduction correlated with less frequent reporting of persisting gastrointestinal symptoms. These data suggest that post-infection vaccination in patients with PCC might be beneficial in a subgroup of individuals displaying gastrointestinal symptoms.
Collapse
Affiliation(s)
- Claudia Fischer
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University, and University Hospital Basel, Basel, Switzerland
| | - Edith Willscher
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Lisa Paschold
- Department of Internal Medicine IV, Oncology/Hematology, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Cornelia Gottschick
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Bianca Klee
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Sophie Diexer
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Lidia Bosurgi
- I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Jochen Dutzmann
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Daniel Sedding
- Mid-German Heart Center, Department of Cardiology and Intensive Care Medicine, University Hospital, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Thomas Frese
- Institute of General Practice and Family Medicine, Martin-Luther-University Halle-Wittenberg, Halle, (Saale), Germany
| | - Matthias Girndt
- Department of Internal Medicine II, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Jessica I Hoell
- Pediatric Hematology and Oncology, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Michael Gekle
- Julius Bernstein-Institute of Physiology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Marylyn M Addo
- I. Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Braunschweig, Germany
- University Medical Center Hamburg-Eppendorf, Institute for Infection Research and Vaccine Development (IIRVD), Hamburg, Germany
| | | | - Rafael Mikolajczyk
- Institute for Medical Epidemiology, Biometrics, and Informatics (IMEBI), Interdisciplinary Center for Health Sciences, Medical School of the Martin Luther University Halle-Wittenberg, Halle, (Saale), Germany
| | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University, and University Hospital Basel, Basel, Switzerland
| | - Christoph Schultheiß
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University, and University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
36
|
Märkl F, Schultheiß C, Ali M, Chen SS, Zintchenko M, Egli L, Mietz J, Chijioke O, Paschold L, Spajic S, Holtermann A, Dörr J, Stock S, Zingg A, Läubli H, Piseddu I, Anz D, Minden MDV, Zhang T, Nerreter T, Hudecek M, Minguet S, Chiorazzi N, Kobold S, Binder M. Mutation-specific CAR T cells as precision therapy for IGLV3-21 R110 expressing high-risk chronic lymphocytic leukemia. Nat Commun 2024; 15:993. [PMID: 38307904 PMCID: PMC10837166 DOI: 10.1038/s41467-024-45378-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
The concept of precision cell therapy targeting tumor-specific mutations is appealing but requires surface-exposed neoepitopes, which is a rarity in cancer. B cell receptors (BCR) of mature lymphoid malignancies are exceptional in that they harbor tumor-specific-stereotyped sequences in the form of point mutations that drive self-engagement of the BCR and autologous signaling. Here, we use a BCR light chain neoepitope defined by a characteristic point mutation (IGLV3-21R110) for selective targeting of a poor-risk subset of chronic lymphocytic leukemia (CLL) with chimeric antigen receptor (CAR) T cells. We develop murine and humanized CAR constructs expressed in T cells from healthy donors and CLL patients that eradicate IGLV3-21R110 expressing cell lines and primary CLL cells, but neither cells expressing the non-pathogenic IGLV3-21G110 light chain nor polyclonal healthy B cells. In vivo experiments confirm epitope-selective cytolysis in xenograft models in female mice using engrafted IGLV3-21R110 expressing cell lines or primary CLL cells. We further demonstrate in two humanized mouse models lack of cytotoxicity towards human B cells. These data provide the basis for advanced approaches of resistance-preventive and biomarker-guided cellular targeting of functionally relevant lymphoma driver mutations sparing normal B cells.
Collapse
Affiliation(s)
- Florian Märkl
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Christoph Schultheiß
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Murtaza Ali
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Shih-Shih Chen
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | | | - Lukas Egli
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Juliane Mietz
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Obinna Chijioke
- Cellular Immunotherapy, Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
- Institute of Pathology and Medical Genetics, University Hospital Basel, Basel, Switzerland
| | - Lisa Paschold
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Sebastijan Spajic
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Anne Holtermann
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Janina Dörr
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Sophia Stock
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Andreas Zingg
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Heinz Läubli
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland
- Laboratory of Cancer Immunotherapy, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Ignazio Piseddu
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - David Anz
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | | | - Tianjiao Zhang
- Internal Medicine IV, Oncology/Hematology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Thomas Nerreter
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Michael Hudecek
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Würzburg, Germany
| | - Susana Minguet
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Nicholas Chiorazzi
- Karches Center for Oncology Research, The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| | - Mascha Binder
- Division of Medical Oncology, University Hospital Basel, Basel, Switzerland.
- Laboratory of Translational Immuno-Oncology, Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland.
| |
Collapse
|
37
|
Lapuente D, Winkler TH, Tenbusch M. B-cell and antibody responses to SARS-CoV-2: infection, vaccination, and hybrid immunity. Cell Mol Immunol 2024; 21:144-158. [PMID: 37945737 PMCID: PMC10805925 DOI: 10.1038/s41423-023-01095-w] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 10/13/2023] [Indexed: 11/12/2023] Open
Abstract
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in 2019 prompted scientific, medical, and biotech communities to investigate infection- and vaccine-induced immune responses in the context of this pathogen. B-cell and antibody responses are at the center of these investigations, as neutralizing antibodies (nAbs) are an important correlate of protection (COP) from infection and the primary target of SARS-CoV-2 vaccine modalities. In addition to absolute levels, nAb longevity, neutralization breadth, immunoglobulin isotype and subtype composition, and presence at mucosal sites have become important topics for scientists and health policy makers. The recent pandemic was and still is a unique setting in which to study de novo and memory B-cell (MBC) and antibody responses in the dynamic interplay of infection- and vaccine-induced immunity. It also provided an opportunity to explore new vaccine platforms, such as mRNA or adenoviral vector vaccines, in unprecedented cohort sizes. Combined with the technological advances of recent years, this situation has provided detailed mechanistic insights into the development of B-cell and antibody responses but also revealed some unexpected findings. In this review, we summarize the key findings of the last 2.5 years regarding infection- and vaccine-induced B-cell immunity, which we believe are of significant value not only in the context of SARS-CoV-2 but also for future vaccination approaches in endemic and pandemic settings.
Collapse
Affiliation(s)
- Dennis Lapuente
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
| | - Thomas H Winkler
- Department of Biology, Division of Genetics, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany.
| | - Matthias Tenbusch
- Institut für klinische und molekulare Virologie, Universitätsklinikum Erlangen und Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossgarten 4, 91054, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Schlossplatz 1, 91054, Erlangen, Germany
| |
Collapse
|
38
|
Mohme M, Schultheiß C, Piffko A, Fitzek A, Paschold L, Thiele B, Püschel K, Glatzel M, Westphal M, Lamszus K, Matschke J, Binder M. SARS-CoV-2-associated T-cell infiltration in the central nervous system. Clin Transl Immunology 2024; 13:e1487. [PMID: 38304555 PMCID: PMC10831126 DOI: 10.1002/cti2.1487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/04/2023] [Accepted: 01/15/2024] [Indexed: 02/03/2024] Open
Abstract
Objectives Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). Although an acute SARS-CoV-2 infection mainly presents with respiratory illness, neurologic symptoms and sequelae are increasingly recognised in the long-term treatment of COVID-19 patients. The pathophysiology and the neuropathogenesis behind neurologic complications of COVID-19 remain poorly understood, but mounting evidence points to endothelial dysfunction either directly caused by viral infection or indirectly by inflammatory cytokines, followed by a local immune response that may include virus-specific T cells. However, the type and role of central nervous system-infiltrating T cells in COVID-19 are complex and not fully understood. Methods We analysed distinct anatomical brain regions of patients who had deceased as a result of COVID-19-associated pneumonia or complications thereof and performed T cell receptor Vβ repertoire sequencing. Clonotypes were analysed for SARS-CoV-2 association using public TCR repertoire data. Results Our descriptive study demonstrates that SARS-CoV-2-associated T cells are found in almost all brain areas of patients with fatal COVID-19 courses. The olfactory bulb, medulla and cerebellum were brain regions showing the most SARS-CoV-2 specific sequence patterns. Neuropathological workup demonstrated primary CD8+ T-cell infiltration with a perivascular infiltration pattern. Conclusion Future research is needed to better define the relationship between T-cell infiltration and neurological symptoms and its long-term impact on patients' cognitive and mental health.
Collapse
Affiliation(s)
- Malte Mohme
- Department of NeurosurgeryUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Christoph Schultheiß
- Medical OncologyUniversity Hospital BaselBaselSwitzerland
- Laboratory of Translational Immuno‐Oncology, Department of BiomedicineUniversity of Basel and University Hospital of BaselBaselSwitzerland
| | - Andras Piffko
- Department of NeurosurgeryUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Antonia Fitzek
- Department of Legal MedicineUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Lisa Paschold
- Internal Medicine IV, Oncology/HematologyMartin‐Luther‐University Halle‐WittenbergHalle (Saale)Germany
| | - Benjamin Thiele
- Medical OncologyUniversity Hospital BaselBaselSwitzerland
- Laboratory of Translational Immuno‐Oncology, Department of BiomedicineUniversity of Basel and University Hospital of BaselBaselSwitzerland
- Hematology and OncologyUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Klaus Püschel
- Department of Legal MedicineUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Markus Glatzel
- Institute of NeuropathologyUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Manfred Westphal
- Department of NeurosurgeryUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Katrin Lamszus
- Department of NeurosurgeryUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Jakob Matschke
- Institute of NeuropathologyUniversity Medical Centre Hamburg‐EppendorfHamburgGermany
| | - Mascha Binder
- Medical OncologyUniversity Hospital BaselBaselSwitzerland
- Laboratory of Translational Immuno‐Oncology, Department of BiomedicineUniversity of Basel and University Hospital of BaselBaselSwitzerland
| |
Collapse
|
39
|
Gabernet G, Marquez S, Bjornson R, Peltzer A, Meng H, Aron E, Lee NY, Jensen C, Ladd D, Hanssen F, Heumos S, Yaari G, Kowarik MC, Nahnsen S, Kleinstein SH. nf-core/airrflow: an adaptive immune receptor repertoire analysis workflow employing the Immcantation framework. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.18.576147. [PMID: 38293151 PMCID: PMC10827190 DOI: 10.1101/2024.01.18.576147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Adaptive Immune Receptor Repertoire sequencing (AIRR-seq) is a valuable experimental tool to study the immune state in health and following immune challenges such as infectious diseases, (auto)immune diseases, and cancer. Several tools have been developed to reconstruct B cell and T cell receptor sequences from AIRR-seq data and infer B and T cell clonal relationships. However, currently available tools offer limited parallelization across samples, scalability or portability to high-performance computing infrastructures. To address this need, we developed nf-core/airrflow, an end-to-end bulk and single-cell AIRR-seq processing workflow which integrates the Immcantation Framework following BCR and TCR sequencing data analysis best practices. The Immcantation Framework is a comprehensive toolset, which allows the processing of bulk and single-cell AIRR-seq data from raw read processing to clonal inference. nf-core/airrflow is written in Nextflow and is part of the nf-core project, which collects community contributed and curated Nextflow workflows for a wide variety of analysis tasks. We assessed the performance of nf-core/airrflow on simulated sequencing data with sequencing errors and show example results with real datasets. To demonstrate the applicability of nf-core/airrflow to the high-throughput processing of large AIRR-seq datasets, we validated and extended previously reported findings of convergent antibody responses to SARS-CoV-2 by analyzing 97 COVID-19 infected individuals and 99 healthy controls, including a mixture of bulk and single-cell sequencing datasets. Using this dataset, we extended the convergence findings to 20 additional subjects, highlighting the applicability of nf-core/airrflow to validate findings in small in-house cohorts with reanalysis of large publicly available AIRR datasets. nf-core/airrflow is available free of charge, under the MIT license on GitHub (https://github.com/nf-core/airrflow). Detailed documentation and example results are available on the nf-core website at (https://nf-co.re/airrflow).
Collapse
|
40
|
Chang H, Ashlock DA, Graether SP, Keller SM. Anchor Clustering for million-scale immune repertoire sequencing data. BMC Bioinformatics 2024; 25:42. [PMID: 38273275 PMCID: PMC10809746 DOI: 10.1186/s12859-024-05659-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The clustering of immune repertoire data is challenging due to the computational cost associated with a very large number of pairwise sequence comparisons. To overcome this limitation, we developed Anchor Clustering, an unsupervised clustering method designed to identify similar sequences from millions of antigen receptor gene sequences. First, a Point Packing algorithm is used to identify a set of maximally spaced anchor sequences. Then, the genetic distance of the remaining sequences to all anchor sequences is calculated and transformed into distance vectors. Finally, distance vectors are clustered using unsupervised clustering. This process is repeated iteratively until the resulting clusters are small enough so that pairwise distance comparisons can be performed. RESULTS Our results demonstrate that Anchor Clustering is faster than existing pairwise comparison clustering methods while providing similar clustering quality. With its flexible, memory-saving strategy, Anchor Clustering is capable of clustering millions of antigen receptor gene sequences in just a few minutes. CONCLUSIONS This method enables the meta-analysis of immune-repertoire data from different studies and could contribute to a more comprehensive understanding of the immune repertoire data space.
Collapse
Affiliation(s)
- Haiyang Chang
- Department of Mathematics and Statistics, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Daniel A Ashlock
- Department of Mathematics and Statistics, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Rd E, Guelph, ON, N1G 2W1, Canada
| | - Stefan M Keller
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, University of California Davis, One Shields Avenue, Davis, CA, 95616, USA.
| |
Collapse
|
41
|
Vecchio E, Rotundo S, Veneziano C, Abatino A, Aversa I, Gallo R, Giordano C, Serapide F, Fusco P, Viglietto G, Cuda G, Costanzo F, Russo A, Trecarichi EM, Torti C, Palmieri C. The spike-specific TCRβ repertoire shows distinct features in unvaccinated or vaccinated patients with SARS-CoV-2 infection. J Transl Med 2024; 22:33. [PMID: 38185632 PMCID: PMC10771664 DOI: 10.1186/s12967-024-04852-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024] Open
Abstract
BACKGROUND The evolving variants of SARS-CoV-2 may escape immunity from prior infections or vaccinations. It's vital to understand how immunity adapts to these changes. Both infection and mRNA vaccination induce T cells that target the Spike protein. These T cells can recognize multiple variants, such as Delta and Omicron, even if neutralizing antibodies are weakened. However, the degree of recognition can vary among people, affecting vaccine efficacy. Previous studies demonstrated the capability of T-cell receptor (TCR) repertoire analysis to identify conserved and immunodominant peptides with cross-reactive potential among variant of concerns. However, there is a need to extend the analysis of the TCR repertoire to different clinical scenarios. The aim of this study was to examine the Spike-specific TCR repertoire profiles in natural infections and those with combined natural and vaccine immunity. METHODS A T-cell enrichment approach and bioinformatic tools were used to investigate the Spike-specific TCRβ repertoire in peripheral blood mononuclear cells of previously vaccinated (n = 8) or unvaccinated (n = 6) COVID-19 patients. RESULTS Diversity and clonality of the TCRβ repertoire showed no significant differences between vaccinated and unvaccinated groups. When comparing the TCRβ data to public databases, 692 unique TCRβ sequences linked to S epitopes were found in the vaccinated group and 670 in the unvaccinated group. TCRβ clonotypes related to spike regions S135-177, S264-276, S319-350, and S448-472 appear notably more prevalent in the vaccinated group. In contrast, the S673-699 epitope, believed to have super antigenic properties, is observed more frequently in the unvaccinated group. In-silico analyses suggest that mutations in epitopes, relative to the main SARS-CoV-2 variants of concern, don't hinder their cross-reactive recognition by associated TCRβ clonotypes. CONCLUSIONS Our findings reveal distinct TCRβ signatures in vaccinated and unvaccinated individuals with COVID-19. These differences might be associated with disease severity and could influence clinical outcomes. TRIAL REGISTRATION FESR/FSE 2014-2020 DDRC n. 585, Action 10.5.12, noCOVID19@UMG.
Collapse
Affiliation(s)
- Eleonora Vecchio
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
- Interdepartmental Centre of Services, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Salvatore Rotundo
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Claudia Veneziano
- Interdepartmental Centre of Services, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Antonio Abatino
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Ilenia Aversa
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Raffaella Gallo
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Caterina Giordano
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Francesca Serapide
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Paolo Fusco
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Giuseppe Viglietto
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Giovanni Cuda
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Costanzo
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy
- Interdepartmental Centre of Services, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Alessandro Russo
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Enrico Maria Trecarichi
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Carlo Torti
- Department of Medical and Surgical Sciences, Chair of Infectious and Tropical Diseases, University "Magna Graecia", 88100, Catanzaro, Italy
| | - Camillo Palmieri
- Department of Experimental and Clinical Medicine, University "Magna Graecia", Viale Europa, 88100, Catanzaro, Italy.
| |
Collapse
|
42
|
Rubinstein A, Kudryavtsev I, Malkova A, Mammedova J, Isakov D, Isakova-Sivak I, Kudlay D, Starshinova A. Sarcoidosis-related autoimmune inflammation in COVID-19 convalescent patients. Front Med (Lausanne) 2023; 10:1271198. [PMID: 38179278 PMCID: PMC10765615 DOI: 10.3389/fmed.2023.1271198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Currently, there are a large number of reports about the development of autoimmune conditions after COVID-19. Also, there have been cases of sarcoid-like granulomas in convalescents as a part of the post-COVID-19 syndrome. Since one of the etiological theories of sarcoidosis considers it to be an autoimmune disease, we decided to study changes in the adaptive humoral immune response in sarcoidosis and SARS-CoV-2 infection and to find out whether COVID-19 can provoke the development of sarcoidosis. This review discusses histological changes in lymphoid organs in sarcoidosis and COVID-19, changes in B cell subpopulations, T-follicular helper cells (Tfh), and T-follicular regulatory cells (Tfr), and analyzes various autoantibodies detected in these pathologies. Based on the data studied, we concluded that SARS-CoV-2 infection may cause the development of autoimmune pathologies, in particular contributing to the onset of sarcoidosis in convalescents.
Collapse
Affiliation(s)
- Artem Rubinstein
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institution of Experimental Medicine, Saint Petersburg, Russia
| | - Igor Kudryavtsev
- Almazov National Medical Research Centre, Saint Petersburg, Russia
- Institution of Experimental Medicine, Saint Petersburg, Russia
- Far Eastern Federal University, Vladivostok, Russia
| | - Annа Malkova
- Ariel University Faculty of Natural Sciences, Ariel, Israel
| | | | - Dmitry Isakov
- First Saint Petersburg State I. Pavlov Medical University, Saint Petersburg, Russia
| | | | - Dmitry Kudlay
- Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- NRC Institute of Immunology, Moscow, Russia
- Department of Pharmacognosy and Industrial Pharmacy, Faculty of Fundamental Medicine, Moscow, Russia
| | - Anna Starshinova
- Almazov National Medical Research Centre, Saint Petersburg, Russia
| |
Collapse
|
43
|
Torki E, Gharezade A, Doroudchi M, Sheikhi S, Mansury D, Sullman MJM, Fouladseresht H. The kinetics of inhibitory immune checkpoints during and post-COVID-19: the knowns and unknowns. Clin Exp Med 2023; 23:3299-3319. [PMID: 37697158 DOI: 10.1007/s10238-023-01188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023]
Abstract
The immune system is tightly regulated to prevent immune reactions to self-antigens and to avoid excessive immune responses during and after challenges from non-self-antigens. Inhibitory immune checkpoints (IICPs), as the major regulators of immune system responses, are extremely important for maintaining the homeostasis of cells and tissues. However, the high and sustained co-expression of IICPs in chronic infections, under persistent antigenic stimulations, results in reduced immune cell functioning and more severe and prolonged disease complications. Furthermore, IICPs-mediated interactions can be hijacked by pathogens in order to evade immune induction or effector mechanisms. Therefore, IICPs can be potential targets for the prognosis and treatment of chronic infectious diseases. This is especially the case with regards to the most challenging infectious disease of recent times, coronavirus disease-2019 (COVID-19), whose long-term complications can persist long after recovery. This article reviews the current knowledge about the kinetics and functioning of the IICPs during and post-COVID-19.
Collapse
Affiliation(s)
- Ensiye Torki
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arezou Gharezade
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mehrnoosh Doroudchi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shima Sheikhi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Davood Mansury
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mark J M Sullman
- Department of Life and Health Sciences, University of Nicosia, Nicosia, Cyprus
- Department of Social Sciences, University of Nicosia, Nicosia, Cyprus
| | - Hamed Fouladseresht
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
44
|
Bai H, Liang L, Qi X, Xu Y, Liu Y, Ren D, Cai Z, Mao W, Wang X, Qin H, Hu F, Shi B. Thymosin α1 modulated the immune landscape of COVID-19 patients revealed by single-cell RNA and TCR sequencing. Int Immunopharmacol 2023; 124:110983. [PMID: 37769533 DOI: 10.1016/j.intimp.2023.110983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/12/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND The Coronavirus disease-19 (COVID-19) pandemic has posed a serious threat to global health. Thymosin α1 (Tα1) was considered to be applied in COVID-19 therapy. However, the data remains limited. METHODS Participants with or without Tα1 treatment were recruited. Single cell RNA-sequencing (scRNA-seq) and T cell receptor-sequencing (TCR-seq) of the peripheral blood mononuclear cell (PBMC) samples were done to analyze immune features. The differential expression analysis and functional enrichment analysis were performed to explore the mechanism of Tα1 therapy. RESULTS 33 symptomatic SARS-CoV-2-infected individuals (COV) and 11 healthy controls (HC) were enrolled in this study. The proportion of CD3+ KLRD1+ NKT, TBX21+ CD8+ NKT was observed to increase in COVID-19 patients with Tα1 treatment (COVT) than those without Tα1 (COV) (p = 0.024; p = 0.010). These two clusters were also significantly higher in Health controls with Tα1 treatment (HCT) than those without Tα1 (HC) (p = 0.016; p = 0.031). Besides, a series of genes and pathways related to immune responses were significantly higher enriched in Tα1 groups TBX21+ CD8+ NKT, such as KLRB1, PRF1, natural killer cell-mediated cytotoxicity pathway, chemokine signaling pathway, JAK-STAT signaling pathway. The increased TRBV9-TRBJ1-1 pair existed in both HCs and COVID-19 patients after Tα1 treatment. 1389 common complementarity determining region 3 nucleotides (CDR 3 nt) were found in COV and HC, while 0 CDR 3 nt was common in COVT and HCT. CONCLUSIONS Tα1 increased CD3+ KLRD1+ NKT, TBX21+ CD8+ NKT cell proportion and stimulated the diversity of TCR clones in COVT and HCT. And Tα1 could regulate the expression of genes associated with NKT activation or cytotoxicity to promote NKT cells. These data support the use of Tα1 in COVID-19 patients.
Collapse
Affiliation(s)
- Han Bai
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Liyuan Liang
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Xin Qi
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Yao Xu
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Yijia Liu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Doudou Ren
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Zeqiong Cai
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China
| | - Weikang Mao
- LC-BIO TECHNOLOGIES (HANGZHOU) CO., LTD., Hangzhou 310000, China
| | - Xiaorui Wang
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Hongyu Qin
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Fang Hu
- Precision Medicine Center, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China
| | - Bingyin Shi
- The MED-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Building 21, Western China Science and Technology Innovation Harbor, Xi'an 710000, China; Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, China.
| |
Collapse
|
45
|
Ren C, Ji R, Li Y, He J, Hu W, Teng X, Gao J, Wu Y, Xu J. Longitudinal change trend of the TCR repertoire reveals the immune response intensity of the inactivated COVID-19 vaccine. Mol Immunol 2023; 163:39-47. [PMID: 37738878 DOI: 10.1016/j.molimm.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/31/2023] [Accepted: 09/08/2023] [Indexed: 09/24/2023]
Abstract
Evidence concerning the individual differences in neutralizing antibody responses after receiving the COVID-19 vaccine remains lacking. In this study, we collected the serum and Peripheral blood mononuclear cells(PBMC) of 16 subjects who had never suffered from COVID-19 before during the course of two vaccine doses. Microneutralization assay is used to determine the immune response intensity of vaccine subjects. we revealed the change trend of TCR diversity using T cell receptor (TCR) sequencing. Then, we analyzed the correlation between HLA class II allele frequencies and the intensity of immune response. Finally, we identified several CDR3 sequences related to the intensity of the immune response. We analyzed the differences in D50 (DD50) between different time points, and found that there were two patterns in the change trend of TCR diversity, and the increased diversity group has stronger immune response. The inactivated vaccine is different from the mRNA vaccine against the spike protein, resulting in differences in TCR repertoire response patterns and antibody responses, which are related to HLA-DRB1 * 09:01. The presence of specific CDR3 sequences in the increased diversity group, rather than gene usage of the VJ gene, determines the intensity and persistence of neutralizing antibody titers. Finally, We identified the different response patterns of the human TCR repertoire to inactivated vaccines. The pattern with increased diversity is more likely to appear strong and more lasting immune response.
Collapse
Affiliation(s)
- Chengsi Ren
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China.
| | - Ruili Ji
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China.
| | - Yizhe Li
- West China TianFu Hospital,Sichuan University, Chengdu, China.
| | - Jinyong He
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Wei Hu
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Xiangyun Teng
- Medical Laboratory Center, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China; Translational Medicine Research Center, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China
| | - Jiahui Gao
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Yue Wu
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China
| | - Jianhua Xu
- Department of Laboratory Medicine, Shunde Hospital of Guangzhou University of Chinese Medicine, Foshan, China; Medical Laboratory Center, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China; Translational Medicine Research Center, Maoming Hospital of Guangzhou University of Chinese Medicine, Maoming, China.
| |
Collapse
|
46
|
Wang K, Hu X, Zhang J. Fast clonal family inference from large-scale B cell repertoire sequencing data. CELL REPORTS METHODS 2023; 3:100601. [PMID: 37788671 PMCID: PMC10626204 DOI: 10.1016/j.crmeth.2023.100601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/31/2023] [Accepted: 09/08/2023] [Indexed: 10/05/2023]
Abstract
Advances in high-throughput sequencing technologies have facilitated the large-scale characterization of B cell receptor (BCR) repertoires. However, the vast amount and high diversity of the BCR sequences pose challenges for efficient and biologically meaningful analysis. Here, we introduce fastBCR, an efficient computational approach for inferring B cell clonal families from massive BCR heavy chain sequences. We demonstrate that fastBCR substantially reduces the running time while ensuring high accuracy on simulated datasets with diverse numbers of B cell lineages and varying mutation rates. We apply fastBCR to real BCR sequencing data from peripheral blood samples of COVID-19 patients, showing that the inferred clonal families display disease-associated features, as well as corresponding antigen-binding specificity and affinity. Overall, our results demonstrate the advantages of fastBCR for analyzing BCR repertoire data, which will facilitate the identification of disease-associated antibodies and improve our understanding of the B cell immune response.
Collapse
Affiliation(s)
- Kaixuan Wang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
| | - Xihao Hu
- GV20 Therapeutics, Cambridge, MA, USA
| | - Jian Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China.
| |
Collapse
|
47
|
Yang S, Duan L, Wang C, Zhang C, Hou S, Wang H, Song J, Zhang T, Li Z, Wang M, Tang J, Zheng Q, Wang H, Wang Q, Zhao W. Activation and induction of antigen-specific T follicular helper cells play a critical role in recombinant SARS-CoV-2 RBD vaccine-induced humoral responses. MOLECULAR BIOMEDICINE 2023; 4:34. [PMID: 37853288 PMCID: PMC10584785 DOI: 10.1186/s43556-023-00145-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 09/19/2023] [Indexed: 10/20/2023] Open
Abstract
The role of follicular T helper (Tfh) cells in humoral response has been considered essential in recent years. Understanding how Tfh cells control complex humoral immunity is critical to developing strategies to improve the efficacy of vaccines against SARS-CoV-2 and other emerging pathogens. However, the immunologic mechanism of Tfh cells in SARS-CoV-2 receptor binding domain (RBD) vaccine strategy is limited. In this study, we expressed and purified recombinant SARS-CoV-2 RBD protein in Drosophila S2 cells for the first time and explored the mechanism of Tfh cells induced by RBD vaccine in humoral immune response. We mapped the dynamic of Tfh cell in lymph node and spleen following RBD vaccination and revealed the relationship between Tfh cells and humoral immune response induced by SARS-CoV-2 RBD vaccine through correlation analysis, blocking of IL-21 signaling pathway, and co-culture of Tfh with memory B cells. Recombinant RBD protein elicited a predominant Tfh1 and Tfh1-17 subset response and strong GC responses in spleen and lymph nodes, especially to enhanced vaccination. IL-21 secreted by Tfh cells affected the development and differentiation of B cells and played a key role in the humoral immune response. These observations will help us further understand the mechanism of protective immune response induced by COVID-19 vaccine and has guiding significance for the development of vaccines against newly emerging mutants.
Collapse
Affiliation(s)
- Songhao Yang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Liangwei Duan
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Chan Wang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Cuiying Zhang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Siyu Hou
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Hao Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Jiahui Song
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Tingting Zhang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Zihua Li
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Mingxia Wang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Jing Tang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China
| | - Qianqian Zheng
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
- Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, Xinxiang Medical University, Xinxiang, 453003, Henan Province, China
| | - Qi Wang
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China.
| | - Wei Zhao
- School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China.
- Key Laboratory of Hydatid Disease, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China.
- Center of Scientific Technology, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, 750004, People's Republic of China.
| |
Collapse
|
48
|
Arons E, Henry K, Haas C, Gould M, Tsintolas J, Mauter J, Zhou H, Burbelo PD, Cohen JI, Kreitman RJ. Characterization of B-cell receptor clonality and immunoglobulin gene usage at multiple time points during active SARS-CoV-2 infection. J Med Virol 2023; 95:e29179. [PMID: 37877800 PMCID: PMC11323229 DOI: 10.1002/jmv.29179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023]
Abstract
Although monoclonal antibodies to the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) are known, B-cell receptor repertoire and its change in patients during coronavirus disease-2019 (COVID-19) progression is underreported. We aimed to study this molecularly. We used immunoglobulin heavy chain (IGH) variable region (IGHV) spectratyping and next-generation sequencing of peripheral blood B-cell genomic DNA collected at multiple time points during disease evolution to study B-cell response to SARS-CoV-2 infection in 14 individuals with acute COVID-19. We found a broad distribution of responding B-cell clones. The IGH gene usage was not significantly skewed but frequencies of individual IGH genes changed repeatedly. We found predominant usage of unmutated and low mutation-loaded IGHV rearrangements characterizing naïve and extrafollicular B cells among the majority of expanded peripheral B-cell clonal lineages at most tested time points in most patients. IGH rearrangement usage showed no apparent relation to anti-SARS-CoV-2 antibody titers. Some patients demonstrated mono/oligoclonal populations carrying highly mutated IGHV rearrangements indicating antigen experience at some of the time points tested, including even before anti-SARS-CoV-2 antibodies were detected. We present evidence demonstrating that the B-cell response to SARS-CoV-2 is individual and includes different lineages of B cells at various time points during COVID-19 progression.
Collapse
Affiliation(s)
- Evgeny Arons
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, 20892, United States
| | - Kiersten Henry
- Medstar Montgomery Medical Center, 18101 Prince Philip Drive, Olney, MD 20832, United States
| | - Christopher Haas
- Medstar Franklin Square Medical Center, 9000 Franklin Square Drive, Baltimore, MD 21237, United States
| | - Mory Gould
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, 20892, United States
| | - Jack Tsintolas
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, 20892, United States
| | - Jack Mauter
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, 20892, United States
| | - Hong Zhou
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, 20892, United States
| | - Peter D. Burbelo
- National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20892, United States
| | - Jeffrey I. Cohen
- Laboratory of Infectious Disease, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, 20892, United States
| | - Robert J. Kreitman
- Laboratory of Molecular Biology, National Cancer Institute, NIH, Bethesda, MD, 20892, United States
| |
Collapse
|
49
|
Starshinova A, Kudryavtsev I, Rubinstein A, Malkova A, Dovgaluk I, Kudlay D. Tuberculosis and COVID-19 Dually Affect Human Th17 Cell Immune Response. Biomedicines 2023; 11:2123. [PMID: 37626620 PMCID: PMC10452633 DOI: 10.3390/biomedicines11082123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/12/2023] [Accepted: 07/19/2023] [Indexed: 08/27/2023] Open
Abstract
COVID-19 infection not only profoundly impacts the detection of tuberculosis infection (Tbc) but also affects modality in tuberculosis patient immune response. It is important to determine immune response alterations in latent tuberculosis infection as well as in SARS-CoV-2-infected tuberculosis patients. Such changes may have underlying effects on the development and course of further tuberculosis. Here, we aimed to review the characteristics of immune response in TB patients or convalescent COVID-19 patients with latent TB infection (LTBI). MATERIALS AND METHODS We analyzed the features of immune response in tuberculosis and COVID-19 patients. For this, we analyzed publications released from December 2019 to March 2023; those which were published in accessible international databases ("Medline", "PubMed", "Scopus") and with keywords such as "COVID-19", "SARS-CoV-2", "tuberculosis", "pulmonary tuberculosis", "latent tuberculosis infection", "Treg", "follicular Treg", and "Treg subsets", we considered. RESULTS Through our analysis, we found that tuberculosis patients who had been infected with COVID-19 previously and elevated Th1 and Th2 cell levels. High levels of Th1 and Th2 cells may serve as a positive marker, characterizing activated immune response during TB infection. COVID-19 or post-COVID-19 subjects showed decreased Th17 levels, indicating a lack of tuberculosis development. Moreover, the typical course of tuberculosis is associated with an increase in Treg level, but COVID-19 contributes to a hyperinflammatory response. CONCLUSION According to the data obtained, the course of tuberculosis proceeds in a dissimilar way due to the distinct immune response, elicited by SARS-CoV-2. Importantly, the development of active tuberculosis with a severe course is associated with a decline in Treg levels. Both pathogens lead to disturbed immune responses, increasing the risk of developing severe TB. The insights and findings of this paper may be used to improve the future management of individuals with latent and active tuberculosis.
Collapse
Affiliation(s)
- Anna Starshinova
- Almazov National Medical Research Centre, 197341 St-Petersburg, Russia
| | - Igor Kudryavtsev
- Department of Immunology, Institution of Experimental Medicine, 197022 St-Petersburg, Russia; (I.K.); (A.R.)
| | - Artem Rubinstein
- Department of Immunology, Institution of Experimental Medicine, 197022 St-Petersburg, Russia; (I.K.); (A.R.)
| | - Anna Malkova
- Faculty of Natural Sciences, Ariel University, Ariel 40700, Israel;
| | - Irina Dovgaluk
- Phthisiopulmonology Department, Research Institute of Phthisiopulmonology, 191036 St-Petersburg, Russia;
| | - Dmitry Kudlay
- Department of Pharmacology, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia;
- Institute of Immunology FMBA of Russia, 115478 Moscow, Russia
| |
Collapse
|
50
|
Yang H, Cham J, Neal BP, Fan Z, He T, Zhang L. NAIR: Network Analysis of Immune Repertoire. Front Immunol 2023; 14:1181825. [PMID: 37614227 PMCID: PMC10443597 DOI: 10.3389/fimmu.2023.1181825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 06/07/2023] [Indexed: 08/25/2023] Open
Abstract
T cells represent a crucial component of the adaptive immune system and mediate anti-tumoral immunity as well as protection against infections, including respiratory viruses such as SARS-CoV-2. Next-generation sequencing of the T-cell receptors (TCRs) can be used to profile the T-cell repertoire. We developed a customized pipeline for Network Analysis of Immune Repertoire (NAIR) with advanced statistical methods to characterize and investigate changes in the landscape of TCR sequences. We first performed network analysis on the TCR sequence data based on sequence similarity. We then quantified the repertoire network by network properties and correlated it with clinical outcomes of interest. In addition, we identified (1) disease-specific/associated clusters and (2) shared clusters across samples based on our customized search algorithms and assessed their relationship with clinical outcomes such as recovery from COVID-19 infection. Furthermore, to identify disease-specific TCRs, we introduced a new metric that incorporates the clonal generation probability and the clonal abundance by using the Bayes factor to filter out the false positives. TCR-seq data from COVID-19 subjects and healthy donors were used to illustrate that the proposed approach to analyzing the network architecture of the immune repertoire can reveal potential disease-specific TCRs responsible for the immune response to infection.
Collapse
Affiliation(s)
- Hai Yang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, United States
| | - Jason Cham
- Department of Medicine, Scripps Green Hospital, La Jolla, CA, United States
| | - Brian Patrick Neal
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Zenghua Fan
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Tao He
- Department of Mathematics, San Francisco State University, San Francisco, CA, United States
| | - Li Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, United States
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|