1
|
Liu TT, Wang YL, Zhang Z, Jia LX, Zhang J, Zheng S, Chen ZH, Shen HH, Piao CM, Du J. Abnormal adenosine metabolism of neutrophils inhibits airway inflammation and remodeling in asthma model induced by Aspergillus fumigatus. BMC Pulm Med 2023; 23:258. [PMID: 37452319 PMCID: PMC10347753 DOI: 10.1186/s12890-023-02553-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Neutrophils consume a large amount of energy when performing their functions. Compared with other white blood cells, neutrophils contain few mitochondria and mainly rely on glycolysis and gluconeogenesis to produce ATP. The inflammatory site is hypoxic and nutrient poor. Our aim is to study the role of abnormal adenosine metabolism of neutrophils in the asthmatic airway inflammation microenvironment. METHOD In this study, an asthma model was established by intratracheal instillation of Aspergillus fumigatus extract in Ecto-5'-Nucleotidase (CD73) gene-knockout and wild-type mice. Multiple analyses from bronchoalveolar lavage fluid (BALF) were used to determine the levels of cytokines and chemokines. Immunohistochemistry was used to detect subcutaneous fibrosis and inflammatory cell infiltration. Finally, adenosine 5'-(α, β-methylene) diphosphate (APCP), a CD73 inhibitor, was pumped subcutaneously before Aspergillus attack to observe the infiltration of inflammatory cells and subcutaneous fibrosis to clarify its therapeutic effect. RESULT PAS staining showed that CD73 knockout inhibited pulmonary epithelial cell proliferation and bronchial fibrosis induced by Aspergillus extract. The genetic knockdownof CD73 significantly reduced the production of Th2 cytokines, interleukin (IL)-4, IL-6, IL-13, chemokine (C-C motif) ligand 5 (CCL5), eosinophil chemokine, neutrophil IL-17, and granulocyte colony-stimulating factor (G-CSF). In addition, exogenous adenosine supplementation increased airway inflammation. Finally, the CD73 inhibitor APCP was administered to reduce inflammation and subcutaneous fibrosis. CONCLUSION Elevated adenosine metabolism plays an inflammatory role in asthma, and CD73 could be a potential therapeutic target for asthma.
Collapse
Affiliation(s)
- Ting-Ting Liu
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Yue-Li Wang
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Zhi Zhang
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Li-Xin Jia
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Jing Zhang
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Shuai Zheng
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China
| | - Zhi-Hua Chen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Hua-Hao Shen
- Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Chun-Mei Piao
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China.
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University; Beijing Institute of Heart, Lung and Blood Vessel Diseases, The Key Laboratory of Remodeling Cardiovascular Diseases, Ministry of Education; Collaborative Innovation Center for Cardiovascular Disorders, 100029, Beijing, China.
| |
Collapse
|
2
|
Rawat RS, Kumar S. Understanding the mode of inhibition and molecular interaction of taxifolin with human adenosine deaminase. J Biomol Struct Dyn 2023; 41:377-385. [PMID: 34851227 DOI: 10.1080/07391102.2021.2006087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Adenosine deaminase is a zinc+2 dependent key enzyme of purine metabolism which irreversibly converts adenosine to inosine and form ammonia. Overexpression of adenosine deaminase has been linked to a variety of pathophysiological conditions such as atherosclerosis, hypertension, and diabetes. In the case of a cell-mediated immune response, ADA is thought to be a marker, particularly in type II diabetes. Deoxycoformycin is the most potent ADA inhibitor that has been discovered so far, but it has several drawbacks, including being toxic and having poor pharmacokinetics. Taxifolin, a flavonoid derived from plants, was discovered to be a potent inhibitor of the human ADA (hADA) enzyme in the current study. Taxifolin bound at the active site of human ADA and showed fifty percent inhibition at a concentration of 400 µM against the enzyme. To better understand the interactions between taxifolin and human ADA, docking and molecular dynamic simulations were performed. In-silico studies using autodock revealed that taxifolin bound in the active site of human ADA with a binding energy of -7.4 kcal mol -1 and a theoretical Ki of 3.7 uM. Comparative analysis indicated that taxifolin and deoxycoformycin share a common binding space in the active site of human ADA and inhibit its catalytic activity similarly. The work emphasises the need of employing taxifolin as a lead chemical in order to produce a more precise and effective inhibitor of the human ADA enzyme with therapeutic potential.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ravindra Singh Rawat
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, India
| | - Sanjit Kumar
- Centre for Bioseparation Technology (CBST), Vellore Institute of Technology (VIT), Vellore, India
| |
Collapse
|
3
|
Wang M, Jia J, Cui Y, Peng Y, Jiang Y. CD73-positive extracellular vesicles promote glioblastoma immunosuppression by inhibiting T-cell clonal expansion. Cell Death Dis 2021; 12:1065. [PMID: 34753903 PMCID: PMC8578373 DOI: 10.1038/s41419-021-04359-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 10/22/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles are involved in the occurrence, progression and metastasis of glioblastoma (GBM). GBM can secrete a variety of tumour-derived extracellular vesicles (TDEVs) with high immunosuppressive activity that remotely suppress the systemic immune system, and therapy targeting TDEVs has potential efficacy. In this study, we detected a higher concentration of CD73+ TDEVs enriched in exosomes in central and peripheral body fluids of GBM patients than in those of patients with other brain tumours (low-grade glioma or brain metastases from melanoma or non-small-cell lung cancer). High CD73 expression was detected on the surface of T cells, and this CD73 was derived from TDEVs secreted by GBM cells. In vitro, we observed that CD73+ TDEVs released by GBM cell lines could be taken up by T cells. Moreover, excess adenosine was produced by AMP degradation around T cells and by adenosine receptor 2A (A2AR)-dependent inhibition of aerobic glycolysis and energy-related metabolic substrate production, thereby inhibiting the cell cycle entry and clonal proliferation of T cells. In vivo, defects in exosomal synthesis and CD73 expression significantly inhibited tumour growth in GBM tumour-bearing mice and restored the clonal proliferation of T cells in the central and peripheral regions. These data indicate that CD73+ TDEVs can be used as a potential target for GBM immunotherapy.
Collapse
Affiliation(s)
- Ming Wang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiaoying Jia
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yan Cui
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yong Peng
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
4
|
Daines M, Pereira R, Cunningham A, Pryor B, Besselsen DG, Liu Y, Luo Q, Chen Y. Novel Mouse Models of Fungal Asthma. Front Cell Infect Microbiol 2021; 11:683194. [PMID: 34485171 PMCID: PMC8415780 DOI: 10.3389/fcimb.2021.683194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/22/2021] [Indexed: 01/09/2023] Open
Abstract
Alternaria alternata is a ubiquitous fungus and a major allergen associated with the development of asthma. Inhalation of intact spores is the primary cause of human exposure to fungal allergen. However, allergen-rich cultured fungal filtrates are oftentimes used in the current models of fungal sensitization that do not fully reflect real-life exposures. Thus, establishing novel spore exposure models is imperative. In this study, we established novel fungal exposure models of both adult and neonate to live spores. We examined pathophysiological changes in the spore models as compared to the non-exposure controls and also to the conventional filtrate models. While both Alternaria filtrate- and spore-exposed adult BALB/c mice developed elevated airway hyperresponsiveness (AHR), filtrates induced a greater IgE mediated response and higher broncholavage eosinophils than spores. In contrast, the mice exposed to Alternaria spores had higher numbers of neutrophils. Both exposures induced comparable levels of lung tissue inflammation and mucous cell metaplasia (MCM). In the neonatal model, exposure to Alternaria spores resulted in a significant increase of AHR in both adult and neonatal mice. Increased levels of IgE in both neonatal and adult mice exposed to spores was associated with increased eosinophilia in the treatment groups. Adult demonstrated increased numbers of lymphocytes that was paralleled by increased IgG1 production. Both adults and neonates demonstrated similarly increased eosinophilia, IgE, tissue inflammation and MCM.
Collapse
Affiliation(s)
- Michael Daines
- Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ, United States.,Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, United States
| | - Rhea Pereira
- Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Aubrey Cunningham
- Department of Pediatrics, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Barry Pryor
- School of Plant Science, University of Arizona, Tucson, AZ, United States
| | - David G Besselsen
- Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States
| | - Yuchen Liu
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, United States
| | - Qianwen Luo
- Department of Biosystems Engineering, University of Arizona, Tucson, AZ, United States
| | - Yin Chen
- Asthma & Airway Disease Research Center, University of Arizona, Tucson, AZ, United States.,Department of Pharmacology and Toxicology, School of Pharmacy, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
5
|
Abstract
Asthma is a heterogeneous inflammatory disease of the airways that is associated with airway hyperresponsiveness and airflow limitation. Although asthma was once simply categorized as atopic or nonatopic, emerging analyses over the last few decades have revealed a variety of asthma endotypes that are attributed to numerous pathophysiological mechanisms. The classification of asthma by endotype is primarily routed in different profiles of airway inflammation that contribute to bronchoconstriction. Many asthma therapeutics target G protein-coupled receptors (GPCRs), which either enhance bronchodilation or prevent bronchoconstriction. Short-acting and long-acting β 2-agonists are widely used bronchodilators that signal through the activation of the β 2-adrenergic receptor. Short-acting and long-acting antagonists of muscarinic acetylcholine receptors are used to reduce bronchoconstriction by blocking the action of acetylcholine. Leukotriene antagonists that block the signaling of cysteinyl leukotriene receptor 1 are used as an add-on therapy to reduce bronchoconstriction and inflammation induced by cysteinyl leukotrienes. A number of GPCR-targeting asthma drug candidates are also in different stages of development. Among them, antagonists of prostaglandin D2 receptor 2 have advanced into phase III clinical trials. Others, including antagonists of the adenosine A2B receptor and the histamine H4 receptor, are in early stages of clinical investigation. In the past decade, significant research advancements in pharmacology, cell biology, structural biology, and molecular physiology have greatly deepened our understanding of the therapeutic roles of GPCRs in asthma and drug action on these GPCRs. This review summarizes our current understanding of GPCR signaling and pharmacology in the context of asthma treatment. SIGNIFICANCE STATEMENT: Although current treatment methods for asthma are effective for a majority of asthma patients, there are still a large number of patients with poorly controlled asthma who may experience asthma exacerbations. This review summarizes current asthma treatment methods and our understanding of signaling and pharmacology of G protein-coupled receptors (GPCRs) in asthma therapy, and discusses controversies regarding the use of GPCR drugs and new opportunities in developing GPCR-targeting therapeutics for the treatment of asthma.
Collapse
Affiliation(s)
- Stacy Gelhaus Wendell
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Hao Fan
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| | - Cheng Zhang
- Department of Pharmacology and Chemical Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania (S.G.W., C.Z.); Bioinformatics Institute, Agency for Science, Technology, and Research, Singapore (H.F.); and Department of Biological Sciences, National University of Singapore, and Center for Computational Biology, DUKE-NUS Medical School, Singapore (H.F.)
| |
Collapse
|
6
|
Ito R, Maruoka S, Soda K, Katano I, Kawai K, Yagoto M, Hanazawa A, Takahashi T, Ogura T, Goto M, Takahashi R, Toyoshima S, Okayama Y, Izuhara K, Gon Y, Hashimoto S, Ito M, Nunomura S. A humanized mouse model to study asthmatic airway inflammation via the human IL-33/IL-13 axis. JCI Insight 2018; 3:121580. [PMID: 30385714 DOI: 10.1172/jci.insight.121580] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/26/2018] [Indexed: 01/02/2023] Open
Abstract
Asthma is one of the most common immunological diseases and is characterized by airway hyperresponsiveness (AHR), mucus overproduction, and airway eosinophilia. Although mouse models have provided insight into the mechanisms by which type-2 cytokines induce asthmatic airway inflammation, differences between the rodent and human immune systems hamper efforts to improve understanding of human allergic diseases. In this study, we aim to establish a preclinical animal model of asthmatic airway inflammation using humanized IL-3/GM-CSF or IL-3/GM-CSF/IL-5 Tg NOD/Shi-scid-IL2rγnull (NOG) mice and investigate the roles of human type-2 immune responses in the asthmatic mice. Several important characteristics of asthma - such as AHR, goblet cell hyperplasia, T cell infiltration, IL-13 production, and periostin secretion - were induced in IL-3/GM-CSF Tg mice by intratracheally administered human IL-33. In addition to these characteristics, human eosinophilic inflammation was observed in IL-3/GM-CSF/IL-5 Tg mice. The asthmatic mechanisms of the humanized mice were driven by activation of human Th2 and mast cells by IL-33 stimulation. Furthermore, treatment of the humanized mice with an anti-human IL-13 antibody significantly suppressed these characteristics. Therefore, the humanized mice may enhance our understanding of the pathophysiology of allergic disorders and facilitate the preclinical development of new therapeutics for IL-33-mediated type-2 inflammation in asthma.
Collapse
Affiliation(s)
- Ryoji Ito
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Shuichiro Maruoka
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kaori Soda
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Ikumi Katano
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Kenji Kawai
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Mika Yagoto
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Asami Hanazawa
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | | | - Tomoyuki Ogura
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Motohito Goto
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Riichi Takahashi
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Shota Toyoshima
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Center for Institutional Research and Medical Education, Nihon University School of Medicine, Tokyo, Japan
| | - Yoshimichi Okayama
- Allergy and Immunology Research Project Team, Research Institute of Medical Science, Center for Institutional Research and Medical Education, Nihon University School of Medicine, Tokyo, Japan
| | - Kenji Izuhara
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| | - Yasuhiro Gon
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shu Hashimoto
- Division of Respiratory Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Mamoru Ito
- Central Institute for Experimental Animals (CIEA), Kanagawa, Japan
| | - Satoshi Nunomura
- Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga, Japan
| |
Collapse
|
7
|
Fischer KD, Hall SC, Agrawal DK. Vitamin D Supplementation Reduces Induction of Epithelial-Mesenchymal Transition in Allergen Sensitized and Challenged Mice. PLoS One 2016; 11:e0149180. [PMID: 26872336 PMCID: PMC4752470 DOI: 10.1371/journal.pone.0149180] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 01/05/2016] [Indexed: 01/05/2023] Open
Abstract
Asthma is a chronic disease of the lung associated with airway hyperresponsiveness (AHR), airway obstruction and airway remodeling. Airway remodeling involves differentiation of airway epithelial cells into myofibroblasts via epithelial-mesenchymal transition (EMT) to intensify the degree of subepithelial fibrosis. EMT involves loss in E-cadherin with an increase in mesenchymal markers, including vimentin and N-cadherin. There is growing evidence that vitamin D has immunomodulatory and anti-inflammatory properties. However, the underlying molecular mechanisms of these effects are still unclear. In this study, we examined the contribution of vitamin D on the AHR, airway inflammation and expression of EMT markers in the airways of mice sensitized and challenged with a combination of clinically relevant allergens, house dust mite, ragweed, and Alternaria (HRA). Female Balb/c mice were fed with vitamin D-sufficient (2000 IU/kg) or vitamin D-supplemented (10,000 IU/kg) diet followed by sensitization with HRA. The density of inflammatory cells in the bronchoalveolar lavage fluid (BALF), lung histology, and expression of EMT markers by immunofluorescence were examined. Vitamin D-supplementation decreased AHR, airway inflammation in the BALF and the features of airway remodeling compared to vitamin D-sufficiency in HRA-sensitized and -challenged mice. This was accompanied with increased expression of E-cadherin and decreased vimentin and N-cadherin expression in the airways. These results indicate that vitamin D may be a beneficial adjunct in the treatment regime in allergic asthma.
Collapse
Affiliation(s)
- Kimberly D. Fischer
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Sannette C. Hall
- Department of Biomedical Science, Creighton University School of Medicine, Omaha, NE, United States of America
| | - Devendra K. Agrawal
- Department of Medical Microbiology and Immunology, Creighton University School of Medicine, Omaha, NE, United States of America
- Department of Biomedical Science, Creighton University School of Medicine, Omaha, NE, United States of America
- Department of Clinical and Translational Science, Creighton University School of Medicine, Omaha, NE, United States of America
- * E-mail:
| |
Collapse
|
8
|
Wimmer M, Alessandrini F, Gilles S, Frank U, Oeder S, Hauser M, Ring J, Ferreira F, Ernst D, Winkler JB, Schmitt-Kopplin P, Ohnmacht C, Behrendt H, Schmidt-Weber C, Traidl-Hoffmann C, Gutermuth J. Pollen-derived adenosine is a necessary cofactor for ragweed allergy. Allergy 2015; 70:944-54. [PMID: 25939785 DOI: 10.1111/all.12642] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/28/2015] [Indexed: 01/22/2023]
Abstract
BACKGROUND Ragweed (Ambrosia artemisiifolia) is a strong elicitor of allergic airway inflammation with worldwide increasing prevalence. Various components of ragweed pollen are thought to play a role in the development of allergic responses. The aim of this study was to identify critical factors for allergenicity of ragweed pollen in a physiological model of allergic airway inflammation. METHODS Aqueous ragweed pollen extract, the low molecular weight fraction or the major allergen Amb a 1 was instilled intranasally on 1-11 consecutive days, and allergic airway inflammation was evaluated by bronchoalveolar lavage, lung histology, serology, gene expression in lung tissue, and measurement of lung function. Pollen-derived adenosine was removed from the extract enzymatically to analyze its role in ragweed-induced allergy. Migration of human neutrophils and eosinophils toward supernatants of ragweed-stimulated bronchial epithelial cells was analyzed. RESULTS Instillation of ragweed pollen extract, but not of the major allergen or the low molecular weight fraction, induced specific IgG1 , pulmonary infiltration with inflammatory cells, a Th2-associated cytokine signature in pulmonary tissue, and impaired lung function. Adenosine aggravated ragweed-induced allergic lung inflammation. In vitro, human neutrophils and eosinophils migrated toward supernatants of bronchial epithelial cells stimulated with ragweed extract only if adenosine was present. CONCLUSIONS Pollen-derived adenosine is a critical factor in ragweed-pollen-induced allergic airway inflammation. Future studies aim at therapeutic strategies to control these allergen-independent pathways.
Collapse
Affiliation(s)
- M. Wimmer
- Institute of Environmental Medicine; UNIKA-T; Technische Universität München; Munich Germany
- Center of Allergy and Environment (ZAUM); Technische Universität and Helmholtz Zentrum München; Member of the German Center for Lung research (DZL); Munich Germany
- Christine Kühne - Center for Allergy Research and Education; Zurich Switzerland
| | - F. Alessandrini
- Center of Allergy and Environment (ZAUM); Technische Universität and Helmholtz Zentrum München; Member of the German Center for Lung research (DZL); Munich Germany
- Christine Kühne - Center for Allergy Research and Education; Zurich Switzerland
| | - S. Gilles
- Institute of Environmental Medicine; UNIKA-T; Technische Universität München; Munich Germany
- Christine Kühne - Center for Allergy Research and Education; Zurich Switzerland
| | - U. Frank
- Christine Kühne - Center for Allergy Research and Education; Zurich Switzerland
- Institute of Biochemical Plant Pathology; Helmholtz Zentrum München; Munich Germany
| | - S. Oeder
- Center of Allergy and Environment (ZAUM); Technische Universität and Helmholtz Zentrum München; Member of the German Center for Lung research (DZL); Munich Germany
- Christine Kühne - Center for Allergy Research and Education; Zurich Switzerland
| | - M. Hauser
- Christine Kühne - Center for Allergy Research and Education; Zurich Switzerland
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - J. Ring
- Christine Kühne - Center for Allergy Research and Education; Zurich Switzerland
- Department of Dermatology and Allergy Biederstein; TU Munich; Munich Germany
| | - F. Ferreira
- Christian Doppler Laboratory for Allergy Diagnosis and Therapy; Department of Molecular Biology; University of Salzburg; Salzburg Austria
| | - D. Ernst
- Institute of Biochemical Plant Pathology; Helmholtz Zentrum München; Munich Germany
| | - J. B. Winkler
- Research Unit Environmental Simulation at the Institute of Biochemical Plant Pathology; Helmholtz Zentrum München; Munich Germany
| | - P. Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry; Helmholtz Zentrum München; Munich Germany
- Analytical Food Chemistry; Technische Universität München; Munich Germany
| | - C. Ohnmacht
- Center of Allergy and Environment (ZAUM); Technische Universität and Helmholtz Zentrum München; Member of the German Center for Lung research (DZL); Munich Germany
| | - H. Behrendt
- Center of Allergy and Environment (ZAUM); Technische Universität and Helmholtz Zentrum München; Member of the German Center for Lung research (DZL); Munich Germany
- Christine Kühne - Center for Allergy Research and Education; Zurich Switzerland
| | - C. Schmidt-Weber
- Center of Allergy and Environment (ZAUM); Technische Universität and Helmholtz Zentrum München; Member of the German Center for Lung research (DZL); Munich Germany
| | - C. Traidl-Hoffmann
- Institute of Environmental Medicine; UNIKA-T; Technische Universität München; Munich Germany
- Christine Kühne - Center for Allergy Research and Education; Zurich Switzerland
- Department of Dermatology and Allergy Biederstein; TU Munich; Munich Germany
| | - J. Gutermuth
- Center of Allergy and Environment (ZAUM); Technische Universität and Helmholtz Zentrum München; Member of the German Center for Lung research (DZL); Munich Germany
- Department of Dermatology and Allergy Biederstein; TU Munich; Munich Germany
- Department of Dermatology; Universitair Ziekenhuis Brussel; Vrije Universiteit Brussel; Brussel Belgium
| |
Collapse
|
9
|
Longhi MS, Robson SC, Bernstein SH, Serra S, Deaglio S. Biological functions of ecto-enzymes in regulating extracellular adenosine levels in neoplastic and inflammatory disease states. J Mol Med (Berl) 2013; 91:165-72. [PMID: 23292173 DOI: 10.1007/s00109-012-0991-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 12/15/2012] [Accepted: 12/19/2012] [Indexed: 12/24/2022]
Abstract
When present in the extracellular environment, the nucleoside adenosine protects cells and tissues from excessive inflammation and immune-mediated damage while promoting healing processes. This role has been highlighted experimentally using distinct disease models, including those of colitis, diabetes, asthma, sepsis, and ischemic injury. Adenosine also suppresses immune responses, as in the tumor microenvironment, assisting immune evasion while promoting angiogenesis. The mechanisms involved in adenosine signaling are addressed elsewhere in this issue. Here, the authors specifically address the generation of adenosine from extracellular nucleotides. This process is catalyzed by a series of plasma membrane ectonucleotidases, with the focus in this article on members of the CD39, CD73, and CD38 families and on their role in inflammatory and neoplastic hematological diseases. Pharmacological modulation of adenosine generation by drugs that either have or modulate ectonucleotidase function might be exploited to treat these diverse conditions.
Collapse
Affiliation(s)
- Maria Serena Longhi
- Institute of Liver Studies, King's College London School of Medicine at King's College Hospital, Denmark Hill, SE5 9RS, London, UK.
| | | | | | | | | |
Collapse
|
10
|
Sun X, Li Q, Gong Y, Ren L, Wan H, Deng W. Low-dose theophylline restores corticosteroid responsiveness in rats with smoke-induced airway inflammation. Can J Physiol Pharmacol 2012; 90:895-902. [PMID: 22708526 DOI: 10.1139/y2012-079] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Patients with chronic obstructive pulmonary disease (COPD) respond poorly to corticosteroids. Histone deacetylase-2 (HDAC-2) plays a pivotal role in many cases of steroid insensitivity. The main aim of this study was to restore the smoking-induced reduction in corticosteroid sensitivity by increasing HDAC-2 activity using low-dose theophylline. Rats were exposed to cigarette smoke (CS) and treated with budesonide and two doses of theophylline. Besides the pathologic examination and cell counting in the bronchoalveolar lavage fluid (BALF), the expression of HDAC-2 and CXC chemokine ligand-8 (CXCL-8) were measured. Airway inflammation induced by CS was demonstrated by pathologic changes of lung tissue and increased level of CXCL-8. CS exposure also markedly decreased HDAC-2 expression. Moreover, a negative correlation was found between HDAC-2 activity and a lung destruction index. The index was restored to control levels with inhaled corticosteroid treatment in combination with a low, not a high, dose of theophylline. These results indicate that low-dose theophylline might provide protection from smoke damage and improve the anti-inflammatory effects of steroids by increasing HDAC-2 activity.
Collapse
Affiliation(s)
- Xianwen Sun
- Department of Respiratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Qingyun Li
- Department of Respiratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Yi Gong
- Department of Respiratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Lei Ren
- Department of Respiratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
- Department of Respiratory Medicine, Shanghai Jing An Geriatric Hospital, Shanghai, P. R. China
| | - Huanying Wan
- Department of Respiratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Weiwu Deng
- Department of Respiratory Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| |
Collapse
|
11
|
Cheong SL, Federico S, Venkatesan G, Mandel AL, Shao YM, Moro S, Spalluto G, Pastorin G. The A3 adenosine receptor as multifaceted therapeutic target: pharmacology, medicinal chemistry, and in silico approaches. Med Res Rev 2011; 33:235-335. [PMID: 22095687 DOI: 10.1002/med.20254] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Adenosine is an ubiquitous local modulator that regulates various physiological and pathological functions by stimulating four membrane receptors, namely A(1), A(2A), A(2B), and A(3). Among these G protein-coupled receptors, the A(3) subtype is found mainly in the lung, liver, heart, eyes, and brain in our body. It has been associated with cerebroprotection and cardioprotection, as well as modulation of cellular growth upon its selective activation. On the other hand, its inhibition by selective antagonists has been reported to be potentially useful in the treatment of pathological conditions including glaucoma, inflammatory diseases, and cancer. In this review, we focused on the pharmacology and the therapeutic implications of the human (h)A(3) adenosine receptor (AR), together with an overview on the progress of hA(3) AR agonists, antagonists, allosteric modulators, and radioligands, as well as on the recent advances pertaining to the computational approaches (e.g., quantitative structure-activity relationships, homology modeling, molecular docking, and molecular dynamics simulations) applied to the modeling of hA(3) AR and drug design.
Collapse
Affiliation(s)
- Siew Lee Cheong
- Department of Pharmacy, National University of Singapore, 3 Science Drive 2, Singapore 117543, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Clayton A, Al-Taei S, Webber J, Mason MD, Tabi Z. Cancer exosomes express CD39 and CD73, which suppress T cells through adenosine production. THE JOURNAL OF IMMUNOLOGY 2011; 187:676-83. [PMID: 21677139 DOI: 10.4049/jimmunol.1003884] [Citation(s) in RCA: 434] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Extracellular adenosine is elevated in cancer tissue, and it negatively regulates local immune responses. Adenosine production from extracellular ATP has attracted attention as a mechanism of regulatory T cell-mediated immune regulation. In this study, we examined whether small vesicles secreted by cancer cells, called exosomes, contribute to extracellular adenosine production and hence modulate immune effector cells indirectly. We found exosomes from diverse cancer cell types exhibit potent ATP- and 5'AMP-phosphohydrolytic activity, partly attributed to exosomally expressed CD39 and CD73, respectively. Comparable levels of activity were seen with exosomes from pleural effusions of mesothelioma patients. In such fluids, exosomes accounted for 20% of the total ATP-hydrolytic activity. Exosomes can perform both hydrolytic steps sequentially to form adenosine from ATP. This exosome-generated adenosine can trigger a cAMP response in adenosine A(2A) receptor-positive but not A(2A) receptor-negative cells. Similarly, significantly elevated cAMP was also triggered in Jurkat cells by adding exosomes with ATP but not by adding exosomes or ATP alone. A proportion of healthy donor T cells constitutively express CD39 and/or CD73. Activation of T cells by CD3/CD28 cross-linking could be inhibited by exogenously added 5'AMP in a CD73-dependent manner. However, 5'AMP converted to adenosine by exosomes inhibits T cell activation independently of T cell CD73 expression. This T cell inhibition was mediated through the adenosine A(2A) receptor. In summary, the data highlight exosome enzymic activity in the production of extracellular adenosine, and this may play a contributory role in negative modulation of T cells in the tumor environment.
Collapse
Affiliation(s)
- Aled Clayton
- Department of Pharmacology, Radiology and Oncology, School of Medicine, Cardiff University, Velindre Cancer Centre, Whitchurch, Cardiff CF14 2TL, United Kingdom.
| | | | | | | | | |
Collapse
|
13
|
Ponnoth DS, Jamal Mustafa S. Adenosine receptors and vascular inflammation. BIOCHIMICA ET BIOPHYSICA ACTA 2011; 1808:1429-34. [PMID: 20832387 PMCID: PMC3010249 DOI: 10.1016/j.bbamem.2010.08.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Revised: 08/26/2010] [Accepted: 08/30/2010] [Indexed: 02/06/2023]
Abstract
Epidemiological studies have shown a positive correlation between poor lung function and respiratory disorders like asthma and the development of adverse cardiovascular events. Increased adenosine (AD) levels are associated with lung inflammation which could lead to altered vascular responses and systemic inflammation. There is relatively little known about the cardiovascular effects of adenosine in a model of allergy. We have shown that A(1) adenosine receptors (AR) are involved in altered vascular responses and vascular inflammation in allergic mice. Allergic A(1)wild-type mice showed altered vascular reactivity, increased airway responsiveness and systemic inflammation. Our data suggests that A(1) AR is pro-inflammatory systemically in this model of asthma. There are also reports of the A(2B) receptor having anti-inflammatory effects in vascular stress; however its role in allergy with respect to vascular effects has not been fully explored. In this review, we have focused on the role of adenosine receptors in allergic asthma and the cardiovascular system and possible mechanism(s) of action.
Collapse
Affiliation(s)
- Dovenia S Ponnoth
- Department of Physiology and Pharmacology, West Virginia University. Morgantown, WV, USA
| | | |
Collapse
|
14
|
Ponnoth DS, Nadeem A, Tilley S, Mustafa SJ. Involvement of A1 adenosine receptors in altered vascular responses and inflammation in an allergic mouse model of asthma. Am J Physiol Heart Circ Physiol 2010; 299:H81-7. [PMID: 20400685 DOI: 10.1152/ajpheart.01090.2009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Poor lung function and respiratory disorders like asthma have a positive correlation with the development of adverse cardiovascular events. Increased adenosine levels are associated with lung inflammation that could lead to altered vascular responses and systemic inflammation. We hypothesized that asthmatic lung inflammation has systemic effects through A(1) adenosine receptors (A(1)AR) and investigated the effects of aerosolized adenosine on vascular reactivity and inflammation, using A(1)AR knockout (A(1)KO) and corresponding wild-type (A(1)WT) mice that were divided into three experimental groups each: control (CON), allergen sensitized and challenged (SEN), and SEN + aerosolized adenosine (SEN + AD). Animals were sensitized with ragweed (200 microg ip; days 1 and 6), followed by 1% ragweed aerosol challenges (days 11 to 13). On day 14, the SEN + AD groups received one adenosine aerosol challenge (6 mg/ml) for 2 min, and aortae were collected on day 15. 5'-N-ethylcarboxamidoadenosine (NECA; nonselective adenosine analog) induced concentration-dependent aortic relaxation in the A(1)WT CON group, which was impaired in the A(1)WT SEN and SEN + AD groups. All groups of A(1)KO mice showed similar (no significant difference) concentration-dependent relaxation to NECA. The A(1)WT SEN and SEN + AD groups had a significantly higher contraction to selective A(1) agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA) compared with the CON group. Western blot data showed that aortic A(1)AR expression was significantly increased in WT SEN and SEN + AD mice compared with CON mice. Gene expression of ICAM-1 and IL-5 was significantly increased in allergic A(1)WT aorta and were undetected in the A(1)KO groups. A(1)WT allergic mice had significantly higher airway hyperresponsiveness (enhanced pause) to NECA, with adenosine aerosol further enhancing it. In conclusion, allergic A(1)WT mice showed altered vascular reactivity, increased airway hyperresponsiveness, and systemic inflammation. These data suggest that A(1)AR is proinflammatory systemically in this model of allergic asthma.
Collapse
Affiliation(s)
- Dovenia S Ponnoth
- Department of Physiology and Pharmacology, Center for Cardiovascular and Respiratory Sciences, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown, WV 26506, USA
| | | | | | | |
Collapse
|
15
|
Abstract
The pathophysiological processes underlying respiratory diseases like asthma are complex, resulting in an overwhelming choice of potential targets for the novel treatment of this disease. Despite this complexity, asthmatic subjects are uniquely sensitive to a range of substances like adenosine, thought to act indirectly to evoke changes in respiratory mechanics and in the underlying pathology, and thereby to offer novel insights into the pathophysiology of this disease. Adenosine is of particular interest because this substance is produced endogenously by many cells during hypoxia, stress, allergic stimulation, and exercise. Extracellular adenosine can be measured in significant concentrations within the airways; can be shown to activate adenosine receptor (AR) subtypes on lung resident cells and migrating inflammatory cells, thereby altering their function, and could therefore play a significant role in this disease. Many preclinical in vitro and in vivo studies have documented the roles of the various AR subtypes in regulating cell function and how they might have a beneficial impact in disease models. Agonists and antagonists of some of these receptor subtypes have been developed and have progressed to clinical studies in order to evaluate their potential as novel antiasthma drugs. In this chapter, we will highlight the roles of adenosine and AR subtypes in many of the characteristic features of asthma: airway obstruction, inflammation, bronchial hyperresponsiveness and remodeling. We will also discuss the merit of targeting each receptor subtype in the development of novel antiasthma drugs.
Collapse
|
16
|
Nunomura S, Yoshimaru T, Ra C. Na-Tosyl-Phe chloromethyl ketone prevents granule movement and mast cell synergistic degranulation elicited by costimulation of antigen and adenosine. Life Sci 2008; 83:242-9. [PMID: 18634805 DOI: 10.1016/j.lfs.2008.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Revised: 05/08/2008] [Accepted: 06/07/2008] [Indexed: 12/11/2022]
Abstract
Adenosine has been shown to enhance mast cell degranulation when added together with an antigen. Such augmentation of mast cell activation is relevant to exacerbation of allergic asthma symptoms. Na-Tosyl-Phe chloromethyl ketone (TPCK) is a chymotrypsine-like chymase inhibitor, which has anti-inflammatory properties. In this study, we investigated the effects of TPCK on mast cell synergistic degranulation induced by antigen and adenosine. Here, we report that TPCK almost completely suppressed enhanced degranulation by inhibiting granule movement. Consistent with this, intraperitoneal administration of TPCK resulted in significant amelioration of passive cutaneous anaphylaxis in mice. Furthermore, we demonstrated that TPCK completely inhibited Thr308 phosphorylation of protein kinase B in mast cells stimulated with antigen and adenosine. These results provide a novel action of TPCK for the prevention of mast cell degranulation induced by antigen and adenosine.
Collapse
Affiliation(s)
- Satoshi Nunomura
- Division of Molecular Cell Immunology and Allergology, Nihon University Graduate School of Medical Science, Japan
| | | | | |
Collapse
|
17
|
Ponnoth DS, Nadeem A, Mustafa SJ. Adenosine-mediated alteration of vascular reactivity and inflammation in a murine model of asthma. Am J Physiol Heart Circ Physiol 2008; 294:H2158-65. [PMID: 18310516 PMCID: PMC2913602 DOI: 10.1152/ajpheart.01224.2007] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Chronic respiratory disorders such as asthma are believed to be associated with adverse cardiovascular events. We hypothesize that asthmatic inflammation translates into systemic inflammation and alters vascular responses where adenosine (AD) plays an important role. Therefore, this study investigated the effects of aerosolized AD, used to elevate lung AD levels, on vascular reactivity and inflammation in our allergic mouse model of asthma. Balb/c mice were divided into four groups: control (Con), Con + aerosolized AD (Con + AD), allergen sensitized and challenged (Sen), and Sen + aerosolized AD (Sen + AD). The animals were sensitized with ragweed (200 mug ip) on days 1 and 6, followed by 1% ragweed aerosol challenges from days 11 to 13. On day 14, the Con + AD and Sen + AD groups received a single AD aerosol challenge (6 mg/ml) for 2 min, followed by the collection of the aorta and plasma on day 15. Organ bath experiments showed concentration-dependent aortic relaxations to AD in the Con and Con + AD groups, which were impaired in the Sen and Sen + AD groups. Real-time PCR data showed changes in aortic AD receptors (ARs), with the expression of A(1)ARs upregulated, whereas the expression of A(2)ARs and endothelial nitric oxide synthase genes were downregulated, resulting in an impairment of vasorelaxation in the Sen and Sen + AD groups. The A(1)AR antagonist 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) reversed the impairment in vasorelaxation observed in the Sen and Sen + AD groups, whereas the A(2B)AR antagonist alloxazine inhibited vasorelaxation in all groups. Allergen challenge caused systemic inflammation in allergic mice, with AD aerosol further enhancing it as determined by the inflammatory cytokines profile in plasma. In conclusion, asthmatic mice showed altered vascular reactivity and systemic inflammation, with AD aerosol further exacerbating these effects.
Collapse
MESH Headings
- Acetylcholine/pharmacology
- Adenosine/administration & dosage
- Adenosine/metabolism
- Administration, Inhalation
- Allergens
- Ambrosia/immunology
- Animals
- Aorta/drug effects
- Aorta/enzymology
- Aorta/immunology
- Aorta/metabolism
- Aorta/physiopathology
- Asthma/immunology
- Asthma/metabolism
- Asthma/physiopathology
- Disease Models, Animal
- Dose-Response Relationship, Drug
- Flavins/pharmacology
- Inflammation/blood
- Inflammation/immunology
- Inflammation/metabolism
- Inflammation/physiopathology
- Inflammation Mediators/blood
- Lung/metabolism
- Lung/physiopathology
- Male
- Mice
- Mice, Inbred BALB C
- Nitric Oxide Synthase Type II/genetics
- Nitric Oxide Synthase Type II/metabolism
- Nitric Oxide Synthase Type III
- Plant Proteins/immunology
- Receptor, Adenosine A1/genetics
- Receptor, Adenosine A1/metabolism
- Receptor, Adenosine A2A/genetics
- Receptor, Adenosine A2A/metabolism
- Receptor, Adenosine A2B/genetics
- Receptor, Adenosine A2B/metabolism
- Vasodilation/drug effects
- Vasodilator Agents/pharmacology
- Xanthines/pharmacology
Collapse
Affiliation(s)
- Dovenia S Ponnoth
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA
| | | | | |
Collapse
|
18
|
Agrawal DK, Cheng G, Kim MJ, Kiniwa M. Interaction of suplatast tosilate (IPD) with chloride channels in human blood eosinophils: a potential mechanism underlying its anti-allergic and anti-asthmatic effects. Clin Exp Allergy 2007; 38:305-12. [PMID: 18028459 DOI: 10.1111/j.1365-2222.2007.02877.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
INTRODUCTION Alterations in chloride ion channels have been implicated in the induction of changes in cell shape and volume. Because blood and tissue eosinophilia are hallmarks of bronchial asthma, in this study we examined the role of chloride channels in the underlying effects of suplatast tosilate (IPD), an anti-allergic drug, in human blood eosinophils. METHODS Eosinophils were isolated and purified from the blood of allergic asthmatic donors. Chloride ion currents were recorded using the whole-cell patch-clamp technique in freshly isolated eosinophils. The current-voltage relationship of whole-cell currents in human blood eosinophils was calculated and recorded. The effect of chloride channel blockers was examined on superoxide release, eosinophil chemotaxis as measured by the Boyden chamber, and eosinophil adhesion to endothelial cells. Radioligand binding studies with [3H]IPD and competition curves with chloride channel blockers were performed. RESULTS IPD increased both inward and outward chloride currents in human blood eosinophils. IPD in 1 ng/mL did not have significant effect on chloride current. However, at 5 ng/mL IPD activated both outward and inward currents in human blood eosinophils. Chloride channel blockers inhibited IPD-induced respiratory burst in eosinophils, eosinophil chemotaxis, and eosinophil adhesion to endothelial cells. All these effects of IPD on chloride current and the resultant functional responses in human blood eosinophils were not due to its basic salt, p-toluenesulphonic acid monohydrate. Human blood eosinophils contained specific binding sites for [3H]IPD with K(D) and B(max) values of 187.7+/-105.8 nm and 58.7+/-18.7 fmol/10(6) cells, respectively. Both NPPB and DIDS competed, in a dose-dependent manner, for the specific binding of [3H]IPD in human blood eosinophils. CONCLUSION These data suggest that the anti-allergic and anti-asthmatic effects of IPD could be due to its interaction with chloride channels in human blood eosinophils.
Collapse
Affiliation(s)
- D K Agrawal
- Creighton University School of Medicine, Omaha, NE 68178, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
Animal models of asthma are a tool that allows studies to be conducted in the setting of an intact immune and respiratory system. These models have highlighted the importance of T-helper type 2 driven allergic responses in the progression of asthma and have been useful in the identification of potential drug targets for interventions involving allergic pathways. However, a number of drugs that have been shown to have some efficacy in animal models of asthma have shown little clinical benefit in human asthmatics. This may be due to a number of factors including the species of animal chosen and the methods used to induce an asthmatic phenotype in animals that do not normally develop a disease that could be characterized as asthma. The range of animal models available is vast, with the most popular models being rodents (inbred mice and rats) and guinea-pigs, which have the benefit of being easy to handle and being relatively cost effective compared with other models that are available. The recent advances in transgenic technology and the development of species-specific probes, particularly in mice, have allowed detailed mechanistic studies to be conducted. Despite these advances in technology, there are a number of issues with current animal models of asthma that must be recognized including the disparity in immunology and anatomy between these species and humans, the requirement for adjuvant during senitization in most models, the acute nature of the allergic response that is induced and the use of adult animals as the primary disease model. Some larger animal models using sheep and dogs have been developed that may address some of these issues but they also have different biology from humans in many ways and are extremely costly, with very few probes available for characterizing allergic responses in the airway in these species. As research in this area continues to expand, the relative merits and limitations of each model must be defined and understood in order to evaluate the information that is obtained from these models and to extrapolate these findings to humans so that effective drug therapies can be developed. Despite these issues, animal models have been, and will continue to be, vital in understanding the mechanisms that are involved in the development and progression of asthma.
Collapse
Affiliation(s)
- G R Zosky
- Division of Clinical Sciences, Telethon Institute for Child Health Research, Subiaco, Western Australia.
| | | |
Collapse
|
20
|
Mustafa SJ, Nadeem A, Fan M, Zhong H, Belardinelli L, Zeng D. Effect of a specific and selective A(2B) adenosine receptor antagonist on adenosine agonist AMP and allergen-induced airway responsiveness and cellular influx in a mouse model of asthma. J Pharmacol Exp Ther 2007; 320:1246-51. [PMID: 17159162 DOI: 10.1124/jpet.106.112250] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
It has been previously proposed that adenosine plays an important role in the pathogenesis of asthma. The proposed mechanism of action for nucleoside adenosine is to activate A(2B) adenosine receptors (AR) and to indirectly modulate levels of mediators in the lung. In vivo data supporting the role of A(2B) AR in airway reactivity and inflammation in allergic animal models are lacking. The present study describes the effects of a selective A(2B) AR antagonist, CVT-6883 [3-ethyl-1-propyl-8-[1-(3-trifluoromethylbenzyl)-1H-pyrazol-4-yl]-3,7-dihydropurine-2,6-dione], on airway reactivity and inflammation in an allergic mouse model of asthma. Mice were sensitized with ragweed (i.p.) on days 1 and 6 and challenged with 0.5% ragweed on days 11, 12, and 13. On day 14, airway reactivity to 5'-N-ethylcarboxamidoadenosine (NECA), AMP, or allergen challenge was measured in terms of enhanced pause (Penh). Aerosolized NECA elicited concentration-dependent increases in Penh, which were significantly attenuated by CVT-6883 (0.4, 1.0, or 2.5 mg/kg i.p.). Aerosolized AMP elicited significant increases in Penh in sensitized mice, and the effect was significantly attenuated by either CVT-6883 (1 mg/kg i.p.) or montelukast (1 mg/kg i.p.). Allergen challenge induced late allergic response in sensitized mice, which was inhibited by CVT-6883 (1 mg/kg i.p.). Allergen challenge also increased the number of cells in bronchoalveolar lavage fluid obtained from sensitized mice, and that was reduced by either CVT-6883 (6 mg/ml aerosolization for 5 min) or theophylline (36 mg/ml aerosolization for 5 min). These results suggest that A(2B)AR antagonism plays an important role in inhibition of airway reactivity and inflammation in this model of allergic asthma.
Collapse
Affiliation(s)
- S Jamal Mustafa
- Department of Physiology and Pharmacology, School of Medicine, West Virginia University, Morgantown, WV 26506, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Abstract
Evidence has accumulated in the last three decades to suggest tissue protection and regeneration by adenosine in multiple different cell types. Adenosine produced in hypoxic or inflamed environments reduces tissue injury and promotes repair by receptor-mediated mechanisms. Among other actions, regulation of cytokine production and secretion by immune cells, astrocytes and microglia (the brain immunocytes) has emerged as a main mechanism at the basis of adenosine effects in diseases characterized by a marked inflammatory component. Many recent studies have highlighted that signalling through A1 and A2A adenosine receptors can powerfully prevent the release of pro-inflammatory cytokines, thus inhibiting inflammation and reperfusion injury. However, the activation of adenosine receptors is not invariably protective of tissues, as signalling through the A2B adenosine receptor has been linked to pro-inflammatory actions which are, at least in part, mediated by increased release of pro-inflammatory cytokines from epithelial cells, astrocytes and fibroblasts. Here, we discuss the multiple actions of P1 receptors on cytokine secretion, by analyzing, in particular, the role of the various adenosine receptor subtypes, the complex reciprocal interplay between the adenosine and the cytokine systems, their pathophysiological significance and the potential of adenosine receptor ligands as new anti-inflammatory agents.
Collapse
|
22
|
|
23
|
Invited Lectures : Overviews Purinergic signalling: past, present and future. Purinergic Signal 2006; 2:1-324. [PMID: 18404494 PMCID: PMC2096525 DOI: 10.1007/s11302-006-9006-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2006] [Indexed: 12/11/2022] Open
|
24
|
Usami A, Ueki S, Ito W, Kobayashi Y, Chiba T, Mahemuti G, Oyamada H, Kamada Y, Fujita M, Kato H, Saito N, Kayaba H, Chihara J. Theophylline and dexamethasone induce peroxisome proliferator-activated receptor-gamma expression in human eosinophils. Pharmacology 2006; 77:33-7. [PMID: 16569937 DOI: 10.1159/000092376] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Accepted: 02/01/2006] [Indexed: 11/19/2022]
Abstract
Eosinophils are major effector cells in allergic diseases including asthma. Peroxisome proliferator-activated receptor-gamma (PPARgamma) is a nuclear receptor that regulates immune reaction. We have previously demonstrated that human eosinophils express PPARgamma and that stimulation with a synthetic agonist for PPARgamma attenuated the factor-induced eosinophil survival and chemotaxis. However, the modulator of the eosinophil PPARgamma expression has not yet been studied. In this study, we investigated the effect of theophylline and dexamethasone (widely used drugs in the treatment of asthma) on PPARgamma expression in eosinophils. Purified human peripheral blood eosinophils were cultured, and therapeutic concentrations of theophylline and dexamethasone were added. Subsequently, PPARgamma was measured using quantitative real-time RT-PCR and flow cytometry. Theophylline and dexamethasone markedly enhanced both mRNA and protein levels of PPARgamma. These findings suggest that the increase in PPARgamma expression on eosinophils may play a role in the anti-inflammatory effects of theophylline and dexamethasone.
Collapse
Affiliation(s)
- Atsuko Usami
- Department of Clinical and Laboratory Medicine, Akita University School of Medicine, Hondo, Akita, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|