1
|
Peluso M, Sandel D, Deitchman A, Kim S, Dalhuisen T, Tummala H, Tibúrcio R, Zemelko L, Borgo G, Singh S, Schwartz K, Deswal M, Williams M, Hoh R, Shimoda M, Narpala S, Serebryannyy L, Khalili M, Vendrame E, SenGupta D, Whitmore LS, Tisoncik-Go J, Gale M, Koup R, Mullins J, Felber B, Pavlakis G, Reeves J, Petropoulos C, Glidden D, Spitzer M, Gama L, Caskey M, Nussenzweig M, Chew K, Henrich T, Yukl S, Cohn L, Deeks S, Rutishauser R. Combination immunotherapy induces post-intervention control of HIV. RESEARCH SQUARE 2025:rs.3.rs-6141479. [PMID: 40166020 PMCID: PMC11957202 DOI: 10.21203/rs.3.rs-6141479/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The identification of therapeutic strategies to induce sustained antiretroviral therapy (ART)-free control of HIV infection is a major priority.1 Combination immunotherapy including HIV vaccination, immune stimulation/latency reversal, and passive transfer of broadly neutralizing antibodies (bNAbs) has shown promise in non-human primate models,2-7 but few studies have translated such approaches into people. Here, we performed a single-arm, proof-of-concept combination study of these three approaches in ten people with HIV on ART that included (1) therapeutic vaccination with an HIV/Gag conserved element (CE)-targeted DNA+IL-12 prime/MVA boost regimen followed by (2) administration of two bNAbs (10-1074 and VRC07-523LS) and a toll-like receptor 9 (TLR9) agonist (lefitolimod) during ART suppression, followed by (3) repeat bNAb administration at the time of ART interruption. Seven of the ten participants exhibited partial (low viral load set point) or complete (aviremic) post-intervention control after stopping ART, independent of residual bNAb plasma levels. Robust expansion of activated CD8+ T cells early in response to rebounding virus correlated with lower viral load set points. These data suggest that combination immunotherapy approaches might prove effective to induce sustained control of HIV by slowing rebound and improving CD8+ T cell responses, and that these approaches should continue to be optimized.
Collapse
Affiliation(s)
- M.J Peluso
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - D.A Sandel
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - A.N Deitchman
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, USA
| | - S.J Kim
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - T Dalhuisen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - H.P Tummala
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, CA, USA
| | - R Tibúrcio
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - L Zemelko
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - G.M Borgo
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - S.S Singh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - K Schwartz
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - M Deswal
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - M.C Williams
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - R Hoh
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - M Shimoda
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - S Narpala
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - L Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - M Khalili
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - E Vendrame
- Gilead Sciences, Inc., Foster City, CA, USA
| | - D SenGupta
- Gilead Sciences, Inc., Foster City, CA, USA
| | - L. S Whitmore
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, USA
| | - J Tisoncik-Go
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, USA
| | - M Gale
- Department of Immunology, Center for Innate Immunity and Immune Disease, School of Medicine, University of Washington, Seattle, WA, USA
- Current affiliation: Department of Microbiology and Immunology, and the Institute on Infectious Diseases, University of Minnesota, Minneapolis, MN, USA
| | - R.A Koup
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - J.I Mullins
- Department of Microbiology, University of Washington, Seattle, WA, USA
| | - B.K Felber
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - G.N Pavlakis
- Basic Research Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - J.D Reeves
- Labcorp-Monogram Biosciences, South San Francisco, CA, USA
| | | | - D.V Glidden
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - M.H Spitzer
- Department of Otolaryngology-Head and Neck Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA
| | - L Gama
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Current affiliation: Instituto Butantan, São Paulo, Brazil
| | - M Caskey
- Department of Clinical Investigation, The Rockefeller University, New York, NY, USA
| | - M.C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - K.W Chew
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - T.J Henrich
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - S.A Yukl
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Medicine, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | - L.B Cohn
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - S.G Deeks
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - R.L Rutishauser
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
2
|
Gasca-Capote C, Ruiz-Mateos E. Persistent elite controllers as the key model to identify permanent HIV remission. Curr Opin HIV AIDS 2025; 20:165-171. [PMID: 39773856 PMCID: PMC11809733 DOI: 10.1097/coh.0000000000000907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
PURPOSE OF REVIEW To summarize the heterogeneity in the elite controllers population with the aim to identify a compatible profile with a persistent HIV remission, making distinction between persistent elite controllers, people with HIV (PWHIV) who permanently maintain virological control in the absence of antiretroviral treatment (ART), and transient elite controllers, PWHIV who eventually lose virological control. For this purpose, it is important to consider the mechanisms and biomarkers that have previously been associated with the maintenance and loss of the natural virological control. RECENT FINDINGS Transient elite controllers, before losing virological control, exhibit a distinct metabolomic, proteomic, microRNAs (miRNA), immunological and virological profile compared to persistent elite controllers. In addition to a reduced and less polyfunctional HIV-specific T-cell response, transient elite controllers show a greater proportion of intact proviruses integrated into genic regions. In contrast, persistent elite controllers display a privileged HIV-1 reservoir profile with absence of detected intact proviruses or low proportion of clonal intact proviruses preferentially integrated into genomic features associated with HIV-1 transcriptional repression. SUMMARY According to previous studies, the comprehensive characterization of persistent elite controllers might be crucial to identify other PWHIV with this distinct profile as spontaneously cured.
Collapse
Affiliation(s)
- Carmen Gasca-Capote
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | | |
Collapse
|
3
|
Lacabaratz C, Durand M, Wiedemann A, Foucat E, Surénaud M, Krief C, Guillaumat L, Robinson C, Luhn K, Bockstal V, Thiébaut R, Richert L, Lévy Y. Innate and Cellular Immune Response to the Ebola Vaccine Ad26.ZEBOV, MVA-BN-Filo: An Ancillary Study of the EBL2001 Phase 2 Trial. J Infect Dis 2025; 231:230-240. [PMID: 39012798 DOI: 10.1093/infdis/jiae360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND The EBL2001 phase 2 trial tested the 2-dose Ad26.ZEBOV, MVA-BN-Filo Ebola vaccine in Europe. Safety and humoral immunogenicity assessments led to European Union market authorization in 2020. Complementary analyses of immune responses are warranted to better characterize vaccine effects. METHODS We conducted an ancillary study to analyze changes in the serum and cellular responses. Serum biomarkers of activation/inflammation were evaluated using a Luminex assay. Vaccine-elicited T-cell responses and functions were evaluated by assessing their phenotype, cytokine production, proliferation, and cytotoxic potential. Integrated data analysis was performed through correlation and principal component analysis of serum biomarkers and cellular immune responses. RESULTS Forty-eight volunteers were included. The Ad26.ZEBOV, MVA-BN-Filo vaccine elicited (1) serum increase of inflammatory/activation markers mainly at 1 day after the Ad26.ZEBOV vaccine; and (2) durable EBOV-specific T-cell proliferation and CD8+ T cells exhibiting a cytotoxic phenotype after Ad26.ZEBOV prime, after MVA-BN-Filo boost, and 6 months postvaccination. Integrated analysis revealed correlations between (1) EBOV-specific CD8+ T-cell proliferation and cytotoxic phenotype; and (2) high EBOV-specific CD8+ T-cell cytotoxic phenotype and low inflammatory marker IL-8 at day 1 postvaccination. DISCUSSION This study provides unique insights into the in vivo contribution of proliferation/cytotoxic CD8+ T cells and inflammation to the Ad26.ZEBOV, MVA-BN-Filo vaccine-induced potency. Clinical Trials Registration. NCT02416453.
Collapse
Affiliation(s)
- Christine Lacabaratz
- Vaccine Research Institute, Créteil, France
- INSERM Unité U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Faculté de Médecine, Université Paris-Est, Créteil, France
| | - Mélany Durand
- Vaccine Research Institute, Créteil, France
- Population Health Research Center, Université Bordeaux, INSERM UMR 1219, Statistics in System Biology and Translational Medicine (SISTM), Institut national de recherche en sciences et technologies du numérique (INRIA), Bordeaux, France
| | - Aurélie Wiedemann
- Vaccine Research Institute, Créteil, France
- INSERM Unité U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Faculté de Médecine, Université Paris-Est, Créteil, France
| | - Emile Foucat
- Vaccine Research Institute, Créteil, France
- INSERM Unité U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Faculté de Médecine, Université Paris-Est, Créteil, France
| | - Mathieu Surénaud
- Vaccine Research Institute, Créteil, France
- INSERM Unité U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Faculté de Médecine, Université Paris-Est, Créteil, France
| | - Corinne Krief
- Vaccine Research Institute, Créteil, France
- INSERM Unité U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Faculté de Médecine, Université Paris-Est, Créteil, France
| | - Lydia Guillaumat
- Vaccine Research Institute, Créteil, France
- INSERM Unité U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Faculté de Médecine, Université Paris-Est, Créteil, France
| | | | - Kerstin Luhn
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Viki Bockstal
- Janssen Vaccines and Prevention B.V., Leiden, The Netherlands
| | - Rodolphe Thiébaut
- Vaccine Research Institute, Créteil, France
- Population Health Research Center, Université Bordeaux, INSERM UMR 1219, Statistics in System Biology and Translational Medicine (SISTM), Institut national de recherche en sciences et technologies du numérique (INRIA), Bordeaux, France
- Department of Medical Information and CIC-EC 1401/Euclid F-CRIN, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Laura Richert
- Vaccine Research Institute, Créteil, France
- Population Health Research Center, Université Bordeaux, INSERM UMR 1219, Statistics in System Biology and Translational Medicine (SISTM), Institut national de recherche en sciences et technologies du numérique (INRIA), Bordeaux, France
- Department of Medical Information and CIC-EC 1401/Euclid F-CRIN, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Yves Lévy
- Vaccine Research Institute, Créteil, France
- INSERM Unité U955, Institut Mondor de Recherche Biomédicale (IMRB), Créteil, France
- Faculté de Médecine, Université Paris-Est, Créteil, France
- Service d'Immunologie Clinique, Groupe Henri-Mondor Albert-Chenevier, Assistance Publique-Hôpitaux de Paris, Créteil, France
| |
Collapse
|
4
|
van Pul L, Stunnenberg M, Kroeze S, van Dort KA, Boeser-Nunnink BDM, Harskamp AM, Geijtenbeek TBH, Kootstra NA. Energy demanding RNA and protein metabolism drive dysfunctionality of HIV-specific T cell changes during chronic HIV infection. PLoS One 2024; 19:e0298472. [PMID: 39356699 PMCID: PMC11446443 DOI: 10.1371/journal.pone.0298472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/08/2024] [Indexed: 10/04/2024] Open
Abstract
Antiretroviral treatment of HIV infected individuals cannot eliminate the HIV reservoir and immune control of HIV is rarely seen upon treatment interruption. In long-term non-progressors (LTNP), an effective CD8 T cell response is thought to contribute to be immune control of HIV. Here we studied the transcriptional profile of virus specific CD8 T cells during the asymptomatic phase of disease, to gain molecular insights in CD8 T cell functionality in HIV progressors and different groups of LTNP: HLA-B*57 LTNP, non-HLA-B*57 LTNP and individuals carrying the MAVS minor genotype (rs7262903/rs7269320). Principal component analysis revealed distinct overall transcriptional profiles between the groups. The transcription profile of HIV-specific CD8 T cells of LTNP groups was associated with increased cytokine/IL-12 signaling and protein/RNA metabolism pathways, indicating an increased CD8 T cell functionality. Although the transcription profile of CMV-specific CD8 T cells differed from that of HIV-specific CD8 T cells, with mainly an upregulation of gene expression in progressors, similar affected pathways were identified. Moreover, CMV-specific CD8 T cells from progressors showed increased expression of genes related to effector functions and suggests recent antigen exposure. Our data shows that changes in cytokine signaling and the energy demanding RNA and protein metabolism are related to CD8 T cell dysfunction, which may indicate that mitochondrial dysfunction is an important driver of T cell dysfunctionality during chronic HIV infection. Indeed, improvement of mitochondrial function by IL-12 and mitoTempo treatment, enhanced in vitro IFNγ release by PBMC from PWH upon HIV gag and CMV pp65 peptide stimulation. Our study provides new insights into the molecular pathways associated with CD8 T cell mediated immune control of chronic HIV infection which is important for the design of novel treatment strategies to restore or improve the HIV-specific immune response.
Collapse
Affiliation(s)
- Lisa van Pul
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Melissa Stunnenberg
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Stefanie Kroeze
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Karel A van Dort
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Brigitte D M Boeser-Nunnink
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Agnes M Harskamp
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Teunis B H Geijtenbeek
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Neeltje A Kootstra
- Amsterdam UMC location University of Amsterdam, Laboratory for Viral Immune Pathogenesis, Amsterdam, The Netherlands
- Amsterdam UMC location University of Amsterdam, Department of Experimental Immunology, Amsterdam, The Netherlands
- Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Sánchez-Gaona N, Gallego-Cortés A, Astorga-Gamaza A, Rallón N, Benito JM, Ruiz-Mateos E, Curran A, Burgos J, Navarro J, Suanzes P, Falcó V, Genescà M, Buzon MJ. NKG2C and NKG2A coexpression defines a highly functional antiviral NK population in spontaneous HIV control. JCI Insight 2024; 9:e182660. [PMID: 39288262 PMCID: PMC11529982 DOI: 10.1172/jci.insight.182660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024] Open
Abstract
Elite controllers (ECs), a unique group of people with HIV (PWH), exhibit remarkable control of viral replication in the absence of antiretroviral therapy. In this study, we comprehensively characterized the NK cell repertoire in ECs after long-term viral control. Phenotypic profiling of NK cells revealed profound differences compared with other PWH, but marked similarities to uninfected individuals, with a distinctive prevalence of NKG2C+CD57+ memory-like NK cells. Functional analyses indicated that ECs had limited production of functional molecules upon NK stimulation and consequently reduced natural cytotoxicity against non-HIV target cells. Importantly, ECs showed an exceptional ability to kill primary HIV-infected cells by the antibody-dependent cell cytotoxicity adaptive mechanism, which was achieved by a specific memory-like NK population expressing CD16, NKG2A, NKG2C, CD57, and CXCR3. In-depth single-cell RNA-seq unveiled a unique transcriptional signature in these NK cells linked to increased cell metabolism, migration, chemotaxis, effector functions, cytokine secretion, and antiviral response. Our findings underscore a pivotal role of NK cells in the immune control of HIV and identify specific NK cells as emerging targets for immunotherapies.
Collapse
Affiliation(s)
- Nerea Sánchez-Gaona
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Gallego-Cortés
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Antonio Astorga-Gamaza
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Norma Rallón
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - José Miguel Benito
- HIV and Viral Hepatitis Research Laboratory, Instituto de Investigación Sanitaria-Fundación Jiménez Díaz, Universidad Autónoma de Madrid (IIS-FJD, UAM), Madrid, Spain
- Hospital Universitario Rey Juan Carlos, Móstoles, Spain
| | - Ezequiel Ruiz-Mateos
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocío University Hospital, Consejo Superior de Investigaciones Científicas (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Adrian Curran
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joaquin Burgos
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Navarro
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paula Suanzes
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Vicenç Falcó
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria J. Buzon
- Infectious Diseases Department, Hospital Universitari Vall d’Hebron, Institut de Recerca (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Vemparala B, Chowdhury S, Guedj J, Dixit NM. Modelling HIV-1 control and remission. NPJ Syst Biol Appl 2024; 10:84. [PMID: 39117718 PMCID: PMC11310323 DOI: 10.1038/s41540-024-00407-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/23/2024] [Indexed: 08/10/2024] Open
Abstract
Remarkable advances are being made in developing interventions for eliciting long-term remission of HIV-1 infection. The success of these interventions will obviate the need for lifelong antiretroviral therapy, the current standard-of-care, and benefit the millions living today with HIV-1. Mathematical modelling has made significant contributions to these efforts. It has helped elucidate the possible mechanistic origins of natural and post-treatment control, deduced potential pathways of the loss of such control, quantified the effects of interventions, and developed frameworks for their rational optimization. Yet, several important questions remain, posing challenges to the translation of these promising interventions. Here, we survey the recent advances in the mathematical modelling of HIV-1 control and remission, highlight their contributions, and discuss potential avenues for future developments.
Collapse
Affiliation(s)
- Bharadwaj Vemparala
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Shreya Chowdhury
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India
| | - Jérémie Guedj
- Université Paris Cité, IAME, INSERM, F-75018, Paris, France
| | - Narendra M Dixit
- Department of Chemical Engineering, Indian Institute of Science, Bengaluru, India.
- Department of Bioengineering, Indian Institute of Science, Bengaluru, India.
| |
Collapse
|
7
|
Tano-Menka R, Singh NK, Muzhingi I, Li X, Mandanas MV, Kaseke C, Crain CR, Zhang A, Ogunshola FJ, Vecchiarello L, Piechocka-Trocha A, Bashirova A, Birnbaum ME, Carrington M, Walker BD, Gaiha GD. Polymorphic residues in HLA-B that mediate HIV control distinctly modulate peptide interactions with both TCR and KIR molecules. Structure 2024; 32:1121-1136.e5. [PMID: 38733995 PMCID: PMC11329236 DOI: 10.1016/j.str.2024.04.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/27/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
Immunogenetic studies have shown that specific HLA-B residues (67, 70, 97, and 156) mediate the impact of HLA class I on HIV infection, but the molecular basis is not well understood. Here we evaluate the function of these residues within the protective HLA-B∗5701 allele. While mutation of Met67, Ser70, and Leu156 disrupt CD8+ T cell recognition, substitution of Val97 had no significant impact. Thermal denaturation of HLA-B∗5701-peptide complexes revealed that Met67 and Leu156 maintain HLA-peptide stability, while Ser70 and Leu156 facilitate T cell receptor (TCR) interactions. Analyses of existing structures and structural models suggested that Val97 mediates HLA-peptide binding to inhibitory KIR3DL1 molecules, which was confirmed by experimental assays. These data thereby demonstrate that the genetic basis by which host immunity impacts HIV outcomes occurs by modulating HLA-B-peptide stability and conformation for interaction with TCR and killer immunoglobulin receptor (KIR) molecules. Moreover, they indicate a key role for epitope specificity and HLA-KIR interactions to HIV control.
Collapse
MESH Headings
- Humans
- HLA-B Antigens/chemistry
- HLA-B Antigens/metabolism
- HLA-B Antigens/genetics
- HLA-B Antigens/immunology
- Protein Binding
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/immunology
- HIV-1/immunology
- HIV-1/metabolism
- HIV Infections/immunology
- HIV Infections/virology
- Models, Molecular
- Receptors, KIR3DL1/metabolism
- Receptors, KIR3DL1/chemistry
- Receptors, KIR3DL1/genetics
- Peptides/chemistry
- Peptides/metabolism
- Binding Sites
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- Polymorphism, Genetic
- Protein Stability
Collapse
Affiliation(s)
- Rhoda Tano-Menka
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Nishant K Singh
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Itai Muzhingi
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Xiaolong Li
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; The First Affiliated School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Michael V Mandanas
- Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA
| | - Clarety Kaseke
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Charles R Crain
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Angela Zhang
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA
| | - Funsho J Ogunshola
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | | | - Alicja Piechocka-Trocha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Arman Bashirova
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Michael E Birnbaum
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA 02142, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mary Carrington
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | - Bruce D Walker
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA; Institute for Medical Engineering and Science and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Gaurav D Gaiha
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA 02139, USA; Division of Gastroenterology, Massachusetts General Hospital, Boston, MA 02114, USA.
| |
Collapse
|
8
|
Collins DR, Olatotse MJ, Racenet ZJ, Arshad U, Çakan E, Gaiha GD, Clayton KL, Walker BD. Expanded Antigen-Specific Elimination Assay to Measure Human CD8 + T Cell Cytolytic Potential. Curr Protoc 2024; 4:e1109. [PMID: 39023416 PMCID: PMC11295945 DOI: 10.1002/cpz1.1109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Durable cellular immunity against pathogens is dependent upon a coordinated recall response to antigen by memory CD8+ T cells, involving their proliferation and the generation of secondary cytotoxic effector cells. Conventional assays measuring ex vivo cytotoxicity fail to capture this secondary cytolytic potential, especially in settings where cells have not been recently exposed to their cognate antigen in vivo. Here we describe the expanded antigen-specific elimination assay (EASEA), a flow cytometric endpoint assay to measure the capacity of human CD8+ T cells to expand in vitro upon antigen re-exposure and generate secondary effector cells capable of selectively eliminating autologous antigen-pulsed target cells across a range of effector-to-target ratios. Unlike alternative assays, EASEA avoids the hazards of radioactive labeling and viral infection and can be used to study responses to individual or pooled antigens of interest. © 2024 The Author(s). Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Expanded antigen-specific elimination assay.
Collapse
Affiliation(s)
- David R. Collins
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | | | - Umar Arshad
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA, USA
| | - Elif Çakan
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA, USA
| | - Gaurav D. Gaiha
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA, USA
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Kiera L. Clayton
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA, USA
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bruce D. Walker
- Ragon Institute of MGH, MIT & Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for Medical Engineering and Sciences, MIT, Cambridge, MA, USA
| |
Collapse
|
9
|
Strongin Z, Raymond Marchand L, Deleage C, Pampena MB, Cardenas MA, Beusch CM, Hoang TN, Urban EA, Gourves M, Nguyen K, Tharp GK, Lapp S, Rahmberg AR, Harper J, Del Rio Estrada PM, Gonzalez-Navarro M, Torres-Ruiz F, Luna-Villalobos YA, Avila-Rios S, Reyes-Teran G, Sekaly R, Silvestri G, Kulpa DA, Saez-Cirion A, Brenchley JM, Bosinger SE, Gordon DE, Betts MR, Kissick HT, Paiardini M. Distinct SIV-specific CD8 + T cells in the lymph node exhibit simultaneous effector and stem-like profiles and are associated with limited SIV persistence. Nat Immunol 2024; 25:1245-1256. [PMID: 38886592 PMCID: PMC11969417 DOI: 10.1038/s41590-024-01875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 05/14/2024] [Indexed: 06/20/2024]
Abstract
Human immunodeficiency virus (HIV) cure efforts are increasingly focused on harnessing CD8+ T cell functions, which requires a deeper understanding of CD8+ T cells promoting HIV control. Here we identifiy an antigen-responsive TOXhiTCF1+CD39+CD8+ T cell population with high expression of inhibitory receptors and low expression of canonical cytolytic molecules. Transcriptional analysis of simian immunodeficiency virus (SIV)-specific CD8+ T cells and proteomic analysis of purified CD8+ T cell subsets identified TOXhiTCF1+CD39+CD8+ T cells as intermediate effectors that retained stem-like features with a lineage relationship with terminal effector T cells. TOXhiTCF1+CD39+CD8+ T cells were found at higher frequency than TCF1-CD39+CD8+ T cells in follicular microenvironments and were preferentially located in proximity of SIV-RNA+ cells. Their frequency was associated with reduced plasma viremia and lower SIV reservoir size. Highly similar TOXhiTCF1+CD39+CD8+ T cells were detected in lymph nodes from antiretroviral therapy-naive and antiretroviral therapy-suppressed people living with HIV, suggesting this population of CD8+ T cells contributes to limiting SIV and HIV persistence.
Collapse
Affiliation(s)
- Zachary Strongin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Laurence Raymond Marchand
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Claire Deleage
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - M Betina Pampena
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for AIDS Research and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Christian Michel Beusch
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Timothy N Hoang
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Elizabeth A Urban
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Mael Gourves
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Kevin Nguyen
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Gregory K Tharp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Stacey Lapp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Andrew R Rahmberg
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAIDNIH, Bethesda, MD, USA
| | - Justin Harper
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
| | - Perla M Del Rio Estrada
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Mauricio Gonzalez-Navarro
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Fernanda Torres-Ruiz
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Yara Andrea Luna-Villalobos
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Santiago Avila-Rios
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Gustavo Reyes-Teran
- Comision Coordinadora de los Institutos Nacionales de Salud y Hospitales de Alta Especialidad, Mexico City, Mexico
| | - Rafick Sekaly
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Guido Silvestri
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Deanna A Kulpa
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Asier Saez-Cirion
- Institut Pasteur, Université Paris Cité, Viral Reservoirs and Immune Control Unit, Paris, France
- Institut Pasteur, Université Paris Cité, HIV Inflammation and Persistence Unit, Paris, France
| | - Jason M Brenchley
- Barrier Immunity Section, Laboratory of Viral Diseases, NIAIDNIH, Bethesda, MD, USA
| | - Steven E Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - David Ezra Gordon
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael R Betts
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for AIDS Research and Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Haydn T Kissick
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA, USA.
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Vaccine Center, Emory University, Atlanta, GA, USA.
| |
Collapse
|
10
|
Bone B, Lichterfeld M. "Block and lock" viral integration sites in persons with drug-free control of HIV-1 infection. Curr Opin HIV AIDS 2024; 19:110-115. [PMID: 38457193 DOI: 10.1097/coh.0000000000000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
PURPOSE OF REVIEW Elite controllers (ECs) and Posttreatment controllers (PTCs) represent a small subset of individuals who are capable of maintaining drug-free control of HIV plasma viral loads despite the persistence of a replication-competent viral reservoir. This review aims to curate recent experimental studies evaluating viral reservoirs that distinguish EC/PTC and may contribute to their ability to maintain undetectable viral loads in the absence of antiretroviral therapy. RECENT FINDINGS Recent studies on ECs have demonstrated that integration sites of intact proviruses in EC/PTC are markedly biased towards heterochromatin regions; in contrast, intact proviruses in accessible and permissive chromatin were profoundly underrepresented. Of note, no such biases were noted when CD4 + T cells from EC were infected directly ex vivo, suggesting that the viral reservoir profile in EC is not related to altered integration site preferences during acute infection, but instead represents the result of immune-mediated selection mechanisms that can eliminate proviruses in transcriptionally-active euchromatin regions while promoting preferential persistence of intact proviruses in nonpermissive genome regions. Proviral transcription in such "blocked and locked" regions may be restricted through epigenetic mechanisms, protecting them from immune-recognition but presumably limiting their ability to drive viral rebound. While the exact immune mechanisms driving this selection process remain undefined, recent single-cell analytic approaches support the hypothesis that HIV reservoir cells are subject to immune selection pressure by host factors. SUMMARY A "blocked and locked" viral reservoir profile may constitute a structural virological correlate of a functional cure of HIV-1 infection. Further research into the immunological mechanism promoting HIV-1 reservoir selection and evolution in EC/PTC is warranted and could inform foreseeable cure strategies.
Collapse
Affiliation(s)
- Benjamin Bone
- Infectious Disease Division, Brigham Women's Hospital, Boston
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Mathias Lichterfeld
- Infectious Disease Division, Brigham Women's Hospital, Boston
- The Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Grasberger P, Sondrini AR, Clayton KL. Harnessing immune cells to eliminate HIV reservoirs. Curr Opin HIV AIDS 2024; 19:62-68. [PMID: 38167784 PMCID: PMC10908255 DOI: 10.1097/coh.0000000000000840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
PURPOSE OF REVIEW Despite decades of insights about how CD8 + T cells and natural killer (NK) cells contribute to natural control of infection, additional hurdles (mutational escape from cellular immunity, sequence diversity, and hard-to-access tissue reservoirs) will need to be overcome to develop a cure. In this review, we highlight recent findings of novel mechanisms of antiviral cellular immunity and discuss current strategies for therapeutic deisgn. RECENT FINDINGS Of note are the apparent converging roles of viral antigen-specific MHC-E-restricted CD8 + T cells and NK cells, interleukin (IL)-15 biologics to boost cytotoxicity, and broadly neutralizing antibodies in their native form or as anitbody fragments to neutralize virus and engage cellular immunity, respectively. Finally, renewed interest in myeloid cells as relevant viral reservoirs is an encouraging sign for designing inclusive therapeutic strategies. SUMMARY Several studies have shown promise in many preclinical models of disease, including simian immunodeficiency virus (SIV)/SHIV infection in nonhuman primates and HIV infection in humanized mice. However, each model comes with its own limitations and may not fully predict human responses. We eagerly await the results of clinical trails assessing the efficacy of these strategies to achieve reductions in viral reservoirs, delay viral rebound, or ultimately elicit immune based control of infection without combination antiretroviral therapy (cART).
Collapse
Affiliation(s)
- Paula Grasberger
- Department of Pathology, University of Massachusetts Chan Medical School
| | | | - Kiera L. Clayton
- Department of Pathology, University of Massachusetts Chan Medical School
| |
Collapse
|
12
|
Gasca-Capote C, Lian X, Gao C, Roseto IC, Jiménez-León MR, Gladkov G, Camacho-Sojo MI, Pérez-Gómez A, Gallego I, Lopez-Cortes LE, Bachiller S, Vitalle J, Rafii-El-Idrissi Benhnia M, Ostos FJ, Collado-Romacho AR, Santos J, Palacios R, Gomez-Ayerbe C, Muñoz-Medina L, Ruiz-Sancho A, Frias M, Rivero-Juarez A, Roca-Oporto C, Hidalgo-Tenorio C, Rull A, Olalla J, Lopez-Ruz MA, Vidal F, Viladés C, Mastrangelo A, Cavassini M, Espinosa N, Perreau M, Peraire J, Rivero A, López-Cortes LF, Lichterfeld M, Yu XG, Ruiz-Mateos E. The HIV-1 reservoir landscape in persistent elite controllers and transient elite controllers. J Clin Invest 2024; 134:e174215. [PMID: 38376918 PMCID: PMC11014653 DOI: 10.1172/jci174215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/13/2024] [Indexed: 02/21/2024] Open
Abstract
BACKGROUNDPersistent controllers (PCs) maintain antiretroviral-free HIV-1 control indefinitely over time, while transient controllers (TCs) eventually lose virological control. It is essential to characterize the quality of the HIV reservoir in terms of these phenotypes in order to identify the factors that lead to HIV progression and to open new avenues toward an HIV cure.METHODSThe characterization of HIV-1 reservoir from peripheral blood mononuclear cells was performed using next-generation sequencing techniques, such as full-length individual and matched integration site proviral sequencing (FLIP-Seq; MIP-Seq).RESULTSPCs and TCs, before losing virological control, presented significantly lower total, intact, and defective proviruses compared with those of participants on antiretroviral therapy (ART). No differences were found in total and defective proviruses between PCs and TCs. However, intact provirus levels were lower in PCs compared with TCs; indeed the intact/defective HIV-DNA ratio was significantly higher in TCs. Clonally expanded intact proviruses were found only in PCs and located in centromeric satellite DNA or zinc-finger genes, both associated with heterochromatin features. In contrast, sampled intact proviruses were located in permissive genic euchromatic positions in TCs.CONCLUSIONSThese results suggest the need for, and can give guidance to, the design of future research to identify a distinct proviral landscape that may be associated with the persistent control of HIV-1 without ART.FUNDINGInstituto de Salud Carlos III (FI17/00186, FI19/00083, MV20/00057, PI18/01532, PI19/01127 and PI22/01796), Gilead Fellowships (GLD22/00147). NIH grants AI155171, AI116228, AI078799, HL134539, DA047034, MH134823, amfAR ARCHE and the Bill and Melinda Gates Foundation.
Collapse
Affiliation(s)
- Carmen Gasca-Capote
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Xiaodong Lian
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ce Gao
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Isabelle C. Roseto
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - María Reyes Jiménez-León
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Gregory Gladkov
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - María Inés Camacho-Sojo
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Alberto Pérez-Gómez
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Isabel Gallego
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Luis E. Lopez-Cortes
- Clinical Unit of Infectious Diseases and Microbiology, Virgen Macarena University Hospital, Seville, Spain
- Department of Medicine and Microbiology, School of Medicine and
- IBiS, Virgen Macarena University Hospital, CSIC, University of Seville, Seville, Spain
- CIBERINFEC, Institute of Health Carlos III (ISCIII), Madrid, Spain
| | - Sara Bachiller
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Joana Vitalle
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Mohamed Rafii-El-Idrissi Benhnia
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | - Francisco J. Ostos
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
- Department of Medical Biochemistry, Molecular Biology, and Immunology, School of Medicine, University of Seville, Seville, Spain
| | | | - Jesús Santos
- Infectious Diseases, Microbiology and Preventive Medicine Unit, Virgen de la Victoria University Hospital, Malaga, Spain
| | - Rosario Palacios
- Infectious Diseases, Microbiology and Preventive Medicine Unit, Virgen de la Victoria University Hospital, Malaga, Spain
| | - Cristina Gomez-Ayerbe
- Infectious Diseases, Microbiology and Preventive Medicine Unit, Virgen de la Victoria University Hospital, Malaga, Spain
| | - Leopoldo Muñoz-Medina
- Unit of Infectious Diseases, San Cecilio University Hospital, Biohealth Research Institute, IBS-Granada, Granada, Spain
| | - Andrés Ruiz-Sancho
- Unit of Infectious Diseases, San Cecilio University Hospital, Biohealth Research Institute, IBS-Granada, Granada, Spain
| | - Mario Frias
- CIBERINFEC, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Service of Infectious Diseases, Reina Sofía University Hospital, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba University, Cordoba, Spain
| | - Antonio Rivero-Juarez
- CIBERINFEC, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Service of Infectious Diseases, Reina Sofía University Hospital, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba University, Cordoba, Spain
| | - Cristina Roca-Oporto
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Carmen Hidalgo-Tenorio
- Unit of Infectious Diseases, Virgen de las Nieves University Hospital, Biohealth Research Institute, IBS-Granada, Granada, Spain
| | - Anna Rull
- CIBERINFEC, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Joan XXIII University Hospital of Tarragona, IISPV, University of Rovira i Virgili, Tarragona, Spain
| | - Julian Olalla
- Internal Medicine Department, Costa Del Sol Hospital, Marbella, Spain
| | - Miguel A. Lopez-Ruz
- Unit of Infectious Diseases, Virgen de las Nieves University Hospital, Biohealth Research Institute, IBS-Granada, Granada, Spain
| | - Francesc Vidal
- CIBERINFEC, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Joan XXIII University Hospital of Tarragona, IISPV, University of Rovira i Virgili, Tarragona, Spain
| | - Consuelo Viladés
- CIBERINFEC, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Joan XXIII University Hospital of Tarragona, IISPV, University of Rovira i Virgili, Tarragona, Spain
| | | | - Matthias Cavassini
- Service of Infectious Diseases, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nuria Espinosa
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Matthieu Perreau
- Service of Immunology and Allergy, Lausanne University Hospital and
| | - Joaquin Peraire
- CIBERINFEC, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Joan XXIII University Hospital of Tarragona, IISPV, University of Rovira i Virgili, Tarragona, Spain
| | - Antonio Rivero
- CIBERINFEC, Institute of Health Carlos III (ISCIII), Madrid, Spain
- Service of Infectious Diseases, Reina Sofía University Hospital, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Córdoba University, Cordoba, Spain
| | - Luis F. López-Cortes
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| | - Mathias Lichterfeld
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Xu G. Yu
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
- Infectious Disease Division, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ezequiel Ruiz-Mateos
- Institute of Biomedicine of Seville (IBiS), Virgen del Rocio University Hospital, Spanish National Research Council (CSIC), University of Seville, Clinical Unit of Infectious Diseases, Microbiology and Parasitology, Seville, Spain
| |
Collapse
|
13
|
Paneerselvam N, Khan A, Lawson BR. Broadly neutralizing antibodies targeting HIV: Progress and challenges. Clin Immunol 2023; 257:109809. [PMID: 37852345 PMCID: PMC10872707 DOI: 10.1016/j.clim.2023.109809] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023]
Abstract
Anti-HIV broadly neutralizing antibodies (bNAbs) offer a novel approach to treating, preventing, or curing HIV. Pre-clinical models and clinical trials involving the passive transfer of bNAbs have demonstrated that they can control viremia and potentially serve as alternatives or complement antiretroviral therapy (ART). However, antibody decay, persistent latent reservoirs, and resistance impede bNAb treatment. This review discusses recent advancements and obstacles in applying bNAbs and proposes strategies to enhance their therapeutic potential. These strategies include multi-epitope targeting, antibody half-life extension, combining with current and newer antiretrovirals, and sustained antibody secretion.
Collapse
Affiliation(s)
| | - Amber Khan
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA
| | - Brian R Lawson
- The Scintillon Research Institute, 6868 Nancy Drive, San Diego, CA 92121, USA.
| |
Collapse
|
14
|
Zheng H, Huang S, Zhang J, Zhang R, Wang J, Yuan J, Li A, Yang X, Zhang Z. C1M2: a universal algorithm for 3D instance segmentation, annotation, and quantification of irregular cells. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2415-2428. [PMID: 37243949 DOI: 10.1007/s11427-022-2327-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 03/17/2023] [Indexed: 05/29/2023]
Abstract
Cell instance segmentation is a fundamental task for many biological applications, especially for packed cells in three-dimensional (3D) microscope images that can fully display cellular morphology. Image processing algorithms based on neural networks and feature engineering have enabled great progress in two-dimensional (2D) instance segmentation. However, current methods cannot achieve high segmentation accuracy for irregular cells in 3D images. In this study, we introduce a universal, morphology-based 3D instance segmentation algorithm called Crop Once Merge Twice (C1M2), which can segment cells from a wide range of image types and does not require nucleus images. C1M2 can be extended to quantify the fluorescence intensity of fluorescent proteins and antibodies and automatically annotate their expression levels in individual cells. Our results suggest that C1M2 can serve as a tissue cytometry for 3D histopathological assays by quantifying fluorescence intensity with spatial localization and morphological information.
Collapse
Affiliation(s)
- Hao Zheng
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Songlin Huang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Jing Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Ren Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jialu Wang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jing Yuan
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Anan Li
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xin Yang
- School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Zhihong Zhang
- Britton Chance Center and MOE Key Laboratory for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China.
| |
Collapse
|
15
|
Landovitz RJ, Scott H, Deeks SG. Prevention, treatment and cure of HIV infection. Nat Rev Microbiol 2023; 21:657-670. [PMID: 37344551 DOI: 10.1038/s41579-023-00914-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2023] [Indexed: 06/23/2023]
Abstract
The development of antiretroviral therapy for the prevention and treatment of HIV infection has been marked by a series of remarkable successes. However, the efforts to develop a vaccine have largely failed, and efforts to discover a cure are only now beginning to gain traction. In this Review, we describe recent progress on all fronts - pre-exposure prophylaxis, vaccines, treatment and cure - and we discuss the unmet needs, both current and in the coming years. We describe the emerging arsenal of drugs, biologics and strategies that will hopefully address these needs. Although HIV research has largely been siloed in the past, this is changing, as the emerging research agenda is marked by multiple cross-discipline synergies and collaborations. As the limitations of antiretroviral drugs as a means to truly end the epidemic are becoming more apparent, there is a great need for continued efforts to develop an effective preventative vaccine and a scalable cure, both of which remain formidable challenges.
Collapse
Affiliation(s)
- Raphael J Landovitz
- Center for Clinical AIDS Research and Education, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Hyman Scott
- Bridge HIV, San Francisco Department of Public Health, San Francisco, CA, USA
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA
| | - Steven G Deeks
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, CA, USA.
| |
Collapse
|
16
|
Bhattacharyya S, Crain CR, Goldberg B, Gaiha GD. Features of functional and dysfunctional CD8+ T cells to guide HIV vaccine development. Curr Opin HIV AIDS 2023; 18:257-263. [PMID: 37535040 PMCID: PMC10503300 DOI: 10.1097/coh.0000000000000812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023]
Abstract
PURPOSE OF REVIEW CD8+ T cell responses are a key component of the host immune response to human immunodeficiency virus (HIV) but vary significantly across individuals with distinct clinical outcomes. These differences help inform the qualitative features of HIV-specific CD8+ T cells that we should aim to induce by vaccination. RECENT FINDINGS We review previous and more recent findings on the features of dysfunctional and functional CD8+ T cell responses that develop in individuals with uncontrolled and controlled HIV infection, with particular emphasis on proliferation, cytotoxic effector function, epitope specificity, and responses in lymph nodes. We also discuss the implications of these findings for both prophylactic and therapeutic T cell vaccine development within the context of T cell vaccine trials. SUMMARY The induction of HIV specific CD8+ T cell responses is an important goal of ongoing vaccine efforts. Emerging data on the key features of CD8+ T cell responses that distinguish individuals who spontaneously control from those with progressive disease continues to provide key guidance.
Collapse
Affiliation(s)
- Shaown Bhattacharyya
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts 02139
| | - Charles R Crain
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts 02139
| | - Benjamin Goldberg
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts 02139
| | - Gaurav D Gaiha
- Ragon Institute of Mass General, MIT and Harvard, Cambridge, Massachusetts 02139
- Division of Gastroenterology, Massachusetts General Hospital, Boston, Massachusetts 02115
| |
Collapse
|
17
|
Harwood OE, Matschke LM, Moriarty RV, Balgeman AJ, Weaver AJ, Ellis-Connell AL, Weiler AM, Winchester LC, Fletcher CV, Friedrich TC, Keele BF, O’Connor DH, Lang JD, Reynolds MR, O’Connor SL. CD8+ cells and small viral reservoirs facilitate post-ART control of SIV replication in M3+ Mauritian cynomolgus macaques initiated on ART two weeks post-infection. PLoS Pathog 2023; 19:e1011676. [PMID: 37747933 PMCID: PMC10553806 DOI: 10.1371/journal.ppat.1011676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/05/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
Sustainable HIV remission after antiretroviral therapy (ART) withdrawal, or post-treatment control (PTC), remains a top priority for HIV treatment. We observed surprising PTC in an MHC-haplomatched cohort of MHC-M3+ SIVmac239+ Mauritian cynomolgus macaques (MCMs) initiated on ART at two weeks post-infection (wpi). None of the MCMs possessed MHC haplotypes previously associated with SIV control. For six months after ART withdrawal, we observed undetectable or transient viremia in seven of the eight MCMs, despite detecting replication competent SIV using quantitative viral outgrowth assays. In vivo depletion of CD8α+ cells induced rebound in all animals, indicating the observed PTC was mediated, at least in part, by CD8α+ cells. With intact proviral DNA assays, we found that MCMs had significantly smaller viral reservoirs two wpi than a cohort of identically infected rhesus macaques, a population that rarely develops PTC. We found a similarly small viral reservoir among six additional SIV+ MCMs in which ART was initiated at eight wpi, some of whom exhibited viral rebound. These results suggest that an unusually small viral reservoir is a hallmark among SIV+ MCMs. By evaluating immunological differences between MCMs that did and did not rebound, we identified that PTC was associated with a reduced frequency of CD4+ and CD8+ lymphocyte subsets expressing exhaustion markers. Together, these results suggest a combination of small reservoirs and immune-mediated virus suppression contribute to PTC in MCMs. Further, defining the immunologic mechanisms that engender PTC in this model may identify therapeutic targets for inducing durable HIV remission in humans.
Collapse
Affiliation(s)
- Olivia E. Harwood
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Lea M. Matschke
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Ryan V. Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Alexis J. Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Abigail J. Weaver
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Amy L. Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Lee C. Winchester
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Courtney V. Fletcher
- College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Brandon F. Keele
- AIDS and Cancer Virus Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland, United States of America
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Jessica D. Lang
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Center for Human Genomics and Precision Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Matthew R. Reynolds
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| |
Collapse
|
18
|
Zhang W, Ruan L. Recent advances in poor HIV immune reconstitution: what will the future look like? Front Microbiol 2023; 14:1236460. [PMID: 37608956 PMCID: PMC10440441 DOI: 10.3389/fmicb.2023.1236460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/24/2023] [Indexed: 08/24/2023] Open
Abstract
Combination antiretroviral therapy has demonstrated proved effectiveness in suppressing viral replication and significantly recovering CD4+ T cell count in HIV type-1 (HIV-1)-infected patients, contributing to a dramatic reduction in AIDS morbidity and mortality. However, the factors affecting immune reconstitution are extremely complex. Demographic factors, co-infection, baseline CD4 cell level, abnormal immune activation, and cytokine dysregulation may all affect immune reconstitution. According to report, 10-40% of HIV-1-infected patients fail to restore the normalization of CD4+ T cell count and function. They are referred to as immunological non-responders (INRs) who fail to achieve complete immune reconstitution and have a higher mortality rate and higher risk of developing other non-AIDS diseases compared with those who achieve complete immune reconstitution. Heretofore, the mechanisms underlying incomplete immune reconstitution in HIV remain elusive, and INRs are not effectively treated or mitigated. This review discusses the recent progress of mechanisms and factors responsible for incomplete immune reconstitution in AIDS and summarizes the corresponding therapeutic strategies according to different mechanisms to improve the individual therapy.
Collapse
Affiliation(s)
| | - Lianguo Ruan
- Department of Infectious Diseases, Wuhan Jinyintan Hospital, Tongji Medical College of Huazhong University of Science and Technology, Hubei Clinical Research Center for Infectious Diseases, Wuhan Research Center for Communicable Disease Diagnosis and Treatment, Chinese Academy of Medical Sciences, Joint Laboratory of Infectious Diseases and Health, Wuhan Institute of Virology and Wuhan Jinyintan Hospital, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
19
|
Collins DR, Hitschfel J, Urbach JM, Mylvaganam GH, Ly NL, Arshad U, Racenet ZJ, Yanez AG, Diefenbach TJ, Walker BD. Cytolytic CD8 + T cells infiltrate germinal centers to limit ongoing HIV replication in spontaneous controller lymph nodes. Sci Immunol 2023; 8:eade5872. [PMID: 37205767 DOI: 10.1126/sciimmunol.ade5872] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/26/2023] [Indexed: 05/21/2023]
Abstract
Follicular CD8+ T cells (fCD8) mediate surveillance in lymph node (LN) germinal centers against lymphotropic infections and cancers, but the precise mechanisms by which these cells mediate immune control remain incompletely resolved. To address this, we investigated functionality, clonotypic compartmentalization, spatial localization, phenotypic characteristics, and transcriptional profiles of LN-resident virus-specific CD8+ T cells in persons who control HIV without medications. Antigen-induced proliferative and cytolytic potential consistently distinguished spontaneous controllers from noncontrollers. T cell receptor analysis revealed complete clonotypic overlap between peripheral and LN-resident HIV-specific CD8+ T cells. Transcriptional analysis of LN CD8+ T cells revealed gene signatures of inflammatory chemotaxis and antigen-induced effector function. In HIV controllers, the cytotoxic effectors perforin and granzyme B were elevated among virus-specific CXCR5+ fCD8s proximate to foci of HIV RNA within germinal centers. These results provide evidence consistent with cytolytic control of lymphotropic infection supported by inflammatory recruitment, antigen-specific proliferation, and cytotoxicity of fCD8s.
Collapse
Affiliation(s)
- David R Collins
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Julia Hitschfel
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Institute of Clinical and Molecular Virology, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Geetha H Mylvaganam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Ngoc L Ly
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Umar Arshad
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | | | - Adrienne G Yanez
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | | | - Bruce D Walker
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Institute for Medical Engineering and Sciences and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
20
|
Schröter J, de Boer RJ. What explains the poor contraction of the viral load during paediatric HIV infection? J Theor Biol 2023; 570:111521. [PMID: 37164225 DOI: 10.1016/j.jtbi.2023.111521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 02/03/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
An acute HIV infection in young children differs markedly from that in adults: Children have higher viral loads (VL), and a poor contraction to a setpoint VL that is not much lower than the peak VL. As a result, children progress faster towards AIDS in the absence of treatment. We used a classical ordinary differential equation model for viral infection dynamics to study why children have a lower viral contraction ratio than adults. We performed parameter sweeps to identify factors explaining the observed difference between children and adults. We grouped parameters associated with the host, the infection, or the immune response. Based on paediatric data available from datasets within the EPIICAL project (https://www.epiical.org/), we refuted that viral replication rates differ between young children and adults, and therefore these cannot be responsible for the low VL contraction ratios seen in children. The major differences in lowering VL contraction ratio resulted from sweeping the parameters linked to the immune response. Thus, we postulate that an "ineffective" (late and/or weak) immune response is the most parsimonious explanation for the higher setpoint VL in young children, and hence the reason for their fast disease progression.
Collapse
Affiliation(s)
- Juliane Schröter
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, The Netherlands.
| | - Rob J de Boer
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
21
|
Picker LJ, Lifson JD, Gale M, Hansen SG, Früh K. Programming cytomegalovirus as an HIV vaccine. Trends Immunol 2023; 44:287-304. [PMID: 36894436 PMCID: PMC10089689 DOI: 10.1016/j.it.2023.02.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 03/09/2023]
Abstract
The initial development of cytomegalovirus (CMV) as a vaccine vector for HIV/simian immunodeficiency virus (SIV) was predicated on its potential to pre-position high-frequency, effector-differentiated, CD8+ T cells in tissues for immediate immune interception of nascent primary infection. This goal was achieved and also led to the unexpected discoveries that non-human primate (NHP) CMVs can be programmed to differentially elicit CD8+ T cell responses that recognize viral peptides via classical MHC-Ia, and/or MHC-II, and/or MHC-E, and that MHC-E-restricted CD8+ T cell responses can uniquely mediate stringent arrest and subsequent clearance of highly pathogenic SIV, an unprecedented type of vaccine-mediated protection. These discoveries delineate CMV vector-elicited MHC-E-restricted CD8+ T cells as a functionally distinct T cell response with the potential for superior efficacy against HIV-1, and possibly other infectious agents or cancers.
Collapse
Affiliation(s)
- Louis J Picker
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA.
| | - Jeffrey D Lifson
- AIDS and Cancer Virus Program, Frederick National Laboratory, Frederick, MD, USA
| | - Michael Gale
- Center for Innate Immunity and Immune Disease, Department of Immunology, University of Washington, Seattle, WA, USA
| | - Scott G Hansen
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Klaus Früh
- Vaccine and Gene Therapy Institute and Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| |
Collapse
|
22
|
Etemad B, Sun X, Li Y, Melberg M, Moisi D, Gottlieb R, Ahmed H, Aga E, Bosch RJ, Acosta EP, Yuki Y, Martin MP, Carrington M, Gandhi RT, Jacobson JM, Volberding P, Connick E, Mitsuyasu R, Frank I, Saag M, Eron JJ, Skiest D, Margolis DM, Havlir D, Schooley RT, Lederman MM, Yu XG, Li JZ. HIV post-treatment controllers have distinct immunological and virological features. Proc Natl Acad Sci U S A 2023; 120:e2218960120. [PMID: 36877848 PMCID: PMC10089217 DOI: 10.1073/pnas.2218960120] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/06/2023] [Indexed: 03/08/2023] Open
Abstract
HIV post-treatment controllers (PTCs) are rare individuals who maintain low levels of viremia after stopping antiretroviral therapy (ART). Understanding the mechanisms of HIV post-treatment control will inform development of strategies aiming at achieving HIV functional cure. In this study, we evaluated 22 PTCs from 8 AIDS Clinical Trials Group (ACTG) analytical treatment interruption (ATI) studies who maintained viral loads ≤400 copies/mL for ≥24 wk. There were no significant differences in demographics or frequency of protective and susceptible human leukocyte antigen (HLA) alleles between PTCs and post-treatment noncontrollers (NCs, n = 37). Unlike NCs, PTCs demonstrated a stable HIV reservoir measured by cell-associated RNA (CA-RNA) and intact proviral DNA assay (IPDA) during analytical treatment interruption (ATI). Immunologically, PTCs demonstrated significantly lower CD4+ and CD8+ T cell activation, lower CD4+ T cell exhaustion, and more robust Gag-specific CD4+ T cell responses and natural killer (NK) cell responses. Sparse partial least squares discriminant analysis (sPLS-DA) identified a set of features enriched in PTCs, including a higher CD4+ T cell% and CD4+/CD8+ ratio, more functional NK cells, and a lower CD4+ T cell exhaustion level. These results provide insights into the key viral reservoir features and immunological profiles for HIV PTCs and have implications for future studies evaluating interventions to achieve an HIV functional cure.
Collapse
Affiliation(s)
- Behzad Etemad
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Xiaoming Sun
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA02139
| | - Yijia Li
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Meghan Melberg
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Daniela Moisi
- School of Medicine, Case Western Reserve University, Cleveland, OH44106
| | - Rachel Gottlieb
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Hayat Ahmed
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| | - Evgenia Aga
- Harvard T. H. Chan School of Public Health, Boston, MA02115
| | | | - Edward P. Acosta
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL35233
| | - Yuko Yuki
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD21702
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD20814
| | - Maureen P. Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD21702
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD20814
| | - Mary Carrington
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA02139
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD21702
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD20814
| | - Rajesh T. Gandhi
- Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA02114
| | | | - Paul Volberding
- School of Medicine, University of California San Francisco, San Francisco, CA94143
| | | | - Ronald Mitsuyasu
- School of Medicine, University of California Los Angeles, Los Angeles, CA90095
| | - Ian Frank
- School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Michael Saag
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL35233
| | - Joseph J. Eron
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Daniel Skiest
- Department of Medicine, University of Massachusetts Chan Medical School - Baystate, Springfield, MA01199
| | - David M. Margolis
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC27599
| | - Diane Havlir
- School of Medicine, University of California San Francisco, San Francisco, CA94143
| | - Robert T. Schooley
- Department of Medicine, University of California San Diego, San Diego, CA92103
| | | | - Xu G. Yu
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard, Cambridge, MA02139
| | - Jonathan Z. Li
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA02139
| |
Collapse
|
23
|
Gondré-Lewis TA, Jiang C, Ford ML, Koelle DM, Sette A, Shalek AK, Thomas PG. NIAID workshop on T cell technologies. Nat Immunol 2023; 24:14-18. [PMID: 36596894 PMCID: PMC10405620 DOI: 10.1038/s41590-022-01377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
On 15–16 June 2022, the National Institute of Allergy and Infectious Diseases hosted a virtual workshop on the topic of T cell technologies to discuss assays, novel technology development, bench and clinical application of those technologies, and challenges and innovations in the field.
Collapse
Affiliation(s)
- Timothy A Gondré-Lewis
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Rockville, MD, USA.
| | - Chao Jiang
- National Institute of Allergy and Infectious Diseases/National Institutes of Health, Rockville, MD, USA.
| | - Mandy L Ford
- Division of Transplantation, Department of Surgery, Emory University, Atlanta, GA, USA
| | - David M Koelle
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Center, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
| | - Alessandro Sette
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alex K Shalek
- Institute for Medical Engineering and Science, Department of Chemistry, and Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA
| | - Paul G Thomas
- Immunology Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
24
|
Gao L, Zhou J, Ye L. Role of CXCR5 + CD8 + T cells in human immunodeficiency virus-1 infection. Front Microbiol 2022; 13:998058. [PMID: 36452930 PMCID: PMC9701836 DOI: 10.3389/fmicb.2022.998058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/24/2022] [Indexed: 07/30/2023] Open
Abstract
Human immunodeficiency virus (HIV) infection can be effectively suppressed by life-long administration of combination antiretroviral therapy (cART). However, the viral rebound can occur upon cART cessation due to the long-term presence of HIV reservoirs, posing a considerable barrier to drug-free viral remission. Memory CD4+ T cell subsets, especially T follicular helper (T FH ) cells that reside in B-cell follicles within lymphoid tissues, are regarded as the predominant cellular compartment of the HIV reservoir. Substantial evidence indicates that HIV-specific CD8+ T cell-mediated cellular immunity can sustain long-term disease-free and transmission-free HIV control in elite controllers. However, most HIV cure strategies that rely on expanded HIV-specific CD8+ T cells for virus control are likely to fail due to cellular exhaustion and T FH reservoir-specialized anatomical structures that isolate HIV-specific CD8+ T cell entry into B-cell follicles. Loss of stem-like memory properties is a key feature of exhaustion. Recent studies have found that CXC chemokine receptor type 5 (CXCR5)-expressing HIV-specific CD8+ T cells are memory-like CD8+ T cells that can migrate into B-cell follicles to execute inhibition of viral replication. Furthermore, these unique CD8+ T cells can respond to immune checkpoint blockade (ICB) therapy. In this review, we discuss the functions of these CD8+ T cells as well as the translation of findings into viable HIV treatment and cure strategies.
Collapse
Affiliation(s)
- Leiqiong Gao
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jing Zhou
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
Vallejo J, Saigusa R, Gulati R, Armstrong Suthahar SS, Suryawanshi V, Alimadadi A, Durant CP, Ghosheh Y, Roy P, Ehinger E, Pattarabanjird T, Hanna DB, Landay AL, Tracy RP, Lazar JM, Mack WJ, Weber KM, Adimora AA, Hodis HN, Tien PC, Ofotokun I, Heath SL, Shemesh A, McNamara CA, Lanier LL, Hedrick CC, Kaplan RC, Ley K. Combined protein and transcript single-cell RNA sequencing in human peripheral blood mononuclear cells. BMC Biol 2022; 20:193. [PMID: 36045343 PMCID: PMC9434837 DOI: 10.1186/s12915-022-01382-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/01/2022] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Cryopreserved peripheral blood mononuclear cells (PBMCs) are frequently collected and provide disease- and treatment-relevant data in clinical studies. Here, we developed combined protein (40 antibodies) and transcript single-cell (sc)RNA sequencing (scRNA-seq) in PBMCs. RESULTS Among 31 participants in the Women's Interagency HIV Study (WIHS), we sequenced 41,611 cells. Using Boolean gating followed by Seurat UMAPs (tool for visualizing high-dimensional data) and Louvain clustering, we identified 50 subsets among CD4+ T, CD8+ T, B, NK cells, and monocytes. This resolution was superior to flow cytometry, mass cytometry, or scRNA-seq without antibodies. Combined protein and transcript scRNA-seq allowed for the assessment of disease-related changes in transcriptomes and cell type proportions. As a proof-of-concept, we showed such differences between healthy and matched individuals living with HIV with and without cardiovascular disease. CONCLUSIONS In conclusion, combined protein and transcript scRNA sequencing is a suitable and powerful method for clinical investigations using PBMCs.
Collapse
Affiliation(s)
- Jenifer Vallejo
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Ryosuke Saigusa
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Rishab Gulati
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | | | | - Ahmad Alimadadi
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | | | - Yanal Ghosheh
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Payel Roy
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Erik Ehinger
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Tanyaporn Pattarabanjird
- Carter Immunology Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - David B Hanna
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alan L Landay
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL, USA
| | - Russell P Tracy
- Departments of Pathology & Laboratory Medicine and Biochemistry, University of Vermont Larner College of Medicine, Colchester, VT, USA
| | - Jason M Lazar
- Department of Medicine, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | - Wendy J Mack
- Department of Medicine and Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, CA, USA
| | - Kathleen M Weber
- Cook County Health/Hektoen Institute of Medicine, Chicago, IL, USA
| | - Adaora A Adimora
- Department of Medicine, University of North Carolina School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Howard N Hodis
- Department of Medicine and Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Atherosclerosis Research Unit, University of Southern California, Los Angeles, CA, USA
| | - Phyllis C Tien
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Veterans Affairs Medical Center, San Francisco, CA, USA
| | - Igho Ofotokun
- Department of Medicine, Infectious Disease Division and Grady Health Care System, Emory University School of Medicine, Atlanta, GA, USA
| | - Sonya L Heath
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Avishai Shemesh
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Coleen A McNamara
- Carter Immunology Center, Cardiovascular Division, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Lewis L Lanier
- Parker Institute for Cancer Immunotherapy, University of California, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, CA, USA
| | - Catherine C Hedrick
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, USA
- Fred Hutchinson Cancer Research Center, Public Health Sciences Division, Seattle, WA, USA
| | - Klaus Ley
- La Jolla Institute for Immunology, 9420 Athena Circle, La Jolla, CA, 92037, USA.
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA.
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The quest for HIV-1 cure could take advantage of the study of rare individuals that control viral replication spontaneously (elite controllers) or after an initial course of antiretroviral therapy (posttreatment controllers, PTCs). In this review, we will compare back-to-back the immunological and virological features underlying viral suppression in elite controllers and PTCs, and explore their possible contributions to the HIV-1 cure research. RECENT FINDINGS HIV-1 control in elite controllers shows hallmarks of an effective antiviral response, favored by genetic background and possibly associated to residual immune activation. The immune pressure in elite controllers might select against actively transcribing intact proviruses, allowing the persistence of a small and poorly inducible reservoir. Evidence on PTCs is less abundant but preliminary data suggest that antiviral immune responses may be less pronounced. Therefore, these patients may rely on distinct mechanisms, not completely elucidated to date, suppressing HIV-1 transcription and replication. SUMMARY PTCs and elite controllers may control HIV replication using distinct pathways, the elucidation of which may contribute to design future interventional strategies aiming to achieve a functional cure.
Collapse
|
27
|
Calvet-Mirabent M, Sánchez-Cerrillo I, Martín-Cófreces N, Martínez-Fleta P, de la Fuente H, Tsukalov I, Delgado-Arévalo C, Calzada MJ, de Los Santos I, Sanz J, García-Fraile L, Sánchez-Madrid F, Alfranca A, Muñoz-Fernández MÁ, Buzón MJ, Martín-Gayo E. Antiretroviral therapy duration and immunometabolic state determine efficacy of ex vivo dendritic cell-based treatment restoring functional HIV-specific CD8+ T cells in people living with HIV. EBioMedicine 2022; 81:104090. [PMID: 35665682 PMCID: PMC9301875 DOI: 10.1016/j.ebiom.2022.104090] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/11/2022] [Accepted: 05/18/2022] [Indexed: 12/12/2022] Open
Abstract
Background Dysfunction of CD8+ T cells in people living with HIV-1 (PLWH) receiving anti-retroviral therapy (ART) has restricted the efficacy of dendritic cell (DC)-based immunotherapies against HIV-1. Heterogeneous immune exhaustion and metabolic states of CD8+ T cells might differentially associate with dysfunction. However, specific parameters associated to functional restoration of CD8+ T cells after DC treatment have not been investigated. Methods We studied association of restoration of functional HIV-1-specific CD8+ T cell responses after stimulation with Gag-adjuvant-primed DC with ART duration, exhaustion, metabolic and memory cell subsets profiles. Findings HIV-1-specific CD8+ T cell responses from a larger proportion of PLWH on long-term ART (more than 10 years; LT-ARTp) improved polyfunctionality and capacity to eliminate autologous p24+ infected CD4+ T cells in vitro. In contrast, functional improvement of CD8+ T cells from PLWH on short-term ART (less than a decade; ST-ARTp) after DC treatment was limited. This was associated with lower frequencies of central memory CD8+ T cells, increased co-expression of PD1 and TIGIT and reduced mitochondrial respiration and glycolysis induction upon TCR activation. In contrast, CD8+ T cells from LT-ARTp showed increased frequencies of TIM3+ PD1− cells and preserved induction of glycolysis. Treatment of dysfunctional CD8+ T cells from ST-ARTp with combined anti-PD1 and anti-TIGIT antibodies plus a glycolysis promoting drug restored their ability to eliminate infected CD4+ T cells. Interpretation Together, our study identifies specific immunometabolic parameters for different PLWH subgroups potentially useful for future personalized DC-based HIV-1 vaccines. Funding NIH (R21AI140930), MINECO/FEDER RETOS (RTI2018-097485-A-I00) and CIBERINF grants.
Collapse
Affiliation(s)
- Marta Calvet-Mirabent
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | - Noa Martín-Cófreces
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | - Pedro Martínez-Fleta
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - Hortensia de la Fuente
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | | | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Ignacio de Los Santos
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Jesús Sanz
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Lucio García-Fraile
- Infectious Diseases Unit from Hospital Universitario de La Princesa, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain
| | - Francisco Sánchez-Madrid
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Cardiovascular, CIBERCV, 28029 Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain
| | - María Ángeles Muñoz-Fernández
- Immunology Section, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Maria J Buzón
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Enrique Martín-Gayo
- Immunology Unit from Hospital Universitario de La Princesa and Instituto de Investigación Sanitaria Princesa, Madrid, Spain; Universidad Autónoma de Madrid, Madrid, Spain; Centro de Investigación Biomédica en Red Infecciosas, CIBERINF, 28029 Madrid, Spain.
| |
Collapse
|
28
|
Sneller MC, Blazkova J, Justement JS, Shi V, Kennedy BD, Gittens K, Tolstenko J, McCormack G, Whitehead EJ, Schneck RF, Proschan MA, Benko E, Kovacs C, Oguz C, Seaman MS, Caskey M, Nussenzweig MC, Fauci AS, Moir S, Chun TW. Combination anti-HIV antibodies provide sustained virological suppression. Nature 2022; 606:375-381. [PMID: 35650437 PMCID: PMC11059968 DOI: 10.1038/s41586-022-04797-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 31.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/25/2022] [Indexed: 01/26/2023]
Abstract
Antiretroviral therapy is highly effective in suppressing human immunodeficiency virus (HIV)1. However, eradication of the virus in individuals with HIV has not been possible to date2. Given that HIV suppression requires life-long antiretroviral therapy, predominantly on a daily basis, there is a need to develop clinically effective alternatives that use long-acting antiviral agents to inhibit viral replication3. Here we report the results of a two-component clinical trial involving the passive transfer of two HIV-specific broadly neutralizing monoclonal antibodies, 3BNC117 and 10-1074. The first component was a randomized, double-blind, placebo-controlled trial that enrolled participants who initiated antiretroviral therapy during the acute/early phase of HIV infection. The second component was an open-label single-arm trial that enrolled individuals with viraemic control who were naive to antiretroviral therapy. Up to 8 infusions of 3BNC117 and 10-1074, administered over a period of 24 weeks, were well tolerated without any serious adverse events related to the infusions. Compared with the placebo, the combination broadly neutralizing monoclonal antibodies maintained complete suppression of plasma viraemia (for up to 43 weeks) after analytical treatment interruption, provided that no antibody-resistant HIV was detected at the baseline in the study participants. Similarly, potent HIV suppression was seen in the antiretroviral-therapy-naive study participants with viraemia carrying sensitive virus at the baseline. Our data demonstrate that combination therapy with broadly neutralizing monoclonal antibodies can provide long-term virological suppression without antiretroviral therapy in individuals with HIV, and our experience offers guidance for future clinical trials involving next-generation antibodies with long half-lives.
Collapse
Affiliation(s)
- Michael C Sneller
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Jana Blazkova
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - J Shawn Justement
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Victoria Shi
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Brooke D Kennedy
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Kathleen Gittens
- Critical Care Medicine Department, Clinical Center, NIH, Bethesda, MD, USA
| | - Jekaterina Tolstenko
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Genevieve McCormack
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Emily J Whitehead
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Rachel F Schneck
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | | | - Erika Benko
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Colin Kovacs
- Maple Leaf Medical Clinic, Toronto, Ontario, Canada
| | - Cihan Oguz
- NIAID Collaborative Bioinformatics Resource, NIAID, NIH, Bethesda, MD, USA
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Michael S Seaman
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Marina Caskey
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY, USA
- Howard Hughes Medical Institute, The Rockefeller University, New York, NY, USA
| | - Anthony S Fauci
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Susan Moir
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Tae-Wook Chun
- Laboratory of Immunoregulation, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
29
|
Moyano A, Blanch-Lombarte O, Tarancon-Diez L, Pedreño-Lopez N, Arenas M, Alvaro T, Casado C, Olivares I, Vera M, Rodriguez C, Del Romero J, López-Galíndez C, Ruiz-Mateos E, Prado JG, Pernas M. Immunoescape of HIV-1 in Env-EL9 CD8 + T cell response restricted by HLA-B*14:02 in a Non progressor who lost twenty-seven years of HIV-1 control. Retrovirology 2022; 19:6. [PMID: 35346235 PMCID: PMC8962528 DOI: 10.1186/s12977-022-00591-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/01/2022] [Indexed: 12/16/2022] Open
Abstract
Background Long-Term Non-Progressors (LTNPs) are untreated Human Immunodeficiency virus type 1 (HIV-1) infected individuals able to control disease progression for prolonged periods. However, the LTNPs status is temporary, as viral load increases followed by decreases in CD4 + T-cell counts. Control of HIV-1 infection in LTNPs viremic controllers, have been associated with effective immunodominant HIV-1 Gag-CD8 + T-cell responses restricted by protective HLA-B alleles. Individuals carrying HLA-B*14:02 control HIV-1 infection is related to an immunodominant Env-CD8 + T-cell response. Limited data are available on the contribution of HLA-B*14:02 CD8 + T -cells in LTNPs. Results In this study, we performed a virological and immunological detailed analysis of an HLA-B*14:02 LNTP individual that lost viral control (LVC) 27 years after HIV-1 diagnosis. We analysed viral evolution and immune escape in HLA-B*14:02 restricted CD8 + T -cell epitopes and identified viral evolution at the Env-EL9 epitope selecting the L592R mutation. By IFN-γ ELISpot and immune phenotype, we characterized HLA- B*14:02 HIV-1 CD8 + T cell responses targeting, Gag-DA9 and Env-EL9 epitopes before and after LVC. We observed an immunodominant response against the Env-EL9 epitope and a decreased of the CD8 T + cell response over time with LVC. Loss of Env-EL9 responses was concomitant with selecting K588R + L592R mutations at Env-EL9. Finally, we evaluated the impact of Env-EL9 escape mutations on HIV-1 infectivity and Env protein structure. The K588R + L592R escape variant was directly related to HIV-1 increase replicative capacity and stability of Env at the LVC. Conclusions These findings support the contribution of immunodominant Env-EL9 CD8 + T-cell responses and the imposition of immune escape variants with higher replicative capacity associated with LVC in this LNTP. These data highlight the importance of Env-EL9 specific-CD8 + T-cell responses restricted by the HLA-B*14:02 and brings new insights into understanding long-term HIV-1 control mediated by Env mediated CD8 + T-cell responses. Supplementary Information The online version contains supplementary material available at 10.1186/s12977-022-00591-7.
Collapse
Affiliation(s)
- Ana Moyano
- Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Pozuelo a Majadahonda Km 2, 28220, Madrid, Spain.,Max Von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, Faculty of Medicine, LMU München, Munich, Germany
| | - Oscar Blanch-Lombarte
- IrsiCaixa AIDS Research Institute, Crta Canyet SN, Badalona, 08916, Barcelona, Spain.,Autonomous University of Barcelona, Cerdanyola del Vallès, Barcelona, Spain
| | - Laura Tarancon-Diez
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain.,Molecular Immunobiology Laboratory, Immunology Section, Hospital Gregorio Marañón, Madrid, Spain
| | - Nuria Pedreño-Lopez
- Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Pozuelo a Majadahonda Km 2, 28220, Madrid, Spain.,IrsiCaixa AIDS Research Institute, Crta Canyet SN, Badalona, 08916, Barcelona, Spain
| | - Miguel Arenas
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310, Vigo, Spain.,CINBIO, University of Vigo, 36310, Vigo, Spain.,Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Tamara Alvaro
- Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Pozuelo a Majadahonda Km 2, 28220, Madrid, Spain
| | - Concepción Casado
- Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Pozuelo a Majadahonda Km 2, 28220, Madrid, Spain
| | - Isabel Olivares
- Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Pozuelo a Majadahonda Km 2, 28220, Madrid, Spain
| | - Mar Vera
- Centro Sanitario Sandoval. Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Carmen Rodriguez
- Centro Sanitario Sandoval. Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Jorge Del Romero
- Centro Sanitario Sandoval. Hospital Clínico San Carlos, IdISSC, Madrid, Spain
| | - Cecilio López-Galíndez
- Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Pozuelo a Majadahonda Km 2, 28220, Madrid, Spain
| | - Ezequiel Ruiz-Mateos
- Institute of Biomedicine of Seville (IBiS)/Virgen del Rocío University Hospital, CSIC, University of Seville, Seville, Spain
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Crta Canyet SN, Badalona, 08916, Barcelona, Spain. .,Germans Trias I Pujol Research Institute (IGTP), Badalona, Spain.
| | - María Pernas
- Virología Molecular, Laboratorio de Referencia e Investigación en Retrovirus, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Carretera de Pozuelo a Majadahonda Km 2, 28220, Madrid, Spain.
| |
Collapse
|