1
|
Conlon MT, Huang JY, Gerner MY. Lymphatic chain gradients regulate the magnitude and heterogeneity of T cell responses to vaccination. J Exp Med 2025; 222:e20241311. [PMID: 40304721 PMCID: PMC12042774 DOI: 10.1084/jem.20241311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 02/18/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Upon activation, T cells proliferate and differentiate into diverse populations, including highly differentiated effector and memory precursor subsets. Initial diversification is influenced by signals sensed during T cell priming within lymphoid tissues. However, the rules governing how cellular heterogeneity is spatially encoded in vivo remain unclear. Here, we show that immunization establishes concentration gradients of antigens and inflammation across interconnected chains of draining lymph nodes (IC-LNs). While T cells are activated at all sites, individual IC-LNs elicit divergent responses: proximal IC-LNs favor the generation of effector cells, whereas distal IC-LNs promote formation of central memory precursor cells. Although both proximal and distal sites contribute to anamnestic responses, T cells from proximal IC-LNs preferentially provide early effector responses at inflamed tissues. Conversely, T cells from distal IC-LNs demonstrate an enhanced capacity to generate long-lasting responses to chronic antigens in cancer settings, including after checkpoint blockade therapy. Therefore, formation of spatial gradients across lymphatic chains following vaccination regulates the magnitude, heterogeneity, and longevity of T cell responses.
Collapse
Affiliation(s)
- Michael T. Conlon
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Jessica Y. Huang
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Michael Y. Gerner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|
2
|
Wang K, Ou K, Zeng Y, Yue C, Zhuo Y, Wang L, Chen H, Tu S. Epigenetic landscapes drive CAR-T cell kinetics and fate decisions: Bridging persistence and resistance. Crit Rev Oncol Hematol 2025; 211:104729. [PMID: 40246258 DOI: 10.1016/j.critrevonc.2025.104729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/02/2025] [Accepted: 04/11/2025] [Indexed: 04/19/2025] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy has revolutionized the treatment paradigm for B-cell malignancies and holds promise for solid tumor immunotherapy. However, CAR-T-cell therapy still faces many challenges, especially primary and secondary resistance. Some mechanisms of resistance, including CAR-T-cell dysfunction, an inhibitory tumor microenvironment, and tumor-intrinsic resistance, have been identified in previous studies. As insights into CAR-T-cell biology have increased, the role of epigenetic reprogramming in influencing the clinical effectiveness of CAR-T cells has become increasingly recognized. An increasing number of direct and indirect epigenetic targeting methods are being developed in combination with CAR-T-cell therapy. In this review, we emphasize the broad pharmacological links between epigenetic therapies and CAR-T-cell therapy, not only within CAR-T cells but also involving tumors and the tumor microenvironment. To elucidate the mechanisms through which epigenetic therapies promote CAR-T-cell therapy, we provide a comprehensive overview of the epigenetic basis of CAR-T-cell kinetics and differentiation, tumor-intrinsic factors and the microenvironment. We also describe some epigenetic strategies that have implications for CAR-T-cell therapy in the present and future. Because targeting epigenetics can have pleiotropic effects, developing more selective and less toxic targeting strategies and determining the optimal administration strategy in clinical trials are the focus of the next phase of research. In summary, we highlight the possible mechanisms and clinical potential of epigenetic regulation in CAR-T-cell therapy.
Collapse
Affiliation(s)
- Kecheng Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Kaixin Ou
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yifei Zeng
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China
| | - Chunyan Yue
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Yaqi Zhuo
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Langqi Wang
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Huifang Chen
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
| | - Sanfang Tu
- Department of Hematology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China.
| |
Collapse
|
3
|
Moës B, Krueger J, Kazanova A, Liu C, Gao Y, Ponnoor NA, Castoun-Puckett L, Lazo ACO, Huong L, Cabald AL, Tu TH, Rudd CE. GSK-3 regulates CD4-CD8 cooperation needed to generate super-armed CD8+ cytolytic T cells against tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.08.642085. [PMID: 40161618 PMCID: PMC11952298 DOI: 10.1101/2025.03.08.642085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
While immune checkpoint blockade (ICB) has revolutionized cancer treatment, the key T-cell signaling pathways responsible for its potency remain unclear. GSK-3 is an inhibitory kinase that is most active in resting T-cells. In this study, we demonstrate that GSK-3 facilitates PD-1 blockade, an effect seen by modulating CD4 T-cell help for CD8+ CTL responses against ICB resistant tumors. We show that GSK-3 controls metabolic reprogramming towards glycolysis and synergizes with PD-1 to induce a transcriptional program that reduces suppressive CD4+ Treg numbers while generating super-armed effector-memory CD8+ CTLs that express an unprecedented 7/9 granzymes from the genome. Crucially, we found that GSK-3 cooperates with PD-1 blockade to determine the dependency of CD8+ CTLs on help from CD4+ T-cells. Our study unravels a novel cooperative PD-1 blockade-dependent signaling pathway that potentiates CTL responses against tumors, offering a new strategy to overcome immunotherapy resistance by modulating CD4+ helper and CD8+ cytotoxic functions. Significance This study demonstrates for the first time that GSK-3 controls the crosstalk between CD4+ and CD8+ T cells, synergizing with anti-PD-1 therapy to overcome resistance to checkpoint blockade and to generate super-armed CD8+ effector cells in cancer immunotherapy. This newly uncovered GSK-3-dependent CD4-CD8 T-cell crosstalk mechanism presents a new approach to enhance anti-PD-1 immunotherapy.
Collapse
|
4
|
McManus DT, Valanparambil RM, Medina CB, Scharer CD, McGuire DJ, Sobierajska E, Hu Y, Chang DY, Wieland A, Lee J, Nasti TH, Hashimoto M, Ross JL, Prokhnevska N, Cardenas MA, Gill AL, Clark EC, Abadie K, Kumar AJ, Kaye J, Au-Yeung BB, Kueh HY, Kissick HT, Ahmed R. An early precursor CD8 + T cell that adapts to acute or chronic viral infection. Nature 2025; 640:772-781. [PMID: 39778710 DOI: 10.1038/s41586-024-08562-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
This study examines the origin and differentiation of stem-like CD8+ T cells that are essential for sustained T cell immunity in chronic viral infections and cancer and also have a key role in PD-1 directed immunotherapy1-10. These PD-1+TCF-1+TOX+ stem-like CD8+ T cells (also known as precursors of exhausted T cells8,9) have a distinct program that enables them to adapt to chronic antigen stimulation. Here, using the mouse model of chronic lymphocytic choriomeningitis virus (LCMV) infection, we find that virus-specific stem-like CD8+ T cells are generated early (day 5) during chronic infection, suggesting that this crucial fate commitment occurs irrespective of the infection outcome. Indeed, we find that nearly identical populations of stem-like CD8+ T cells were generated early during acute or chronic LCMV infection, and that antigen was essential for maintaining the stem-like phenotype. We performed reciprocal adoptive transfer experiments to determine the fate of these early stem-like CD8+ T cells after viral clearance versus persistence. After transfer of day 5 stem-like CD8+ T cells from chronically infected mice into acutely infected mice, these cells downregulated canonical markers of the chronic stem-like CD8+ T cells and expressed markers (CD127 and CD62L) associated with central memory CD8+ T cells. Reciprocally, when day 5 stem-like cells from acutely infected mice were transferred into chronically infected mice, these CD8+ T cells functioned like chronic resource cells and responded effectively to PD-1 therapy. These findings highlight the ability of these early PD-1+TCF-1+TOX+ stem-like CD8+ T cells to adapt their differentiation trajectory to either an acute or a chronic viral infection. Importantly, our study shows that the host is prepared a priori to deal with a potential chronic infection.
Collapse
Affiliation(s)
- Daniel T McManus
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rajesh M Valanparambil
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher B Medina
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher D Scharer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Donald J McGuire
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ewelina Sobierajska
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yinghong Hu
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Daniel Y Chang
- Department of Pathology, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Andreas Wieland
- Department of Otolaryngology, The Ohio State University College of Medicine, Columbus, OH, USA
- Pelotonia Institute for Immuno-Oncology, The Ohio State University Comprehensive Cancer Center-The James, Columbus, OH, USA
| | - Judong Lee
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Tahseen H Nasti
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Masao Hashimoto
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - James L Ross
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Nataliya Prokhnevska
- The Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria A Cardenas
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Amanda L Gill
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Elisa C Clark
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Kathleen Abadie
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Arjun J Kumar
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Jonathan Kaye
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Byron B Au-Yeung
- Division of Immunology, Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA, USA
| | - Haydn T Kissick
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Rafi Ahmed
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA.
- Winship Cancer Institute of Emory University, Atlanta, GA, USA.
| |
Collapse
|
5
|
Jay A, Pondevida CM, Vahedi G. The epigenetic landscape of fate decisions in T cells. Nat Immunol 2025; 26:544-556. [PMID: 40108419 DOI: 10.1038/s41590-025-02113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/14/2025] [Indexed: 03/22/2025]
Abstract
Specialized T cell subsets mediate adaptive immunity in response to cytokine signaling and specific transcription factor activity. The epigenetic landscape of T cells has an important role in facilitating and establishing T cell fate decisions. Here, we review the interplay between transcription factors, histone modifications, DNA methylation and three-dimensional chromatin organization to define key elements of the epigenetic landscape in T cells. We introduce key technologies in the areas of sequencing, microscopy and proteomics that have enabled the multi-scale profiling of the epigenetic landscape. We highlight the dramatic changes of the epigenetic landscape as multipotent progenitor cells commit to the T cell lineage during development and discuss the epigenetic changes that favor the emergence of CD4+ and CD8+ T cells. Finally, we discuss the inheritance of epigenetic marks and its potential effects on immune responses as well as therapeutic strategies with potential for epigenetic regulation.
Collapse
Affiliation(s)
- Atishay Jay
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Carlos M Pondevida
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Bioengineering, School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Golnaz Vahedi
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Institute for Diabetes, Obesity and Metabolism, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Li S, Mingoia S, Montégut L, Lambertucci F, Chen H, Dong Y, De Palma FDE, Scuderi SA, Rong Y, Carbonnier V, Martins I, Maiuri MC, Kroemer G. Atlas of expression of acyl CoA binding protein/diazepam binding inhibitor (ACBP/DBI) in human and mouse. Cell Death Dis 2025; 16:134. [PMID: 40011442 PMCID: PMC11865319 DOI: 10.1038/s41419-025-07447-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 02/28/2025]
Abstract
Acyl CoA binding protein encoded by diazepam binding inhibitor (ACBP/DBI) is a tissue hormone that stimulates lipo-anabolic responses and inhibits autophagy, thus contributing to aging and age-related diseases. Protein expression profiling of ACBP/DBI was performed on mouse tissues to identify organs in which this major tissue hormone is expressed. Transcriptomic and proteomic data bases corroborated a high level of human-mouse interspecies conservation of ACBP/DBI expression in different organs. Single-cell RNA-seq data confirmed that ACBP/DBI was strongly expressed by parenchymatous cells from specific human and mouse organs (e.g., kidney, large intestine, liver, lung) as well as by myeloid or glial cells from other organs (e.g., adipose tissue, brain, eye) following a pattern that was conserved among the two species. We identified a panel of 44 mRNAs that are strongly co-expressed with ACBP/DBI mRNA in normal and malignant human and normal mouse tissues. Of note, 22 (50%) of these co-expressed mRNAs encode proteins localized at mitochondria, and mRNAs with metabolism-related functions are strongly overrepresented (66%). Systematic data mining was performed to identify transcription factors that regulate ACBP/DBI expression in human and mouse. Several transcription factors, including growth response 1 (EGR1), E2F Transcription Factor 1 (E2F1, which interacts with retinoblastoma, RB) and transformation-related protein 53 (TRP53, best known as p53), which are endowed with oncosuppressive effects, consistently repress ACBP/DBI expression as well as its co-expressed mRNAs across multiple datasets, suggesting a mechanistic basis for a coregulation network. Furthermore, we identified multiple transcription factors that transactivate ACBP/DBI gene expression together with its coregulation network. Altogether, this study indicates the existence of conserved mechanisms determining the expression of ACBP/DBI in specific cell types of the mammalian organism.
Collapse
Affiliation(s)
- Sijing Li
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Silvia Mingoia
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Pharmacological Sciences, University of Piemonte Orientale, Novara, Italy
| | - Léa Montégut
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Flavia Lambertucci
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Hui Chen
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Yanbing Dong
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Fatima Domenica Elisa De Palma
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Napoli, Italy
| | - Sarah Adriana Scuderi
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Yan Rong
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
- Faculté de Médecine, Université de Paris Saclay, Kremlin Bicêtre, Paris, France
| | - Vincent Carbonnier
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Isabelle Martins
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France
| | - Maria Chiara Maiuri
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Department of Molecular Medicine and Medical Biotechnologies, University of Napoli Federico II, Napoli, Italy.
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Équipe Labellisée par la Ligue Contre le Cancer, Université Paris Cité, Sorbonne Université, Inserm U1138, Institut Universitaire de France, Paris, France.
- Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| |
Collapse
|
7
|
Ward AI, de las Heras JI, Schirmer EC, Fassati A. Memory CD4+ T cells sequentially restructure their 3D genome during stepwise activation. Front Cell Dev Biol 2025; 13:1514627. [PMID: 40018706 PMCID: PMC11866950 DOI: 10.3389/fcell.2025.1514627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/07/2025] [Indexed: 03/01/2025] Open
Abstract
Background CD4+ T cells are a highly differentiated cell type that maintain enough transcriptomic plasticity to cycle between activated and memory statuses. How the 1D chromatin state and 3D chromatin architecture support this plasticity is under intensive investigation. Methods Here, we wished to test a commercially available in situ Hi-C kit (Arima Genomics Inc.) to establish whether published performance on limiting cell numbers from clonal cell lines copies across to a primary immune cell type. We achieved comparable contact matrices from 50,000, 250,000, and 1,000,000 memory CD4+ T-cell inputs. We generated multiple Hi-C and RNA-seq libraries from the same biological blood donors under three separate conditions: unstimulated fresh ex vivo, IL-2-only stimulated, and T cell receptor (TCR)+CD28+IL-2-stimulated, conferring increasingly stronger activation signals. We wished to capture the magnitude and progression of 3D chromatin shifts and correlate these to expression changes under the two stimulations. Results Although some genome organization changes occurred concomitantly with changes in gene expression, at least as many changes occurred without corresponding changes in expression. Counter to the hypothesis that topologically associated domains (TADs) are largely invariant structures providing a scaffold for dynamic looping contacts between enhancers and promotors, we found that there were at least as many dynamic TAD changes. Stimulation with IL-2 alone triggered many changes in genome organization, and many of these changes were strengthened by additional TCR and CD28 co-receptor stimulation. Conclusions This suggests a stepwise process whereby mCD4+ T cells undergo sequential buildup of 3D architecture induced by distinct or combined stimuli likely to "prime" or "deprime" them for expression responses to subsequent TCR-antigen ligation or additional cytokine stimulation.
Collapse
Affiliation(s)
- Alexander I. Ward
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| | | | - Eric C. Schirmer
- Institute of Cell Biology, University of Edinburgh, Edinburgh, United Kingdom
| | - Ariberto Fassati
- Institute of Immunity and Transplantation, Division of Infection and Immunity, University College London, London, United Kingdom
| |
Collapse
|
8
|
Fagerberg E, Attanasio J, Dien C, Singh J, Kessler EA, Abdullah L, Shen J, Hunt BG, Connolly KA, De Brouwer E, He J, Iyer NR, Buck J, Borr ER, Damo M, Foster GG, Giles JR, Huang YH, Tsang JS, Krishnaswamy S, Cui W, Joshi NS. KLF2 maintains lineage fidelity and suppresses CD8 T cell exhaustion during acute LCMV infection. Science 2025; 387:eadn2337. [PMID: 39946463 DOI: 10.1126/science.adn2337] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 07/06/2024] [Accepted: 11/26/2024] [Indexed: 04/23/2025]
Abstract
Naïve CD8 T cells have the potential to differentiate into a spectrum of functional states during an immune response. How these developmental decisions are made and what mechanisms exist to suppress differentiation toward alternative fates remains unclear. We employed in vivo CRISPR-Cas9-based perturbation sequencing to assess the role of ~40 transcription factors (TFs) and epigenetic modulators in T cell fate decisions. Unexpectedly, we found that knockout of the TF Klf2 resulted in aberrant differentiation to exhausted-like CD8 T cells during acute infection. KLF2 was required to suppress the exhaustion-promoting TF TOX and to enable the TF TBET to drive effector differentiation. KLF2 was also necessary to maintain a polyfunctional tumor-specific progenitor state. Thus, KLF2 provides effector CD8 T cell lineage fidelity and suppresses the exhaustion program.
Collapse
Affiliation(s)
- Eric Fagerberg
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - John Attanasio
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Christine Dien
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT, USA
| | - Jaiveer Singh
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Emily A Kessler
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Leena Abdullah
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Jian Shen
- Department of Pathology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Brian G Hunt
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Kelli A Connolly
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Edward De Brouwer
- Department of Genetics and Computer Science, Yale University School of Medicine, New Haven, CT, USA
| | - Jiaming He
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Nivedita R Iyer
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jessica Buck
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Emily R Borr
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Martina Damo
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Gena G Foster
- Section of Hematology, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Josephine R Giles
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yina H Huang
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - John S Tsang
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Systems and Engineering Immunology, Yale University School of Medicine, New Haven, CT, USA
- Chan Zuckerberg Biohub New York, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Smita Krishnaswamy
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
- Computational Biology and Bioinformatics Program, Yale University, New Haven, CT USA
- Applied Math Program, Yale University, New Haven, CT, USA
| | - Weiguo Cui
- Department of Pathology, Feinberg School of Medicine at Northwestern University, Chicago, IL, USA
| | - Nikhil S Joshi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
9
|
Zu H, Chen X. Epigenetics behind CD8 + T cell activation and exhaustion. Genes Immun 2024; 25:525-540. [PMID: 39543311 DOI: 10.1038/s41435-024-00307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
CD8+ T cells play a critical role in specific immunity. In recent years, cell therapy has been emerging rapidly. The specific cytotoxic capabilities of these cells enable them to precisely identify and kill cells presenting specific antigens. This has demonstrated promise in the treatment of autoimmune diseases and cancers, with wide-ranging applications and value. However, in some diseases, such as tumors and chronic infections, T cells may adopt an exhausted phenotype, resulting in a loss of cytotoxicity and limiting their further application. Epigenetics plays a significant role in the differentiation and regulation of gene expression in cells. There is extensive evidence indicating that epigenetic remodeling plays an important role in T cell exhaustion. Therefore, further understanding its role in CD8+ T cell function can provide insights into the programmatic regulation of CD8+ T cells from a genetic perspective and overcome these diseases. We attempted to describe the relationship between the activation, function, and exhaustion mechanisms of CD8+ T cells, as well as epigenetics. This understanding makes it possible for us to address the aforementioned issues.
Collapse
Affiliation(s)
- Hao Zu
- Yanjing Medical College, Capital Medical University, 101300, Beijing, China
| | - Xiaoqin Chen
- Yanjing Medical College, Capital Medical University, 101300, Beijing, China.
| |
Collapse
|
10
|
Pease NA, Denecke KM, Chen L, Gerges PH, Kueh HY. A timed epigenetic switch balances T and ILC lineage proportions in the thymus. Development 2024; 151:dev203016. [PMID: 39655434 PMCID: PMC11664168 DOI: 10.1242/dev.203016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 11/04/2024] [Indexed: 01/11/2025]
Abstract
How multipotent progenitors give rise to multiple cell types in defined numbers is a central question in developmental biology. Epigenetic switches, acting at single gene loci, can generate extended delays in the activation of lineage-specifying genes and impact lineage decisions and cell type output. Here, we analyzed a timed epigenetic switch controlling expression of mouse Bcl11b, a transcription factor that drives T-cell commitment, but only after a multi-day delay. To investigate roles for this delay in controlling lineage decision making, we analyzed progenitors with a deletion in a distal Bcl11b enhancer, which extends this delay by ∼3 days. Strikingly, delaying Bcl11b activation reduces T-cell output but enhances innate lymphoid cell (ILC) generation in the thymus by redirecting uncommitted progenitors to the ILC lineages. Mechanistically, delaying Bcl11b activation promoted ILC redirection by enabling upregulation of the ILC-specifying transcription factor PLZF. Despite the upregulation of PLZF, committed ILC progenitors could subsequently express Bcl11b, which is also needed for type 2 ILC differentiation. These results show that epigenetic switches can control the activation timing and order of lineage-specifying genes to modulate cell type numbers and proportions.
Collapse
Affiliation(s)
- Nicholas A. Pease
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98105, USA
| | - Kathryn M. Denecke
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Lihua Chen
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
| | - Peter Habib Gerges
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Hao Yuan Kueh
- Department of Bioengineering, University of Washington, Seattle, WA 98105, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
11
|
Kroemer G, Montégut L, Kepp O, Zitvogel L. The danger theory of immunity revisited. Nat Rev Immunol 2024; 24:912-928. [PMID: 39511426 DOI: 10.1038/s41577-024-01102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
The danger theory of immunity, introduced by Polly Matzinger in 1994, posits that tissue stress, damage or infection has a decisive role in determining immune responses. Since then, a growing body of evidence has supported the idea that the capacity to elicit cognate immune responses (immunogenicity) relies on the combination of antigenicity (the ability to be recognized by T cell receptors or antibodies) and adjuvanticity (additional signals arising owing to tissue damage). Here, we discuss the molecular foundations of the danger theory while focusing on immunologically relevant damage-associated molecular patterns, microorganism-associated molecular patterns, and neuroendocrine stress-associated immunomodulatory molecules, as well as on their receptors. We critically evaluate patient-relevant evidence, examining how cancer cells and pathogenic viruses suppress damage-associated molecular patterns to evade immune recognition, how intestinal dysbiosis can reduce immunostimulatory microorganism-associated molecular patterns and compromise immune responses, and which hereditary immune defects support the validity of the danger theory. Furthermore, we incorporate the danger hypothesis into a close-to-fail-safe hierarchy of immunological tolerance mechanisms that also involve the clonal deletion and inactivation of immune cells.
Collapse
Affiliation(s)
- Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Léa Montégut
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France.
- INSERM UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.
- Université Paris-Saclay, Ile-de-France, Paris, France.
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France.
| |
Collapse
|
12
|
Aljobaily N, Allard D, Perkins B, Raugh A, Galland T, Jing Y, Stephens WZ, Bettini ML, Hale JS, Bettini M. Autoimmune CD4 + T cells fine-tune TCF1 expression to maintain function and survive persistent antigen exposure during diabetes. Immunity 2024; 57:2583-2596.e6. [PMID: 39396521 PMCID: PMC11563894 DOI: 10.1016/j.immuni.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/21/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Self-reactive T cells experience chronic antigen exposure but do not exhibit signs of exhaustion. Here, we investigated the mechanisms for sustained, functioning autoimmune CD4+ T cells despite chronic stimulation. Examination of T cell priming showed that CD4+ T cells activated in the absence of infectious signals retained TCF1 expression. At later time points and during blockade of new T cell recruitment, most islet-infiltrating autoimmune CD4+ T cells were TCF1+, although expression was reduced on a per T cell basis. The Tcf7 locus was epigenetically modified in circulating autoimmune CD4+ T cells, suggesting a pre-programmed de novo methylation of the locus in early stages of autoimmune CD4+ T cell differentiation. This mirrored the epigenetic profile of recently recruited CD4+CD62L+ T cells in the pancreas. Collectively, these data reveal a unique environment during autoimmune CD4+ T cell priming that allows T cells to fine-tune TCF1 expression and maintain long-term survival and function.
Collapse
Affiliation(s)
- Nouf Aljobaily
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Denise Allard
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Bryant Perkins
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Arielle Raugh
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Tessa Galland
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Yi Jing
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - W Zac Stephens
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Matthew L Bettini
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - J Scott Hale
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA
| | - Maria Bettini
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
13
|
McCullen M, Oltz E. The multifaceted roles of TCF1 in innate and adaptive lymphocytes. Adv Immunol 2024; 164:39-71. [PMID: 39523028 DOI: 10.1016/bs.ai.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The immune system requires a complex network of specialized cell types to defend against a range of threats. The specific roles and destinies of these cell types are enforced by a constellation of gene regulatory programs, which are orchestrated through lineage-specifying transcription factors. T Cell Factor 1 (TCF1) is a central transcription factor in many of these programs, guiding the development and functionality of both adaptive and innate lymphoid cells. This review highlights recent insights into the function of TCF1 in a variety of lymphoid cell subsets and its potential for translational applications in immune disorders and cancer.
Collapse
Affiliation(s)
- Matthew McCullen
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, United States
| | - Eugene Oltz
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, United States.
| |
Collapse
|
14
|
Tehseen A, Kumar D, Dubey A, Sarkar R, Singh S, Sehrawat S. Glucocorticoid-mediated Suppression of Effector Programming Assists the Memory Transition of Virus-specific CD8+ T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:1170-1186. [PMID: 39212406 DOI: 10.4049/jimmunol.2300513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
We demonstrate the role of signaling via the glucocorticoid receptor, NR3C1, in differentiation of CD8+ T cell memory. Pharmacological inhibition as well as the short hairpin RNA-mediated knockdown of the receptor hindered memory transition and limited the homeostatic turnover of the activated CD8+ T cells. Dexamethasone exposure of CD8+ T cells expanded during a resolving infection with influenza A virus or a γ-herpesvirus promoted conversion of effector cells into memory cells by modulating cellular metabolism and lowering the accumulation of reactive oxygen species. Reduced reactive oxygen species levels in the responding effector cells upregulated Bcl2 and enhanced survival. The generated virus-specific memory CD8+ T cells were efficiently recalled following challenge of animals with a secondary infection to control it better. The memory-enhancing effect was predominantly evident at low doses of dexamethasone. Therefore, controlled glucocorticoid signaling within the effector CD8+ T cells is crucial for optimal memory differentiation.
Collapse
Affiliation(s)
- Azeez Tehseen
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab
| | - Dhaneshwar Kumar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab
| | - Abhishek Dubey
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab
| | - Roman Sarkar
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab
| | - Sudhakar Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab
| | - Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research, Mohali, Punjab
| |
Collapse
|
15
|
Wang L, Gao J, Liu B, Fu Y, Yao Z, Guo S, Song Z, Zhang Z, He J, Wang C, Ma W, Wu F. The association between lymphocyte-to-monocyte ratio and all-cause mortality in obese hypertensive patients with diabetes and without diabetes: results from the cohort study of NHANES 2001-2018. Front Endocrinol (Lausanne) 2024; 15:1387272. [PMID: 38686205 PMCID: PMC11056572 DOI: 10.3389/fendo.2024.1387272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024] Open
Abstract
Objective Obesity, hypertension and diabetes are high prevalent that are often associated with poor outcomes. They have become major global health concern. Little research has been done on the impact of lymphocyte-to-monocyte ratio (LMR) on outcomes in these patients. Thus, we aimed to explore the association between LMR and all-cause mortality in obese hypertensive patients with diabetes and without diabetes. Methods The researchers analyzed data from the National Health and Nutrition Examination Survey (2001-2018), which included 4,706 participants. Kaplan-Meier analysis was employed to compare survival rate between different groups. Multivariate Cox proportional hazards regression models with trend tests and restricted cubic splines (RCS) analysis and were used to investigate the relationship between the LMR and all-cause mortality. Subgroup analysis was performed to assess whether there was an interaction between the variables. Results The study included a total of 4706 participants with obese hypertension (48.78% male), of whom 960 cases (20.40%) died during follow-up (median follow-up of 90 months). Kaplan-Meier curves suggested a remarkable decrease in all-cause mortality with increasing LMR value in patients with diabetes and non-diabetes (P for log-rank test < 0.001). Moreover, multivariable Cox models demonstrated that the risk of mortality was considerably higher in the lowest quartile of the LMR and no linear trend was observed (P > 0.05). Furthermore, the RCS analysis indicated a non-linear decline in the risk of death as LMR values increased (P for nonlinearity < 0.001). Conclusions Increased LMR is independently related with reduced all-cause mortality in patients with obese hypertension, regardless of whether they have combined diabetes.
Collapse
Affiliation(s)
- Lixia Wang
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Jie Gao
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Bing Liu
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Youliang Fu
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Zhihui Yao
- Department of Cardiology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Shanshan Guo
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Ziwei Song
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Zhaoyuan Zhang
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Jiaojiao He
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| | - Congxia Wang
- Department of Cardiology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Weidong Ma
- Department of Cardiology, Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Feng Wu
- Department of Cardiology, Xi’an International Medical Center Hospital, Xi’an, Shaanxi, China
| |
Collapse
|
16
|
Stevens J, Culberson E, Kinder J, Ramiriqui A, Gray J, Bonfield M, Shao TY, Al Gharabieh F, Peterson L, Steinmeyer S, Zacharias W, Pryhuber G, Paul O, Sengupta S, Alenghat T, Way SS, Deshmukh H. Microbiota-derived inosine programs protective CD8 + T cell responses against influenza in newborns. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588427. [PMID: 38645130 PMCID: PMC11030415 DOI: 10.1101/2024.04.09.588427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The immunological defects causing susceptibility to severe viral respiratory infections due to early-life dysbiosis remain ill-defined. Here, we show that influenza virus susceptibility in dysbiotic infant mice is caused by CD8+ T cell hyporesponsiveness and diminished persistence as tissue-resident memory cells. We describe a previously unknown role for nuclear factor interleukin 3 (NFIL3) in repression of memory differentiation of CD8+ T cells in dysbiotic mice involving epigenetic regulation of T cell factor 1 (TCF 1) expression. Pulmonary CD8+ T cells from dysbiotic human infants share these transcriptional signatures and functional phenotypes. Mechanistically, intestinal inosine was reduced in dysbiotic human infants and newborn mice, and inosine replacement reversed epigenetic dysregulation of Tcf7 and increased memory differentiation and responsiveness of pulmonary CD8+ T cells. Our data unveils new developmental layers controlling immune cell activation and identifies microbial metabolites that may be used therapeutically in the future to protect at-risk newborns.
Collapse
Affiliation(s)
- Joseph Stevens
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center
| | - Erica Culberson
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
- Medical Scientist Training Program, University of Cincinnati College of Medicine
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center
| | - Jeremy Kinder
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center
| | - Alicia Ramiriqui
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
| | - Jerilyn Gray
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
| | - Madeline Bonfield
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
- Immunology Graduate Program, Cincinnati Children’s Hospital Medical Center
| | - Tzu-Yu Shao
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center
| | - Faris Al Gharabieh
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
| | - Laura Peterson
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
| | - Shelby Steinmeyer
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
| | - William Zacharias
- Department of Pediatrics, University of Cincinnati College of Medicine
- Medical Scientist Training Program, University of Cincinnati College of Medicine
| | - Gloria Pryhuber
- Department of Pediatrics, University of Rochester, School of Medicine
| | - Oindrila Paul
- Division of Neonatology, Children’s Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania
| | - Shaon Sengupta
- Division of Neonatology, Children’s Hospital of Philadelphia; Perelman School of Medicine, University of Pennsylvania
| | - Theresa Alenghat
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center
| | - Sing Sing Way
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati College of Medicine
- Division of Neonatology, Cincinnati Children’s Hospital Medical Center
- Division of Immunobiology, Cincinnati Children’s Hospital Medical Center
- Center for Inflammation and Tolerance, Cincinnati Children’s Hospital Medical Center
| |
Collapse
|