1
|
Curvino EJ, Roe EF, Freire Haddad H, Anderson AR, Woodruff ME, Votaw NL, Segura T, Hale LP, Collier JH. Engaging natural antibody responses for the treatment of inflammatory bowel disease via phosphorylcholine-presenting nanofibres. Nat Biomed Eng 2024; 8:628-649. [PMID: 38012308 PMCID: PMC11128482 DOI: 10.1038/s41551-023-01139-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/17/2023] [Indexed: 11/29/2023]
Abstract
Inflammatory bowel disease lacks a long-lasting and broadly effective therapy. Here, by taking advantage of the anti-infection and anti-inflammatory properties of natural antibodies against the small-molecule epitope phosphorylcholine (PC), we show in multiple mouse models of colitis that immunization of the animals with self-assembling supramolecular peptide nanofibres bearing PC epitopes induced sustained levels of anti-PC antibodies that were both protective and therapeutic. The strength and type of immune responses elicited by the nanofibres could be controlled through the relative valency of PC epitopes and exogenous T-cell epitopes on the nanofibres and via the addition of the adjuvant CpG. The nanomaterial-assisted induction of the production of therapeutic antibodies may represent a durable therapy for inflammatory bowel disease.
Collapse
Affiliation(s)
| | - Emily F Roe
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | - Alexa R Anderson
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Mia E Woodruff
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nicole L Votaw
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Tatiana Segura
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Laura P Hale
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
2
|
Ikeda-Imafuku M, Gao Y, Shaha S, Wang LLW, Park KS, Nakajima M, Adebowale O, Mitragotri S. Extracellular matrix degrading enzyme with stroma-targeting peptides enhance the penetration of liposomes into tumors. J Control Release 2022; 352:1093-1103. [PMID: 36351520 DOI: 10.1016/j.jconrel.2022.11.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/29/2022] [Accepted: 11/03/2022] [Indexed: 11/21/2022]
Abstract
Various anti-tumor nanomedicines have been developed based on the enhanced permeability and retention effect. However, the dense extracellular matrix (ECM) in tumors remains a major barrier for the delivery and accumulation of nanoparticles into tumors. While ECM-degrading enzymes, such as collagenase, hyaluronidase, and bromelain, have been used to facilitate the accumulation of nanoparticles, serious side effects arising from the current non-tumor-specific delivery methods limit their clinical applications. Here, we report targeted delivery of bromelain into tumor tissues through its covalent attachment to a hyaluronic acid (HA)-peptide conjugate with tumor ECM targeting ability. The ECM targeting peptide, collagen type IV-binding peptide (C4BP), was chosen from six candidate-peptides based on their ability to bind to frozen sections of triple-negative breast cancer, 4T1 tumor ex vivo. The HA- C4BP conjugate showed a significant increase in tumor accumulation in 4T1-bearing mice after intravenous administration compared to unmodified HA. We further demonstrated that the systemic administration of bromelain conjugated C4BP-HA (C4BP-HA-Bro) potentiates the anti-tumor efficacy of liposomal doxorubicin. C4BP-HA-Bro decreased the number and length of collagen fibers and improved the distribution of doxorubicin within the tumor. No infusion reaction was noted after delivery of C4BP-HA-Bro. C4BP-HA thus offers a potential for effective and safe delivery of bromelain for improved intratumoral delivery of therapeutics.
Collapse
Affiliation(s)
- Mayumi Ikeda-Imafuku
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Yongsheng Gao
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Suyog Shaha
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Lily Li-Wen Wang
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kyung Soo Park
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Mayuka Nakajima
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Omokolade Adebowale
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering & Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Cambridge, MA 20138, USA.
| |
Collapse
|
3
|
Liang J, Pan J, Wu Z, Ge M, Xu J. Effects of high pressure in association with pH and salt on the allergenicity, proteolytic and fibrinolytic activities of pineapple juice. QUALITY ASSURANCE AND SAFETY OF CROPS & FOODS 2016. [DOI: 10.3920/qas2015.0661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- J. Liang
- Engineering Research Centre of Bio-Process, Ministry of Education of China, Hefei University of Technology, 193 Tun Xi Road, Hefei, Anhui 230009, China P.R
| | - J. Pan
- Engineering Research Centre of Bio-Process, Ministry of Education of China, Hefei University of Technology, 193 Tun Xi Road, Hefei, Anhui 230009, China P.R
| | - Z.Y. Wu
- Engineering Research Centre of Bio-Process, Ministry of Education of China, Hefei University of Technology, 193 Tun Xi Road, Hefei, Anhui 230009, China P.R
| | - M. Ge
- Engineering Research Centre of Bio-Process, Ministry of Education of China, Hefei University of Technology, 193 Tun Xi Road, Hefei, Anhui 230009, China P.R
| | - J.F. Xu
- Engineering Research Centre of Bio-Process, Ministry of Education of China, Hefei University of Technology, 193 Tun Xi Road, Hefei, Anhui 230009, China P.R
| |
Collapse
|
4
|
Liang J, Xu J, Pan J, Ge M, Zong K. Identification of the Main Allergenic Proteins in High Hydrostatic Pressure Pineapple Juice and Assessing the Influence of Pressure on their Allergenicity. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2015. [DOI: 10.1080/10942912.2014.966386] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
5
|
Effects of canned pineapple consumption on nutritional status, immunomodulation, and physical health of selected school children. J Nutr Metab 2014; 2014:861659. [PMID: 25505983 PMCID: PMC4258310 DOI: 10.1155/2014/861659] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 10/30/2014] [Indexed: 11/20/2022] Open
Abstract
This randomized, controlled trial examined the effects of canned pineapple consumption on immunomodulation, nutritional status, and physical health of ninety-eight (98) school children with mean age of 8.44 ± 0.20. The study participants were divided into three groups: Group A (33) includes subjects who were not given canned pineapple, Group B (33) includes those who were given 140 g, and Group C (32) includes those given 280 g of canned pineapple for nine weeks. Each major group was further divided into two groups: normal (N) and underweight (U) based on 2007 WHO Growth Reference Standards. Sociodemographic, anthropometric, physical examination, dietary intake, hemoglobin level, and immunological data were analyzed. Results showed a decrease in incidence of viral and bacterial infections for both Group B and Group C (normal and underweight) after canned pineapple consumption. Granulocyte production increased by 0.77–26.61% for normal weight subjects and 14.95–34.55% for underweight. CD16+56 count augmented by 20.44–22.13% for normal weight and 3.57–15.89% for underweight subjects. Thus, intake of both one can (140 g) and two cans (280 g) of canned pineapple may shorten the duration and incidence of infection and may increase the production of granulocytes and CD16+56, but intake of two cans (280 g) demonstrated higher granulocyte and CD16+56 production. This trial is registered with Philippine Health Research Registry:
PHRR140826-000225.
Collapse
|
6
|
Peptidases from latex of Carica candamarcensis upregulate COX-2 and IL-1 mRNA transcripts against Salmonella enterica ser. Typhimurium-mediated inflammation. Mediators Inflamm 2014; 2014:819731. [PMID: 24757289 PMCID: PMC3976864 DOI: 10.1155/2014/819731] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 01/09/2014] [Accepted: 01/24/2014] [Indexed: 11/18/2022] Open
Abstract
The immunomodulatory properties of a mixture of cysteine peptidases (P1G10) obtained from the fruit lattice of Carica candamarcensis were investigated. P1G10 was obtained from fresh latex samples by chromatography in a Sephadex column and initially administered to Swiss mice (n = 5; 1 or 10 mg/kg) via i.p. After 30 min, the mice were injected with carrageenan (0.5 mg/mouse) or heat-killed S. Typhimurium (10(7) CFU/mL; 100°C/30 min) into the peritoneal cavity. Afterwards, two animal groups were i.p. administered with P1G10 (n = 6; 1, 5, or 10 mg/Kg) or PBS 24 hours prior to challenge with live S. Typhimurium (10(7) CFU/mL). P1G10 stimulated the proliferation of circulating neutrophils and lymphocytes, 6 h after injection of carrageenan or heat-killed bacteria, respectively. Furthermore, survival after infection was dose-dependent and reached 60% of the animal group. On the other hand, control mice died 1-3 days after infection. The examination of mRNA transcripts in liver cells 24 h after infection confirmed fold variation increases of 5.8 and 4.8 times on average for IL-1 and COX-2, respectively, in P1G10 pretreated mice but not for TNF-α, IL-10, γ-IFN and iNOS, for which the results were comparable to untreated animals. These data are discussed in light of previous reports.
Collapse
|
7
|
Iron supplementation decreases severity of allergic inflammation in murine lung. PLoS One 2012; 7:e45667. [PMID: 23029172 PMCID: PMC3447873 DOI: 10.1371/journal.pone.0045667] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 08/21/2012] [Indexed: 02/07/2023] Open
Abstract
The incidence and severity of allergic asthma have increased over the last century, particularly in the United States and other developed countries. This time frame was characterized by marked environmental changes, including enhanced hygiene, decreased pathogen exposure, increased exposure to inhaled pollutants, and changes in diet. Although iron is well-known to participate in critical biologic processes such as oxygen transport, energy generation, and host defense, iron deficiency remains common in the United States and world-wide. The purpose of these studies was to determine how dietary iron supplementation affected the severity of allergic inflammation in the lungs, using a classic model of IgE-mediated allergy in mice. Results showed that mice fed an iron-supplemented diet had markedly decreased allergen-induced airway hyperreactivity, eosinophil infiltration, and production of pro-inflammatory cytokines, compared with control mice on an unsupplemented diet that generated mild iron deficiency but not anemia. In vitro, iron supplementation decreased mast cell granule content, IgE-triggered degranulation, and production of pro-inflammatory cytokines post-degranulation. Taken together, these studies show that iron supplementation can decrease the severity of allergic inflammation in the lung, potentially via multiple mechanisms that affect mast cell activity. Further studies are indicated to determine the potential of iron supplementation to modulate the clinical severity of allergic diseases in humans.
Collapse
|
8
|
González-Rábade N, Badillo-Corona JA, Aranda-Barradas JS, Oliver-Salvador MDC. Production of plant proteases in vivo and in vitro--a review. Biotechnol Adv 2011; 29:983-96. [PMID: 21889977 DOI: 10.1016/j.biotechadv.2011.08.017] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 08/10/2011] [Accepted: 08/19/2011] [Indexed: 12/30/2022]
Abstract
In the latest two decades, the interest received by plant proteases has increased significantly. Plant enzymes such as proteases are widely used in medicine and the food industry. Some proteases, like papain, bromelain and ficin are used in various processes such as brewing, meat softening, milk-clotting, cancer treatment, digestion and viral disorders. These enzymes can be obtained from their natural source or through in vitro cultures, in order to ensure a continuous source of plant enzymes. The focus of this review will be the production of plant proteases both in vivo and in vitro, with particular emphasis on the different types of commercially important plant proteases that have been isolated and characterized from naturally grown plants. In vitro approaches for the production of these proteases is also explored, focusing on the techniques that do not involve genetic transformation of the plants and the attempts that have been made in order to enhance the yield of the desired proteases.
Collapse
|
9
|
Hale LP, Chichlowski M, Trinh CT, Greer PK. Dietary supplementation with fresh pineapple juice decreases inflammation and colonic neoplasia in IL-10-deficient mice with colitis. Inflamm Bowel Dis 2010; 16:2012-21. [PMID: 20848493 PMCID: PMC2991605 DOI: 10.1002/ibd.21320] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND Bromelain, a mixture of proteolytic enzymes typically derived from pineapple stem, decreases production of proinflammatory cytokines and leukocyte homing to sites of inflammation. We previously showed that short-term oral treatment with bromelain purified from pineapple stem decreased the severity of colonic inflammation in C57BL/6 Il10(-/-) mice with chronic colitis. Since fresh pineapple fruit contains similar bromelain enzymes but at different proportions, this study aimed to determine whether long-term dietary supplementation with pineapple (supplied as juice) could decrease colon inflammation and neoplasia in Il10(-/-) mice with chronic colitis as compared with bromelain derived from stem. METHODS Colitis was triggered in Il10(-/-) mice by exposure to the non-steroidal anti-inflammatory drug piroxicam. Mice with colitis were supplemented with fresh vs. boiled pineapple juice or bromelain purified from stem for up to 6 months. RESULTS Experimental mice readily consumed fresh pineapple juice at a level that generated mean stool proteolytic activities equivalent to 14 mg bromelain purified from stem, while control mice received boiled juice with inactive enzymes. Survival was increased in the group supplemented with fresh rather than boiled juice (P = 0.01). Mice that received fresh juice also had decreased histologic colon inflammation scores and a lower incidence of inflammation-associated colonic neoplasia (35% versus 66%; P < 0.02), with fewer neoplastic lesions/colon (P = 0.05). Flow cytometric analysis of murine splenocytes exposed to fresh pineapple juice in vitro demonstrated proteolytic removal of cell surface molecules that can affect leukocyte trafficking and activation. CONCLUSIONS These results demonstrate that long-term dietary supplementation with fresh or unpasteurized frozen pineapple juice with proteolytically active bromelain enzymes is safe and decreases inflammation severity and the incidence and multiplicity of inflammation-associated colonic neoplasia in this commonly used murine model of inflammatory bowel disease.
Collapse
Affiliation(s)
- Laura P Hale
- Department of Pathology, Duke University Medical Center, Durham, North Carolina 27710, USA.
| | | | | | | |
Collapse
|
10
|
Clement F, Venkatesh YP. Dietary garlic (Allium sativum) lectins, ASA I and ASA II, are highly stable and immunogenic. Int Immunopharmacol 2010; 10:1161-9. [DOI: 10.1016/j.intimp.2010.06.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 06/08/2010] [Accepted: 06/22/2010] [Indexed: 12/16/2022]
|
11
|
Chobotova K, Vernallis AB, Majid FAA. Bromelain's activity and potential as an anti-cancer agent: Current evidence and perspectives. Cancer Lett 2009; 290:148-56. [PMID: 19700238 DOI: 10.1016/j.canlet.2009.08.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 01/11/2023]
Abstract
The medicinal qualities of pineapple are recognized in many traditions in South America, China and Southeast Asia. These qualities are attributed to bromelain, a 95%-mixture of proteases. Medicinal qualities of bromelain include anti-inflammatory, anti-thrombotic, fibrinolytic and anti-cancer functions. Existing evidence derived from clinical observations as well as from mouse- and cell-based models suggests that bromelain acts systemically, affecting multiple cellular and molecular targets. In recent years, studies have shown that bromelain has the capacity to modulate key pathways that support malignancy. It is now possible to suggest that the anti-cancer activity of bromelain consists in the direct impact on cancer cells and their micro-environment, as well as in the modulation of immune, inflammatory and haemostatic systems. This review will summarize existing data relevant to bromelain's anti-cancer activity and will suggest mechanisms which account for bromelain's effect, in the light of research involving non-cancer models. The review will also identify specific new research questions that will need to be addressed in order for a full assessment of bromelain-based anti-cancer therapy.
Collapse
|
12
|
Secor ER, Singh A, Guernsey LA, McNamara JT, Zhan L, Maulik N, Thrall RS. Bromelain treatment reduces CD25 expression on activated CD4+ T cells in vitro. Int Immunopharmacol 2009; 9:340-6. [PMID: 19162239 DOI: 10.1016/j.intimp.2008.12.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 11/18/2008] [Accepted: 12/17/2008] [Indexed: 12/14/2022]
Abstract
Bromelain (Br), an extract from pineapple stem with cysteine protease activity, exerts anti-inflammatory effects in a number of inflammatory models. We have previously shown that Br treatment decreased activated CD4(+) T cells and has a therapeutic role in an ovalbumin-induced murine model of allergic airway disease. The current study was designed to determine the effect of Br on CD4(+) T cell activation, specifically the expression of CD25 in vitro. CD25 is up regulated upon T cell activation, found as a soluble fraction (sCD25) and is a therapeutic target in inflammation, autoimmunity and allergy. Br treatment of anti-CD3 stimulated CD4(+) T cells reduced CD25 expression in a dose and time dependent manner. This reduction of CD25 was dependent on the proteolytic action of Br as the addition of E64 (a cysteine protease inhibitor) abrogated this response. The concentration of sCD25 was increased in supernatants of Br treated activated CD4(+) T cells as compared to control cells, suggesting that Br proteolytically cleaved cell-surface CD25. This novel mechanism of action identifies how Br may exert its therapeutic benefits in inflammatory conditions.
Collapse
Affiliation(s)
- Eric R Secor
- Department of Immunology, University of Connecticut Health Center 263 Farmington Ave, MC1319Farmington, CT 06030, USA.
| | | | | | | | | | | | | |
Collapse
|
13
|
Li J, Li M, Tang J, Li X, Zhang H, Zhang Y. Resonance light-scattering spectrometric study of interaction between enzyme and MPA-modified CdTe nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2008; 70:514-8. [PMID: 17851121 DOI: 10.1016/j.saa.2007.07.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Revised: 07/20/2007] [Accepted: 07/27/2007] [Indexed: 05/17/2023]
Abstract
This paper described a novel assay of enzyme based on the measurement of enhanced resonance light-scattering (RLS) signals resulting from the electrostatic and coordination interaction of functionalized CdTe nanoparticles with enzyme. The CdTe nanoparticles which were modified with 3-mercaptocarboxylic acid (MPA) have abundant carboxylic groups (COOH). So the nanoparticles are water-soluble, stable and biocompatible. At pH 8.3 phosphate buffered saline (PBS), the RLS signals of functionalized nano-CdTe are greatly enhanced by bromelain and papain in the region of 220-800 nm characterized by the peak around 318-314 nm, respectively. The optimization conditions of the reaction were also examined and selected. Under the selected conditions, the enhanced RLS intensity is linearly proportional to the concentration of bromelain and papain. The liner range is (0.09-0.9) x 10(-6)mol/L for bromelain and (0.048-0.702) x 10(-6)mol/L for papain. The influences of some foreign substances were also examined. This method can be applied to the determination of enzyme.
Collapse
Affiliation(s)
- Juan Li
- College of Chemistry, Jilin University, Changchun 130012, PR China
| | | | | | | | | | | |
Collapse
|
14
|
Guimarães-Ferreira CA, Rodrigues EG, Mortara RA, Cabral H, Serrano FA, Ribeiro-dos-Santos R, Travassos LR. Antitumor effects in vitro and in vivo and mechanisms of protection against melanoma B16F10-Nex2 cells by fastuosain, a cysteine proteinase from Bromelia fastuosa. Neoplasia 2007; 9:723-33. [PMID: 17898868 PMCID: PMC1993857 DOI: 10.1593/neo.07427] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Revised: 07/10/2007] [Accepted: 07/14/2007] [Indexed: 11/18/2022] Open
Abstract
In the present work, the antitumor effect of fastuosain, a cysteine proteinase from Bromelia fastuosa, was investigated. In the intravenous model of lung colonization in C57Bl/6 mice, fastuosain and bromelain injected intraperitoneally were protective, and very few nodules of B16F10-Nex2 melanoma cells were detected. Tumor cells treated with fastuosain showed reduced expression of CD44 and decreased invasion through Matrigel, lost their cytoplasmic extensions and substrate adherence, and became round and detached, forming strongly bound cell clusters in suspension. Peritoneal cells recruited and activated by fastuosain treatment (mainly monocytic cells and lymphocytes) migrated to the lung, where pulmonary melanoma metastases grew. Adoptive transference of peritoneal cells recruited by fastuosain had no protective effect against lung metastases in recipient mice. Treatment of green fluorescent protein-chimeric animals with fastuosain did not change the number of cells that migrated to the lung, compared to PBS-injected control mice, but the number of positive major histocompatibility complex class II cells increased with fastuosain treatment. Murine antibodies against fastuosain, bromelain, and cathepsins B and L cross-reacted in ELISA and recognized surface and cytoplasmic components expressed on B16F10-Nex2 cells. Anti-fastuosain antibodies were cytotoxic/lytic to B16F10-Nex2 cells. Antitumor effects of fastuosain involve mainly the direct effect of the enzyme and elicitation of protective antibodies.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Antibody Formation
- Antigens, Neoplasm/biosynthesis
- Antigens, Neoplasm/immunology
- Antineoplastic Agents, Phytogenic/immunology
- Antineoplastic Agents, Phytogenic/pharmacology
- Antineoplastic Agents, Phytogenic/therapeutic use
- Bromelains/immunology
- Bromelains/pharmacology
- Bromelains/therapeutic use
- Cell Line, Tumor/drug effects
- Chemotaxis, Leukocyte/drug effects
- Cysteine Endopeptidases/immunology
- Cysteine Endopeptidases/pharmacology
- Cysteine Endopeptidases/therapeutic use
- Drug Screening Assays, Antitumor
- Lung Neoplasms/drug therapy
- Lung Neoplasms/immunology
- Lung Neoplasms/secondary
- Lymphocytes, Tumor-Infiltrating/drug effects
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/transplantation
- Male
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/immunology
- Melanoma, Experimental/pathology
- Melanoma, Experimental/secondary
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Transgenic
- Papain/immunology
- Papain/pharmacology
- Papain/therapeutic use
- Radiation Chimera
Collapse
Affiliation(s)
- Carla A Guimarães-Ferreira
- Experimental Oncology Unit, Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo, São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|