1
|
Yao Z, Feng Z, Zhang H, Zhang B. ScRNA-Seq reveals T cell immunity in COVID-19 patients and implications for immunotherapy. Int Immunopharmacol 2025; 155:114663. [PMID: 40233451 DOI: 10.1016/j.intimp.2025.114663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 03/26/2025] [Accepted: 04/09/2025] [Indexed: 04/17/2025]
Abstract
SARS-CoV-2, the virus causing COVID-19, poses significant health threats due to its high transmissibility and potential for severe respiratory complications. T cells, central to adaptive immunity, also interact with innate immunity, playing a pivotal role in coordinating defenses and eliminating infected cells. Single-cell RNA sequencing (scRNA-seq) has provided more subtle heterogeneity, rare subpopulations, or new subpopulations that are at the district differentiation stage or with specific function. Thus, elucidating how T cell heterogeneity impacts COVID-19 disease severity remains a critical question requiring comprehensive analysis. This review revealed the heterogeneity of the host T cells, including conventional T cells (CD8+, CD4+ T cells) and unconventional T cells, including natural killer T (NKT) cells, mucosal-associated invariant T (MAIT) and gamma-delta T (γδT) cells in COVID-19 patients with different clinical manifestations. Severe COVID-19 had marked lymphopenia, excessive activation, elevated exhaustion and reduced functional diversity of T cells. Pathogenic contributions arise from dysregulated cytotoxic T cells, Treg cells and unconventional T cells collectively driving systemic hyperinflammation and tissue injury. Current therapeutic strategies targeting T cells-such as enhancing virus-specific T cell responses, reverting T-cell exhaustion and alleviating inflammation-exhibit inconsistent efficacy, underscoring the need for combinatorial approaches. This review highlights how scRNA-seq deciphers T cell heterogeneity and dysfunction in COVID-19. By targeting T cell exhaustion, inflammation, and subset-specific deficits, these insights pave the way for therapies and vaccines.
Collapse
Affiliation(s)
- Zhihong Yao
- Faculty of Clinical Medicine, Hanzhong Vocational and Technical College, Hanzhong 723002, China; Affiliated Hospital, Hanzhong Vocational and Technical College, Hanzhong 723012, China; Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Zhao Feng
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China
| | - Hui Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, NHC Key Laboratory of AIDS Prevention and Treatment, National Clinical Research Center for Laboratory Medicine, The First Hospital of China Medical University, China Medical University, Shenyang, China.
| | - Baojun Zhang
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China.
| |
Collapse
|
2
|
Courtemanche O, Blais-Lecours P, Lesage S, Chabot-Roy G, Coderre L, Blanchet MR, Châteauvert N, Lellouche F, Marsolais D. Exploratory analyses of leukocyte responses in hospitalized patients treated with ozanimod following a severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) infection. Immunol Cell Biol 2025; 103:433-443. [PMID: 40025871 DOI: 10.1111/imcb.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/07/2025] [Accepted: 02/08/2025] [Indexed: 03/04/2025]
Abstract
Sphingosine-1-phosphate receptor 1 (S1P1) ligands effectively reduce immunopathological damage in viral pneumonia models. Specifically, S1P1 ligands inhibit cytokine storm and help preserve lung endothelial barrier integrity. We recently showed that the S1P receptor ligand ozanimod can be safely administered to hospitalized patients with coronavirus disease 2019 (COVID-19) exhibiting severe symptoms of viral pneumonia, with potential clinical benefits. Here, we extend on this study and investigate the impact of ozanimod on key features of the immune response in patients with severe COVID-19. We quantified circulating cytokine levels, peripheral immune cell numbers, proportions and activation status; we also monitored the quality of the humoral response by assessing anti-severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) antibodies. Our findings reveal that patients receiving ozanimod during acute SARS-CoV-2 infection exhibit significantly reduced numbers of circulating monocytes compared with those receiving standard care. Correspondingly, in the ozanimod-treated group, circulating levels of C-C motif ligand 2 (CCL2) were decreased. While treatment with ozanimod negatively impacted the humoral response to COVID-19 in unvaccinated patients, it did not impair the development of a robust anti-SARS-CoV-2 antibody response in vaccinated patients. These findings suggest that ozanimod influences key immune mechanisms during the acute phase of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Olivier Courtemanche
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Pascale Blais-Lecours
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - Sylvie Lesage
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, QC, Canada
| | | | - Lise Coderre
- Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, QC, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montreal, QC, Canada
| | - Marie-Renée Blanchet
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
- Département de Médecine, Université Laval, Quebec, QC, Canada
| | - Nathalie Châteauvert
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
| | - François Lellouche
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
- Département de Médecine, Université Laval, Quebec, QC, Canada
| | - David Marsolais
- Centre de recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec - Université Laval, Québec, QC, Canada
- Département de Médecine, Université Laval, Quebec, QC, Canada
| |
Collapse
|
3
|
Bekbossynova M, Akhmaltdinova L, Dossybayeva K, Tauekelova A, Smagulova Z, Tsechoeva T, Turebayeva G, Sailybayeva A, Kalila Z, Mirashirova T, Muratov T, Poddighe D. Prospective and Longitudinal Analysis of Lymphocyte Subpopulations in SARS-CoV-2 Positive and Negative Pneumonia: Potential Role of Decreased Naïve CD8 + in COVID-19 Patients. Viruses 2024; 17:41. [PMID: 39861830 PMCID: PMC11768816 DOI: 10.3390/v17010041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/23/2024] [Accepted: 12/25/2024] [Indexed: 01/27/2025] Open
Abstract
Background: During the acute phase of COVID-19, a number of immunological abnormalities have been reported, but few studies longitudinally analyzed the specific subsets of peripheral blood lymphocytes. Methods: In this observational, prospective, and longitudinal study, adult patients developing acute pneumonia during the COVID-19 pandemic have been followed up for 12 months. Peripheral blood lymphocyte subsets were assessed (with a specific focus on the memory markers) at 6 time points after the disease onset until 12 months. Results: A total of 76 patients with acute pneumonia (characterized by a prevalently interstitial pattern of lung inflammation) at the hospital admission (who completed the 12-month follow-up period) were recruited in this study. They were divided into two groups, namely positive (n = 31) and negative (n = 45) patients for the SARS-CoV-2 PCR test. In the acute phase, the general lymphocyte immunophenotyping profile was comparable for most parameters between these groups, except for B cells. When B and T cells were analyzed according to the expression of memory markers, a significant decrease in naïve CD8+ T cells was observed in the SARS-CoV-2-positive pneumonia group during the acute phase. Notably, this aspect was maintained during the follow-up period for at least 9 months. Conclusions: COVID-19 pneumonia seems to be associated with a lower number of naïve CD8+ T cells compared to pneumonia patients negative for this virus. This alteration can persist in the convalescent phase.
Collapse
Affiliation(s)
| | | | - Kuanysh Dossybayeva
- National Research Cardiac Surgery Center, Astana 010000, Kazakhstan
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
| | - Ainur Tauekelova
- National Research Cardiac Surgery Center, Astana 010000, Kazakhstan
| | - Zauresh Smagulova
- Department of Infectious Diseases and Clinical Epidemiology, Astana Medical University, Astana 010000, Kazakhstan
| | - Tatyana Tsechoeva
- Department of Infectious Diseases and Clinical Epidemiology, Astana Medical University, Astana 010000, Kazakhstan
| | - Gulsimzhan Turebayeva
- Department of Infectious Diseases and Clinical Epidemiology, Astana Medical University, Astana 010000, Kazakhstan
| | | | - Zhanar Kalila
- National Research Cardiac Surgery Center, Astana 010000, Kazakhstan
| | | | - Timur Muratov
- Department of Public Health of Astana, Astana 010000, Kazakhstan
| | - Dimitri Poddighe
- School of Medicine, Nazarbayev University, Astana 010000, Kazakhstan
- University Medical Center (UMC), Astana 010000, Kazakhstan
- College of Health Sciences, VinUniversity, Gia Lam District, Hanoi 100000, Vietnam
| |
Collapse
|
4
|
Ruiz Seco MP, Paño Pardo JR, Schoergenhofer C, Dings C, Lehr T, Herth F, Krendyukov A, Straub C, Kappler M, Jilma B, Fricke H, Pardo J, de Miguel D, Thiemann M, Bergmann M, Walczak H, Hoeger T. Efficacy and safety of asunercept, a CD95L-selective inhibitor, in hospitalised patients with moderate-to-severe COVID-19: ASUNCTIS, a multicentre, randomised, open-label, controlled, phase 2 trial. EClinicalMedicine 2024; 77:102879. [PMID: 39513186 PMCID: PMC11541427 DOI: 10.1016/j.eclinm.2024.102879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/19/2024] [Accepted: 09/26/2024] [Indexed: 11/15/2024] Open
Abstract
Background The phase 2 ASUNCTIS study assessed the efficacy and safety of asunercept, a fully human CD95 (Fas) ligand-binding protein, in hospitalised patients with moderate-to-severe coronavirus disease (COVID-19) to assess the clinical benefit of CD95 ligand inhibition in this viral disease. Methods In this open-label, multicentre, randomised, controlled, phase 2 trial, patients with COVID-19-induced pneumonia and respiratory deterioration were randomly assigned (1:1:1:1) in 12 Russian and Spanish hospitals using an interactive web-response system to receive standard of care (SOC) or SOC plus weekly asunercept 25 mg, 100 mg, or 400 mg, administered intravenously for up to 4 weeks, or until hospital discharge or death. The randomisation was stratified according to the respiratory support methods at the time of enrolment, corresponding to categories 4-6 of a clinical severity assessment scale comprising 9 levels that was recommended by the World Health Organization (WHO) at the time of the study. The main inclusion criterion was laboratory confirmed infection with SARS-CoV-2 OR typical radiological signs of SARS-CoV-2 infection. The primary endpoint was time from randomisation to clinical improvement on two consecutive days of at least one category on a WHO clinical severity assessment scale in the modified intent-to-treat population. All patients were subjected to regular safety analyses. This trial is registered with EudraCT (2020-001887-27) and ClinicalTrials.gov (NCT04535674). Findings Between October 9, 2020, and September 24, 2021, 438 patients were randomly assigned to SOC (n = 110) or SOC plus asunercept 25 mg (n = 109), 100 mg (n = 109), or 400 mg (n = 110). The primary endpoint, time to sustained clinical improvement of one WHO category on two consecutive days from randomization, was in median [95% confidence interval]: 9 [6-12], 8 [7-12], 8 [7-11] and 13 [9-20] days for the 400 mg, 100 mg, 25 mg asunercept and SOC groups, respectively. The standard deviations for the 400 mg, 100 mg, 25 mg asunercept and SOC groups were 5.3, 4.9, 4.7 and 5 days, respectively. The observed differences between groups failed to reach statistical significance (one-sided p-value = 0.041). In total, 290 adverse events (AE) were registered in 145 patients who received at least one dose of the study treatment: 77 AEs in 37 (33.6%) patients in the SOC group, 80 AEs in 38 (34.9%) patients in the 25 mg group, 61 AEs in 35 (32.7%) patients in the 100 mg group and 72 AEs in 35 (32.1%) patients in the 400 mg group. There was no treatment-related death reported. In summary, asunercept was well tolerated at all doses tested and no specific safety signals were detected. Interpretation The primary endpoint of time to sustained clinical improvement for distinct asunercept arms compared to SOC failed to meet statistical significance. The compound was safe and well tolerated. Funding Apogenix GmbH, Heidelberg, Germany.
Collapse
Affiliation(s)
- Maria Pilar Ruiz Seco
- Department of Internal Medicine, University Hospital Infanta Sofia, Paseo de Europa, 34, 28703, San Sebastián de los Reyes, Madrid, Spain
| | - José Ramón Paño Pardo
- Department of Infectious Diseases, Clinical University Hospital Lozano Blesa/Aragon Health Research Institute (IISA), Avda. San Juan Bosco, 15, 50009 Zaragoza, Spain
- CIBER de Enfermedades Infecciosas, Avda. de Monforte de Lemos, 5, 28029, IS Carlos III, Madrid, Spain
| | - Christian Schoergenhofer
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Christiane Dings
- Department of Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- Saarmetrics GmbH, Starterzentrum 1, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Thorsten Lehr
- Department of Clinical Pharmacy, Saarland University, 66123 Saarbrücken, Germany
- Saarmetrics GmbH, Starterzentrum 1, Universität des Saarlandes, 66123 Saarbrücken, Germany
| | - Felix Herth
- Thoraxklinik, Roentgenstr. 1, 69126 Heidelberg, Germany
| | | | - Carola Straub
- Apogenix GmbH, Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
| | | | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Harald Fricke
- Apogenix GmbH, Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
| | - Julian Pardo
- CIBER de Enfermedades Infecciosas, Avda. de Monforte de Lemos, 5, 28029, IS Carlos III, Madrid, Spain
- Department of Microbiology, Radiology, Paediatric and Public Health, University of Zaragoza/Aragon Health Research Institute (IISA), Domingo Miral s/n, 50009 Zaragoza, Spain
| | - Diego de Miguel
- Department of Microbiology, Radiology, Paediatric and Public Health, University of Zaragoza/Aragon Health Research Institute (IISA), Domingo Miral s/n, 50009 Zaragoza, Spain
| | - Meinolf Thiemann
- Apogenix GmbH, Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
| | - Michael Bergmann
- Division of Visceral Surgery and Comprehensive Cancer Center, Department of General Surgery, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Henning Walczak
- Institute of Biochemistry I, Centre for Biochemistry, and CECAD Research Centre, University of Cologne, Joseph-Stelzmann Str. 26, 50931 Cologne, Germany
- Centre for Cell Death, Cancer and Inflammation, UCL Cancer Institute, University College London, 72 Huntley St, WC1E 6BT London, UK
| | - Thomas Hoeger
- Apogenix GmbH, Im Neuenheimer Feld 584, 69120 Heidelberg, Germany
| |
Collapse
|
5
|
Fanelli M, Petrone V, Chirico R, Radu CM, Minutolo A, Matteucci C. Flow cytometry for extracellular vesicle characterization in COVID-19 and post-acute sequelae of SARS-CoV-2 infection. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:417-437. [PMID: 39697632 PMCID: PMC11648478 DOI: 10.20517/evcna.2024.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 12/20/2024]
Abstract
Infection with SARS-CoV-2, the virus responsible for COVID-19 diseases, can impact different tissues and induce significant cellular alterations. The production of extracellular vesicles (EVs), which are physiologically involved in cell communication, is also altered during COVID-19, along with the dysfunction of cytoplasmic organelles. Since circulating EVs reflect the state of their cells of origin, they represent valuable tools for monitoring pathological conditions. Despite challenges in detecting EVs due to their size and specific cellular compartment origin using different methodologies, flow cytometry has proven to be an effective method for assessing the role of EVs in COVID-19. This review summarizes the involvement of plasmatic EVs in COVID-19 patients and individuals with Long COVID (LC) affected by post-acute sequelae of SARS-CoV-2 infection (PASC), highlighting their dual role in exerting both pro- and antiviral effects. We also emphasize how flow cytometry, with its multiparametric approach, can be employed to characterize circulating EVs, particularly in infectious diseases such as COVID-19, and suggest their potential role in chronic impairments during post-infection.
Collapse
Affiliation(s)
- Marialaura Fanelli
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Vita Petrone
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Rossella Chirico
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
| | - Claudia Maria Radu
- Department of Medicine - DIMED, Thrombotic and Hemorrhagic Diseases Unit, University of Padua, Padua 35128 Italy
| | - Antonella Minutolo
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Authors contributed equally
| | - Claudia Matteucci
- Department of Experimental Medicine, University of Rome Tor Vergata, Rome 00133, Italy
- Authors contributed equally
| |
Collapse
|
6
|
Noviello M, De Lorenzo R, Chimienti R, Maugeri N, De Lalla C, Siracusano G, Lorè NI, Rancoita PMV, Cugnata F, Tassi E, Dispinseri S, Abbati D, Beretta V, Ruggiero E, Manfredi F, Merolla A, Cantarelli E, Tresoldi C, Pastori C, Caccia R, Sironi F, Marzinotto I, Saliu F, Ghezzi S, Lampasona V, Vicenzi E, Cinque P, Manfredi AA, Scarlatti G, Dellabona P, Lopalco L, Di Serio C, Malnati M, Ciceri F, Rovere-Querini P, Bonini C. The longitudinal characterization of immune responses in COVID-19 patients reveals novel prognostic signatures for disease severity, patients' survival and long COVID. Front Immunol 2024; 15:1381091. [PMID: 39136010 PMCID: PMC11317765 DOI: 10.3389/fimmu.2024.1381091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/07/2024] [Indexed: 08/15/2024] Open
Abstract
Introduction SARS-CoV-2 pandemic still poses a significant burden on global health and economy, especially for symptoms persisting beyond the acute disease. COVID-19 manifests with various degrees of severity and the identification of early biomarkers capable of stratifying patient based on risk of progression could allow tailored treatments. Methods We longitudinally analyzed 67 patients, classified according to a WHO ordinal scale as having Mild, Moderate, or Severe COVID-19. Peripheral blood samples were prospectively collected at hospital admission and during a 6-month follow-up after discharge. Several subsets and markers of the innate and adaptive immunity were monitored as putative factors associated with COVID-19 symptoms. Results More than 50 immunological parameters were associated with disease severity. A decision tree including the main clinical, laboratory, and biological variables at admission identified low NK-cell precursors and CD14+CD91+ monocytes, and high CD8+ Effector Memory T cell frequencies as the most robust immunological correlates of COVID-19 severity and reduced survival. Moreover, low regulatory B-cell frequency at one month was associated with the susceptibility to develop long COVID at six months, likely due to their immunomodulatory ability. Discussion These results highlight the profound perturbation of the immune response during COVID-19. The evaluation of specific innate and adaptive immune-cell subsets allows to distinguish between different acute and persistent COVID-19 symptoms.
Collapse
Affiliation(s)
- Maddalena Noviello
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Rebecca De Lorenzo
- Vita-Salute San Raffaele University, Milan, Italy
- Internal Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Raniero Chimienti
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Norma Maugeri
- Autoimmunity and Vascular Inflammation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia De Lalla
- Experimental Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Gabriel Siracusano
- Immunobiology of Human Immunodeficiency Virus (HIV) Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Nicola Ivan Lorè
- Emerging Bacterial Pathogens Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paola Maria Vittoria Rancoita
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Cugnata
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Elena Tassi
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Stefania Dispinseri
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Danilo Abbati
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Valeria Beretta
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Francesco Manfredi
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Aurora Merolla
- Vita-Salute San Raffaele University, Milan, Italy
- Internal Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Cantarelli
- Biological Resource Center Centro Risorse Biologiche-Ospedale San Raffaele (CRB-OSR), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Cristina Tresoldi
- Biological Resource Center Centro Risorse Biologiche-Ospedale San Raffaele (CRB-OSR), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Claudia Pastori
- Immunobiology of Human Immunodeficiency Virus (HIV) Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Roberta Caccia
- Neurovirology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sironi
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Marzinotto
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Fabio Saliu
- Emerging Bacterial Pathogens Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Ghezzi
- Viral Pathogenesis and Biosafety Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Vito Lampasona
- Diabetes Research Institute, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Elisa Vicenzi
- Viral Pathogenesis and Biosafety Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paola Cinque
- Neurovirology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Angelo Andrea Manfredi
- Autoimmunity and Vascular Inflammation Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Gabriella Scarlatti
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Paolo Dellabona
- Experimental Immunology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Lopalco
- Immunobiology of Human Immunodeficiency Virus (HIV) Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Clelia Di Serio
- University Centre for Statistics in the Biomedical Sciences (CUSSB), Vita-Salute San Raffaele University, Milan, Italy
| | - Mauro Malnati
- Viral Evolution and Transmission Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Rovere-Querini
- Vita-Salute San Raffaele University, Milan, Italy
- Internal Medicine Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
| | - Chiara Bonini
- Experimental Hematology Unit, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Cell Therapy Immunomonitoring Laboratory Monitoraggio Immunologico Terapie Cellulari (MITiCi), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
7
|
Cavaillon JM, Chousterman BG, Skirecki T. Compartmentalization of the inflammatory response during bacterial sepsis and severe COVID-19. JOURNAL OF INTENSIVE MEDICINE 2024; 4:326-340. [PMID: 39035623 PMCID: PMC11258514 DOI: 10.1016/j.jointm.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 07/23/2024]
Abstract
Acute infections cause local and systemic disorders which can lead in the most severe forms to multi-organ failure and eventually to death. The host response to infection encompasses a large spectrum of reactions with a concomitant activation of the so-called inflammatory response aimed at fighting the infectious agent and removing damaged tissues or cells, and the anti-inflammatory response aimed at controlling inflammation and initiating the healing process. Fine-tuning at the local and systemic levels is key to preventing local and remote injury due to immune system activation. Thus, during bacterial sepsis and Coronavirus disease 2019 (COVID-19), concomitant systemic and compartmentalized pro-inflammatory and compensatory anti-inflammatory responses are occurring. Immune cells (e.g., macrophages, neutrophils, natural killer cells, and T-lymphocytes), as well as endothelial cells, differ from one compartment to another and contribute to specific organ responses to sterile and microbial insult. Furthermore, tissue-specific microbiota influences the local and systemic response. A better understanding of the tissue-specific immune status, the organ immunity crosstalk, and the role of specific mediators during sepsis and COVID-19 can foster the development of more accurate biomarkers for better diagnosis and prognosis and help to define appropriate host-targeted treatments and vaccines in the context of precision medicine.
Collapse
Affiliation(s)
| | - Benjamin G. Chousterman
- Department of Anesthesia and Critical Care, Lariboisière University Hospital, DMU Parabol, APHP Nord, Paris, France
- Inserm U942, University of Paris, Paris, France
| | - Tomasz Skirecki
- Department of Translational Immunology and Experimental Intensive Care, Centre of Postgraduate Medical Education, Warsaw, Poland
| |
Collapse
|
8
|
Sbierski-Kind J, Schlickeiser S, Feldmann S, Ober V, Grüner E, Pleimelding C, Gilberg L, Brand I, Weigl N, Ahmed MIM, Ibarra G, Ruzicka M, Benesch C, Pernpruner A, Valdinoci E, Hoelscher M, Adorjan K, Stubbe HC, Pritsch M, Seybold U, Roider J. Persistent immune abnormalities discriminate post-COVID syndrome from convalescence. Infection 2024; 52:1087-1097. [PMID: 38326527 PMCID: PMC11142964 DOI: 10.1007/s15010-023-02164-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 02/09/2024]
Abstract
BACKGROUND Innate lymphoid cells (ILCs) are key organizers of tissue immune responses and regulate tissue development, repair, and pathology. Persistent clinical sequelae beyond 12 weeks following acute COVID-19 disease, named post-COVID syndrome (PCS), are increasingly recognized in convalescent individuals. ILCs have been associated with the severity of COVID-19 symptoms but their role in the development of PCS remains poorly defined. METHODS AND RESULTS Here, we used multiparametric immune phenotyping, finding expanded circulating ILC precursors (ILCPs) and concurrent decreased group 2 innate lymphoid cells (ILC2s) in PCS patients compared to well-matched convalescent control groups at > 3 months after infection or healthy controls. Patients with PCS showed elevated expression of chemokines and cytokines associated with trafficking of immune cells (CCL19/MIP-3b, FLT3-ligand), endothelial inflammation and repair (CXCL1, EGF, RANTES, IL-1RA, PDGF-AA). CONCLUSION These results define immunological parameters associated with PCS and might help find biomarkers and disease-relevant therapeutic strategies.
Collapse
Affiliation(s)
- Julia Sbierski-Kind
- Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology and Nephrology, University Hospital, Eberhard-Karls-Universität Tübingen, Tübingen, Germany
- The M3 Research Center, University Clinic Tübingen (UKT), Medical Faculty, Otfried-Müllerstr. 37, Tübingen, Germany
| | - Stephan Schlickeiser
- Charité, Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt- Universität Zu Berlin, Institute of Medical Immunology, Augustenburger Platz 1, 13353, Berlin, Germany
- Berlin Institute of Health (BIH) at Charité, Universitätsmedizin Berlin, BIH Center for Regenerative Therapies (BCRT), Charitéplatz 1, 10117, Berlin, Germany
| | - Svenja Feldmann
- Department of Infectious Diseases, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Veronica Ober
- Department of Infectious Diseases, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eva Grüner
- Department of Infectious Diseases, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Claire Pleimelding
- Department of Infectious Diseases, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Leonard Gilberg
- Department of Infectious Diseases, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Isabel Brand
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
| | - Nikolas Weigl
- Department of Medicine IV, Division of Clinical Pharmacology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Mohamed I M Ahmed
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Gerardo Ibarra
- The M3 Research Center, University Clinic Tübingen (UKT), Medical Faculty, Otfried-Müllerstr. 37, Tübingen, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Ruzicka
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christopher Benesch
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine II, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anna Pernpruner
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine II, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Elisabeth Valdinoci
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine II, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Hoelscher
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kristina Adorjan
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hans Christian Stubbe
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- COVID-19 Registry of the LMU Munich (CORKUM), University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Department of Medicine II, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Pritsch
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Division of Infectious Diseases and Tropical Medicine, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Ulrich Seybold
- Department of Infectious Diseases, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia Roider
- Department of Infectious Diseases, Department of Medicine IV, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
- German Center for Infection Research (DZIF), Partner Site Munich, Munich, Germany.
| |
Collapse
|
9
|
Suryawanshi P, Patil‐Takbhate B, Athavale P, Mirza S, Tripathy A, Kanitkar S, Shivnitwar S, Barthwal MS, Dole S, Chavan H, Jali P, Pawale S, Kakad D, Kakrani AL, Bhawalkar J, Gandhi M, Chaturvedi S, Karandikar M, Tripathy S. T-cell responses in COVID-19 survivors 6-8 months after infection: A longitudinal cohort study in Pune. Immun Inflamm Dis 2024; 12:e1238. [PMID: 38860770 PMCID: PMC11165687 DOI: 10.1002/iid3.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/26/2024] [Accepted: 03/20/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune response is crucial for disease management, although diminishing immunity raises the possibility of reinfection. METHODS We examined the immunological response to SARS-CoV-2 in a cohort of convalescent COVID-19 patients in matched samples collected at 1 and 6-8 months after infection. The peripheral blood mononuclear cells were isolated from enrolled study participants and flow cytometry analysis was done to assess the lymphocyte subsets of naive, effector, central memory, and effector memory CD4+ or CD8+ T cells in COVID-19 patients at 1 and 6-8 months after infection. Immunophenotypic characterization of immune cell subsets was performed on individuals who were followed longitudinally for 1 month (n = 44) and 6-8 months (n = 25) after recovery from COVID infection. RESULTS We observed that CD4 +T cells in hospitalized SARS-CoV-2 patients tended to decrease, whereas CD8+ T cells steadily recovered after 1 month, while there was a sustained increase in the population of effector T cells and effector memory T cells. Furthermore, COVID-19 patients showed persistently low B cells and a small increase in the NK cell population. CONCLUSION Our findings show that T cell responses were maintained at 6-8 months after infection. This opens new pathways for further research into the long-term effects in COVID-19 immunopathogenesis.
Collapse
Affiliation(s)
- Poonam Suryawanshi
- Central Research Facility, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Bhagyashri Patil‐Takbhate
- Central Research Facility, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Prachi Athavale
- Department of Microbiology, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Shahzad Mirza
- Department of Microbiology, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | | | - Shubhangi Kanitkar
- Department of General Medicine, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Sachin Shivnitwar
- Department of General Medicine, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Madhusudan S. Barthwal
- Department of Respiratory Medicine, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, Pimpri, (deemed to be University)PuneIndia
| | - Sachin Dole
- Department of Respiratory Medicine, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, Pimpri, (deemed to be University)PuneIndia
| | - Hanumant Chavan
- Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Priyanka Jali
- Central Research Facility, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Sujata Pawale
- Central Research Facility, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Dhanashree Kakad
- Central Research Facility, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Arjun Lal Kakrani
- Department of General Medicine, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Jitendra Bhawalkar
- Department of Community Medicine, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Madhura Gandhi
- Central Research Facility, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | | | - Mahesh Karandikar
- Central Research Facility, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| | - Srikanth Tripathy
- Central Research Facility, Dr D. Y. Patil Medical College, Hospital and Research CentreDr D. Y. Patil Vidyapeeth, (deemed to be University)PimpriPuneIndia
| |
Collapse
|
10
|
Sharma S, Boyer J, Teyton L. A practitioner's view of spectral flow cytometry. Nat Methods 2024; 21:740-743. [PMID: 37789184 PMCID: PMC10991079 DOI: 10.1038/s41592-023-02042-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Spectral flow cytometry allows the simultaneous analysis of a large number of cell surface markers at the single cell level
Collapse
Affiliation(s)
- Siddhartha Sharma
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Josh Boyer
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | - Luc Teyton
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.
| |
Collapse
|
11
|
Naidu AS, Wang CK, Rao P, Mancini F, Clemens RA, Wirakartakusumah A, Chiu HF, Yen CH, Porretta S, Mathai I, Naidu SAG. Precision nutrition to reset virus-induced human metabolic reprogramming and dysregulation (HMRD) in long-COVID. NPJ Sci Food 2024; 8:19. [PMID: 38555403 PMCID: PMC10981760 DOI: 10.1038/s41538-024-00261-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
SARS-CoV-2, the etiological agent of COVID-19, is devoid of any metabolic capacity; therefore, it is critical for the viral pathogen to hijack host cellular metabolic machinery for its replication and propagation. This single-stranded RNA virus with a 29.9 kb genome encodes 14 open reading frames (ORFs) and initiates a plethora of virus-host protein-protein interactions in the human body. These extensive viral protein interactions with host-specific cellular targets could trigger severe human metabolic reprogramming/dysregulation (HMRD), a rewiring of sugar-, amino acid-, lipid-, and nucleotide-metabolism(s), as well as altered or impaired bioenergetics, immune dysfunction, and redox imbalance in the body. In the infectious process, the viral pathogen hijacks two major human receptors, angiotensin-converting enzyme (ACE)-2 and/or neuropilin (NRP)-1, for initial adhesion to cell surface; then utilizes two major host proteases, TMPRSS2 and/or furin, to gain cellular entry; and finally employs an endosomal enzyme, cathepsin L (CTSL) for fusogenic release of its viral genome. The virus-induced HMRD results in 5 possible infectious outcomes: asymptomatic, mild, moderate, severe to fatal episodes; while the symptomatic acute COVID-19 condition could manifest into 3 clinical phases: (i) hypoxia and hypoxemia (Warburg effect), (ii) hyperferritinemia ('cytokine storm'), and (iii) thrombocytosis (coagulopathy). The mean incubation period for COVID-19 onset was estimated to be 5.1 days, and most cases develop symptoms after 14 days. The mean viral clearance times were 24, 30, and 39 days for acute, severe, and ICU-admitted COVID-19 patients, respectively. However, about 25-70% of virus-free COVID-19 survivors continue to sustain virus-induced HMRD and exhibit a wide range of symptoms that are persistent, exacerbated, or new 'onset' clinical incidents, collectively termed as post-acute sequelae of COVID-19 (PASC) or long COVID. PASC patients experience several debilitating clinical condition(s) with >200 different and overlapping symptoms that may last for weeks to months. Chronic PASC is a cumulative outcome of at least 10 different HMRD-related pathophysiological mechanisms involving both virus-derived virulence factors and a multitude of innate host responses. Based on HMRD and virus-free clinical impairments of different human organs/systems, PASC patients can be categorized into 4 different clusters or sub-phenotypes: sub-phenotype-1 (33.8%) with cardiac and renal manifestations; sub-phenotype-2 (32.8%) with respiratory, sleep and anxiety disorders; sub-phenotype-3 (23.4%) with skeleto-muscular and nervous disorders; and sub-phenotype-4 (10.1%) with digestive and pulmonary dysfunctions. This narrative review elucidates the effects of viral hijack on host cellular machinery during SARS-CoV-2 infection, ensuing detrimental effect(s) of virus-induced HMRD on human metabolism, consequential symptomatic clinical implications, and damage to multiple organ systems; as well as chronic pathophysiological sequelae in virus-free PASC patients. We have also provided a few evidence-based, human randomized controlled trial (RCT)-tested, precision nutrients to reset HMRD for health recovery of PASC patients.
Collapse
Affiliation(s)
- A Satyanarayan Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA.
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA.
| | - Chin-Kun Wang
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- School of Nutrition, Chung Shan Medical University, 110, Section 1, Jianguo North Road, Taichung, 40201, Taiwan
| | - Pingfan Rao
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- College of Food and Bioengineering, Fujian Polytechnic Normal University, No.1, Campus New Village, Longjiang Street, Fuqing City, Fujian, China
| | - Fabrizio Mancini
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President-Emeritus, Parker University, 2540 Walnut Hill Lane, Dallas, TX, 75229, USA
| | - Roger A Clemens
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- University of Southern California, Alfred E. Mann School of Pharmacy/D. K. Kim International Center for Regulatory & Quality Sciences, 1540 Alcazar St., CHP 140, Los Angeles, CA, 90089, USA
| | - Aman Wirakartakusumah
- International Union of Food Science and Technology (IUFoST), Guelph, ON, Canada
- IPMI International Business School Jakarta; South East Asian Food and Agriculture Science and Technology, IPB University, Bogor, Indonesia
| | - Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital, Ministry of Health & Well-being, Taichung, Taiwan
| | - Chi-Hua Yen
- Department of Family and Community Medicine, Chung Shan Medical University Hospital; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Sebastiano Porretta
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- President, Italian Association of Food Technology (AITA), Milan, Italy
- Experimental Station for the Food Preserving Industry, Department of Consumer Science, Viale Tanara 31/a, I-43121, Parma, Italy
| | - Issac Mathai
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- Soukya International Holistic Health Center, Whitefield, Bengaluru, India
| | - Sreus A G Naidu
- Global Nutrition Healthcare Council (GNHC) Mission-COVID, Yorba Linda, CA, USA
- N-terminus Research Laboratory, 232659 Via del Rio, Yorba Linda, CA, 92887, USA
| |
Collapse
|
12
|
Wulandari S, Nuryastuti T, Oktoviani FN, Daniwijaya MEW, Supriyati E, Arguni E, Hartono, Wibawa T. The association between high mobility group box 1 (HMGB1) and Interleukin-18 (IL-18) serum concentrations in COVID-19 inpatients. Heliyon 2024; 10:e26619. [PMID: 38434314 PMCID: PMC10907672 DOI: 10.1016/j.heliyon.2024.e26619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/05/2024] Open
Abstract
Background High mobility group box 1 (HMGB1) and interleukin-18 (IL-18) are involved in various non-coronavirus disease pathogenesis and are reported as potential biomarkers for coronavirus disease (COVID-19). However, their association with COVID-19 pathogenesis has not yet been explored. Aim This study aimed to investigate the association between HMGB1 and IL-18 concentrations in the sera of COVID-19 patients versus non-COVID-19 patients. Material and methods We used stored serum samples obtained from 30 COVID-19 patients and 30 non-COVID-19 patients. We collected data on age, gender, treatment status, principal diagnosis, and comorbidity from patient medical records. HMGB1 and IL-18 concentrations were analyzed in the serum by enzyme-linked immunosorbent assay (ELISA). The swab samples' RT-PCR cycle threshold (CT) values were obtained from the laboratory database. Results HMGB1 concentrations were increased in the COVID-19 inpatients and non-COVID-19 inpatients compared to non-COVID-19 outpatients (COVID-19 inpatients vs. non-COVID-19 outpatients: 151.33 (90.27-192.38) vs. 80.75 (54.16-128.72) ng/ml; p = 0.0316; non-COVID-19 inpatients vs. non-COVID-19 outpatients: 152.66 (104.04-288.51) vs. 80.75 (54.16-128.72) ng/ml; p = 0.0199). IL-18 concentrations were also higher in the COVID-19 inpatients and non-COVID-19 inpatients compared to non-COVID-19 outpatients (COVID-19 inpatients vs. non-COVID-19 outpatients: 620.00 (461.50-849.6) vs. 403.10 (372.70-556.90) pg/ml; p = 0.0376; non-COVID-19 inpatients vs. non-COVID-19 outpatients: 835.70 (558.30-1602.00) vs. 403.10 (372.70-556.90) pg/ml; p = 0.0026). Moreover, HMGB1 was associated with IL-18 concentrations in the sera of COVID-19 inpatients (p = 0.0337; r = 0.5500). Conclusion The association of HMGB1 and IL-18 in COVID-19 might indicate the potential for a dangerous cycle leading to a cytokine storm to occur.
Collapse
Affiliation(s)
- Sri Wulandari
- Doctorate Program of Medicine and Health Science, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Titik Nuryastuti
- Department of Microbiology, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Farida Nur Oktoviani
- Department of Microbiology, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Endah Supriyati
- Centre for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Eggi Arguni
- Department of Child Health, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Hartono
- Department of Physiology, Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | - Tri Wibawa
- Department of Microbiology, Faculty of Medicine Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
13
|
Cai C, Gao Y, Adamo S, Rivera-Ballesteros O, Hansson L, Österborg A, Bergman P, Sandberg JK, Ljunggren HG, Björkström NK, Strålin K, Llewellyn-Lacey S, Price DA, Qin C, Grifoni A, Weiskopf D, Wherry EJ, Sette A, Aleman S, Buggert M. SARS-CoV-2 vaccination enhances the effector qualities of spike-specific T cells induced by COVID-19. Sci Immunol 2023; 8:eadh0687. [PMID: 38064569 PMCID: PMC7615587 DOI: 10.1126/sciimmunol.adh0687] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 10/31/2023] [Indexed: 12/18/2023]
Abstract
T cells are critical for immune protection against severe COVID-19, but it has remained unclear whether repeated exposure to SARS-CoV-2 antigens delivered in the context of vaccination fuels T cell exhaustion or reshapes T cell functionality. Here, we sampled convalescent donors with a history of mild or severe COVID-19 before and after SARS-CoV-2 vaccination to profile the functional spectrum of hybrid T cell immunity. Using combined single-cell technologies and high-dimensional flow cytometry, we found that the frequencies and functional capabilities of spike-specific CD4+ and CD8+ T cells in previously infected individuals were enhanced by vaccination, despite concomitant increases in the expression of inhibitory receptors such as PD-1 and TIM3. In contrast, CD4+ and CD8+ T cells targeting non-spike proteins remained functionally static and waned over time, and only minimal effects were observed in healthy vaccinated donors experiencing breakthrough infections with SARS-CoV-2. Moreover, hybrid immunity was characterized by elevated expression of IFN-γ, which was linked with clonotype specificity in the CD8+ T cell lineage. Collectively, these findings identify a molecular hallmark of hybrid immunity and suggest that vaccination after infection is associated with cumulative immunological benefits over time, potentially conferring enhanced protection against subsequent episodes of COVID-19.
Collapse
Affiliation(s)
- Curtis Cai
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yu Gao
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sarah Adamo
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Olga Rivera-Ballesteros
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lotta Hansson
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Anders Österborg
- Department of Hematology, Karolinska University Hospital, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Peter Bergman
- Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Immunology and Transfusion Medicine, Karolinska University Hospital, Stockholm, Sweden
| | - Johan K. Sandberg
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Hans-Gustaf Ljunggren
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Niklas K. Björkström
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Kristoffer Strålin
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Sian Llewellyn-Lacey
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - David A. Price
- Division of Infection and Immunity, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University School of Medicine, University Hospital of Wales, Cardiff, UK
| | - Chuan Qin
- Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing, China
| | - Alba Grifoni
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, California, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, California, USA
| | - E. John Wherry
- Institute for Immunology, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| | - Alessandro Sette
- National Health Commission Key Laboratory of Human Disease Comparative Medicine, Comparative Medicine Center, Peking Union Medical College, Beijing, China
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, California, USA
| | - Soo Aleman
- Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine Huddinge, Infectious Diseases, Karolinska Institutet, Stockholm, Sweden
| | - Marcus Buggert
- Department of Medicine Huddinge, Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
14
|
Gremese E, Tolusso B, Bruno D, Paglionico AM, Perniola S, Ferraccioli G, Alivernini S. COVID-19 illness: Different comorbidities may require different immunological therapeutic targets. Eur J Clin Invest 2023; 53:e14096. [PMID: 37724937 DOI: 10.1111/eci.14096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 07/02/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND The SARS-CoV-2 pandemic has led to more than 6,870.000 deaths worldwide. Despite recent therapeutic advances, deaths in Intensive Care Units still range between 34 and 72%, comprising substantial unmet need as we move to an endemic phase. The general agreement is that in the first few days of infection, antiviral drugs and neutralizing monoclonal antibodies should be adopted. When the patient is hospitalized and develops severe pneumonia, progressing to a systemic disease, immune modifying therapy with corticosteroids is indicated. Such interventions, however, are less effective in the context of comorbidities (e.g., diabetes, hypertension, heart failure, atrial fibrillation, obesity and central nervous system-CNS diseases) which are by themselves associated with poor outcomes. Such comorbidities comprise common and some distinct underlying inflammatory pathobiology regulated by differential cytokine taxonomy. METHODS Searching in the PubMed database, literature pertaining to the biology underlying the different comorbidities, and the data from the studies related to various immunological treatments for the Covid-19 disease were carefully analyzed. RESULTS Several experimental and clinical data have demonstrated that hypertension and atrial fibrillation present an IL-6 dependent signature, whereas diabetes, obesity, heart failure and CNS diseases may exhibit an IL-1a/b predominant signature. Distinct selective cytokine targeting may offer advantage in treating severe COVID-19 illness based on single or multiple associated comorbidities. When the patient does not immediately respond, a broader target range through JAKs pathway inhibitors may be indicated. CONCLUSIONS Herein, we discuss the biological background associated with distinct comorbidities which might impact the SARS-CoV-2 infection course and how these should to be addressed to improve the current therapeutic outcome.
Collapse
Affiliation(s)
- Elisa Gremese
- Clinical Immunology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Catholic University of the Sacred Heart, Rome, Italy
- Immunology Core Facility, GSTEP, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Barbara Tolusso
- Immunology Core Facility, GSTEP, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Dario Bruno
- Clinical Immunology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Anna Maria Paglionico
- Clinical Immunology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | - Simone Perniola
- Clinical Immunology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| | | | - Stefano Alivernini
- Catholic University of the Sacred Heart, Rome, Italy
- Immunology Core Facility, GSTEP, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
- Rheumatology Unit, Fondazione Policlinico Universitario A. Gemelli-IRCCS, Rome, Italy
| |
Collapse
|
15
|
Yazici D, Cagan E, Tan G, Li M, Do E, Kucukkase OC, Simsek A, Kizmaz MA, Bozkurt T, Aydin T, Heider A, Rückert B, Brüggen MC, Dhir R, O'Mahony L, Akdis M, Nadeau KC, Budak F, Akdis CA, Ogulur I. Disrupted epithelial permeability as a predictor of severe COVID-19 development. Allergy 2023; 78:2644-2658. [PMID: 37422701 DOI: 10.1111/all.15800] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/24/2023] [Accepted: 06/12/2023] [Indexed: 07/10/2023]
Abstract
BACKGROUND An impaired epithelial barrier integrity in the gastrointestinal tract is important to the pathogenesis of many inflammatory diseases. Accordingly, we assessed the potential of biomarkers of epithelial barrier dysfunction as predictive of severe COVID-19. METHODS Levels of bacterial DNA and zonulin family peptides (ZFP) as markers of bacterial translocation and intestinal permeability and a total of 180 immune and inflammatory proteins were analyzed from the sera of 328 COVID-19 patients and 49 healthy controls. RESULTS Significantly high levels of circulating bacterial DNA were detected in severe COVID-19 cases. In mild COVID-19 cases, serum bacterial DNA levels were significantly lower than in healthy controls suggesting epithelial barrier tightness as a predictor of a mild disease course. COVID-19 patients were characterized by significantly elevated levels of circulating ZFP. We identified 36 proteins as potential early biomarkers of COVID-19, and six of them (AREG, AXIN1, CLEC4C, CXCL10, CXCL11, and TRANCE) correlated strongly with bacterial translocation and can be used to predict and discriminate severe cases from healthy controls and mild cases (area under the curve (AUC): 1 and 0.88, respectively). Proteomic analysis of the serum of 21 patients with moderate disease at admission which progressed to severe disease revealed 10 proteins associated with disease progression and mortality (AUC: 0.88), including CLEC7A, EIF4EBP1, TRANCE, CXCL10, HGF, KRT19, LAMP3, CKAP4, CXADR, and ITGB6. CONCLUSION Our results demonstrate that biomarkers of intact or defective epithelial barriers are associated with disease severity and can provide early information on the prediction at the time of hospital admission.
Collapse
Affiliation(s)
- Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Eren Cagan
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
- Department of Pediatric Infectious Diseases, Bursa Yuksek Ihtisas Training and Research Hospital, University of Health Sciences, Bursa, Turkey
| | - Ge Tan
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Manru Li
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Evan Do
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Ozan C Kucukkase
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Abdurrahman Simsek
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Muhammed Ali Kizmaz
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Tugce Bozkurt
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Tamer Aydin
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Anja Heider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Marie-Charlotte Brüggen
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
| | - Raja Dhir
- SEED Inc. Co., Los Angeles, California, USA
| | - Liam O'Mahony
- Department of Medicine and School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari C Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Ferah Budak
- Department of Immunology, Bursa Uludag University School of Medicine, Bursa, Turkey
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| |
Collapse
|
16
|
Imbiakha B, Ezzatpour S, Buchholz DW, Sahler J, Ye C, Olarte-Castillo XA, Zou A, Kwas C, O’Hare K, Choi A, Adeleke RA, Khomandiak S, Goodman L, Jager MC, Whittaker GR, Martinez-Sobrido L, August A, Aguilar HC. Age-dependent acquisition of pathogenicity by SARS-CoV-2 Omicron BA.5. SCIENCE ADVANCES 2023; 9:eadj1736. [PMID: 37738347 PMCID: PMC10516498 DOI: 10.1126/sciadv.adj1736] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/23/2023] [Indexed: 09/24/2023]
Abstract
Pathology studies of SARS-CoV-2 Omicron variants of concern (VOC) are challenged by the lack of pathogenic animal models. While Omicron BA.1 and BA.2 replicate in K18-hACE2 transgenic mice, they cause minimal to negligible morbidity and mortality, and less is known about more recent Omicron VOC. Here, we show that in contrast to Omicron BA.1, BA.5-infected mice exhibited high levels of morbidity and mortality, correlating with higher early viral loads. Neither Omicron BA.1 nor BA.5 replicated in brains, unlike most prior VOC. Only Omicron BA.5-infected mice exhibited substantial weight loss, high pathology scores in lungs, and high levels of inflammatory cells and cytokines in bronchoalveolar lavage fluid, and 5- to 8-month-old mice exhibited 100% fatality. These results identify a rodent model for pathogenesis or antiviral countermeasure studies for circulating SARS-CoV-2 Omicron BA.5. Further, differences in morbidity and mortality between Omicron BA.1 and BA.5 provide a model for understanding viral determinants of pathogenicity.
Collapse
Affiliation(s)
- Brian Imbiakha
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Shahrzad Ezzatpour
- Department of Microbiology, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| | - David W. Buchholz
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Julie Sahler
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Chengjin Ye
- Texas Biomedical Research Institute, San Antonio, TX, 78227, USA
| | - Ximena A. Olarte-Castillo
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
- James A. Baker Institute for Animal Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Anna Zou
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Cole Kwas
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Katelyn O’Hare
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Annette Choi
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Richard Ayomide Adeleke
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Solomiia Khomandiak
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Laura Goodman
- James A. Baker Institute for Animal Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public & Ecosystem Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Mason C. Jager
- Department of Population Medicine and Diagnostic Sciences, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Gary R. Whittaker
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Public & Ecosystem Health, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | | | - Avery August
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
| | - Hector C. Aguilar
- Department of Microbiology and Immunology, Cornell University, College of Veterinary Medicine, Ithaca, NY, 14853, USA
- Department of Microbiology, Cornell University, College of Agriculture and Life Sciences, Ithaca, NY, 14853, USA
| |
Collapse
|
17
|
Onofrio LI, Marin C, Dutto J, Brugo MB, Baigorri RE, Bossio SN, Quiróz JN, Almada L, Ruiz Moreno F, Olivera C, Silvera-Ruiz SM, Ponce NE, Icely PA, Amezcua Vesely MC, Fozzatti L, Rodríguez-Galán MC, Stempin CC, Cervi L, Maletto BA, Acosta Rodríguez EV, Bertone M, Abiega CD, Escudero D, Kahn A, Caeiro JP, Maccioni M, Motrán CC, Gruppi A, Sotomayor CE, Chiapello LS, Montes CL. COVID-19 patients display changes in lymphocyte subsets with a higher frequency of dysfunctional CD8lo T cells associated with disease severity. Front Immunol 2023; 14:1223730. [PMID: 37809093 PMCID: PMC10552777 DOI: 10.3389/fimmu.2023.1223730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
This work examines cellular immunity against SARS-CoV-2 in patients from Córdoba, Argentina, during two major waves characterized by different circulating viral variants and different social behavior. Using flow cytometry, we evaluated the main lymphocyte populations of peripheral blood from hospitalized patients with moderate and severe COVID-19 disease. Our results show disturbances in the cellular immune compartment, as previously reported in different cohorts worldwide. We observed an increased frequency of B cells and a significant decrease in the frequency of CD3+ T cells in COVID-19 patients compared to healthy donors (HD). We also found a reduction in Tregs, which was more pronounced in severe patients. During the first wave, the frequency of GZMB, CD107a, CD39, and PD-1-expressing conventional CD4+ T (T conv) cells was significantly higher in moderate and severe patients than in HD. During the second wave, only the GZMB+ T conv cells of moderate and severe patients increased significantly. In addition, these patients showed a decreased frequency in IL-2-producing T conv cells. Interestingly, we identified two subsets of circulating CD8+ T cells with low and high CD8 surface expression in both HD and COVID-19 patients. While the percentages of CD8hi and CD8lo T cells within the CD8+ population in HD are similar, a significant increase was observed in CD8lo T cell frequency in COVID-19 patients. CD8lo T cell populations from HD as well as from SARS-CoV-2 infected patients exhibited lower frequencies of the effector cytokine-producing cells, TNF, IL-2, and IFN-γ, than CD8hi T cells. Interestingly, the frequency of CD8lo T cells increased with disease severity, suggesting that this parameter could be a potential marker for disease progression. Indeed, the CD8hi/CD8lo index helped to significantly improve the patient's clinical stratification and disease outcome prediction. Our data support the addition of, at least, a CD8hi/CD8lo index into the panel of biomarkers commonly used in clinical labs, since its determination may be a useful tool with impact on the therapeutic management of the patients.
Collapse
Affiliation(s)
- Luisina Ines Onofrio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Constanza Marin
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Jeremías Dutto
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Belén Brugo
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Ruth Eliana Baigorri
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Sabrina Noemi Bossio
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Juan Nahuel Quiróz
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Laura Almada
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Federico Ruiz Moreno
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Carolina Olivera
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Silene M. Silvera-Ruiz
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Nicolás Eric Ponce
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Paula Alejandra Icely
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Carolina Amezcua Vesely
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Laura Fozzatti
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - María Cecilia Rodríguez-Galán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Cinthia Carolina Stempin
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Laura Cervi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Belkys Angélica Maletto
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Eva Virginia Acosta Rodríguez
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Mariana Bertone
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Claudio Daniel Abiega
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Daiana Escudero
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Adrián Kahn
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Juan Pablo Caeiro
- Instituto Universitario de Ciencias Biomédicas de Córdoba (IUCBC), Hospital Privado Universitario de Córdoba, Córdoba, Argentina
| | - Mariana Maccioni
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Claudia Cristina Motrán
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Adriana Gruppi
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Claudia Elena Sotomayor
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Laura Silvina Chiapello
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| | - Carolina Lucia Montes
- Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Córdoba, Argentina
| |
Collapse
|
18
|
Ma H, Ren S, Meng Q, Su B, Wang K, Liu Y, Wang J, Ding D, Li X. Role of Tim-3 in COVID-19: a potential biomarker and therapeutic target. Arch Virol 2023; 168:213. [PMID: 37522944 DOI: 10.1007/s00705-023-05842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/16/2023] [Indexed: 08/01/2023]
Abstract
T cell immunoglobulin and mucin domain containing protein 3 (Tim-3), an immune checkpoint, is important for maintaining immune tolerance. There is increasing evidence that Tim-3 is aberrantly expressed in patients with COVID-19, indicating that it may play an important role in COVID-19. In this review, we discuss the altered expression and potential role of Tim-3 in COVID-19. The expression of Tim-3 and its soluble form (sTim-3) has been found to be upregulated in COVID-19 patients. The levels of Tim-3 on T cells and circulating sTim-3 have been shown to be associated with the severity of COVID-19, suggesting that this protein could be a potential biomarker of COVID-19. Moreover, this review also highlights the potential of Tim-3 as a therapeutic target of COVID-19.
Collapse
Affiliation(s)
- Haodong Ma
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Shengju Ren
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Qingpeng Meng
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Boyuan Su
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Kun Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - YiChen Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China
| | - Junpeng Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, 450003, Zhengzhou, Henan, China.
| | - Degang Ding
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, 450003, Zhengzhou, Henan, China.
| | - Xin Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, 450001, Zhengzhou, Henan, China.
- Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou University, 450001, Zhengzhou, Henan, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou University, 450052, Zhengzhou, Henan, China.
| |
Collapse
|
19
|
García-Nicolás O, Godel A, Zimmer G, Summerfield A. Macrophage phagocytosis of SARS-CoV-2-infected cells mediates potent plasmacytoid dendritic cell activation. Cell Mol Immunol 2023; 20:835-849. [PMID: 37253946 PMCID: PMC10227409 DOI: 10.1038/s41423-023-01039-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/06/2023] [Indexed: 06/01/2023] Open
Abstract
Early and strong interferon type I (IFN-I) responses are usually associated with mild COVID-19 disease, whereas persistent or unregulated proinflammatory cytokine responses are associated with severe disease outcomes. Previous work suggested that monocyte-derived macrophages (MDMs) are resistant and unresponsive to SARS-CoV-2 infection. Here, we demonstrate that upon phagocytosis of SARS-CoV-2-infected cells, MDMs are activated and secrete IL-6 and TNF. Importantly, activated MDMs in turn mediate strong activation of plasmacytoid dendritic cells (pDCs), leading to the secretion of high levels of IFN-α and TNF. Furthermore, pDC activation promoted IL-6 production by MDMs. This kind of pDC activation was dependent on direct integrin-mediated cell‒cell contacts and involved stimulation of the TLR7 and STING signaling pathways. Overall, the present study describes a novel and potent pathway of pDC activation that is linked to the macrophage-mediated clearance of infected cells. These findings suggest that a high infection rate by SARS-CoV-2 may lead to exaggerated cytokine responses, which may contribute to tissue damage and severe disease.
Collapse
Affiliation(s)
- O García-Nicolás
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland.
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland.
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland.
| | - A Godel
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - G Zimmer
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - A Summerfield
- Institute of Virology and Immunology (IVI), Sensemattstrasse 293, 3147, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- Multidisciplinary Center for Infectious Diseases, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Sweet DR, Freeman ML, Zidar DA. Immunohematologic Biomarkers in COVID-19: Insights into Pathogenesis, Prognosis, and Prevention. Pathog Immun 2023; 8:17-50. [PMID: 37427016 PMCID: PMC10324469 DOI: 10.20411/pai.v8i1.572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has had profound effects on the health of individuals and on healthcare systems worldwide. While healthcare workers on the frontlines have fought to quell multiple waves of infection, the efforts of the larger research community have changed the arch of this pandemic as well. This review will focus on biomarker discovery and other efforts to identify features that predict outcomes, and in so doing, identify possible effector and passenger mechanisms of adverse outcomes. Identifying measurable soluble factors, cell-types, and clinical parameters that predict a patient's disease course will have a legacy for the study of immunologic responses, especially stimuli, which induce an overactive, yet ineffectual immune system. As prognostic biomarkers were identified, some have served to represent pathways of therapeutic interest in clinical trials. The pandemic conditions have created urgency for accelerated target identification and validation. Collectively, these COVID-19 studies of biomarkers, disease outcomes, and therapeutic efficacy have revealed that immunologic systems and responses to stimuli are more heterogeneous than previously assumed. Understanding the genetic and acquired features that mediate divergent immunologic outcomes in response to this global exposure is ongoing and will ultimately improve our preparedness for future pandemics, as well as impact preventive approaches to other immunologic diseases.
Collapse
Affiliation(s)
- David R. Sweet
- Case Western Reserve University School of Medicine, Cleveland, OH
| | - Michael L. Freeman
- Division of Infectious Diseases and HIV Medicine, Case Western Reserve University, Cleveland, OH
| | - David A. Zidar
- Harrington Heart and Vascular Institute, University Hospitals Cleveland Medical Center, Cleveland, OH
- Cardiology Section, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH
- Center for Global Health and Diseases, Department of Pathology, Case Western Reserve University School of Medicine, Case Western Reserve University, Cleveland, OH
| |
Collapse
|
21
|
Yunis J, Short KR, Yu D. Severe respiratory viral infections: T-cell functions diverging from immunity to inflammation. Trends Microbiol 2023; 31:644-656. [PMID: 36635162 PMCID: PMC9829516 DOI: 10.1016/j.tim.2022.12.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 01/11/2023]
Abstract
Respiratory viral infections such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) trigger distinct clinical outcomes defined by immunity-based viral clearance or disease associated with exaggerated and prolonged inflammation. The important role of T cells in shaping both antiviral immunity and inflammation has revived interest in understanding the host-pathogen interactions that lead to the diverse functions of T cells in respiratory viral infections. Inborn deficiencies and acquired insufficiency in immunity can prolong infection and shift the immune response towards exacerbated inflammation, which results from persistent innate immune activation and bystander T-cell activation that is nonspecific to the pathogen but is often driven by cytokines. This review discusses how virus variants, exposure doses, routes of infection, host genetics, and immune history can modulate the activation and function of T cells, thus influencing clinical outcomes. Knowledge of virus-host interaction can inform strategies to prevent immune dysfunction in respiratory viral infection and help in the treatment of associated diseases.
Collapse
Affiliation(s)
- Joseph Yunis
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia.
| | - Kirsty R Short
- School of Chemistry and Molecular Biosciences, Faculty of Science, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Woolloongabba, QLD 4102, Australia; Ian Frazer Centre for Children's Immunotherapy Research, Child Health Research Centre, Faculty of Medicine, The University of Queensland, Brisbane, Australia.
| |
Collapse
|
22
|
Vavilova JD, Ustiuzhanina MO, Boyko AA, Streltsova MA, Kust SA, Kanevskiy LM, Iskhakov RN, Sapozhnikov AM, Gubernatorova EO, Drutskaya MS, Bychinin MV, Novikova ON, Sotnikova AG, Yusubalieva GM, Baklaushev VP, Kovalenko EI. Alterations in the CD56 - and CD56 + T Cell Subsets during COVID-19. Int J Mol Sci 2023; 24:9047. [PMID: 37240393 PMCID: PMC10219320 DOI: 10.3390/ijms24109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/18/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
The effectiveness of the antiviral immune response largely depends on the activation of cytotoxic T cells. The heterogeneous group of functionally active T cells expressing the CD56 molecule (NKT-like cells), that combines the properties of T lymphocytes and NK cells, is poorly studied in COVID-19. This work aimed to analyze the activation and differentiation of both circulating NKT-like cells and CD56- T cells during COVID-19 among intensive care unit (ICU) patients, moderate severity (MS) patients, and convalescents. A decreased proportion of CD56+ T cells was found in ICU patients with fatal outcome. Severe COVID-19 was accompanied by a decrease in the proportion of CD8+ T cells, mainly due to the CD56- cell death, and a redistribution of the NKT-like cell subset composition with a predominance of more differentiated cytotoxic CD8+ T cells. The differentiation process was accompanied by an increase in the proportions of KIR2DL2/3+ and NKp30+ cells in the CD56+ T cell subset of COVID-19 patients and convalescents. Decreased percentages of NKG2D+ and NKG2A+ cells and increased PD-1 and HLA-DR expression levels were found in both CD56- and CD56+ T cells, and can be considered as indicators of COVID-19 progression. In the CD56- T cell fraction, increased CD16 levels were observed in MS patients and in ICU patients with lethal outcome, suggesting a negative role for CD56-CD16+ T cells in COVID-19. Overall, our findings suggest an antiviral role of CD56+ T cells in COVID-19.
Collapse
Affiliation(s)
- Julia D. Vavilova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (J.D.V.); (S.A.K.); (A.M.S.)
| | - Maria O. Ustiuzhanina
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (J.D.V.); (S.A.K.); (A.M.S.)
- Center of Life Sciences, Skolkovo Institute of Science and Technology, 121205 Moscow, Russia
| | - Anna A. Boyko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (J.D.V.); (S.A.K.); (A.M.S.)
| | - Maria A. Streltsova
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (J.D.V.); (S.A.K.); (A.M.S.)
| | - Sofya A. Kust
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (J.D.V.); (S.A.K.); (A.M.S.)
| | - Leonid M. Kanevskiy
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (J.D.V.); (S.A.K.); (A.M.S.)
| | - Rustam N. Iskhakov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (J.D.V.); (S.A.K.); (A.M.S.)
| | - Alexander M. Sapozhnikov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (J.D.V.); (S.A.K.); (A.M.S.)
| | - Ekaterina O. Gubernatorova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Marina S. Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Division of Immunobiology and Biomedicine, Sirius University of Science and Technology, Sirius, Krasnodarsky Krai, 354349 Sochi, Russia
| | - Mikhail V. Bychinin
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Oksana N. Novikova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Anna G. Sotnikova
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Gaukhar M. Yusubalieva
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Research and Clinical Center of Specialized Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Elena I. Kovalenko
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (J.D.V.); (S.A.K.); (A.M.S.)
| |
Collapse
|
23
|
Gurshaney S, Morales-Alvarez A, Ezhakunnel K, Manalo A, Huynh TH, Abe JI, Le NT, Weiskopf D, Sette A, Lupu DS, Gardell SJ, Nguyen H. Metabolic dysregulation impairs lymphocyte function during severe SARS-CoV-2 infection. Commun Biol 2023; 6:374. [PMID: 37029220 PMCID: PMC10080180 DOI: 10.1038/s42003-023-04730-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/20/2023] [Indexed: 04/09/2023] Open
Abstract
Cellular metabolic dysregulation is a consequence of SARS-CoV-2 infection that is a key determinant of disease severity. However, how metabolic perturbations influence immunological function during COVID-19 remains unclear. Here, using a combination of high-dimensional flow cytometry, cutting-edge single-cell metabolomics, and re-analysis of single-cell transcriptomic data, we demonstrate a global hypoxia-linked metabolic switch from fatty acid oxidation and mitochondrial respiration towards anaerobic, glucose-dependent metabolism in CD8+Tc, NKT, and epithelial cells. Consequently, we found that a strong dysregulation in immunometabolism was tied to increased cellular exhaustion, attenuated effector function, and impaired memory differentiation. Pharmacological inhibition of mitophagy with mdivi-1 reduced excess glucose metabolism, resulting in enhanced generation of SARS-CoV-2- specific CD8+Tc, increased cytokine secretion, and augmented memory cell proliferation. Taken together, our study provides critical insight regarding the cellular mechanisms underlying the effect of SARS-CoV-2 infection on host immune cell metabolism, and highlights immunometabolism as a promising therapeutic target for COVID-19 treatment.
Collapse
Affiliation(s)
- Sanjeev Gurshaney
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Anamaria Morales-Alvarez
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Kevin Ezhakunnel
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Andrew Manalo
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Thien-Huong Huynh
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA
| | - Jun-Ichi Abe
- Department of Cardiology, The University of Texas MD Anderson Cancer Center, 1400 Pressler Street, Unit 1451, Houston, TX, 77030, USA
| | - Nhat-Tu Le
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX, 77030, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology (LJI), La Jolla, CA, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego (UCSD), La Jolla, CA, 92037, USA
| | - Daniel S Lupu
- AdventHealth Cancer Institute, AdventHealth Research Institute, Orlando, FL, 32804, USA
| | - Stephen J Gardell
- Translational Research Institute, AdventHealth Research Institute, Orlando, FL, 32804, USA
| | - Hung Nguyen
- Cancer Division, Burnett School of Biomedical Science, College of Medicine, University of Central Florida, Orlando, FL, 32827, USA.
| |
Collapse
|
24
|
Alves RPDS, Wang YT, Mikulski Z, McArdle S, Shafee N, Valentine KM, Miller R, Verma SK, Batiz FAS, Maule E, Nguyen MN, Timis J, Mann C, Zandonatti M, Alarcon S, Rowe J, Kronenberg M, Weiskopf D, Sette A, Hastie K, Saphire EO, Festin S, Kim K, Shresta S. SARS-CoV-2 Omicron (B.1.1.529) shows minimal neurotropism in a double-humanized mouse model. Antiviral Res 2023; 212:105580. [PMID: 36940916 PMCID: PMC10027296 DOI: 10.1016/j.antiviral.2023.105580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/23/2023]
Abstract
Although severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) initially infects the respiratory tract, it also directly or indirectly affects other organs, including the brain. However, little is known about the relative neurotropism of SARS-CoV-2 variants of concern (VOCs), including Omicron (B.1.1.529), which emerged in November 2021 and has remained the dominant pathogenic lineage since then. To address this gap, we examined the relative ability of Omicron, Beta (B.1.351), and Delta (B.1.617.2) to infect the brain in the context of a functional human immune system by using human angiotensin-converting enzyme 2 (hACE2) knock-in triple-immunodeficient NGC mice with or without reconstitution with human CD34+ stem cells. Intranasal inoculation of huCD34+-hACE2-NCG mice with Beta and Delta resulted in productive infection of the nasal cavity, lungs, and brain on day 3 post-infection, but Omicron was surprisingly unique in its failure to infect either the nasal tissue or brain. Moreover, the same infection pattern was observed in hACE2-NCG mice, indicating that antiviral immunity was not responsible for the lack of Omicron neurotropism. In independent experiments, we demonstrate that nasal inoculation with Beta or with D614G, an ancestral SARS-CoV-2 with undetectable replication in huCD34+-hACE2-NCG mice, resulted in a robust response by human innate immune cells, T cells, and B cells, confirming that exposure to SARS-CoV-2, even without detectable infection, is sufficient to induce an antiviral immune response. Collectively, these results suggest that modeling of the neurologic and immunologic sequelae of SARS-CoV-2 infection requires careful selection of the appropriate SARS-CoV-2 strain in the context of a specific mouse model.
Collapse
Affiliation(s)
| | - Ying-Ting Wang
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Zbigniew Mikulski
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Sara McArdle
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Norazizah Shafee
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kristen M Valentine
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Robyn Miller
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Shailendra Kumar Verma
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Fernanda Ana Sosa Batiz
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erin Maule
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michael N Nguyen
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Julia Timis
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Colin Mann
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Michelle Zandonatti
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Suzie Alarcon
- Sequencing Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Jenny Rowe
- Charles River Laboratories Research Models and Services Inc., Wilmington, MA, USA
| | - Mitchell Kronenberg
- Division of Developmental Immunology, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Daniela Weiskopf
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA; Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California, San Diego, La Jolla, CA, 92037, USA
| | - Kathryn Hastie
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Erica Ollmann Saphire
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Stephen Festin
- Charles River Laboratories Research Models and Services Inc., Wilmington, MA, USA
| | - Kenneth Kim
- Histopathology Core Facility, La Jolla Institute for Immunology, La Jolla, CA, USA.
| | - Sujan Shresta
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA.
| |
Collapse
|
25
|
Eddins DJ, Yang J, Kosters A, Giacalone VD, Pechuan-Jorge X, Chandler JD, Eum J, Babcock BR, Dobosh BS, Hernández MR, Abdulkhader F, Collins GL, Orlova DY, Ramonell RP, Sanz I, Moussion C, Eun-Hyung Lee F, Tirouvanziam RM, Ghosn EEB. Transcriptional reprogramming of infiltrating neutrophils drives lung pathology in severe COVID-19 despite low viral load. Blood Adv 2023; 7:778-799. [PMID: 36399523 PMCID: PMC9906672 DOI: 10.1182/bloodadvances.2022008834] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/28/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022] Open
Abstract
Troubling disparities in COVID-19-associated mortality emerged early, with nearly 70% of deaths confined to Black/African American (AA) patients in some areas. However, targeted studies on this vulnerable population are scarce. Here, we applied multiomics single-cell analyses of immune profiles from matching airways and blood samples of Black/AA patients during acute SARS-CoV-2 infection. Transcriptional reprogramming of infiltrating IFITM2+/S100A12+ mature neutrophils, likely recruited via the IL-8/CXCR2 axis, leads to persistent and self-sustaining pulmonary neutrophilia with advanced features of acute respiratory distress syndrome (ARDS) despite low viral load in the airways. In addition, exacerbated neutrophil production of IL-8, IL-1β, IL-6, and CCL3/4, along with elevated levels of neutrophil elastase and myeloperoxidase, were the hallmarks of transcriptionally active and pathogenic airway neutrophilia. Although our analysis was limited to Black/AA patients and was not designed as a comparative study across different ethnicities, we present an unprecedented in-depth analysis of the immunopathology that leads to acute respiratory distress syndrome in a well-defined patient population disproportionally affected by severe COVID-19.
Collapse
Affiliation(s)
- Devon J. Eddins
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA
| | - Junkai Yang
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
| | - Astrid Kosters
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
| | - Vincent D. Giacalone
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
| | - Ximo Pechuan-Jorge
- Cancer Immunotherapy Discovery, Genentech, Inc., South San Francisco, CA
| | - Joshua D. Chandler
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
| | - Jinyoung Eum
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
- School of Biological Sciences, Georgia Institute of Technology, Bioinformatics Graduate Program, Atlanta, GA
| | - Benjamin R. Babcock
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
| | - Brian S. Dobosh
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
| | - Mindy R. Hernández
- Division of Pulmonary, Department of Medicine, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Fathma Abdulkhader
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
| | - Genoah L. Collins
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
| | - Darya Y. Orlova
- Cancer Immunotherapy Discovery, Genentech, Inc., South San Francisco, CA
| | - Richard P. Ramonell
- Division of Pulmonary, Department of Medicine, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ignacio Sanz
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA
- Division of Rheumatology, Department of Medicine, Emory Autoimmunity Center of Excellence, Emory University School of Medicine, Atlanta, GA
| | - Christine Moussion
- Cancer Immunotherapy Discovery, Genentech, Inc., South San Francisco, CA
| | - F. Eun-Hyung Lee
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA
- Division of Pulmonary, Department of Medicine, Allergy, Critical Care & Sleep Medicine, Emory University School of Medicine, Atlanta, GA
| | - Rabindra M. Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Center for CF & Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, GA
| | - Eliver E. B. Ghosn
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA
- Emory Vaccine Center, Emory National Primate Research Center, Emory University School of Medicine, Atlanta, GA
- School of Biological Sciences, Georgia Institute of Technology, Bioinformatics Graduate Program, Atlanta, GA
| |
Collapse
|
26
|
Risk of Acute Respiratory Distress Syndrome in Community-Acquired Pneumonia Patients: Use of an Artificial Neural Network Model. Emerg Med Int 2023; 2023:2631779. [PMID: 36816327 PMCID: PMC9929212 DOI: 10.1155/2023/2631779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 12/06/2022] [Accepted: 12/14/2022] [Indexed: 02/10/2023] Open
Abstract
This study aimed to explore the independent risk factors for community-acquired pneumonia (CAP) complicated with acute respiratory distress syndrome (ARDS) and to predict and evaluate the risk of ARDS in CAP patients based on artificial neural network models (ANNs). We retrospectively analyzed eligible 989 CAP patients (632 men and 357 women) who met the criteria from the comprehensive intensive care unit (ICU) and the respiratory and critical care medicine department of Changzhou Second People's Hospital, Jiangsu Provincial People's Hospital, Nanjing Military Region General Hospital, and Wuxi Fifth People's Hospital between February 2018 and February 2021. The best predictors to model the ANNs were selected from 51 variables measured within 24 h after admission. By using this model, patients were divided into a training group (n = 701) and a testing group (n = 288 patients). Results showed that in 989 CAP patients, 22 important variables were identified as risk factors. The sensitivity, specificity, and accuracy of the ANNs model training group were 88.9%, 90.1%, and 89.7%, respectively. When ANNs were used in the test group, their sensitivity, specificity, and accuracy were 85.0%, 87.3%, and 86.5%, respectively; when ANNs were used to predict ARDS, the area under the receiver operating characteristic (ROC) curve was 0.943 (95% confidence interval (0.918-0.968)). The nine most important independent variables affecting the ANNs models were lactate dehydrogenase (100%), activated partial thromboplastin time (84.6%), procalcitonin (83.8%), age (77.9%), maximum respiratory rate (76.0%), neutrophil (75.9%), source of admission (68.9%), concentration of total serum kalium (61.3%), and concentration of total serum bilirubin (50.4%) (all important >50%). The ANNs model and the logistic regression models were significantly different in predicting and evaluating ARDS in CAP patients. Thus, the ANNs model has a good predictive value in predicting and evaluating ARDS in CAP patients, and its performance is better than that of the logistic regression model in predicting the incidence of ARDS patients.
Collapse
|
27
|
Almendro-Vázquez P, Laguna-Goya R, Paz-Artal E. Defending against SARS-CoV-2: The T cell perspective. Front Immunol 2023; 14:1107803. [PMID: 36776863 PMCID: PMC9911802 DOI: 10.3389/fimmu.2023.1107803] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
SARS-CoV-2-specific T cell response has been proven essential for viral clearance, COVID-19 outcome and long-term memory. Impaired early T cell-driven immunity leads to a severe form of the disease associated with lymphopenia, hyperinflammation and imbalanced humoral response. Analyses of acute SARS-CoV-2 infection have revealed that mild COVID-19 course is characterized by an early induction of specific T cells within the first 7 days of symptoms, coordinately followed by antibody production for an effective control of viral infection. In contrast, patients who do not develop an early specific cellular response and initiate a humoral immune response with subsequent production of high levels of antibodies, develop severe symptoms. Yet, delayed and persistent bystander CD8+ T cell activation has been also reported in hospitalized patients and could be a driver of lung pathology. Literature supports that long-term maintenance of T cell response appears more stable than antibody titters. Up to date, virus-specific T cell memory has been detected 22 months post-symptom onset, with a predominant IL-2 memory response compared to IFN-γ. Furthermore, T cell responses are conserved against the emerging variants of concern (VoCs) while these variants are mostly able to evade humoral responses. This could be partly explained by the high HLA polymorphism whereby the viral epitope repertoire recognized could differ among individuals, greatly decreasing the likelihood of immune escape. Current COVID-19-vaccination has been shown to elicit Th1-driven spike-specific T cell response, as does natural infection, which provides substantial protection against severe COVID-19 and death. In addition, mucosal vaccination has been reported to induce strong adaptive responses both locally and systemically and to protect against VoCs in animal models. The optimization of vaccine formulations by including a variety of viral regions, innovative adjuvants or diverse administration routes could result in a desirable enhanced cellular response and memory, and help to prevent breakthrough infections. In summary, the increasing evidence highlights the relevance of monitoring SARS-CoV-2-specific cellular immune response, and not only antibody levels, as a correlate for protection after infection and/or vaccination. Moreover, it may help to better identify target populations that could benefit most from booster doses and to personalize vaccination strategies.
Collapse
Affiliation(s)
- Patricia Almendro-Vázquez
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Rocío Laguna-Goya
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Estela Paz-Artal
- Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Madrid, Spain
| |
Collapse
|
28
|
Lei H. A two-gene marker for the two-tiered innate immune response in COVID-19 patients. PLoS One 2023; 18:e0280392. [PMID: 36649304 PMCID: PMC9844909 DOI: 10.1371/journal.pone.0280392] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/28/2022] [Indexed: 01/18/2023] Open
Abstract
For coronavirus disease 2019 (COVID-19), a pandemic disease characterized by strong immune dysregulation in severe patients, convenient and efficient monitoring of the host immune response is critical. Human hosts respond to viral and bacterial infections in different ways, the former is characterized by the activation of interferon stimulated genes (ISGs) such as IFI27, while the latter is characterized by the activation of anti-bacterial associated genes (ABGs) such as S100A12. This two-tiered innate immune response has not been examined in COVID-19. In this study, the activation patterns of this two-tiered innate immune response represented by IFI27 and S100A12 were explored based on 1421 samples from 17 transcriptome datasets derived from the blood of COVID-19 patients and relevant controls. It was found that IFI27 activation occurred in most of the symptomatic patients and displayed no correlation with disease severity, while S100A12 activation was more restricted to patients under severe and critical conditions with a stepwise activation pattern. In addition, most of the S100A12 activation was accompanied by IFI27 activation. Furthermore, the activation of IFI27 was most pronounced within the first week of symptom onset, but generally waned after 2-3 weeks. On the other hand, the activation of S100A12 displayed no apparent correlation with disease duration and could last for several months in certain patients. These features of the two-tiered innate immune response can further our understanding on the disease mechanism of COVID-19 and may have implications to the clinical triage. Development of a convenient two-gene protocol for the routine serial monitoring of this two-tiered immune response will be a valuable addition to the existing laboratory tests.
Collapse
Affiliation(s)
- Hongxing Lei
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, and China National Center for Bioinformation, Beijing, China
- Cunji Medical School, University of Chinese Academy of Sciences, Beijing, China
- Center of Alzheimer’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
29
|
Roe K. Accelerated T-cell exhaustion: its pathogenesis and potentially severe outcomes. Hum Cell 2023; 36:488-490. [PMID: 36279031 PMCID: PMC9589834 DOI: 10.1007/s13577-022-00814-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 02/02/2023]
|
30
|
Kratzmeier C, Singh S, Asiedu EB, Webb TJ. Current Developments in the Preclinical and Clinical use of Natural Killer T cells. BioDrugs 2023; 37:57-71. [PMID: 36525216 PMCID: PMC9756707 DOI: 10.1007/s40259-022-00572-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/26/2022] [Indexed: 12/23/2022]
Abstract
Natural killer T (NKT) cells play a pivotal role as a bridge between the innate and the adaptive immune response and are instrumental in the regulation of homeostasis. In this review, we discuss the potential for NKT cells to serve as biodrugs in viral infections and in cancer. NKT cells are being investigated for their use as a prognostic biomarker, an immune adjuvant, and as a form of cellular therapy. Historically, the clinical utility of NKT cells was hampered by their low frequency in the blood, discrepancies in nomenclature, and challenges with ex vivo expansion. However, recent advances in the field have permitted the development of several NKT cell-based preclinical and clinical strategies. These new developments pave the way for the successful implementation of NKT cell-based approaches for the treatment of human disease.
Collapse
Affiliation(s)
- Christina Kratzmeier
- Department of Microbiology and Immunology, and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore St, HSF I-Room 380, Baltimore, MD, 21201, USA
| | - Sasha Singh
- Department of Microbiology and Immunology, and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore St, HSF I-Room 380, Baltimore, MD, 21201, USA
| | - Emmanuel B Asiedu
- Department of Microbiology and Immunology, and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore St, HSF I-Room 380, Baltimore, MD, 21201, USA
| | - Tonya J Webb
- Department of Microbiology and Immunology, and the Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, 685 West Baltimore St, HSF I-Room 380, Baltimore, MD, 21201, USA.
| |
Collapse
|
31
|
Dobrijević Z, Gligorijević N, Šunderić M, Penezić A, Miljuš G, Tomić S, Nedić O. The association of human leucocyte antigen (HLA) alleles with COVID-19 severity: A systematic review and meta-analysis. Rev Med Virol 2023; 33:e2378. [PMID: 35818892 PMCID: PMC9349710 DOI: 10.1002/rmv.2378] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/10/2022] [Accepted: 07/04/2022] [Indexed: 01/28/2023]
Abstract
Due to their pivotal role in orchestrating the immune response, HLA loci were recognized as candidates for genetic association studies related to the severity of COVID-19. Since the findings on the effects of HLA alleles on the outcome of SARS-CoV-2 infection remain inconclusive, we aimed to elucidate the potential involvement of genetic variability within HLA loci in the molecular genetics of COVID-19 by classifying the articles according to different disease severity/outcomes and by conducting a systematic review with meta-analysis. Potentially eligible studies were identified by searching PubMed, Scopus and Web of Science literature databases. A total of 28 studies with 13,073 participants were included in qualitative synthesis, while the results of 19 studies with 10,551 SARS-CoV-2-positive participants were pooled in the meta-analysis. According to the results of quantitative data synthesis, association with COVID-19 severity or with the lethal outcome was determined for the following alleles and allele families: HLA-A*01, HLA-A*03, HLA-A*11, HLA-A*23, HLA-A*31, HLA-A*68, HLA-A*68:02, HLA-B*07:02, HLA-B*14, HLA-B*15, HLA-B*40:02, HLA-B*51:01, HLA-B*53, HLA-B*54, HLA-B*54:01, HLA-C*04, HLA-C*04:01, HLA-C*06, HLA-C*07:02, HLA-DRB1*11, HLA-DRB1*15, HLA-DQB1*03 and HLA-DQB1*06 (assuming either allelic or dominant genetic model). We conclude that alleles of HLA-A, -B, -C, -DRB1 and -DQB1 loci may represent potential biomarkers of COVID-19 severity and/or mortality, which needs to be confirmed in a larger set of studies.
Collapse
Affiliation(s)
- Zorana Dobrijević
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Nikola Gligorijević
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Miloš Šunderić
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Ana Penezić
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Goran Miljuš
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Sergej Tomić
- Department for Immunology and ImmunoparasitologyUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| | - Olgica Nedić
- Department for MetabolismUniversity of Belgrade—Institute for the Application of Nuclear EnergyBelgradeSerbia
| |
Collapse
|
32
|
Dhawan M, Rabaan AA, Fawarah MMA, Almuthree SA, Alsubki RA, Alfaraj AH, Mashraqi MM, Alshamrani SA, Abduljabbar WA, Alwashmi ASS, Ibrahim FA, Alsaleh AA, Khamis F, Alsalman J, Sharma M, Emran TB. Updated Insights into the T Cell-Mediated Immune Response against SARS-CoV-2: A Step towards Efficient and Reliable Vaccines. Vaccines (Basel) 2023; 11:101. [PMID: 36679947 PMCID: PMC9861463 DOI: 10.3390/vaccines11010101] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/14/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023] Open
Abstract
The emergence of novel variants of SARS-CoV-2 and their abilities to evade the immune response elicited through presently available vaccination makes it essential to recognize the mechanisms through which SARS-CoV-2 interacts with the human immune response. It is essential not only to comprehend the infection mechanism of SARS-CoV-2 but also for the generation of effective and reliable vaccines against COVID-19. The effectiveness of the vaccine is supported by the adaptive immune response, which mainly consists of B and T cells, which play a critical role in deciding the prognosis of the COVID-19 disease. T cells are essential for reducing the viral load and containing the infection. A plethora of viral proteins can be recognized by T cells and provide a broad range of protection, especially amid the emergence of novel variants of SARS-CoV-2. However, the hyperactivation of the effector T cells and reduced number of lymphocytes have been found to be the key characteristics of the severe disease. Notably, excessive T cell activation may cause acute respiratory distress syndrome (ARDS) by producing unwarranted and excessive amounts of cytokines and chemokines. Nevertheless, it is still unknown how T-cell-mediated immune responses function in determining the prognosis of SARS-CoV-2 infection. Additionally, it is unknown how the functional perturbations in the T cells lead to the severe form of the disease and to reduced protection not only against SARS-CoV-2 but many other viral infections. Hence, an updated review has been developed to understand the involvement of T cells in the infection mechanism, which in turn determines the prognosis of the disease. Importantly, we have also focused on the T cells' exhaustion under certain conditions and how these functional perturbations can be modulated for an effective immune response against SARS-CoV-2. Additionally, a range of therapeutic strategies has been discussed that can elevate the T cell-mediated immune response either directly or indirectly.
Collapse
Affiliation(s)
- Manish Dhawan
- Department of Microbiology, Punjab Agricultural University, Ludhiana 141004, Punjab, India
- Trafford College, Altrincham, Manchester WA14 5PQ, UK
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mahmoud M. Al Fawarah
- Microbiology Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
| | - Souad A. Almuthree
- Department of Infectious Disease, King Abdullah Medical City, Makkah 43442, Saudi Arabia
| | - Roua A. Alsubki
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11362, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Mutaib M. Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Saleh A. Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran 61441, Saudi Arabia
| | - Wesam A. Abduljabbar
- Department of Medical Laboratory Sciences, Fakeeh College for Medical Science, Jeddah 21134, Saudi Arabia
| | - Ameen S. S. Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Fatimah Al Ibrahim
- Infectious Disease Division, Department of Internal Medicine, Dammam Medical Complex, Dammam 32245, Saudi Arabia
| | - Abdulmonem A. Alsaleh
- Clinical Laboratory Science Department, Mohammed Al-Mana College for Medical Sciences, Dammam 34222, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Jameela Alsalman
- Infection Disease Unit, Department of Internal Medicine, Salmaniya Medical Complex, Ministry of Health, Kingdom of Bahrain, Manama 435, Bahrain
| | - Manish Sharma
- University Institute of Biotechnology, Department of Biotechnology, Chandigarh University, Mohali 140413, Punjab, India
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| |
Collapse
|
33
|
Li SC, Kabeer MH. Caveolae-Mediated Extracellular Vesicle (CMEV) Signaling of Polyvalent Polysaccharide Vaccination: A Host-Pathogen Interface Hypothesis. Pharmaceutics 2022; 14:2653. [PMID: 36559147 PMCID: PMC9784826 DOI: 10.3390/pharmaceutics14122653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/22/2022] [Accepted: 11/22/2022] [Indexed: 12/02/2022] Open
Abstract
We published a study showing that improvement in response to splenectomy associated defective, in regards to the antibody response to Pneumovax® 23 (23-valent polysaccharides, PPSV23), can be achieved by splenocyte reinfusion. This study triggered a debate on whether and how primary and secondary immune responses occur based on humoral antibody responses to the initial vaccination and revaccination. The anti-SARS-CoV-2 vaccine sheds new light on the interpretation of our previous data. Here, we offer an opinion on the administration of the polyvalent polysaccharide vaccine (PPSV23), which appears to be highly relevant to the primary vaccine against SARS-CoV-2 and its booster dose. Thus, we do not insist this is a secondary immune response but an antibody response, nonetheless, as measured through IgG titers after revaccination. However, we contend that we are not sure if these lower but present IgG levels against pneumococcal antigens are clinically protective or are equally common in all groups because of the phenomenon of "hyporesponsiveness" seen after repeated polysaccharide vaccine challenge. We review the literature and propose a new mechanism-caveolae memory extracellular vesicles (CMEVs)-by which polysaccharides mediate prolonged and sustained immune response post-vaccination. We further delineate and explain the data sets to suggest that the dual targets on both Cav-1 and SARS-CoV-2 spike proteins may block the viral entrance and neutralize viral load, which minimizes the immune reaction against viral attacks and inflammatory responses. Thus, while presenting our immunological opinion, we answer queries and responses made by readers to our original statements published in our previous work and propose a hypothesis for all vaccination strategies, i.e., caveolae-mediated extracellular vesicle-mediated vaccine memory.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Neuro-Oncology and Stem Cell Research Laboratory, Center for Neuroscience Research, CHOC Children’s Research Institute, Children’s Hospital of Orange County, 1201 West La Veta Ave., Orange, CA 92868-3874, USA
- Department of Neurology, University of California-Irvine School of Medicine, 200 S Manchester Ave. Ste 206, Orange, CA 92868, USA
| | - Mustafa H. Kabeer
- Division of Pediatric General and Thoracic Surgery, CHOC Children’s Hospital, 1201 West La Veta Ave., Orange, CA 92868, USA
- Department of Surgery, University of California-Irvine School of Medicine, 333 City Blvd. West, Suite 700, Orange, CA 92868, USA
| |
Collapse
|
34
|
Roe K. Concurrent infections of cells by two pathogens can enable a reactivation of the first pathogen and the second pathogen's accelerated T-cell exhaustion. Heliyon 2022; 8:e11371. [PMCID: PMC9718926 DOI: 10.1016/j.heliyon.2022.e11371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 06/20/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022] Open
Abstract
When multiple intracellular pathogens, such as viruses, bacteria, fungi and protozoan parasites, infect the same host cell, they can help each other. A pathogen can substantially help another pathogen by disabling cellular immune defenses, using non-coding ribonucleic acids and/or pathogen proteins that target interferon-stimulated genes and other genes that express immune defense proteins. This can enable reactivation of a latent first pathogen and accelerate T-cell exhaustion and/or T-cell suppression regarding a second pathogen. In a worst-case scenario, accelerated T-cell exhaustion and/or T-cell suppression regarding the second pathogen can impair T-cell functionality and allow a first-time, immunologically novel second pathogen infection to escape all adaptive immune system defenses, including antibodies. The interactions of herpesviruses with concurrent intracellular pathogens in epithelial cells and B-cells, the interactions of the human immunodeficiency virus with Mycobacterium tuberculosis in macrophages and the interactions of Toxoplasma gondii with other pathogens in almost any type of animal cell are considered. The reactivation of latent pathogens and the acceleration of T-cell exhaustion for the second pathogen can explain several puzzling aspects of viral epidemics, such as COVID-19 and their unusual comorbidity mortality rates and post-infection symptoms.
Collapse
|
35
|
Jiang Y, Liu Z, Liao Y, Sun S, Dai Y, Tang Y. Ischemic stroke: From pathological mechanisms to neuroprotective strategies. Front Neurol 2022; 13:1013083. [PMID: 36438975 PMCID: PMC9681807 DOI: 10.3389/fneur.2022.1013083] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/20/2022] [Indexed: 08/13/2023] Open
Abstract
Ischemic stroke (IS) has complex pathological mechanisms, and is extremely difficult to treat. At present, the treatment of IS is mainly based on intravenous thrombolysis and mechanical thrombectomy, but they are limited by a strict time window. In addition, after intravenous thrombolysis or mechanical thrombectomy, damaged neurons often fail to make ideal improvements due to microcirculation disorders. Therefore, finding suitable pathways and targets from the pathological mechanism is crucial for the development of neuroprotective agents against IS. With the hope of making contributions to the development of IS treatments, this review will introduce (1) how related targets are found in pathological mechanisms such as inflammation, excitotoxicity, oxidative stress, and complement system activation; and (2) the current status and challenges in drug development.
Collapse
Affiliation(s)
- Yang Jiang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zhenquan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Liao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Shuyong Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yajie Dai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yibo Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
36
|
Bertoletti A, Le Bert N, Tan AT. SARS-CoV-2-specific T cells in the changing landscape of the COVID-19 pandemic. Immunity 2022; 55:1764-1778. [PMID: 36049482 PMCID: PMC9385766 DOI: 10.1016/j.immuni.2022.08.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/13/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022]
Abstract
Since the onset of the coronavirus disease 2019 (COVID-19) pandemic, multiple severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants with increasing ability to evade neutralizing antibodies have emerged. Thus, earlier interest in defining the correlates of protection from infection, mainly mediated by humoral immunity, has shifted to correlates of protection from disease, which require a more comprehensive analysis of both humoral and cellular immunity. In this review, we summarized the evidence that supports the role of SARS-CoV-2-specific T cells induced by infection, by vaccination or by their combination (defined as hybrid immunity) in disease protection. We then analyzed the different epidemiological and virological variables that can modify the magnitude, function, and anatomical localization of SARS-CoV-2-specific T cells and their influence in the possible ability of T cells to protect the host from severe COVID-19 development.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore; Singapore Immunology Network, A(∗)STAR, Singapore, Singapore.
| | - Nina Le Bert
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Anthony T Tan
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| |
Collapse
|
37
|
Bertoletti A, Le Bert N, Tan AT. Act Early and at the Right Location: SARS-CoV-2 T Cell Kinetics and Tissue Localization. Int J Mol Sci 2022; 23:10679. [PMID: 36142588 PMCID: PMC9505719 DOI: 10.3390/ijms231810679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/24/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
The emergence of new SARS-CoV-2 lineages able to escape antibodies elicited by infection or vaccination based on the Spike protein of the Wuhan isolates has reduced the ability of Spike-specific antibodies to protect previously infected or vaccinated individuals from infection. Therefore, the role played by T cells in the containment of viral replication and spread after infection has taken a more central stage. In this brief review, we will discuss the role played by T cells in the protection from COVID-19, with a particular emphasis on the kinetics of the T cell response and its localization at the site of primary infection.
Collapse
Affiliation(s)
- Antonio Bertoletti
- Programme in Emerging Infectious Diseases, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | | | | |
Collapse
|
38
|
Atanasov P, Moneva-Sakelarieva M, Kobakova Y, Obreshkova D, Ivanov I, Chaneva M, Popova M, Petkova V, Ivanova S. Tobacco smokers as target group for complicated coronavirus infection. PHARMACIA 2022. [DOI: 10.3897/pharmacia.69.e91095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of current study was to determine, retrospectively, possible correlations between smoking and the incidence, course severity, intubation rate, and mortality (by gender and age) in patients treated for complicated coronavirus infection in the internal medicine clinic at UMHATEM ”N. I. Pirogov” Sofia for the period 01.03.2020–31.12.2020. In a prospective study, the recovery period and immunogenesis in smokers and non-smokers within a one-year period after hospital discharge was investigated. The applied methods were: 1) computed tomography and blood gas analysis 2) chemiluminescent immunoassay for the qualitative determination of total IgM, IgA and IgG anti-SARS-CoV2 AB. Results showed that the part of non-smokers with a positive PCR test is significantly higher compared to the group of former and current smokers. The data obtained from the study confirmed that Covid infection is much more severe among smokers and former smokers with a higher levels of inflammatory markers noticed among the smoking group.
Collapse
|
39
|
Tarique M, Suhail M, Naz H, Muhammad N, Tabrez S, Zughaibi TA, Abuzenadah AM, Hashem AM, Shankar H, Saini C, Sharma A. Where do T cell subsets stand in SARS-CoV-2 infection: an update. Front Cell Infect Microbiol 2022; 12:964265. [PMID: 36034704 PMCID: PMC9399648 DOI: 10.3389/fcimb.2022.964265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/12/2022] [Indexed: 01/08/2023] Open
Abstract
An outbreak of coronavirus disease 2019 (COVID-19) emerged in China in December 2019 and spread so rapidly all around the globe. It's continued and spreading more dangerously in India and Brazil with higher mortality rate. Understanding of the pathophysiology of COVID-19 depends on unraveling of interactional mechanism of SARS-CoV-2 and human immune response. The immune response is a complex process, which can be better understood by understanding the immunological response and pathological mechanisms of COVID-19, which will provide new treatments, increase treatment efficacy, and decrease mortality associated with the disease. In this review we present a amalgamate viewpoint based on the current available knowledge on COVID-19 which includes entry of the virus and multiplication of virus, its pathological effects on the cellular level, immunological reaction, systemic and organ presentation. T cells play a crucial role in controlling and clearing viral infections. Several studies have now shown that the severity of the COVID-19 disease is inversely correlated with the magnitude of the T cell response. Understanding SARS-CoV-2 T cell responses is of high interest because T cells are attractive vaccine targets and could help reduce COVID-19 severity. Even though there is a significant amount of literature regarding SARS-CoV-2, there are still very few studies focused on understanding the T cell response to this novel virus. Nevertheless, a majority of these studies focused on peripheral blood CD4+ and CD8+ T cells that were specific for viruses. The focus of this review is on different subtypes of T cell responses in COVID-19 patients, Th17, follicular helper T (TFH), regulatory T (Treg) cells, and less classical, invariant T cell populations, such as δγ T cells and mucosal-associated invariant T (MAIT) cells etc that could influence disease outcome.
Collapse
Affiliation(s)
- Mohammad Tarique
- Department of Child Health, University of Missouri, Columbia, MO, United States
| | - Mohd Suhail
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Huma Naz
- Department of Child Health, University of Missouri, Columbia, MO, United States
| | - Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University in Saint Louis, Saint Louis, MO, United States
| | - Shams Tabrez
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Torki A. Zughaibi
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Adel M. Abuzenadah
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M. Hashem
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Hari Shankar
- India Council of Medical Research, New Delhi, India
| | - Chaman Saini
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Alpana Sharma
- Department of Biochemistry, All India Institute of Medical Sciences (AIIMS), New Delhi, India
| |
Collapse
|
40
|
Van der Sluis RM, Holm CK, Jakobsen MR. Plasmacytoid dendritic cells during COVID-19: Ally or adversary? Cell Rep 2022; 40:111148. [PMID: 35858624 PMCID: PMC9279298 DOI: 10.1016/j.celrep.2022.111148] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/10/2022] [Accepted: 07/07/2022] [Indexed: 12/12/2022] Open
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized cells of the immune system that are thought to be the main cellular source of type I interferon alpha (IFNα) in response to viral infections. IFNs are powerful antivirals, whereas defects in their function or induction lead to impaired resistance to virus infections, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19. IFN production needs to be controlled, because sustained IFN production can also have detrimental effects on disease outcome. As such, pDCs are likely important for acute antiviral protection against SARS-CoV-2 infection but could potentially also contribute to chronic IFN levels. Here, we provide a historical overview of pDC biology and summarize existing literature addressing their involvement and importance during viral infections of the airways. Furthermore, we outline recent reports focused on the potential role of pDCs during SARS-CoV-2 infection, as well as the potential for this cellular subset to impact COVID-19 disease outcome.
Collapse
|
41
|
Scalia G, Raia M, Gelzo M, Cacciapuoti S, Rosa AD, Pinchera B, Scotto R, Tripodi L, Mormile M, Fabbrocini G, Gentile I, Parrella R, Castaldo G, Scialò F. Lymphocyte Population Changes at Two Time Points during the Acute Period of COVID-19 Infection. J Clin Med 2022; 11:4306. [PMID: 35893398 PMCID: PMC9329935 DOI: 10.3390/jcm11154306] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/14/2022] [Accepted: 07/23/2022] [Indexed: 12/15/2022] Open
Abstract
We previously observed an increase of serum interleukins (IL) and a reduction of most lymphocyte subpopulations in hospitalized COVID-19 patients. Herein, we aimed to evaluate the changes in serum IL-6, IL-10, and IL-17A levels and cytometric lymphocyte profiles in 144 COVID-19 patients at admission and after one week, also in relation to steroid treatment before hospitalization. After one week of hospitalization, we found that: (i) total lymphocytes were increased in all patients; (ii) neutrophils and IL-6 were reduced in mild/moderate patients; (iii) B lymphocytes were increased in severe patients; (iv) T lymphocyte populations increased in mild/moderate patients. In the eight patients that died during hospitalization, total leukocytes increased while T, T helper, T cytotoxic, T regulatory, and NK lymphocytes showed a reducing trend in five of the eight patients. Even if seven days are too few to evaluate the adaptive immunity of patients, we found that the steroid therapy was associated with a reduced COVID-19 inflammation and cytokine activation only in patients with severe disease, while in patients with less severe disease, the steroid therapy seems to have immunosuppressive effects on lymphocyte populations, and this could hamper the antiviral response. A better knowledge of cytokine and lymphocyte alterations in each COVID-19 patient could be useful to plan better treatment with steroids or cytokine targeting.
Collapse
Affiliation(s)
- Giulia Scalia
- CEINGE-Biotecnologie Avanzate, Scarl, 80131 Naples, Italy; (G.S.); (M.R.); (M.G.); (L.T.); (F.S.)
| | - Maddalena Raia
- CEINGE-Biotecnologie Avanzate, Scarl, 80131 Naples, Italy; (G.S.); (M.R.); (M.G.); (L.T.); (F.S.)
| | - Monica Gelzo
- CEINGE-Biotecnologie Avanzate, Scarl, 80131 Naples, Italy; (G.S.); (M.R.); (M.G.); (L.T.); (F.S.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Sara Cacciapuoti
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (R.S.); (M.M.); (G.F.); (I.G.)
| | - Annunziata De Rosa
- Dipartimento di Malattie Infettive e Emergenze Infettive, Divisione di Malattie Infettive Respiratorie, Ospedale Cotugno, AORN dei Colli, 80131 Naples, Italy; (A.D.R.); (R.P.)
| | - Biagio Pinchera
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (R.S.); (M.M.); (G.F.); (I.G.)
| | - Riccardo Scotto
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (R.S.); (M.M.); (G.F.); (I.G.)
| | - Lorella Tripodi
- CEINGE-Biotecnologie Avanzate, Scarl, 80131 Naples, Italy; (G.S.); (M.R.); (M.G.); (L.T.); (F.S.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Mauro Mormile
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (R.S.); (M.M.); (G.F.); (I.G.)
| | - Gabriella Fabbrocini
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (R.S.); (M.M.); (G.F.); (I.G.)
| | - Ivan Gentile
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, 80131 Naples, Italy; (S.C.); (B.P.); (R.S.); (M.M.); (G.F.); (I.G.)
| | - Roberto Parrella
- Dipartimento di Malattie Infettive e Emergenze Infettive, Divisione di Malattie Infettive Respiratorie, Ospedale Cotugno, AORN dei Colli, 80131 Naples, Italy; (A.D.R.); (R.P.)
| | - Giuseppe Castaldo
- CEINGE-Biotecnologie Avanzate, Scarl, 80131 Naples, Italy; (G.S.); (M.R.); (M.G.); (L.T.); (F.S.)
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Naples, Italy
| | - Filippo Scialò
- CEINGE-Biotecnologie Avanzate, Scarl, 80131 Naples, Italy; (G.S.); (M.R.); (M.G.); (L.T.); (F.S.)
- Dipartimento di Medicina Traslazionale, Università della Campania L. Vanvitelli, 80131 Naples, Italy
| |
Collapse
|
42
|
Moga E, Lynton-Pons E, Domingo P. The Robustness of Cellular Immunity Determines the Fate of SARS-CoV-2 Infection. Front Immunol 2022; 13:904686. [PMID: 35833134 PMCID: PMC9271749 DOI: 10.3389/fimmu.2022.904686] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/27/2022] [Indexed: 12/11/2022] Open
Abstract
Two years after the appearance of the SARS-CoV-2 virus, the causal agent of the current global pandemic, it is time to analyze the evolution of the immune protection that infection and vaccination provide. Cellular immunity plays an important role in limiting disease severity and the resolution of infection. The early appearance, breadth and magnitude of SARS-CoV-2 specific T cell response has been correlated with disease severity and it has been thought that T cell responses may be sufficient to clear infection with minimal disease in COVID-19 patients with X-linked or autosomal recessive agammaglobulinemia. However, our knowledge of the phenotypic and functional diversity of CD8+ cytotoxic lymphocytes, CD4+ T helper cells, mucosal-associated invariant T (MAIT) cells and CD4+ T follicular helper (Tfh), which play a critical role in infection control as well as long-term protection, is still evolving. It has been described how CD8+ cytotoxic lymphocytes interrupt viral replication by secreting antiviral cytokines (IFN-γ and TNF-α) and directly killing infected cells, negatively correlating with stages of disease progression. In addition, CD4+ T helper cells have been reported to be key pieces, leading, coordinating and ultimately regulating antiviral immunity. For instance, in some more severe COVID-19 cases a dysregulated CD4+ T cell signature may contribute to the greater production of pro-inflammatory cytokines responsible for pathogenic inflammation. Here we discuss how cellular immunity is the axis around which the rest of the immune system components revolve, since it orchestrates and leads antiviral response by regulating the inflammatory cascade and, as a consequence, the innate immune system, as well as promoting a correct humoral response through CD4+ Tfh cells. This review also analyses the critical role of cellular immunity in modulating the development of high-affinity neutralizing antibodies and germinal center B cell differentiation in memory and long-lived antibody secreting cells. Finally, since there is currently a high percentage of vaccinated population and, in some cases, vaccine booster doses are even being administered in certain countries, we have also summarized newer approaches to long-lasting protective immunity and the cross-protection of cellular immune response against SARS-CoV-2.
Collapse
Affiliation(s)
- Esther Moga
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain,*Correspondence: Esther Moga,
| | - Elionor Lynton-Pons
- Department of Immunology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau (IIB Sant Pau), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pere Domingo
- Unidad de enfermedades infecciosas, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| |
Collapse
|
43
|
Pre-existing comorbidities shape the immune response associated with severe COVID-19. J Allergy Clin Immunol 2022; 150:312-324. [PMID: 35716951 PMCID: PMC9212690 DOI: 10.1016/j.jaci.2022.05.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Comorbidities are risk factors for the development of severe COVID-19. However, to which extent an underlying comorbidity influences the immune response to SARS-CoV-2 remains unknown. OBJECTIVE AND METHODS High-throughput, high-dimensional single-cell-mapping of peripheral blood leukocytes and algorithm-guided analysis were employed to investigate the complex interrelations of comorbidities, the immune response and patient outcome in COVID-19. RESULTS We discovered characteristic immune signatures associated not only with severe COVID-19, but also with the underlying medical condition. Different factors of the metabolic syndrome (obesity-hypertension-diabetes) affected distinct immune populations, thereby additively increasing the immune dysregulatory effect when present in a single patient. Patients with disorders affecting the lung or heart together with factors of metabolic syndrome clustered together, while immune disorder and chronic kidney disease displayed a distinct immune profile in COVID-19. Particularly SARS-CoV-2-infected patients with pre-existing chronic kidney disease were characterized by the highest number of altered immune signatures of both lymphoid and myeloid immune branches. This overall major immune dysregulation could be the underlying mechanism for the estimated odds ratio of 16.3 for severe COVID-19 in this burdened cohort. CONCLUSION The combinatorial systematic analysis of COVID-19 patient immune signatures, comorbidities, and patient outcomes provides the mechanistic immunological underpinnings of comorbidity-driven patient risk and uncovered comorbidity-driven immune signatures.
Collapse
|
44
|
Balandrán JC, Zamora-Herrera G, Romo-Rodríguez R, Pelayo R. Emergency Hematopoiesis in the Pathobiology of COVID-19: The Dark Side of an Early Innate Protective Mechanism. J Interferon Cytokine Res 2022; 42:393-405. [PMID: 35675647 DOI: 10.1089/jir.2022.0028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The recognition of pathogens to which we are constantly exposed induces the immediate replenishment of innate immune cells from the most primitive stages of their development through emergency hematopoiesis, a central mechanism contributing to early infection control. However, as with other protective mechanisms, its functional success is at risk when the excess of inducing signals accelerates immunological catastrophes. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection exhibits a clinical spectrum that ranges from completely asymptomatic states to fatal outcomes, with the amplification of inflammatory components being the critical point that determine the progress, complication, and severity of the disease. This review focuses on the most relevant findings that entail emergency hematopoiesis to SARS-CoV-2 infection response and revolutionize our understanding of the mechanisms governing the clinical prognosis of COVID-19. Of special interest are the metabolic or hyperinflammatory conditions in aging that exacerbate the phenomenon and favor the uncontrolled emergency myelopoiesis leading to the evolution of severe disease.
Collapse
Affiliation(s)
- Juan Carlos Balandrán
- Department of Pathology, NYU Grossman School of Medicine, New York, New York, USA.,Laura and Isaac Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, New York, USA
| | - Gabriela Zamora-Herrera
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Rubí Romo-Rodríguez
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| | - Rosana Pelayo
- Centro de Investigación Biomédica de Oriente, Delegación Puebla, Instituto Mexicano del Seguro Social, Puebla, Mexico
| |
Collapse
|
45
|
Sabbatinelli J, Matacchione G, Giuliani A, Ramini D, Rippo MR, Procopio AD, Bonafè M, Olivieri F. Circulating biomarkers of inflammaging as potential predictors of COVID-19 severe outcomes. Mech Ageing Dev 2022; 204:111667. [PMID: 35341896 PMCID: PMC8949647 DOI: 10.1016/j.mad.2022.111667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 01/10/2023]
Abstract
The COVID-19 pandemic caused by SARS-CoV-2 infection has been of unprecedented clinical and socio-economic worldwide relevance. The case fatality rate for COVID-19 grows exponentially with age and the presence of comorbidities. In the older patients, COVID-19 manifests predominantly as a systemic disease associated with immunological, inflammatory, and procoagulant responses. Timely diagnosis and risk stratification are crucial steps to define appropriate therapies and reduce mortality, especially in the older patients. Chronically and systemically activated innate immune responses and impaired antiviral responses have been recognized as the results of a progressive remodeling of the immune system during aging, which can be described by the words 'immunosenescence' and 'inflammaging'. These age-related features of the immune system were highlighted in patients affected by COVID-19 with the poorest clinical outcomes, suggesting that the mechanisms underpinning immunosenescence and inflammaging could be relevant for COVID-19 pathogenesis and progression. Increasing evidence suggests that senescent myeloid and endothelial cells are characterized by the acquisition of a senescence-associated pro-inflammatory phenotype (SASP), which is considered as the main culprit of both immunosenescence and inflammaging. Here, we reviewed this evidence and highlighted several circulating biomarkers of inflammaging that could provide additional prognostic information to stratify COVID-19 patients based on the risk of severe outcomes.
Collapse
Affiliation(s)
- Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Laboratory Medicine, AOU Ospedali Riuniti, Ancona, Italy
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Angelica Giuliani
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Deborah Ramini
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Maria Rita Rippo
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Domenico Procopio
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine, Università di Bologna, Bologna, Italy
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, Università Politecnica delle Marche, Ancona, Italy; Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, Ancona, Italy.
| |
Collapse
|
46
|
Messina NL, Germano S, McElroy R, Rudraraju R, Bonnici R, Pittet LF, Neeland MR, Nicholson S, Subbarao K, Curtis N. Off-target effects of bacillus Calmette-Guérin vaccination on immune responses to SARS-CoV-2: implications for protection against severe COVID-19. Clin Transl Immunology 2022; 11:e1387. [PMID: 35573165 PMCID: PMC9028103 DOI: 10.1002/cti2.1387] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 01/03/2023] Open
Abstract
Background and objectives Because of its beneficial off‐target effects against non‐mycobacterial infectious diseases, bacillus Calmette–Guérin (BCG) vaccination might be an accessible early intervention to boost protection against novel pathogens. Multiple epidemiological studies and randomised controlled trials (RCTs) are investigating the protective effect of BCG against coronavirus disease 2019 (COVID‐19). Using samples from participants in a placebo‐controlled RCT aiming to determine whether BCG vaccination reduces the incidence and severity of COVID‐19, we investigated the immunomodulatory effects of BCG on in vitro immune responses to SARS‐CoV‐2. Methods This study used peripheral blood taken from participants in the multicentre RCT and BCG vaccination to reduce the impact of COVID‐19 on healthcare workers (BRACE trial). The whole blood taken from BRACE trial participants was stimulated with γ‐irradiated SARS‐CoV‐2‐infected or mock‐infected Vero cell supernatant. Cytokine responses were measured by multiplex cytokine analysis, and single‐cell immunophenotyping was made by flow cytometry. Results BCG vaccination, but not placebo vaccination, reduced SARS‐CoV‐2‐induced secretion of cytokines known to be associated with severe COVID‐19, including IL‐6, TNF‐α and IL‐10. In addition, BCG vaccination promoted an effector memory phenotype in both CD4+ and CD8+ T cells, and an activation of eosinophils in response to SARS‐CoV‐2. Conclusions The immunomodulatory signature of BCG’s off‐target effects on SARS‐CoV‐2 is consistent with a protective immune response against severe COVID‐19.
Collapse
Affiliation(s)
- Nicole L Messina
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia.,Department of Paediatrics The University of Melbourne Parkville VIC Australia
| | - Susie Germano
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia
| | - Rebecca McElroy
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia
| | - Rajeev Rudraraju
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| | - Rhian Bonnici
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia
| | - Laure F Pittet
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia.,Department of Paediatrics The University of Melbourne Parkville VIC Australia.,Paediatric Infectious Diseases Unit Faculty of Medicine Geneva University Hospitals Geneva Switzerland
| | - Melanie R Neeland
- Department of Paediatrics The University of Melbourne Parkville VIC Australia.,Molecular Immunity Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia
| | - Suellen Nicholson
- Victorian Infectious Diseases Reference Laboratory The Royal Melbourne Hospital The Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology University of Melbourne at The Peter Doherty Institute for Infection and Immunity Parkville VIC Australia.,WHO Collaborating Centre for Reference and Research on Influenza Peter Doherty Institute for Infection and Immunity Parkville VIC Australia
| | - Nigel Curtis
- Infectious Diseases Group, Infection and Immunity Theme Murdoch Children's Research Institute Parkville VIC Australia.,Department of Paediatrics The University of Melbourne Parkville VIC Australia.,Infectious Diseases The Royal Children's Hospital Melbourne Parkville VIC Australia
| | | |
Collapse
|
47
|
Bencheqroun H, Ahmed Y, Kocak M, Villa E, Barrera C, Mohiuddin M, Fortunet R, Iyoha E, Bates D, Okpalor C, Agbosasa O, Mohammed K, Pondell S, Mohamed A, Mohamed YI, Gok Yavuz B, Kaseb MO, Kasseb OO, Gocio MY, Tu PTM, Li D, Lu J, Selim A, Ma Q, Kaseb AO. A Randomized, Double-Blind, Placebo-Controlled, Multicenter Study to Evaluate the Safety and Efficacy of ThymoQuinone Formula (TQF) for Treating Outpatient SARS-CoV-2. Pathogens 2022; 11:pathogens11050551. [PMID: 35631072 PMCID: PMC9144779 DOI: 10.3390/pathogens11050551] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 11/16/2022] Open
Abstract
There is an urgent need for an oral drug for the treatment of mild to moderate outpatient SARS-CoV-2. Our preclinical and clinical study’s aim was to determine the safety and preliminary efficacy of oral TQ Formula (TQF), in the treatment of outpatient SARS-CoV-2. In a double-blind, placebo-controlled phase 2 trial, we randomly assigned (1:1 ratio) non-hospitalized, adult (>18 years), symptomatic SARS-CoV-2 patients to receive oral TQF or placebo. The primary endpoints were safety and the median time-to-sustained-clinical-response (SCR). SCR was 6 days in the TQF arm vs. 8 days in the placebo arm (p = 0.77), and 5 days in the TQF arm vs. 7.5 days in the placebo arm in the high-risk cohort, HR 1.55 (95% CI: 0.70, 3.43, p = 0.25). No significant difference was found in the rate of AEs (p = 0.16). TQF led to a significantly faster decline in the total symptom burden (TSB) (p < 0.001), and a significant increase in cytotoxic CD8+ (p = 0.042) and helper CD4+ (p = 0.042) central memory T lymphocytes. TQF exhibited an in vitro inhibitory effect on the entry of five SARS-CoV-2 variants. TQF was well-tolerated. While the median time-to-SCR did not reach statistical significance; it was shorter in the TQF arm and preclinical/clinical signals of TQF activity across multiple endpoints were significant. Therefore, a confirmatory study is planned.
Collapse
Affiliation(s)
- Hassan Bencheqroun
- RESPIRE Clinical Research, Palm Springs, CA 92262, USA;
- Correspondence: (H.B.); (A.O.K.)
| | - Yasir Ahmed
- United Memorial Medical Center, Department of Research and Development, Houston, TX 77091, USA; (Y.A.); (C.B.); (M.M.)
| | - Mehmet Kocak
- Department of Biostatistics and Medical Informatics, International School of Medicine, Istanbul Medipol University, 34810 Istanbul, Turkey;
| | | | - Cesar Barrera
- United Memorial Medical Center, Department of Research and Development, Houston, TX 77091, USA; (Y.A.); (C.B.); (M.M.)
| | - Mariya Mohiuddin
- United Memorial Medical Center, Department of Research and Development, Houston, TX 77091, USA; (Y.A.); (C.B.); (M.M.)
| | - Raul Fortunet
- RESPIRE Clinical Research, Palm Springs, CA 92262, USA;
| | - Emmanuel Iyoha
- Tranquil Clinical and Research Consulting Services, Houston, TX 77598, USA; (E.I.); (D.B.); (C.O.); (O.A.); (K.M.)
| | - Deborah Bates
- Tranquil Clinical and Research Consulting Services, Houston, TX 77598, USA; (E.I.); (D.B.); (C.O.); (O.A.); (K.M.)
| | - Chinedu Okpalor
- Tranquil Clinical and Research Consulting Services, Houston, TX 77598, USA; (E.I.); (D.B.); (C.O.); (O.A.); (K.M.)
| | - Ola Agbosasa
- Tranquil Clinical and Research Consulting Services, Houston, TX 77598, USA; (E.I.); (D.B.); (C.O.); (O.A.); (K.M.)
| | - Karim Mohammed
- Tranquil Clinical and Research Consulting Services, Houston, TX 77598, USA; (E.I.); (D.B.); (C.O.); (O.A.); (K.M.)
| | - Stephen Pondell
- Chemistry, Manufacturing and Controls Department, Novatek Pharmaceuticals, Inc., Houston, TX 77054, USA;
| | - Amr Mohamed
- UH Seidman Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA;
| | - Yehia I. Mohamed
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.I.M.); (B.G.Y.)
| | - Betul Gok Yavuz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.I.M.); (B.G.Y.)
| | - Mohamed O. Kaseb
- Novatek Pharmaceuticals, Inc., Houston, TX 77598, USA; (M.O.K.); (O.O.K.); (M.Y.G.)
| | - Osama O. Kasseb
- Novatek Pharmaceuticals, Inc., Houston, TX 77598, USA; (M.O.K.); (O.O.K.); (M.Y.G.)
| | - Michelle York Gocio
- Novatek Pharmaceuticals, Inc., Houston, TX 77598, USA; (M.O.K.); (O.O.K.); (M.Y.G.)
| | | | - Dan Li
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.L.); (Q.M.)
| | - Jianming Lu
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University School of Medicine, Washington, DC 20007, USA;
- Codex BioSolutions Inc., Rockville, MD 20852, USA
| | - Abdulhafez Selim
- Philadelphia College of Osteopathic Medicine (PCOM), Philadelphia, PA 19131, USA;
| | - Qing Ma
- Department of Hematopoietic Biology and Malignancy, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (D.L.); (Q.M.)
| | - Ahmed O. Kaseb
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (Y.I.M.); (B.G.Y.)
- Correspondence: (H.B.); (A.O.K.)
| |
Collapse
|
48
|
Kreutmair S, Pfeifer D, Waterhouse M, Takács F, Graessel L, Döhner K, Duyster J, Illert AL, Frey AV, Schmitt M, Lübbert M. First-in-human study of WT1 recombinant protein vaccination in elderly patients with AML in remission: a single-center experience. Cancer Immunol Immunother 2022; 71:2913-2928. [PMID: 35476127 PMCID: PMC9588470 DOI: 10.1007/s00262-022-03202-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
Abstract
Wilms’ tumor 1 (WT1) protein is highly immunogenic and overexpressed in acute myeloid leukemia (AML), consequently ranked as a promising target for novel immunotherapeutic strategies. Here we report our experience of a phase I/II clinical trial (NCT01051063) of a vaccination strategy based on WT1 recombinant protein (WT1-A10) together with vaccine adjuvant AS01B in five elderly AML patients (median age 69 years, range 63–75) receiving a total of 62 vaccinations (median 18, range 3–20) after standard chemotherapy. Clinical benefit was observed in three patients: one patient achieved measurable residual disease clearance during WT1 vaccination therapy, another patient maintained long-term molecular remission over 59 months after the first vaccination cycle. Interestingly, in one case, we observed a complete clonal switch at AML relapse with loss of WT1 expression, proposing suppression of the original AML clone by WT1-based vaccination therapy. Detected humoral and cellular CD4+ T cell immune responses point to efficient immune stimulation post-vaccination, complementing hints for induced conventional T cell infiltration into the bone marrow and a shift from senescent/exhausted to a more activated T cell profile. Overall, the vaccinations with WT1 recombinant protein had an acceptable safety profile and were thus well tolerated. To conclude, our data provide evidence of potential clinical efficacy of WT1 protein-based vaccination therapy in AML patients, warranting further investigations.
Collapse
Affiliation(s)
- Stefanie Kreutmair
- Department of Internal Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Freiburg, 69120, Heidelberg, Germany
| | - Dietmar Pfeifer
- Department of Internal Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Miguel Waterhouse
- Department of Internal Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Ferenc Takács
- Center for Pathology, University Medical Center, University of Freiburg, 79106, Freiburg, Germany.,1st Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085, Budapest, Hungary
| | - Linda Graessel
- Department of Internal Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Konstanze Döhner
- Department of Internal Medicine III, University Hospital, 89081, Ulm, Germany
| | - Justus Duyster
- Department of Internal Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Freiburg, 69120, Heidelberg, Germany
| | - Anna Lena Illert
- Department of Internal Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Freiburg, 69120, Heidelberg, Germany
| | - Anna-Verena Frey
- Center for Pathology, University Medical Center, University of Freiburg, 79106, Freiburg, Germany
| | - Michael Schmitt
- Department of Internal Medicine V, Hematology, Oncology, Rheumatology, University Hospital Heidelberg, 69120, Heidelberg, Germany.,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany
| | - Michael Lübbert
- Department of Internal Medicine I, Faculty of Medicine, Medical Center, University of Freiburg, 79106, Freiburg, Germany. .,German Cancer Consortium (DKTK) and German Cancer Research Center (DKFZ), Partner site Freiburg, 69120, Heidelberg, Germany.
| |
Collapse
|
49
|
Detection of SARS-CoV-2 infection by microRNA profiling of the upper respiratory tract. PLoS One 2022; 17:e0265670. [PMID: 35381016 PMCID: PMC8982876 DOI: 10.1371/journal.pone.0265670] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 03/07/2022] [Indexed: 12/14/2022] Open
Abstract
Host biomarkers are increasingly being considered as tools for improved COVID-19 detection and prognosis. We recently profiled circulating host-encoded microRNA (miRNAs) during SARS-CoV-2 infection, revealing a signature that classified COVID-19 cases with 99.9% accuracy. Here we sought to develop a signature suited for clinical application by analyzing specimens collected using minimally invasive procedures. Eight miRNAs displayed altered expression in anterior nasal tissues from COVID-19 patients, with miR-142-3p, a negative regulator of interleukin-6 (IL-6) production, the most strongly upregulated. Supervised machine learning analysis revealed that a three-miRNA signature (miR-30c-2-3p, miR-628-3p and miR-93-5p) independently classifies COVID-19 cases with 100% accuracy. This study further defines the host miRNA response to SARS-CoV-2 infection and identifies candidate biomarkers for improved COVID-19 detection.
Collapse
|
50
|
Maggi E, Azzarone BG, Canonica GW, Moretta L. What we know and still ignore on COVID-19 immune pathogenesis and a proposal based on the experience of allergic disorders. Allergy 2022; 77:1114-1128. [PMID: 34582050 PMCID: PMC8652765 DOI: 10.1111/all.15112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/06/2021] [Accepted: 08/26/2021] [Indexed: 12/13/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic started in March 2020 and caused over 5 million confirmed deaths worldwide as far August 2021. We have been recently overwhelmed by a wide literature on how the immune system recognizes severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and contributes to COVID-19 pathogenesis. Although originally considered a respiratory viral disease, COVID-19 is now recognized as a far more complex, multi-organ-, immuno-mediated-, and mostly heterogeneous disorder. Though efficient innate and adaptive immunity may control infection, when the patient fails to mount an adequate immune response at the start, or in advanced disease, a high innate-induced inflammation can lead to different clinical outcomes through heterogeneous compensatory mechanisms. The variability of viral load and persistence, the genetic alterations of virus-driven receptors/signaling pathways and the plasticity of innate and adaptive responses may all account for the extreme heterogeneity of pathogenesis and clinical patterns. As recently applied to some inflammatory disorders as asthma, rhinosinusitis with polyposis, and atopic dermatitis, herein we suggest defining different endo-types and the related phenotypes along COVID-19. Patients should be stratified for evolving symptoms and tightly monitored for surrogate biomarkers of innate and adaptive immunity. This would allow to preventively identify each endo-type (and its related phenotype) and to treat patients precisely with agents targeting pathogenic mechanisms.
Collapse
Affiliation(s)
- Enrico Maggi
- Department of ImmunologyBambino Gesù Children’s HospitalIRCCSRomeItaly
| | | | | | - Lorenzo Moretta
- Department of ImmunologyBambino Gesù Children’s HospitalIRCCSRomeItaly
| |
Collapse
|