1
|
Lin Y, Yang L, Li Y, Dou S, Zhang Z, Zhou Q. CD4+CD25- T-Cell-Secreted IFN-γ Promotes Corneal Nerve Degeneration in Diabetic Mice. Invest Ophthalmol Vis Sci 2025; 66:15. [PMID: 40192636 PMCID: PMC11980951 DOI: 10.1167/iovs.66.4.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 03/17/2025] [Indexed: 04/11/2025] Open
Abstract
Purpose This study aimed to explore the relationship between corneal nerve degeneration and elevated dendritic cells (DCs) in diabetic keratopathy. Methods Corneas from diabetic and healthy mice were analyzed using single-cell RNA sequencing. Corneal nerve density and DC and T-cell infiltration were quantified through whole-mount corneal staining. Freshly isolated mouse trigeminal ganglion (TG) neurons were co-cultured with immature DCs, mature DCs, activated CD8+ T cells, and CD4+CD25- T cells. TG neurite outgrowth was assessed to identify potential effector cells driving corneal nerve degeneration. In addition, interferon-gamma (IFN-γ) and blocking antibodies were used to evaluate their effects on TG neurite outgrowth and corneal nerve degeneration in mice. Results Compared with age-matched healthy mice, diabetic mice exhibited a significant reduction in corneal nerve density and sensitivity, along with increased infiltration of DCs, CD4+ T cells, and CD8+ T cells. In vitro co-culture experiments revealed that CD4+CD25- T cells, rather than DCs and CD8+ T cells, significantly inhibited TG neurite outgrowth. Among cytokines, elevated IFN-γ in diabetic corneas impaired TG neurite outgrowth and induced corneal nerve degeneration, whereas IL-4 and IL-17 had no such effect. Blocking IFN-γ alleviated CD4+CD25- T-cell-induced inhibition of TG neurite outgrowth and corneal nerve degeneration in diabetic mice. Conclusions CD4+CD25- T cells, but not DCs or CD8+ T cells, contribute to corneal nerve degeneration in diabetic mice, a process partially mediated by IFN-γ.
Collapse
Affiliation(s)
- Yujing Lin
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Lingling Yang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Ya Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Shengqian Dou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Zhenzhen Zhang
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, China
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China
| |
Collapse
|
2
|
Setia M, Suvas PK, Rana M, Chakraborty A, Suvas S. Differential homing of monocytes and neutrophils in the epithelial layer of HSV-1 infected cornea regulates viral dissemination and wound healing. Ocul Surf 2025; 36:69-82. [PMID: 39793926 PMCID: PMC11911097 DOI: 10.1016/j.jtos.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/07/2024] [Accepted: 01/06/2025] [Indexed: 01/13/2025]
Abstract
PURPOSE To ascertain the homing of monocytes and neutrophils in the epithelium versus stroma of HSV-1 infected corneas at different stages of infection and functional significance of their anatomical location in virus-infected corneas. METHODS The corneas of C57BL/6J mice were infected with HSV-1 McKrae. Mice were euthanized on different days post-infection. The epithelium and stroma were separated from the infected corneas, and flow cytometry was performed to characterize the myeloid cell subsets in the epithelium versus the stromal layers of an infected cornea. MACS columns were used to purify neutrophils or deplete myeloid cells from infected corneas. Corneal epithelial scratch assay was performed to ascertain the impact of neutrophils on epithelium wound healing. RESULTS Our results showed a biphasic influx of monocytes in the epithelial but not the stromal layer of HSV-1-infected corneas. Furthermore, we noted the predominance of monocytes over neutrophils in the epithelium and the stromal layer of the cornea during the pre-clinical stage of corneal HSV-1 infection. However, neutrophils were the major myeloid cell subset in the epithelium and stroma during the clinical disease period of infection. Removal of monocytes from the infected epithelial layer during the pre-clinical stage promotes the dissemination of the virus. Interestingly, neutrophils localized in the corneal epithelium inhibit corneal epithelial wound healing. CONCLUSIONS Together, our data suggest that differential kinetics of monocytes and neutrophils homing in the epithelial layer regulate viral dissemination and epithelial wound healing in HSV-1-infected corneas.
Collapse
MESH Headings
- Animals
- Neutrophils/physiology
- Neutrophils/pathology
- Herpesvirus 1, Human/physiology
- Mice, Inbred C57BL
- Wound Healing/physiology
- Mice
- Monocytes/pathology
- Monocytes/physiology
- Epithelium, Corneal/virology
- Epithelium, Corneal/pathology
- Epithelium, Corneal/immunology
- Keratitis, Herpetic/virology
- Keratitis, Herpetic/pathology
- Keratitis, Herpetic/immunology
- Disease Models, Animal
- Flow Cytometry
- Eye Infections, Viral/virology
- Eye Infections, Viral/pathology
- Eye Infections, Viral/immunology
- Corneal Stroma/virology
- Corneal Stroma/pathology
Collapse
Affiliation(s)
- Mizumi Setia
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Pratima Krishna Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mashidur Rana
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Anish Chakraborty
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Susmit Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
3
|
Gupta N, LoGrasso G, Hazlett LD, Xu S. New Insight Into the Neuroimmune Interplay In Pseudomonas aeruginosa Keratitis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.06.641908. [PMID: 40161776 PMCID: PMC11952346 DOI: 10.1101/2025.03.06.641908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Purpose The miR-183/96/182 cluster (miR-183C) is required for normal functions of sensory neurons (SN) and various immune cells, including myeloid cells (MC). This research aims to reveal the roles of miR-183C of SN in the interplay of corneal sensory nerves (CSN) and MC during Pseudomonas aeruginosa (PA) keratitis. Methods Double-tracing mice with SN-specific (SNS) conditional knockout of miR-183C (CKO) and age- and sex-matched wild type (WT) controls were used. Their CSN are labeled with Red Fluorescent Protein (RFP); MC with Enhanced Green (EG)FP. The left corneas were scarified and infected with ATCC19660 PA. Corneal flatmounts were prepared at 3, 6, and 12 hours post-infection (hpi) and 1, 3, and 5 days (d)pi for confocal microscopy. Myeloperoxidase (MPO) assay and plate count were performed at 1 dpi. Results In WT mice, CSN began to degenerate as early as 3 hpi, starting from the fine terminal CSN in the epithelial/subepithelial layers, most prominently in the central region. By 1 dpi, CSN in the epithelium/subepithelial layer were nearly completely destroyed, while stromal nerves persisted. From 3 dpi, CSN were obliterated in both layers. In CKO vs WT mice, CNS followed a slightly slower pace of degeneration. CSN density was decreased at 3 and 6 hpi. However, at 3 dpi, residual large-diameter stromal CSN were better preserved.MC were decreased in the central cornea at 3 and 6 hpi, but increased in the periphery. Both changes were more prominent in CKO vs WT mice. At 12 hpi, densely packed MC formed a ring-shaped band circling a "dark" zone nearly devoid of MC, colocalizing with CSN most degenerated zone in the central cornea. In CKO vs WT, the ring center was larger with fewer MC. At 1 dpi, the entire cornea was filled with MC; however, MC density was lower in CKO mice. An MPO assay showed decreased neutrophils in PA-infected cornea of CKO mice. This led to a decreased severity of PA keratitis at 3 dpi. Conclusions This double-tracing model reveals the interplay between CSN and MC during PA keratitis with greater clarity, providing new insights into PA keratitis. CSN-imposed modulation on innate immunity is most impressive within 24 hours after infection. Functionally, the miR-183C in CSN modulates CSN density and the dynamics of MC fluxes- a neuroimmune interaction in display.
Collapse
Affiliation(s)
- Naman Gupta
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine/Kresge Eye Institute, Detroit, Michigan
| | - Giovanni LoGrasso
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine/Kresge Eye Institute, Detroit, Michigan
| | - Linda D Hazlett
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine/Kresge Eye Institute, Detroit, Michigan
| | - Shunbin Xu
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine/Kresge Eye Institute, Detroit, Michigan
| |
Collapse
|
4
|
Setia M, Suvas PK, Rana M, Chakraborty A, Suvas S. Herpes stromal keratitis erodes the establishment of tissue-resident memory T cell pool in HSV-1 infected corneas. Mucosal Immunol 2025; 18:188-204. [PMID: 39581232 PMCID: PMC11891946 DOI: 10.1016/j.mucimm.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
The recurrent herpes simplex virus-1 (HSV-1) infection of the cornea can cause the development of herpes stromal keratitis (HSK). This chronic immunoinflammatory condition is a major cause of infection-induced vision loss. The previous episodes of HSK increase the risk of future recurrences in the same cornea. However, not all HSV-1 infected corneas that shed infectious virus at the ocular surface develop HSK, suggesting that corneal HSV-1 infection may cause an establishment of protective immunity in HSV-1 infected corneas. However, upon recurrent corneal HSV-1 infection, the established protective immunity can get compromised, resulting in the development of HSK. In this study, we compared the quantity and quality of tissue-resident memory T (TRM) cells in HSV-1 infected corneas that did or did not develop HSK. Our results showed the predominance of TRM cell in the epithelium than in stroma of HSV-1 infected corneas. Furthermore, HSV-1 infected non-HSK corneas exhibited more CD4 and CD8 TRM cells than HSK corneas. The TRM cells in non-HSK than in HSK corneas were more effective in clearing the infectious virus upon secondary corneal HSV-1 infection. Our results demonstrate the differential quantity and quality of TRM cells in HSV-1 infected corneas that did or did not develop HSK.
Collapse
Affiliation(s)
- Mizumi Setia
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States; Vaccine and Infectious Diseases Division, Fred Hutch Cancer Research Center, Seattle, Washington, United States
| | - Pratima Krishna Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Mashidur Rana
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Anish Chakraborty
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Susmit Suvas
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, Michigan, United States.
| |
Collapse
|
5
|
Antony F, Kinha D, Nowińska A, Rouse BT, Suryawanshi A. The immunobiology of corneal HSV-1 infection and herpetic stromal keratitis. Clin Microbiol Rev 2024; 37:e0000624. [PMID: 39078136 PMCID: PMC11391706 DOI: 10.1128/cmr.00006-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024] Open
Abstract
SUMMARYHuman alphaherpesvirus 1 (HSV-1) is a highly successful neurotropic pathogen that primarily infects the epithelial cells lining the orofacial mucosa. After primary lytic replication in the oral, ocular, and nasal mucosal epithelial cells, HSV-1 establishes life-long latency in neurons within the trigeminal ganglion. Patients with compromised immune systems experience frequent reactivation of HSV-1 from latency, leading to virus entry in the sensory neurons, followed by anterograde transport and lytic replication at the innervated mucosal epithelial surface. Although recurrent infection of the corneal mucosal surface is rare, it can result in a chronic immuno-inflammatory condition called herpetic stromal keratitis (HSK). HSK leads to gradual vision loss and can cause permanent blindness in severe untreated cases. Currently, there is no cure or successful vaccine to prevent latent or recurrent HSV-1 infections, posing a significant clinical challenge to managing HSK and preventing vision loss. The conventional clinical management of HSK primarily relies on anti-virals to suppress HSV-1 replication, anti-inflammatory drugs (such as corticosteroids) to provide symptomatic relief from pain and inflammation, and surgical interventions in more severe cases to replace damaged cornea. However, each clinical treatment strategy has limitations, such as local and systemic drug toxicities and the emergence of anti-viral-resistant HSV-1 strains. In this review, we summarize the factors and immune cells involved in HSK pathogenesis and highlight alternate therapeutic strategies for successful clinical management of HSK. We also discuss the therapeutic potential of immunoregulatory cytokines and immunometabolism modulators as promising HSK therapies against emerging anti-viral-resistant HSV-1 strains.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Molecular and Cell Biology, University of California, Berkeley, California, USA
| | - Divya Kinha
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Anna Nowińska
- Clinical Department of Ophthalmology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, Katowice, Poland
- Ophthalmology Department, Railway Hospital in Katowice, Katowice, Poland
| | - Barry T. Rouse
- College of Veterinary Medicine, University of Tennessee, Knoxville, Tennessee, USA
| | - Amol Suryawanshi
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
6
|
Musa M, Enaholo E, Aluyi-Osa G, Atuanya GN, Spadea L, Salati C, Zeppieri M. Herpes simplex keratitis: A brief clinical overview. World J Virol 2024; 13:89934. [PMID: 38616855 PMCID: PMC11008405 DOI: 10.5501/wjv.v13.i1.89934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 03/11/2024] Open
Abstract
The aim of our minireview is to provide a brief overview of the diagnosis, clinical aspects, treatment options, management, and current literature available regarding herpes simplex keratitis (HSK). This type of corneal viral infection is caused by the herpes simplex virus (HSV), which can affect several tissues, including the cornea. One significant aspect of HSK is its potential to cause recurrent episodes of inflammation and damage to the cornea. After the initial infection, the HSV can establish a latent infection in the trigeminal ganglion, a nerve cluster near the eye. The virus may remain dormant for extended periods. Periodic reactivation of the virus can occur, leading to recurrent episodes of HSK. Factors triggering reactivation include stress, illness, immunosuppression, or trauma. Recurrent episodes can manifest in different clinical patterns, ranging from mild epithelial involvement to more severe stromal or endothelial disease. The severity and frequency of recurrences vary among individuals. Severe cases of HSK, especially those involving the stroma and leading to scarring, can result in vision impairment or even blindness in extreme cases. The cornea's clarity is crucial for good vision, and scarring can compromise this, potentially leading to visual impairment. The management of HSK involves not only treating acute episodes but also implementing long-term strategies to prevent recurrences and attempt repairs of corneal nerve endings via neurotization. Antiviral medications, such as oral Acyclovir or topical Ganciclovir, may be prescribed for prophylaxis. The immune response to the virus can contribute to corneal damage. Inflammation, caused by the body's attempt to control the infection, may inadvertently harm the corneal tissues. Clinicians should be informed about triggers and advised on measures to minimize the risk of reactivation. In summary, the recurrent nature of HSK underscores the importance of both acute and long-term management strategies to preserve corneal health and maintain optimal visual function.
Collapse
Affiliation(s)
- Mutali Musa
- Department of Optometry, University of Benin, Benin 300283, Nigeria
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | - Ehimare Enaholo
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
- Department of Ophthalmology, Centre for Sight Africa, Nkpor 434101, Nigeria
| | - Gladness Aluyi-Osa
- Department of Ophthalmology, Africa Eye Laser Centre, Km 7, Benin 300105, Nigeria
| | | | - Leopoldo Spadea
- Eye Clinic, Policlinico Umberto I, "Sapienza" University of Rome, Rome 00142, Italy
| | - Carlo Salati
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| | - Marco Zeppieri
- Department of Ophthalmology, University Hospital of Udine, Udine 33100, Italy
| |
Collapse
|
7
|
Yin XT, Hartman A, Sirajuddin N, Shukla D, Leger AS, Keadle TL, Stuart PM. UVB induced reactivation leads to HSV1 in the corneas of virtually all latently infected mice and requires STING to develop corneal disease. Sci Rep 2024; 14:6859. [PMID: 38514671 PMCID: PMC10957950 DOI: 10.1038/s41598-024-52597-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/21/2024] [Indexed: 03/23/2024] Open
Abstract
Reactivation of latent herpes simplex type 1 results in virus returning to the cornea leading to recurrent herpetic stromal keratitis (rHSK). We compare two competing models to reactivate viruses from latency, UV-B irradiation and cyclophosphamide (CP). Results revealed that while both result in corneal recrudescence, only UV-B irradiation results in rHSK. To better understand the dynamics of reactivation, we analyzed corneas for both the presence of infectious viruses and the dynamics of exposure to multiple reactivations using UV-B. We noted that multiple reactivations result in progressively worse corneal disease. We also noted that expression of IFNα and STING, surragate markers for the presence of virus, are induced by the presence of reactivated virus. Studies to determine the importance of STING to the development of HSK revealed that in the absence of STING, mice do not develop significant HSK and the magnitude of the infiltrate of CD45+ cells in these corneas is significantly reduced. The resulting paucity of CD45+CD11b+GR-1+F4/80-neutrophils, and to a lesser extent CD45+CD11b+GR-1-F4/80+ macrophages in B6-STING KO mice following reactivation is likely the underlying cause for lack of rHSK as has been noted by ourselves and others. These results underscore the critical importance of STING's role in developing rHSK.
Collapse
Affiliation(s)
- Xiao-Tang Yin
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Alexis Hartman
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Nadia Sirajuddin
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Deepak Shukla
- Department of Ophthalmology & Visual Sciences, University of Illinois at Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, USA
| | - Anthony St Leger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tammie L Keadle
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Patrick M Stuart
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA.
- Washington University, 7569 Amherst Avenue, University City, MO, 63130-2805, USA.
| |
Collapse
|
8
|
Wu X, Ma Y, Zhang Z, Hou T, He Y. New targets of nascent lymphatic vessels in ocular diseases. Front Physiol 2024; 15:1374627. [PMID: 38529484 PMCID: PMC10961382 DOI: 10.3389/fphys.2024.1374627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Recent advancements in the field of endothelial markers of lymphatic vessels and lymphangiogenic factors have shed light on the association between several ocular diseases and ocular nascent lymphatic vessels. The immune privilege of corneal tissue typically limits the formation of lymphatic vessels in a healthy eye. However, vessels in the eyes can potentially undergo lymphangiogenesis and be conditionally activated. It is evident that nascent lymphatic vessels in the eyes contribute to various ocular pathologies. Conversely, lymphatic vessels are present in the corneal limbus, ciliary body, lacrimal glands, optic nerve sheaths, and extraocular muscles, while a lymphatic vasculature-like system exists in the choroid, that can potentially cause several ocular pathologies. Moreover, numerous studies indicate that many ocular diseases can influence or activate nascent lymphatic vessels, ultimately affecting patient prognosis. By understanding the mechanisms underlying the onset, development, and regression of ocular nascent lymphatic vessels, as well as exploring related research on ocular diseases, this article aims to offer novel perspectives for the treatment of such conditions.
Collapse
Affiliation(s)
- Xuhui Wu
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yunkun Ma
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zhaochen Zhang
- The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Tingting Hou
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yuxi He
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
9
|
Lai J, Rigas Y, Kantor N, Cohen N, Tomlinson A, St. Leger AJ, Galor A. Living with your biome: how the bacterial microbiome impacts ocular surface health and disease. EXPERT REVIEW OF OPHTHALMOLOGY 2024; 19:89-103. [PMID: 38764699 PMCID: PMC11101146 DOI: 10.1080/17469899.2024.2306582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/14/2024] [Indexed: 05/21/2024]
Abstract
Introduction Microbiome research has grown exponentially but the ocular surface microbiome (OSM) remains an area in need of further study. This review aims to explore its complexity, disease-related microbial changes, and immune interactions, and highlights the potential for its manipulation as a therapeutic for ocular surface diseases. Areas Covered We introduce the OSM by location and describe what constitutes a normal OSM. Second, we highlight aspects of the ocular immune system and discuss potential immune microbiome interactions in health and disease. Finally, we highlight how microbiome manipulation may have therapeutic potential for ocular surface diseases. Expert Opinion The ocular surface microbiome varies across its different regions, with a core phyla identified, but with genus variability. A few studies have linked microbiome composition to diseases like dry eye but more research is needed, including examining microbiome interactions with the host. Studies have noted that manipulating the microbiome may impact disease presentation. As such, microbiome manipulation via diet, oral and topical pre and probiotics, and hygienic measures may provide new therapeutic algorithms in ocular surface diseases.
Collapse
Affiliation(s)
- James Lai
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Yannis Rigas
- University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nicole Kantor
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Noah Cohen
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Ana Tomlinson
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
| | - Anthony J. St. Leger
- University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anat Galor
- Bascom Palmer Eye Institute, University of Miami, Miami, Florida, USA
- Miami Veterans Affairs Hospital, Miami, Florida, USA
| |
Collapse
|
10
|
Ma H, Chen T, Li C, Xu H, Feng Q, Su Y, Cai J, Zhu Q, Liu F, Hu L. Metabolic signatures of tear extracellular vesicles caused by herpes simplex keratitis. Ocul Surf 2024; 31:21-30. [PMID: 38122863 DOI: 10.1016/j.jtos.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/09/2023] [Accepted: 12/11/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Herpes simplex keratitis (HSK), caused by type 1 herpes simplex virus (HSV) reactivation, is a severe infectious disease that leads to vision loss. HSV can trigger metabolic reprogramming in the host cell and change the extracellular vesicles (EV) cargos; however, little is known about the EV metabolic signatures during ocular HSV infection. Here, we aimed to depict the EV-associated metabolic landscape in HSK patients' tears. METHODS We collected 82 samples from 41 participants with unilateral HSK (contralateral unaffected tears were set as negative control), including subtype cohorts of 13 epithelial, 20 stromal, and 8 endothelial HSK. We isolated tear EVs via our previously established platform and conducted metabolic analysis using LC-MS/MS. The metabolic signatures for recognizing HSK and subtypes were assessed through differential analysis and machine learning algorithms. RESULTS Hypopsia and increased extracellular CD63 levels were observed in affected eyes. We identified 339 metabolites based on sEVs isolated from tears. Differential analysis revealed alterations in energy and amino acid metabolism, as well as the infectious microenvironment. Furthermore, we observed dysregulated metabolite such as methyldopa, which is associated with inappropriate neovascularization and corneal sensation loss, contributing to the HSK severity particularly in the stromal subtype. Moreover, machine learning classification also suggested a set of EV metabolic signatures that have potential for pan-keratitis detection. CONCLUSIONS Our findings demonstrate that tear EV metabolites can serve as valuable indicators for comprehending the underlying pathological mechanisms. This knowledge is expected to facilitate the development of liquid biopsy means and therapeutic target discovery.
Collapse
Affiliation(s)
- Huixiang Ma
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Tucan Chen
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengxu Li
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Hao Xu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingyu Feng
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Yunfei Su
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Jianqiu Cai
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Qingfu Zhu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China
| | - Fei Liu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, 02115, MA, USA.
| | - Liang Hu
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China; National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
| |
Collapse
|
11
|
Clahsen T, Hadrian K, Notara M, Schlereth SL, Howaldt A, Prokosch V, Volatier T, Hos D, Schroedl F, Kaser-Eichberger A, Heindl LM, Steven P, Bosch JJ, Steinkasserer A, Rokohl AC, Liu H, Mestanoglu M, Kashkar H, Schumacher B, Kiefer F, Schulte-Merker S, Matthaei M, Hou Y, Fassbender S, Jantsch J, Zhang W, Enders P, Bachmann B, Bock F, Cursiefen C. The novel role of lymphatic vessels in the pathogenesis of ocular diseases. Prog Retin Eye Res 2023; 96:101157. [PMID: 36759312 DOI: 10.1016/j.preteyeres.2022.101157] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023]
Abstract
Historically, the eye has been considered as an organ free of lymphatic vessels. In recent years, however, it became evident, that lymphatic vessels or lymphatic-like vessels contribute to several ocular pathologies at various peri- and intraocular locations. The aim of this review is to outline the pathogenetic role of ocular lymphatics, the respective molecular mechanisms and to discuss current and future therapeutic options based thereon. We will give an overview on the vascular anatomy of the healthy ocular surface and the molecular mechanisms contributing to corneal (lymph)angiogenic privilege. In addition, we present (i) current insights into the cellular and molecular mechanisms occurring during pathological neovascularization of the cornea triggered e.g. by inflammation or trauma, (ii) the role of lymphatic vessels in different ocular surface pathologies such as dry eye disease, corneal graft rejection, ocular graft versus host disease, allergy, and pterygium, (iii) the involvement of lymphatic vessels in ocular tumors and metastasis, and (iv) the novel role of the lymphatic-like structure of Schlemm's canal in glaucoma. Identification of the underlying molecular mechanisms and of novel modulators of lymphangiogenesis will contribute to the development of new therapeutic targets for the treatment of ocular diseases associated with pathological lymphangiogenesis in the future. The preclinical data presented here outline novel therapeutic concepts for promoting transplant survival, inhibiting metastasis of ocular tumors, reducing inflammation of the ocular surface, and treating glaucoma. Initial data from clinical trials suggest first success of novel treatment strategies to promote transplant survival based on pretransplant corneal lymphangioregression.
Collapse
Affiliation(s)
- Thomas Clahsen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Karina Hadrian
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Maria Notara
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Simona L Schlereth
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Antonia Howaldt
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Verena Prokosch
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Thomas Volatier
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Hos
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Falk Schroedl
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Alexandra Kaser-Eichberger
- Center for Anatomy and Cell Biology, Institute of Anatomy and Cell Biology - Salzburg, Paracelsus Medical University, Salzburg, Austria
| | - Ludwig M Heindl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Steven
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Jacobus J Bosch
- Centre for Human Drug Research and Leiden University Medical Center, Leiden, the Netherlands
| | | | - Alexander C Rokohl
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hanhan Liu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Mert Mestanoglu
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Hamid Kashkar
- Institute for Molecular Immunology, Center for Molecular Medicine Cologne (CMMC), CECAD Research Center, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Björn Schumacher
- Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany
| | - Friedemann Kiefer
- European Institute for Molecular Imaging (EIMI), University of Münster, 48149, Münster, Germany
| | - Stefan Schulte-Merker
- Institute for Cardiovascular Organogenesis and Regeneration, Faculty of Medicine, WWU Münster, Münster, Germany
| | - Mario Matthaei
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Yanhong Hou
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, 83 Fenyang Road, Xuhui District, Shanghai, China
| | - Sonja Fassbender
- IUF‒Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany; Immunology and Environment, Life & Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| | - Jonathan Jantsch
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Wei Zhang
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philip Enders
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Björn Bachmann
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Felix Bock
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany
| | - Claus Cursiefen
- Department of Ophthalmology, University of Cologne, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Center for Molecular Medicine (CMMC), University of Cologne, Cologne, Germany; Cluster of Excellence: Cellular Stress Responses in Ageing-Associated Diseases, CECAD, University of Cologne, Cologne, Germany.
| |
Collapse
|
12
|
Dempsey MP, Conrady CD. The Host-Pathogen Interplay: A Tale of Two Stories within the Cornea and Posterior Segment. Microorganisms 2023; 11:2074. [PMID: 37630634 PMCID: PMC10460047 DOI: 10.3390/microorganisms11082074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 08/10/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Ocular infectious diseases are an important cause of potentially preventable vision loss and blindness. In the following manuscript, we will review ocular immunology and the pathogenesis of herpesviruses and Pseudomonas aeruginosa infections of the cornea and posterior segment. We will highlight areas of future research and what is currently known to promote bench-to-bedside discoveries to improve clinical outcomes of these debilitating ocular diseases.
Collapse
Affiliation(s)
- Michael P. Dempsey
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Christopher D. Conrady
- Department of Ophthalmology and Visual Sciences, Truhlsen Eye Center, University of Nebraska Medical Center, Omaha, NE 68105, USA
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
13
|
Antony F, Pundkar C, Sandey M, Mishra A, Suryawanshi A. Role of IL-27 in HSV-1-Induced Herpetic Stromal Keratitis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:474-485. [PMID: 37326494 PMCID: PMC10495105 DOI: 10.4049/jimmunol.2200420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 05/31/2023] [Indexed: 06/17/2023]
Abstract
Herpetic stromal keratitis (HSK) is a painful and vision-impairing disease caused by recurrent HSV-1 infection of the cornea. The virus replication in the corneal epithelium and associated inflammation play a dominant role in HSK progression. Current HSK treatments targeting inflammation or virus replication are partially effective and promote HSV-1 latency, and long-term use can cause side effects. Thus, understanding molecular and cellular events that control HSV-1 replication and inflammation is crucial for developing novel HSK therapies. In this study, we report that ocular HSV-1 infection induces the expression of IL-27, a pleiotropic immunoregulatory cytokine. Our data indicate that HSV-1 infection stimulates IL-27 production by macrophages. Using a primary corneal HSV-1 infection mouse model and IL-27 receptor knockout mice, we show that IL-27 plays a critical role in controlling HSV-1 shedding from the cornea, the optimum induction of effector CD4+ T cell responses, and limiting HSK progression. Using in vitro bone marrow-derived macrophages, we show that IL-27 plays an antiviral role by regulating macrophage-mediated HSV-1 killing, IFN-β production, and IFN-stimulated gene expression after HSV-1 infection. Furthermore, we report that IL-27 is critical for macrophage survival, Ag uptake, and the expression of costimulatory molecules involved in the optimum induction of effector T cell responses. Our results indicate that IL-27 promotes endogenous antiviral and anti-inflammatory responses and represents a promising target for suppressing HSK progression.
Collapse
Affiliation(s)
- Ferrin Antony
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Chetan Pundkar
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Maninder Sandey
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Amarjit Mishra
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| | - Amol Suryawanshi
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, AL, 36849, USA
| |
Collapse
|
14
|
Yin XT, Hartman A, Sirajuddin N, Shukla D, St Leger A, Keadle TL, Stuart PM. UV-B induced HSV-1 reactivation leads to infectious virus in the corneas of virtually all latently infected mice and requires an intact STING to develop herpetic stromal keratitis. RESEARCH SQUARE 2023:rs.3.rs-3097720. [PMID: 37502845 PMCID: PMC10371093 DOI: 10.21203/rs.3.rs-3097720/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Reactivation of latent herpes simplex type 1 results in virus returning to the cornea leading to recurrent herpetic stromal keratitis (rHSK). We compare two competing models to reactivate viruses from latency, UV-B irradiation and cyclophosphamide. Results revealed that while both result in corneal recrudescence, only UV-B irradiation results in rHSK. To better understand the dynamics of reactivation, we analyzed corneas for both the presence of infectious viruses and the dynamics of exposure to multiple reactivations using UV-B. We noted that multiple reactivations result in progressively worse corneal disease. We also noted that expression of IFNα and STING, surragate markers for the presence of virus, are induced by the presence of reactivated virus. Studies to determine the importance of STING to the development of HSK revealed that in the absence of STING, mice do not develop significant HSK and the magnitude of the infiltrate of CD45 + cells in these corneas is significantly reduced. The resulting paucity of CD45 + CD11b + GR-1 + F4/80-neutrophils, and to a lesser extent CD45 + CD11b + GR-1-F4/80 + macrophages in B6-STING KO mice following reactivation is likely the underlying cause for lack of rHSK as has been noted by ourselves and others. These results underscore the critical importance of STING's role in developing rHSK.
Collapse
|
15
|
Vereertbrugghen A, Pizzano M, Sabbione F, Keitelman IA, Shiromizu CM, Aguilar DV, Fuentes F, de Paiva CS, Giordano M, Trevani A, Galletti JG. An ocular Th1 immune response promotes corneal nerve damage independently of the development of corneal epitheliopathy. J Neuroinflammation 2023; 20:120. [PMID: 37217914 PMCID: PMC10201717 DOI: 10.1186/s12974-023-02800-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/09/2023] [Indexed: 05/24/2023] Open
Abstract
Proper sight is not possible without a smooth, transparent cornea, which is highly exposed to environmental threats. The abundant corneal nerves are interspersed with epithelial cells in the anterior corneal surface and are instrumental to corneal integrity and immunoregulation. Conversely, corneal neuropathy is commonly observed in some immune-mediated corneal disorders but not in others, and its pathogenesis is poorly understood. Here we hypothesized that the type of adaptive immune response may influence the development of corneal neuropathy. To test this, we first immunized OT-II mice with different adjuvants that favor T helper (Th)1 or Th2 responses. Both Th1-skewed mice (measured by interferon-γ production) and Th2-skewed (measured by interleukin-4 production) developed comparable ocular surface inflammation and conjunctival CD4+ T cell recruitment but no appreciable corneal epithelial changes upon repeated local antigenic challenge. Th1-skewed mice showed decreased corneal mechanical sensitivity and altered corneal nerve morphology (signs of corneal neuropathy) upon antigenic challenge. However, Th2-skewed mice also developed milder corneal neuropathy immediately after immunization and independently of ocular challenge, suggestive of adjuvant-induced neurotoxicity. All these findings were confirmed in wild-type mice. To circumvent unwanted neurotoxicity, CD4+ T cells from immunized mice were adoptively transferred to T cell-deficient mice. In this setup, only Th1-transferred mice developed corneal neuropathy upon antigenic challenge. To further delineate the contribution of each profile, CD4+ T cells were polarized in vitro to either Th1, Th2, or Th17 cells and transferred to T cell-deficient mice. Upon local antigenic challenge, all groups had commensurate conjunctival CD4+ T cell recruitment and macroscopic ocular inflammation. However, none of the groups developed corneal epithelial changes and only Th1-transferred mice showed signs of corneal neuropathy. Altogether, the data show that corneal nerves, as opposed to corneal epithelial cells, are sensitive to immune-driven damage mediated by Th1 CD4+ T cells in the absence of other pathogenic factors. These findings have potential therapeutic implications for ocular surface disorders.
Collapse
Affiliation(s)
- Alexia Vereertbrugghen
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Manuela Pizzano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Florencia Sabbione
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Irene Angelica Keitelman
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Carolina Maiumi Shiromizu
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Douglas Vera Aguilar
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Federico Fuentes
- Confocal Microscopy Unit, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Cintia S de Paiva
- Department of Ophthalmology, Ocular Surface Center, Cullen Eye Institute, Baylor College of Medicine, Houston, TX, USA
| | - Mirta Giordano
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Analía Trevani
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina
| | - Jeremías G Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (CONICET/National Academy of Medicine of Buenos Aires), Buenos Aires, Argentina.
| |
Collapse
|
16
|
Dong Q, Qi B, Zhang B, Zhuang X, Chen S, Zhou Q, Zhang BN, Li S. Overactivation of Norepinephrine-β2-Adrenergic Receptor Axis Promotes Corneal Neovascularization. Invest Ophthalmol Vis Sci 2023; 64:20. [PMID: 36897151 PMCID: PMC10010442 DOI: 10.1167/iovs.64.3.20] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Purpose To investigate the role of the sympathetic nervous system in corneal neovascularization (CNV) and to identify the downstream pathway involved in this regulation. Methods Three types of CNV models were constructed with C57BL/6J mice, including the alkali burn model, suture model, and basic fibroblast growth factor (bFGF) corneal micropocket model. Subconjunctival injection of the sympathetic neurotransmitter norepinephrine (NE) was administered in these three models. Control mice received injections of water of the same volume. The corneal CNV was detected using slit-lamp microscopy and immunostaining with CD31, and the results were quantified by ImageJ. The expression of β2-adrenergic receptor (β2-AR) was stained with mouse corneas and human umbilical vein endothelial cells (HUVECs). Furthermore, the anti-CNV effects of β2-AR antagonist ICI-118,551 (ICI) were examined with HUVEC tube formation assay and with a bFGF micropocket model. Additionally, partial β2-AR knockdown mice (Adrb2+/-) were used to establish the bFGF micropocket model, and the corneal CNV size was quantified based on the slit-lamp images and vessel staining. Results Sympathetic nerves invaded the cornea in the suture CNV model. The NE receptor β2-AR was highly expressed in corneal epithelium and blood vessels. The addition of NE significantly promoted corneal angiogenesis, whereas ICI effectively inhibited CNV invasion and HUVEC tube formation. Adrb2 knockdown significantly reduced the cornea area occupied by CNV. Conclusions Our study found that sympathetic nerves grow into the cornea in conjunction with newly formed vessels. The addition of the sympathetic neurotransmitter NE and activation of its downstream receptor β2-AR promoted CNV. Targeting β2-AR could potentially be used as an anti-CNV strategy.
Collapse
Affiliation(s)
- Qiaoqiao Dong
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China.,School of Ophthalmology, Shandong First Medical University, Qingdao, China.,Aier Eye Hospital of Wuhan University (Wuhan Aier Eye Hospital), Wuhan, China
| | - Benxiang Qi
- School of Ophthalmology, Shandong First Medical University, Qingdao, China.,Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| | - Bin Zhang
- School of Ophthalmology, Shandong First Medical University, Qingdao, China.,Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| | - Xiaoyun Zhuang
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China.,School of Ophthalmology, Shandong First Medical University, Qingdao, China.,Department of Ophthalmology, School of Clinical Medicine, Weifang Medical University, Weifang, China
| | - Shijiu Chen
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China.,School of Ophthalmology, Shandong First Medical University, Qingdao, China.,Department of Medicine, Qingdao University, Qingdao, China
| | - Qingjun Zhou
- School of Ophthalmology, Shandong First Medical University, Qingdao, China.,Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| | - Bi Ning Zhang
- School of Ophthalmology, Shandong First Medical University, Qingdao, China.,Eye Institute of Shandong First Medical University, Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| | - Suxia Li
- Eye Institute of Shandong First Medical University, Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Jinan, China.,School of Ophthalmology, Shandong First Medical University, Qingdao, China.,State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Qingdao, China
| |
Collapse
|
17
|
Altman J, Jones G, Ahmed S, Sharma S, Sharma A. Tear Film MicroRNAs as Potential Biomarkers: A Review. Int J Mol Sci 2023; 24:3694. [PMID: 36835108 PMCID: PMC9962948 DOI: 10.3390/ijms24043694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
MicroRNAs are non-coding RNAs that serve as regulatory molecules in a variety of pathways such as inflammation, metabolism, homeostasis, cell machinery, and development. With the progression of sequencing methods and modern bioinformatics tools, novel roles of microRNAs in regulatory mechanisms and pathophysiological states continue to expand. Advances in detection methods have further enabled larger adoption of studies utilizing minimal sample volumes, allowing the analysis of microRNAs in low-volume biofluids, such as the aqueous humor and tear fluid. The reported abundance of extracellular microRNAs in these biofluids has prompted studies to explore their biomarker potential. This review compiles the current literature reporting microRNAs in human tear fluid and their association with ocular diseases including dry eye disease, Sjögren's syndrome, keratitis, vernal keratoconjunctivitis, glaucoma, diabetic macular edema, and diabetic retinopathy, as well as non-ocular diseases, including Alzheimer's and breast cancer. We also summarize the known roles of these microRNAs and shed light on the future progression of this field.
Collapse
Affiliation(s)
- Jeremy Altman
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Garrett Jones
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Saleh Ahmed
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Shruti Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Ophthalmology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- Department of Population Health Sciences, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
18
|
Filiberti A, Gmyrek GB, Berube AN, Carr DJJ. Osteopontin contributes to virus resistance associated with type I IFN expression, activation of downstream ifn-inducible effector genes, and CCR2 +CD115 +CD206 + macrophage infiltration following ocular HSV-1 infection of mice. Front Immunol 2023; 13:1028341. [PMID: 36685562 PMCID: PMC9846535 DOI: 10.3389/fimmu.2022.1028341] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Ocular pathology is often associated with acute herpes simplex virus (HSV)-1 infection of the cornea in mice. The present study was undertaken to determine the role of early T lymphocyte activation 1 protein or osteopontin (OPN) in corneal inflammation and host resistance to ocular HSV-1 infection. C57BL/6 wild type (WT) and osteopontin deficient (OPN KO) mice infected in the cornea with HSV-1 were evaluated for susceptibility to infection and cornea pathology. OPN KO mice were found to possess significantly more infectious virus in the cornea at day 3 and day 7 post infection compared to infected WT mice. Coupled with these findings, HSV-1-infected OPN KO mouse corneas were found to express less interferon (IFN)-α1, double-stranded RNA-dependent protein kinase, and RNase L compared to infected WT animals early post infection that likely contributed to decreased resistance. Notably, OPN KO mice displayed significantly less corneal opacity and neovascularization compared to WT mice that paralleled a decrease in expression of vascular endothelial growth factor (VEGF) A within 12 hr post infection. The change in corneal pathology of the OPN KO mice aligned with a decrease in total leukocyte infiltration into the cornea and specifically, in neutrophils at day 3 post infection and in macrophage subpopulations including CCR2+CD115+CD206+ and CD115+CD183+CD206+ -expressing cells. The infiltration of CD4+ and CD8+ T cells into the cornea was unaltered comparing infected WT to OPN KO mice. Likewise, there was no difference in the total number of HSV-1-specific CD4+ or CD8+ T cells found in the draining lymph node with both sets functionally competent in response to virus antigen comparing WT to OPN KO mice. Collectively, these results demonstrate OPN deficiency directly influences the host innate immune response to ocular HSV-1 infection reducing some aspects of inflammation but at a cost with an increase in local HSV-1 replication.
Collapse
Affiliation(s)
- Adrian Filiberti
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Grzegorz B. Gmyrek
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Amanda N. Berube
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Daniel J. J. Carr
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| |
Collapse
|
19
|
A Guide to Preclinical Models of Zoster-Associated Pain and Postherpetic Neuralgia. Curr Top Microbiol Immunol 2022; 438:189-221. [PMID: 34524508 DOI: 10.1007/82_2021_240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Reactivation of latent varicella-zoster virus (VZV) causes herpes zoster (HZ), which is commonly accompanied by acute pain and pruritus over the time course of a zosteriform rash. Although the rash and associated pain are self-limiting, a considerable fraction of HZ cases will subsequently develop debilitating chronic pain states termed postherpetic neuralgia (PHN). How VZV causes acute pain and the mechanisms underlying the transition to PHN are far from clear. The human-specific nature of VZV has made in vivo modeling of pain following reactivation difficult to study because no single animal can reproduce reactivated VZV disease as observed in the clinic. Investigations of VZV pathogenesis following primary infection have benefited greatly from human tissues harbored in immune-deficient mice, but modeling of acute and chronic pain requires an intact nervous system with the capability of transmitting ascending and descending sensory signals. Several groups have found that subcutaneous VZV inoculation of the rat induces prolonged and measurable changes in nociceptive behavior, indicating sensitivity that partially mimics the development of mechanical allodynia and thermal hyperalgesia seen in HZ and PHN patients. Although it is not a model of reactivation, the rat is beginning to inform how VZV infection can evoke a pain response and induce long-lasting alterations to nociception. In this review, we will summarize the rat pain models from a practical perspective and discuss avenues that have opened for testing of novel treatments for both zoster-associated pain and chronic PHN conditions, which remain in critical need of effective therapies.
Collapse
|
20
|
Mohan RR, Kempuraj D, D'Souza S, Ghosh A. Corneal stromal repair and regeneration. Prog Retin Eye Res 2022; 91:101090. [PMID: 35649962 PMCID: PMC11926992 DOI: 10.1016/j.preteyeres.2022.101090] [Citation(s) in RCA: 93] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/02/2023]
Abstract
The cornea is a specialized, transparent, avascular, immune-privileged, and heavily innervated tissue that affords 2/3rd of refraction to the eye. Ocular injuries, infections, and genetic factors affect corneal function and cause vision impairment. Presently, a variety of laser/non-laser surgeries, immunosuppressants, and/or corneal transplants are predominantly used to revive sight in human patients. The development of novel, precision-guided, and tissue-targeted non-surgical therapies promoting corneal repair and regeneration based on mechanistic understanding is of paramount importance to reduce the impact of global blindness. Research over the past decade revealed that modulation of pathological signaling pathways and factors by a variety of therapeutic delivery methods effectively treats corneal disorders including corneal scar/haze, inflammation, and angiogenesis in various pre-clinical animal models and are primed for human translation. This review discusses recent advances in the areas of corneal repair, restoration, and regeneration. Herein, we provide an overview of evolving approaches and therapeutic modalities that have shown great promise in reviving corneal transparency and function through the use of small drug molecules, gene therapy, nanomedicine, stem cells, trophic factors, exosomes, stromal equivalents, bioengineered stromal scaffolds, tissue adhesives, and 3D bioprinting.
Collapse
Affiliation(s)
- Rajiv R Mohan
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States; Mason Eye Institute, School of Medicine, University of Missouri, Columbia, MO, United States.
| | - Duraisamy Kempuraj
- Harry S. Truman Memorial Veterans' Hospital, Columbia, MO, United States; One-Health Vision Research Program, Departments of Veterinary Medicine & Surgery and Biomedical Sciences, College of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Sharon D'Souza
- Department of Cornea and Refractive Surgery, Narayana Nethralaya, Bangalore, Karnatka, India
| | - Arkasubhra Ghosh
- GROW Research Laboratory, Narayana Nethralaya Foundation, Bangalore, Karnatka, India
| |
Collapse
|
21
|
Niranjan R, Murugasamy V, Sunilkumar A, Manoj H, Ganesh K, Vidhyapriya P, Sankari T, Muthukumaravel S, Kumar A. Atorvastatin attenuates NS1 (Non-structural protein-1) of dengue type-2 serotype-induced expressions of matrix metalloproteinases in HL-60 cells, differentiated to neutrophils: Implications for the immunopathogenesis of dengue viral disease. Int Immunopharmacol 2022; 112:109082. [PMID: 36108401 DOI: 10.1016/j.intimp.2022.109082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 07/17/2022] [Accepted: 07/19/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND The dengue is a vector borne viral infection in humans. Bite of mosquito infected with a dengue virus transmits the disease. The neutrophils support more to the innate immune response by switching to infected tissues and triggering immunomodulatory mechanisms including the release of proteases and host defence peptides. METHODS Cell viability by MTT and trypan blue dye exclusion assay, bright field microscopy for assessment of cell morphology, cytokines measurements by ELISA, estimation of protein by Bradford assay were done. Assessments of matrix metalloproteinase genes mRNA expressions were done using real-time PCR. RESULTS In the present study, we have for the first time unveiled that, NS1 antigen of dengue type-2 serotype, induce and stimulate the neutrophils cells to express high levels of matrix metalloproteases. NS1 exposure of HL-60 cells differentiated to neutrophils affected cell morphology and in 24 h of exposure. We have demonstrated that, the NS1 antigen has induced MMP-2, MMP-14 and MMP-9 expressions in neutrophils in a 24hrs exposure time. NS1 exposure has also further upregulated MMP-1, MMP-13, and MMP-8 expressions in neutrophils in a 24hrs exposure time. Notably, treatment with atorvastatin concentrations downregulated the expression profile of the all matrix metalloprotease significantly. Importantly, NS1 antigen has significantly increased the IL-6, IL-13 release by the HL,60 cells which was reversed by atorvastatin. On the other hand, NS1 exposure enhanced the mRNA expressions of VEGF-A and VEGF-D which was reversed by atorvastatin. However, we found that, NS1 exposure reduced the mRNA expressions profile of VEGF-C, which was reversed by atorvastatin. CONCLUSION In conclusion, we report that, neutrophils associated matrix metalloprotease are involved in the pathogenesis of dengue viral disease. VEGF growth factors may also be released by the neutrophils which may subsequently participate in the endothelial dysfunctions leading to dengue shock syndrome.
Collapse
Affiliation(s)
- Rituraj Niranjan
- Immunology Laboratory, Division of Microbiology and Immunology, ICMR-Vector Control Research Centre, Puducherry 605006, India.
| | - Vyshali Murugasamy
- Immunology Laboratory, Division of Microbiology and Immunology, ICMR-Vector Control Research Centre, Puducherry 605006, India
| | - Anupama Sunilkumar
- Immunology Laboratory, Division of Microbiology and Immunology, ICMR-Vector Control Research Centre, Puducherry 605006, India
| | - H Manoj
- Immunology Laboratory, Division of Microbiology and Immunology, ICMR-Vector Control Research Centre, Puducherry 605006, India
| | - Khashpatika Ganesh
- Immunology Laboratory, Division of Microbiology and Immunology, ICMR-Vector Control Research Centre, Puducherry 605006, India
| | - Pitchavel Vidhyapriya
- Immunology Laboratory, Division of Microbiology and Immunology, ICMR-Vector Control Research Centre, Puducherry 605006, India
| | - T Sankari
- Division of Omics, ICMR-Vector Control Research Centre, Puducherry 605006, India
| | | | - Ashwani Kumar
- ICMR-Vector Control Research Centre, Puducherry 605006, India
| |
Collapse
|
22
|
Neuroimmune crosstalk in the cornea: The role of immune cells in corneal nerve maintenance during homeostasis and inflammation. Prog Retin Eye Res 2022; 91:101105. [PMID: 35868985 DOI: 10.1016/j.preteyeres.2022.101105] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
In the cornea, resident immune cells are in close proximity to sensory nerves, consistent with their important roles in the maintenance of nerves in both homeostasis and inflammation. Using in vivo confocal microscopy in humans, and ex vivo immunostaining and fluorescent reporter mice to visualize corneal sensory nerves and immune cells, remarkable progress has been made to advance our understanding of the physical and functional interactions between corneal nerves and immune cells. In this review, we summarize and discuss recent studies relating to corneal immune cells and sensory nerves, and their interactions in health and disease. In particular, we consider how disrupted corneal nerve axons can induce immune cell activity, including in dendritic cells, macrophages and other infiltrating cells, directly and/or indirectly by releasing neuropeptides such as substance P and calcitonin gene-related peptide. We summarize growing evidence that the role of corneal intraepithelial immune cells is likely different in corneal wound healing versus other inflammatory-dominated conditions. The role of different types of macrophages is also discussed, including how stromal macrophages with anti-inflammatory phenotypes communicate with corneal nerves to provide neuroprotection, while macrophages with pro-inflammatory phenotypes, along with other infiltrating cells including neutrophils and CD4+ T cells, can be inhibitory to corneal re-innervation. Finally, this review considers the bidirectional interactions between corneal immune cells and corneal nerves, and how leveraging this interaction could represent a potential therapeutic approach for corneal neuropathy.
Collapse
|
23
|
Yin XT, Baugnon NK, Krishnan R, Potter CA, Yarlagadda S, Keadle TL, Stuart PM. CD137 costimulation is associated with reduced herpetic stromal keratitis and with developing normal CD8 + T cells in trigeminal ganglia. J Gen Virol 2022; 103. [PMID: 35766977 PMCID: PMC10027025 DOI: 10.1099/jgv.0.001756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Costimulatory interactions can be critical in developing immune responses to infectious agents. We recently reported that herpes simplex type 1 (HSV-1) infections of the cornea require a functional CD28-CD80/86 interaction to not only reduce the likelihood of encephalitis, but also to mediate herpetic stromal keratitis (HSK) following viral reactivation. In this same spirit we decided to determine the role that CD137 costimulation plays during HSK. Using both B6-CD137L-/- mice, as well as antagonistic and agonistic antibodies to CD137 we characterize the immune response and to what extent CD137 plays an important role during this disease. Immune responses were measured in both the cornea and in the trigeminal ganglia where the virus forms a latent infection. We demonstrate that CD137 costimulation leads to reduced corneal disease. Interestingly, we observed that lack of CD137 costimulation resulted in significantly reduced CD8+ T expansion and function in the trigeminal ganglia. Finally, we showed that viruses that have been genetically altered to express CD137 display significantly reduced corneal disease, though they did present similar levels of trigeminal infection and peripheral virus production following reactivation of a latent infection. CD137 interactions lead to reduced HSK and are necessary to develop robust trigeminal CD8+ T cell responses.
Collapse
Affiliation(s)
- Xiao-Tang Yin
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Nicholas K Baugnon
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Rohini Krishnan
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Chloe A Potter
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Sudha Yarlagadda
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Tammie L Keadle
- Department of Biology, Washington University, St. Louis, MO, USA
| | - Patrick M Stuart
- Department of Ophthalmology, Saint Louis University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
24
|
Initial TK-deficient HSV-1 infection in the lip alters contralateral lip challenge immune dynamics. Sci Rep 2022; 12:8489. [PMID: 35590057 PMCID: PMC9119387 DOI: 10.1038/s41598-022-12597-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/12/2022] [Indexed: 11/08/2022] Open
Abstract
Primary infection with herpes simplex type 1 (HSV-1) occurring around the mouth and nose switches rapidly to lifelong latent infection in sensitive trigeminal ganglia (TG) neurons. Sporadic reactivation of these latent reservoirs later in life is the cause of acute infections of the corneal epithelium, which can cause potentially blinding herpes simplex keratitis (HSK). There is no effective vaccine to protect against HSK, and antiviral drugs provide only partial protection against recurrences. We previously engendered an acute disease-free, non-reactivating latent state in mice when challenged with virulent HSV-1 in orofacial mucosa, by priming with non-neurovirulent HSV-1 (TKdel) before the challenge. Herein, we define the local immune infiltration and inflammatory chemokine production changes after virulent HSV-1 challenge, which were elicited by TKdel prime. Heightened immunosurveillance before virulent challenge, and early enhanced lymphocyte-enriched infiltration of the challenged lip were induced, which corresponded to attenuation of inflammation in the TG and enhanced viral control. Furthermore, classical latent-phase T cell persistence around latent HSV-1 reservoirs were severely reduced. These findings identify the immune processes that are likely to be responsible for establishing non-reactivating latent HSV-1 reservoirs. Stopping reactivation is essential for development of efficient vaccine strategies against HSV-1.
Collapse
|
25
|
Guo H, Koehler HS, Dix RD, Mocarski ES. Programmed Cell Death-Dependent Host Defense in Ocular Herpes Simplex Virus Infection. Front Microbiol 2022; 13:869064. [PMID: 35464953 PMCID: PMC9023794 DOI: 10.3389/fmicb.2022.869064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/17/2022] [Indexed: 11/13/2022] Open
Abstract
Herpes simplex virus type 1 (HSV1) remains one of the most ubiquitous human pathogens on earth. The classical presentation of HSV1 infection occurs as a recurrent lesions of the oral mucosa commonly refer to as the common cold sore. However, HSV1 also is responsible for a range of ocular diseases in immunocompetent persons that are of medical importance, causing vision loss that may result in blindness. These include a recurrent corneal disease, herpes stromal keratitis, and a retinal disease, acute retinal necrosis, for which clinically relevant animal models exist. Diverse host immune mechanisms mediate control over herpesviruses, sustaining lifelong latency in neurons. Programmed cell death (PCD) pathways including apoptosis, necroptosis, and pyroptosis serve as an innate immune mechanism that eliminates virus-infected cells and regulates infection-associated inflammation during virus invasion. These different types of cell death operate under distinct regulatory mechanisms but all server to curtail virus infection. Herpesviruses, including HSV1, have evolved numerous cell death evasion strategies that restrict the hosts ability to control PCD to subvert clearance of infection and modulate inflammation. In this review, we discuss the key studies that have contributed to our current knowledge of cell death pathways manipulated by HSV1 and relate the contributions of cell death to infection and potential ocular disease outcomes.
Collapse
Affiliation(s)
- Hongyan Guo
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center Shreveport, Shreveport, LA, United States
| | - Heather S. Koehler
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
- School of Molecular Biosciences, College of Veterinary Medicine, Biotechnology Life Sciences, Pullman, WA, United States
| | - Richard D. Dix
- Viral Immunology Center, Department of Biology, Georgia State University, Atlanta, GA, United States
- Department of Ophthalmology, Emory University School of Medicine, Atlanta, GA, United States
| | - Edward S. Mocarski
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
26
|
Kumar A, Yun H, Funderburgh ML, Du Y. Regenerative therapy for the Cornea. Prog Retin Eye Res 2022; 87:101011. [PMID: 34530154 PMCID: PMC8918435 DOI: 10.1016/j.preteyeres.2021.101011] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/08/2021] [Accepted: 09/09/2021] [Indexed: 12/13/2022]
Abstract
The cornea is the outmost layer of the eye, unique in its transparency and strength. The cornea not only transmits the light essential for vision, also refracts light, giving focus to images. Each of the three layers of the cornea has properties essential for the function of vision. Although the epithelium can often recover from injury quickly by cell division, loss of limbal stem cells can cause severe corneal surface abnormalities leading to corneal blindness. Disruption of the stromal extracellular matrix and loss of cells determining this structure, the keratocytes, leads to corneal opacity. Corneal endothelium is the inner part of the cornea without self-renewal capacity. It is very important to maintain corneal dehydration and transparency. Permanent damage to the corneal stroma or endothelium can be effectively treated by corneal transplantation; however, there are drawbacks to this procedure, including a shortage of donors, the need for continuing treatment to prevent rejection, and limits to the survival of the graft, averaging 10-20 years. There exists a need for new strategies to promote regeneration of the stromal structure and restore vision. This review highlights critical contributions in regenerative medicine with the aim of corneal reconstruction after injury or disease. These approaches include corneal stromal stem cells, corneal limbal stem cells, embryonic stem cells, and other adult stem cells, as well as induced pluripotent stem cells. Stem cell-derived trophic factors in the forms of secretomes or exosomes for corneal regeneration are also discussed. Corneal sensory nerve regeneration promoting corneal transparency is discussed. This article provides description of the up-to-date options for corneal regeneration and presents exciting possible avenues for future studies toward clinical applications for corneal regeneration.
Collapse
Affiliation(s)
- Ajay Kumar
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | - Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213
| | | | - Yiqin Du
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
27
|
Wang Z, Wei Y, An L, Wang K, Hong D, Shi Y, Zang A, Su S, Li W. SEMA3D Plays a Critical Role in Peptic Ulcer Disease-Related Carcinogenesis Induced by H. pylori Infection. Int J Gen Med 2022; 15:1239-1260. [PMID: 35173464 PMCID: PMC8841493 DOI: 10.2147/ijgm.s343635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/11/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Zhiyu Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Yaning Wei
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - lin An
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Kunjie Wang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Dan Hong
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Yan Shi
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Aimin Zang
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Shenyong Su
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
| | - Wenwen Li
- Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People’s Republic of China
- Correspondence: Wenwen Li, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People’s Republic of China, Email
| |
Collapse
|
28
|
Yun H, Yin XT, Stuart PM, St Leger AJ. Sensory Nerve Retraction and Sympathetic Nerve Innervation Contribute to Immunopathology of Murine Recurrent Herpes Stromal Keratitis. Invest Ophthalmol Vis Sci 2022; 63:4. [PMID: 35103749 PMCID: PMC8819360 DOI: 10.1167/iovs.63.2.4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Purpose Herpes stromal keratitis (HSK) represents a spectrum of pathologies which is caused by herpes simplex virus type 1 (HSV-1) infection and is considered a leading cause of infectious blindness. HSV-1 infects corneal sensory nerves and establishes latency in the trigeminal ganglion (TG). Recently, retraction of sensory nerves and replacement with “unsensing” sympathetic nerves was identified as a critical contributor of HSK in a mouse model where corneal pathology is caused by primary infection. This resulted in the loss of blink reflex, corneal desiccation, and exacerbation of inflammation leading to corneal opacity. Despite this, it was unclear whether inflammation associated with viral reactivation was sufficient to initiate this cascade of events. Methods We examined viral reactivation and corneal pathology in a mouse model with recurrent HSK by infecting the cornea with HSV-1 (McKrae) and transferring (intravenous [IV]) human sera to establish primary infection without discernible disease and then exposed the cornea to UV-B light to induce viral reactivation. Results UV-B light induced viral reactivation from latency in 100% of mice as measured by HSV-1 antigen deposition in the cornea. Further, unlike conventional HSK models, viral reactivation resulted in focal retraction of sensory nerves and corneal opacity. Dependent on CD4+ T cells, inflammation foci were innervated by sympathetic nerves. Conclusions Collectively, our data reveal that sectoral corneal sensory nerve retraction and replacement of sympathetic nerves were involved in the progressive pathology that is dependent on CD4+ T cells after viral reactivation from HSV-1 latency in the UV-B induced recurrent HSK mouse model.
Collapse
Affiliation(s)
- Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Xiao-Tang Yin
- Department of Ophthalmology, Saint Louis University, St. Louis, Missouri, United States
| | - Patrick M Stuart
- Department of Ophthalmology, Saint Louis University, St. Louis, Missouri, United States
| | - Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States.,Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
29
|
Mucosal immunology of the ocular surface. Mucosal Immunol 2022; 15:1143-1157. [PMID: 36002743 PMCID: PMC9400566 DOI: 10.1038/s41385-022-00551-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/26/2022] [Accepted: 06/10/2022] [Indexed: 02/04/2023]
Abstract
The eye is a sensory organ exposed to the environment and protected by a mucosal tissue barrier. While it shares a number of features with other mucosal tissues, the ocular mucosal system, composed of the conjunctiva, Meibomian glands, and lacrimal glands, is specialized to address the unique needs of (a) lubrication and (b) host defense of the ocular surface. Not surprisingly, most challenges, physical and immunological, to the homeostasis of the eye fall into those two categories. Dry eye, a dysfunction of the lacrimal glands and/or Meibomian glands, which can both cause, or arise from, sensory defects, including those caused by corneal herpes virus infection, serve as examples of these perturbations and will be discussed ahead. To preserve vision, dense neuronal and immune networks sense various stimuli and orchestrate responses, which must be tightly controlled to provide protection, while simultaneously minimizing collateral damage. All this happens against the backdrop of, and can be modified by, the microorganisms that colonize the ocular mucosa long term, or that are simply transient passengers introduced from the environment. This review will attempt to synthesize the existing knowledge and develop trends in the study of the unique mucosal and immune elements of the ocular surface.
Collapse
|
30
|
Abstract
Herpes simplex virus 1 (HSV-1) infects eye corneal tissues leading to herpetic stromal keratitis (HSK), which is one of the leading causes of blindness. Here in our study, we found that 6-thioguanine (6-TG), a once clinically approved medication for child acute myelogenous leukemia, inhibited multiple strains of HSV-1 infection in vitro and in vivo. 6-TG is more potent than acyclovir (ACV) and ganciclovir (GCV), with the 50% inhibitory concentration (IC50) of 6-TG at 0.104 μM with high stimulation index (SI) (SI = 6,475.48) compared to the IC50 of ACV at 1.253 μM and the IC50 of GCV at 1.257 μM. In addition, 6-TG at 500 μM topically applied to the eyes with HSV-1 infection significantly inhibits HSV-1 replication, alleviates virus-induced HSK pathogenesis, and improves eye conditions. More importantly, 6-TG is effective against ACV-resistant HSV-1 strains, including HSV-1/153 and HSV-1/blue. Knockdown of Rac1 with small interfering RNA (siRNA) negatively affected HSV-1 replication, suggesting that Rac1 facilitated HSV-1 replication. Following HSV-1 infection of human corneal epithelial cells (HCECs), endogenous Rac1 activity was upregulated by glutathione S-transferase (GST) pulldown assay. We further found that Rac1 was highly expressed in the corneal tissue of HSK patients compared to normal individuals. Mechanistic study showed that 6-TG inhibited HSV-1 replication by targeting Rac1 activity in HSV-1 infected cells, and the Rac1 is critical in the pathogenesis of HSK. Our results indicated that 6-TG is a promising therapeutic molecule for the treatment of HSK. IMPORTANCE We reported the discovery of 6-TG inhibition of HSV-1 infection and its inhibitory roles in HSK both in vitro and in vivo. 6-TG was shown to possess at least 10× more potent inhibitory activity against HSV-1 than ACV and GCV and, more importantly, inhibit ACV/GCV-resistant mutant viruses. Animal model studies showed that gel-formulated 6-TG topically applied to eyes locally infected with HSV-1 could significantly inhibit HSV-1 replication, alleviate virus-induced HSK pathogenesis, and improve eye conditions. Further study showed that HSV-1 infection upregulated Rac1 expression, and knockdown of Rac1 using siRNA markedly restricted HSV-1 replication, suggesting that Rac1 is required for HSV-1 replication. In addition, we also documented that Rac1 is highly expressed in corneal tissues from HSK patients, indicating that Rac1 is associated with HSK pathogenesis. In view of the high potency of 6-TG, low cytotoxicity, targeting a distinct therapeutic target, we suggest that 6-TG is a potential candidate for development as a therapeutic agent for HSK therapy.
Collapse
|
31
|
Lin TL, Cheng C, Zeng WT, Duan F, Pei YH, Liu XP, Shang F, Wu KL. Anti-viral activity of Staphylococcus aureus lysates against herpes simplex virus type-I infection: an in vitro and in vivo study. Int J Ophthalmol 2021; 14:1463-1472. [PMID: 34667721 DOI: 10.18240/ijo.2021.10.01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/05/2021] [Indexed: 02/08/2023] Open
Abstract
AIM To investigate the effect of Staphylococcus aureus (S. aures) lysates (SALs) on herpes simplex virus type-I (HSV1) infection in human corneal epithelial (HCE) cells and in a mouse model of HSV1 keratitis. METHODS HCE, Vero, HeLa, and BV2 cells were infected with HSV1 [HSV1 f strain, HSV1f; HSV-1-H129 with green fluorescent protein (GFP) knock-in, HSV1g]. Pre- or post-infection, SAL at various concentrations was added to the culture medium for 24h. GFP fluorescence in HSV1g or plaque formation by HSV1f were examined. The effects of heat-treated SAL, precooled acetone-precipitated SAL, and SAL subjected to ultrafiltration (100 kDa) were evaluated. The effects of other bacterial components and lysates on HSV1 infection were also tested, including lipoteichoic acid (LTA), peptidoglycan (PGN), staphylococcal protein A (SPA), and α-hemolysin from S. aureus (α-toxin) as well as lysates from a wild-type S. aureus strain, S. epidermidis, and Escherichia coli (W-SAL, SEL, and ECL, respectively). In addition, SAL eye drops were applied topically to BALB/c mice with HSV1 keratitis, followed by in vivo observations. RESULTS The cytopathic effect, plaque formation (HSV1f), and GFP expression (HSV1g) in infected cells were inhibited by SAL in a dose-dependent manner. The active component of SAL (≥100 kDa) was heat-sensitive and retained activity after acetone precipitation. In HSV1g-infected cells, treatment with LTA-sa, α-toxin, PGN-sa, or SPA did not inhibit GFP expression. SAL, W-SAL, and SEL (but not ECL) decreased GFP expression. In mice with HSV1 keratitis, SAL reduced corneal lesions by 71%. CONCLUSION The results of this study demonstrate that SAL can be used to inhibit HSV1 infection, particularly keratitis. Further studies are needed to determine the active components and mechanism underlying the effects of SAL.
Collapse
Affiliation(s)
- Tian-Lan Lin
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Chao Cheng
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Wei-Ting Zeng
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Fang Duan
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Yin-Hui Pei
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Xiu-Ping Liu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Fu Shang
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| | - Kai-Li Wu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun Yat-sen University, Guangzhou 510060, Guangdong Province, China
| |
Collapse
|
32
|
Immune responses to injury and their links to eye disease. Transl Res 2021; 236:52-71. [PMID: 34051364 PMCID: PMC8380715 DOI: 10.1016/j.trsl.2021.05.005] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/12/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022]
Abstract
The eye is regarded as an immune privileged site. Since the presence of a vasculature would impair vision, the vasculature of the eye is located outside of the central light path. As a result, many regions of the eye evolved mechanisms to deliver immune cells to sites of dysgenesis, injury, or in response to the many age-related pathologies. While the purpose of these immune responses is reparative or protective, cytokines released by immune cells compromise visual acuity by inducing inflammation and fibrosis. The response to traumatic or pathological injury is distinct in different regions of the eye. Age-related diseases impact both the anterior and posterior segment and lead to reduced quality of life and blindness. Here we focus attention on the role that inflammation and fibrosis play in the progression of age-related pathologies of the cornea and the lens as well as in glaucoma, the formation of epiretinal membranes, and in proliferative vitreoretinopathy.
Collapse
Key Words
- 2ryERM
- A T-helper cell that expresses high levels of IL-17 which can suppress T-regulatory cell function
- A cytokine expressed early during inflammation that attracts neutrophils
- A cytokine expressed early during inflammation that attracts neutrophils, sometimes referred to as monocyte chemoattractant protein-1 (MCP-1))
- A mouse model that lacks functional T and B cells and used to study the immune response
- A pigmented mouse strain used for research and known to mount a primarily Th1 response to infection
- A protein encoded by the ADGRE1 gene that, in mice, is expressed primarily on macrophages
- A strain of pigmented mice used in glaucoma research
- ACAID
- APCs
- ASC
- An albino mouse strain used for research and known to mount a primarily Th2 response to infection
- Antigen Presenting Cells, this class includes dendritic cells and monocytes
- BALB/c
- BM
- C57BL6
- CCL2
- CD45
- CNS
- CXCL1
- Central Nervous System
- Cluster of differentiation 45 antigen
- DAMPs
- DBA/2J
- EBM
- ECM
- EMT
- ERM
- Epithelial Basement Membrane
- F4/80
- FGF2
- HA =hyaluronic acid
- HSK
- HSP
- HSPGs
- HSV
- ICN
- IL-20
- IL6
- ILM
- IOP
- Inner (or internal) limiting membrane
- Interleukin 6
- Interleukin-20
- MAGP1
- MHC-II
- Major histocompatibility complex type II, a class of MHC proteins typically found only on APCs
- Microfibril-associated glycoprotein 1
- N-cad
- N-cadherin
- NEI
- NK
- National Eye Institute
- Natural killer T cells
- PCO
- PDGF
- PDR
- PVD
- PVR
- Platelet derived growth factor
- Posterior capsular opacification
- RGC
- RPE
- RRD
- Rag1-/-
- Retinal ganglion cells
- Retinal pigment epithelial cells
- SMAD
- Sons of Mothers Against Decapentaplegic, SMADs are a class of molecules that mediate TGF and bone morphogenetic protein signaling
- T-helper cell 1 response, proinflammatory adaptive response involving interferon gamma and associated with autoimmunity
- T-helper cell 2 response involving IgE and interleukins 4,5, and 13, also induces the anti-inflammatory interleukin 10 family cytokines
- T-regulatory cell
- TG
- TGF1
- TM
- TNF
- Th1
- Th17
- Th2
- Transforming growth factor 1
- Treg
- Tumor necrosis factor a cytokine produced during inflammation
- VEGF
- Vascular endothelial growth factor
- WHO
- World Health Organization
- anterior chamber immune deviation
- anterior subcapsular cataracts
- basement membrane
- damage-associated molecular patterns
- epiretinal membrane
- epiretinal membrane secondary to disease pathology
- epithelial-mesenchymal transition
- extracellular matrix
- fibroblast growth factor 2, also referred to as basic FGF
- heat shock protein
- heparan sulfate proteoglycans
- herpes simplex virus
- herpes stromal keratitis
- iERM
- idiopathic epiretinal membrane
- intraepithelial corneal nerves
- intraocular pressure
- mTOR
- mechanistic target of rapamycin, a protein kinase encoded by the MTOR genes that regulates a variety of signal transduction events including cell growth, autophagy and actin cytoskeleton
- posterior vitreous detachment
- proliferative diabetic retinopathy
- proliferative vitreoretinopathy
- rhegmatogenous (rupture, tear) retinal detachment
- trabecular meshwork
- trigeminal ganglion
- αSMA
- α−Smooth muscle actin, a class of actin expressed in mesenchymal cells
Collapse
|
33
|
Yun H, Lathrop KL, St Leger AJ. A whole-mount immunohistochemistry protocol for detection of mouse corneal nerves. STAR Protoc 2021; 2:100734. [PMID: 34430909 PMCID: PMC8371250 DOI: 10.1016/j.xpro.2021.100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A cornea is innervated by sensory nerves, which branch into thick trunks, subbasal plexuses, and sensory endings. Appropriate assessment of nerve structure in a tissue provides a more complete understanding of the role of nerves in health and disease. Here, we present a whole-mount immunohistochemistry protocol that facilitates evaluation of nerve architecture throughout the mouse cornea. The fixation step in this protocol allows for reliable detection of nerve structures within the cornea and likely other tissues. For complete details on the use and execution of this protocol, please refer to Yun et al, (2020). This protocol will assist in maintaining appropriate morphology of corneal nerves Neurons are sensitive to fixation methods and durations 1.3% PFA is the ideal fixative for fluorescent imaging of corneal nerves This protocol can be used to guide fluorescent imaging at other tissues
Collapse
Affiliation(s)
- Hongmin Yun
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Kira L Lathrop
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Anthony J St Leger
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
34
|
St. Leger AJ, Koelle DM, Kinchington PR, Verjans GMGM. Local Immune Control of Latent Herpes Simplex Virus Type 1 in Ganglia of Mice and Man. Front Immunol 2021; 12:723809. [PMID: 34603296 PMCID: PMC8479180 DOI: 10.3389/fimmu.2021.723809] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/26/2021] [Indexed: 12/28/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is a prevalent human pathogen. HSV-1 genomes persist in trigeminal ganglia neuronal nuclei as chromatinized episomes, while epithelial cells are typically killed by lytic infection. Fluctuations in anti-viral responses, broadly defined, may underlay periodic reactivations. The ganglionic immune response to HSV-1 infection includes cell-intrinsic responses in neurons, innate sensing by several cell types, and the infiltration and persistence of antigen-specific T-cells. The mechanisms specifying the contrasting fates of HSV-1 in neurons and epithelial cells may include differential genome silencing and chromatinization, dictated by variation in access of immune modulating viral tegument proteins to the cell body, and protection of neurons by autophagy. Innate responses have the capacity of recruiting additional immune cells and paracrine activity on parenchymal cells, for example via chemokines and type I interferons. In both mice and humans, HSV-1-specific CD8 and CD4 T-cells are recruited to ganglia, with mechanistic studies suggesting active roles in immune surveillance and control of reactivation. In this review we focus mainly on HSV-1 and the TG, comparing and contrasting where possible observational, interventional, and in vitro studies between humans and animal hosts.
Collapse
Affiliation(s)
- Anthony J. St. Leger
- Department of Ophthalmology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Benaroya Research Institute, Seattle, WA, United States
| | - Paul R. Kinchington
- Department of Ophthalmology and Molecular Microbiology and Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | | |
Collapse
|
35
|
An intact complement system dampens cornea inflammation during acute primary HSV-1 infection. Sci Rep 2021; 11:10247. [PMID: 33986436 PMCID: PMC8119410 DOI: 10.1038/s41598-021-89818-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/30/2021] [Indexed: 02/03/2023] Open
Abstract
Corneal transparency is an essential characteristic necessary for normal vision. In response to microbial infection, the integrity of the cornea can become compromised as a result of the inflammatory response and the ensuing tissue pathology including neovascularization (NV) and collagen lamellae destruction. We have previously found complement activation contributes to cornea pathology-specifically, denervation in response to HSV-1 infection. Therefore, we investigated whether the complement system also played a role in HSV-1-mediated neovascularization. Using wild type (WT) and complement component 3 deficient (C3 KO) mice infected with HSV-1, we found corneal NV was accelerated associated with an increase in inflammatory monocytes (CD11b+CCR2+CD115+/-Ly6G-Ly6Chigh), macrophages (CD11b+CCR2+CD115+Ly6G-Ly6Chigh) and a subpopulation of granulocytes/neutrophils (CD11b+CCR2-CD115+Ly6G+Ly6Clow). There were also increases in select pro-inflammatory and pro-angiogenic factors including IL-1α, matrix metalloproteinases (MMP)-2, MMP-3, MMP-8, CXCL1, CCL2, and VEGF-A that coincided with increased inflammation, neovascularization, and corneal opacity in the C3 KO mice. The difference in inflammation between WT and C3 KO mice was not driven by changes in virus titer. However, viral antigen clearance was hindered in C3 KO mouse corneas suggesting the complement system has a dynamic regulatory role within the cornea once an inflammatory cascade is initiated by HSV-1.
Collapse
|