1
|
Zhu S, Cui Y, Hu H, Zhang C, Chen K, Shan Z, Teng W, Li J. Dihydroartemisinin inhibits the development of autoimmune thyroiditis by modulating oxidative stress and immune imbalance. Free Radic Biol Med 2025; 231:57-67. [PMID: 39988064 DOI: 10.1016/j.freeradbiomed.2025.02.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
Autoimmune thyroiditis is among the most prevalent autoimmune endocrine illnesses. However, the pathophysiology has not been determined, and efficacious treatments are still lacking. The current study used network pharmacology analysis and an experimental autoimmune thyroiditis (EAT) mouse model to explore whether dihydroartemisinin (DHA) has therapeutic effects on autoimmune thyroiditis and to investigate the potentially related mechanisms concerning oxidative stress (OS) responses and T-cell immune imbalance. The therapeutic effects of DHA on autoimmune thyroiditis and potentially related processes were first anticipated using network pharmacology analysis and then verified using the EAT model. DHA may influence the onset of autoimmune thyroiditis by regulating immune imbalance and OS responses, according to network pharmacology analysis. ELISA, immunofluorescence staining, and histopathological examination were used to detect changes in serum thyroid autoantibody levels and intrathyroidal inflammatory infiltration following DHA intervention. RT-PCR was used to determine the spleen's mRNA expression of typical T-cell cytokines, whereas an OS kit and immunohistochemical staining were used to assess the thyroid's glutathione (GSH) content, superoxide dismutase (SOD) activity, and Nrf2 protein expression. Furthermore, serum TgAb levels and intrathyroidal inflammatory infiltrates were considerably lower in EAT mice given high-dose DHA than in vehicle-treated controls. In the spleen, IFN-γ, IL-17A, and IL-6 mRNA expressions were dramatically downregulated, while IL-4 and IL-10 were significantly raised. Following high-dose DHA treatment, GSH content, SOD activity, and Nrf2 protein expression levels were markedly increased in thyroid tissue. These findings imply that DHA administration may suppress TgAb formation and reduce intrathyroidal inflammatory cell infiltration by restoring T-cell immune imbalance and increasing antioxidant capacity via the Nrf2 pathway. This study provides important experimental data for DHA's therapeutic use in patients with autoimmune thyroiditis.
Collapse
Affiliation(s)
- Shuangjie Zhu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, PR China
| | - Yongqi Cui
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, PR China
| | - Huizheng Hu
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China
| | - Chenxi Zhang
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China
| | - Kan Chen
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China
| | - Zhongyan Shan
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China
| | - Weiping Teng
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China
| | - Jing Li
- Department of Endocrinology and Metabolism, Institute of Endocrinology, NHC Key Laboratory of Diagnosis and Treatment of Thyroid Diseases, The First Hospital of China Medical University, Shenyang, PR China.
| |
Collapse
|
2
|
Chen Y, Tao T, Liang Z, Chen X, Xu Y, Zhang T, Zhou D. Prednisone combined with Dihydroartemisinin attenuates systemic lupus erythematosus by regulating M1/M2 balance through the MAPK signaling pathway. Mol Immunol 2024; 170:144-155. [PMID: 38669759 DOI: 10.1016/j.molimm.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
OBJECTIVE Dihydroartemisinin (DHA) plays a very important role in various diseases. However, the precise involvement of DHA in systemic lupus erythematosus (SLE), relation to the equilibrium between M1 and M2 cells, remains uncertain. Therefore, we aimed to investigate the role of DHA in SLE and its effect on the M1/M2 cells balance. METHODS SLE mice model was established by pristane induction. Flow cytometry was employed to measure the abundance of M1 and M2 cells within the peripheral blood of individuals diagnosed with SLE. The concentrations of various cytokines, namely TNF-α, IL-1β, IL-4, IL-6, and IL-10, within the serum of SLE patients or SLE mice were assessed via ELISA. Immunofluorescence staining was utilized to detect the deposition of IgG and complement C3 in renal tissues of the mice. We conducted immunohistochemistry analysis to assess the expression levels of Collagen-I, a collagen protein, and α-SMA, a fibrosis marker protein, in the renal tissues of mice. Hematoxylin-eosin staining, Masson's trichrome staining, and Periodic acid Schiff staining were used to examine histological alterations. In this study, we employed qPCR and western blot techniques to assess the expression levels of key molecular markers, namely CD80 and CD86 for M1 cells, as well as CD206 and Arg-1 for M2 cells, within kidney tissue. Additionally, we investigated the involvement of the MAPK signaling pathway. The Venny 2.1 online software tool was employed to identify shared drug-disease targets, and subsequently, the Cytoscape 3.9.2 software was utilized to construct the "disease-target-ingredient" network diagram. Protein-protein interactions of the target proteins were analyzed using the String database, and the network proteins underwent enrichment analysis for Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways. RESULTS The results showed that an increase in M1 cells and a decrease in M2 cells within the peripheral blood of individuals diagnosed with SLE. Further analysis revealed that prednisone (PDN) combined with DHA can alleviate kidney damage and regulate the balance of M1 and M2 cells in both glomerular mesangial cells (GMC) and kidney. The MAPK signaling pathway was found to be involved in SLE kidney damage and M1/M2 balance in the kidney. Furthermore, PDN and/or DHA were found to inhibit the MAPK signaling pathway in GMC and kidney. CONCLUSION We demonstrated that PDN combined with DHA attenuates SLE by regulating M1/M2 balance through MAPK signaling pathway. These findings propose that the combination of PDN and DHA could serve as a promising therapeutic strategy for SLE, as it has the potential to mitigate kidney damage and reinstate the equilibrium of M1 and M2 cells.
Collapse
Affiliation(s)
- Yan Chen
- Department of Dermatology, Yangjiang People's Hospital, 42 Dongshan Road, Jiangcheng District, Yangjiang 529500, Guangdong, China.
| | - Tingjun Tao
- Department of Dermatology, Yangjiang People's Hospital, 42 Dongshan Road, Jiangcheng District, Yangjiang 529500, Guangdong, China
| | - Zhaoxin Liang
- The First Clinical Medical School, Southern Medical University, 1838 North of Guangzhou Avenue, Baiyun, Guangzhou 510515, Guangdong, China
| | - Xiangnong Chen
- Department of hematopathology, The First Affiliated Hospital of Sun Yat-sen University, 58 ZhongshanEr Road, Yuexiu District, Guangzhou, China
| | - Ya'nan Xu
- Department of Dermatology, Yan'an People's Hospital, 16 Qilipu Street, Baota District, Yan'an, Shanxi, China
| | - Tangtang Zhang
- Department of Dermatology, The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Dunrong Zhou
- Department of Intensive Care Unit, Yangjiang People's Hospital, 42 Dongshan Road, Jiangcheng District, Yangjiang 529500, Guangdong, China
| |
Collapse
|
3
|
Xie K, Li Z, Zhang Y, Wu H, Zhang T, Wang W. Artemisinin and its derivatives as promising therapies for autoimmune diseases. Heliyon 2024; 10:e27972. [PMID: 38596057 PMCID: PMC11001780 DOI: 10.1016/j.heliyon.2024.e27972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 03/08/2024] [Accepted: 03/08/2024] [Indexed: 04/11/2024] Open
Abstract
Artemisinin, a traditional Chinese medicine with remarkable antimalarial activity. In recent years, studies demonstrated that artemisinin and its derivatives (ARTs) showed anti-inflammatory and immunoregulatory effects. ARTs have been developed and gradually applied to treat autoimmune and inflammatory diseases. However, their role in the treament of patients with autoimmune and inflammatory diseases in particular is less well recognized. This review will briefly describe the history of ARTs use in patients with autoimmune and inflammatory diseases, the theorized mechanisms of action of the agents ARTs, their efficacy in patients with autoinmmune and inflammatory diseases. Overall, ARTs have numerous beneficial effects in patients with autoimmune and inflammatory diseases, and have a good safety profile.
Collapse
Affiliation(s)
- Kaidi Xie
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Zhen Li
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| | - Yang Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| | - Hao Wu
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| | - Tong Zhang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| | - Wen Wang
- Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Beijing Key Laboratory for HIV/ AIDS Research, Beijing, 100069, China
| |
Collapse
|
4
|
Gao X, Lin X, Wang Q, Chen J. Artemisinins: Promising drug candidates for the treatment of autoimmune diseases. Med Res Rev 2024; 44:867-891. [PMID: 38054758 DOI: 10.1002/med.22001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/02/2023] [Accepted: 11/22/2023] [Indexed: 12/07/2023]
Abstract
Autoimmune diseases are characterized by the immune system's attack on one's own tissues which are highly diverse and diseases differ in severity, causing damage in virtually all human systems including connective tissue (e.g., rheumatoid arthritis), neurological system (e.g., multiple sclerosis) and digestive system (e.g., inflammatory bowel disease). Historically, treatments normally include pain-killing medication, anti-inflammatory drugs, corticosteroids, and immunosuppressant drugs. However, given the above characteristics, treatment of autoimmune diseases has always been a challenge. Artemisinin is a natural sesquiterpene lactone initially extracted and separated from Chinese medicine Artemisia annua L., which has a long history of curing malaria. Artemisinin's derivatives such as artesunate, dihydroartemisinin, artemether, artemisitene, and so forth, are a family of artemisinins with antimalarial activity. Over the past decades, accumulating evidence have indicated the promising therapeutic potential of artemisinins in autoimmune diseases. Herein, we systematically summarized the research regarding the immunoregulatory properties of artemisinins including artemisinin and its derivatives, discussing their potential therapeutic viability toward major autoimmune diseases and the underlying mechanisms. This review will provide new directions for basic research and clinical translational medicine of artemisinins.
Collapse
Affiliation(s)
- Xu Gao
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Xian Lin
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Qingwen Wang
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| | - Jian Chen
- Department of Rheumatism and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
- Institute of Immunology and Inflammatory Diseases, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen, China
- Shenzhen Key Laboratory of Inflammatory and Immunology Diseases, Shenzhen, China
| |
Collapse
|
5
|
Xie Z, Jiang N, Lin M, He X, Li B, Dong Y, Chen S, Lv G. The Mechanisms of Polysaccharides from Tonic Chinese Herbal Medicine on the Enhancement Immune Function: A Review. Molecules 2023; 28:7355. [PMID: 37959774 PMCID: PMC10648855 DOI: 10.3390/molecules28217355] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Tonic Chinese herbal medicine is a type of traditional Chinese medicine, and its primary function is to restore the body's lost nutrients, improve activity levels, increase disease resistance, and alleviate physical exhaustion. The body's immunity can be strengthened by its polysaccharide components, which also have a potent immune-system-protecting effect. Several studies have demonstrated that tonic Chinese herbal medicine polysaccharides can improve the body's immune response to tumor cells, viruses, bacteria, and other harmful substances. However, the regulatory mechanisms by which various polysaccharides used in tonic Chinese herbal medicine enhance immune function vary. This study examines the regulatory effects of different tonic Chinese herbal medicine polysaccharides on immune organs, immune cells, and immune-related cytokines. It explores the immune response mechanism to understand the similarities and differences in the effects of tonic Chinese herbal medicine polysaccharides on immune function and to lay the foundation for the future development of tonic Chinese herbal medicine polysaccharide products.
Collapse
Affiliation(s)
- Zhiyi Xie
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Ninghua Jiang
- The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China;
| | - Minqiu Lin
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Yingjie Dong
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Suhong Chen
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Huzhou 313200, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R & D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou 313200, China
| | - Guiyuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
6
|
Ji Y, Sun K, Yang Y, Wu Z. Dihydroartemisinin ameliorates innate inflammatory response induced by Streptococcussuis-derived muramidase-released protein via inactivation of TLR4-dependent NF-κB signaling. J Pharm Anal 2023; 13:1183-1194. [PMID: 38024861 PMCID: PMC10657969 DOI: 10.1016/j.jpha.2023.05.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 12/01/2023] Open
Abstract
Muramidase-released protein (MRP) is now being recognized as a critical indicator of the virulence and pathogenicity of Streptococcus suis (S. suis). However, the identification of viable therapeutics for S. suis infection was hindered by the absence of an explicit mechanism for MRP-actuated inflammation. Dihydroartemisinin (DhA) is an artemisinin derivative with potential anti-inflammatory activity. The modulatory effect of DhA on the inflammatory response mediated by the virulence factor MRP remains obscure. This research aimed to identify the signaling mechanism by which MRP triggers the innate immune response in mouse spleen and cultured macrophages. With the candidate mechanism in mind, we investigated DhA for its ability to dampen the pro-inflammatory response induced by MRP. The innate immune response in mice was drastically triggered by MRP, manifesting as splenic and systemic inflammation with splenomegaly, immune cell infiltration, and an elevation in pro-inflammatory cytokines. A crucial role for Toll-like receptor 4 (TLR4) in coordinating the MRP-mediated inflammatory response via nuclear factor-kappa B (NF-κB) activation was revealed by TLR4 blockade. In addition, NF-κB-dependent transducer and activator of transcription 3 (STAT3) and mitogen-activated protein kinases (MAPKs) activation was required for the inflammatory signal transduction engendered by MRP. Intriguingly, we observed an alleviation effect of DhA on the MRP-induced immune response, which referred to the suppression of TLR4-mediated actuation of NF-κB-STAT3/MAPK cascades. The inflammatory response elicited by MRP is relevant to TLR4-dependent NF-κB activation, followed by an increase in the activity of STAT3 or MAPKs. DhA mitigates the inflammation process induced by MRP via blocking the TLR4 cascade, highlighting the therapeutic potential of DhA in targeting S. suis infection diseases.
Collapse
Affiliation(s)
- Yun Ji
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Kaiji Sun
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing, 100193, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
7
|
Li S, Fan G, Li X, Cai Y, Liu R. Modulation of type I interferon signaling by natural products in the treatment of immune-related diseases. Chin J Nat Med 2023; 21:3-18. [PMID: 36641230 DOI: 10.1016/s1875-5364(23)60381-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Indexed: 01/15/2023]
Abstract
Type I interferon (IFN) is considered as a bridge between innate and adaptive immunity. Proper activation or inhibition of type I IFN signaling is essential for host defense against pathogen invasion, tumor cell proliferation, and overactive immune responses. Due to intricate and diverse chemical structures, natural products and their derivatives have become an invaluable source inspiring innovative drug discovery. In addition, some natural products have been applied in clinical practice for infection, cancer, and autoimmunity over thousands of years and their promising curative effects and safety have been well-accepted. However, whether these natural products are primarily targeting type I IFN signaling and specific molecular targets involved are not fully elucidated. In the current review, we thoroughly summarize recent advances in the pharmacology researches of natural products for their type I IFN activity, including both agonism/activation and antagonism/inhibition, and their potential application as therapies. Furthermore, the source and chemical nature of natural products with type I IFN activity are highlighted and their specific molecular targets in the type I IFN pathway and mode of action are classified. In conclusion, natural products possessing type I IFN activity represent promising therapeutic strategies and have a bright prospect in the treatment of infection, cancer, and autoimmune diseases.
Collapse
Affiliation(s)
- Shuo Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Guifang Fan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xiaojiaoyang Li
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yajie Cai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Runping Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 100029, China.
| |
Collapse
|
8
|
Du Y, Li C, Zhang Y, Xiong W, Wang F, Wang J, Zhang Y, Deng L, Li X, Chen W, Cui W. In Situ-Activated Phospholipid-Mimic Artemisinin Prodrug via Injectable Hydrogel Nano/Microsphere for Rheumatoid Arthritis Therapy. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0003. [PMID: 39290968 PMCID: PMC11407526 DOI: 10.34133/research.0003] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 10/19/2022] [Indexed: 09/19/2024]
Abstract
In situ-activated therapy is a decent option for localized diseases with improved efficacies and reduced side effects, which is heavily dependent on the local conversion or activation of bioinert components. In this work, we applied a phospholipid-mimic artemisinin prodrug (ARP) for preparing an injectable nano/microsphere to first realize an in situ-activated therapy of the typical systemically administrated artemisinin-based medicines for a localized rheumatoid arthritis (RA) lesion. ARP is simultaneously an alternative of phospholipids and an enzyme-independent activable prodrug, which can formulate "drug-in-drug" co-delivery liposomes with cargo of partner drugs (e.g., methotrexate). To further stabilize ARP/methotrexate "drug-in-drug" liposomes (MTX/ARPL) for a long-term intra-articular retention, a liposome-embedded hydrogel nano/microsphere (MTX/ARPL@MS) was prepared. After the local injection, the MTX/ARPL could be slowly released because of imine hydrolysis and targeted to RA synovial macrophages and fibroblasts simultaneously. ARP assembly is relatively stable before cellular internalization but disassembled ARP after lysosomal escape and converted into dihydroartemisinin rapidly to realize the effective in situ activation. Taken together, phospholipid-mimic ARP was applied for the firstly localized in situ-activated RA therapy of artemisinin-based drugs, which also provided a brand-new phospholipid-mimic strategy for other systemically administrated prodrugs to realize a remodeling therapeutic schedule for localized diseases.
Collapse
Affiliation(s)
- Yawei Du
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Chao Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Yu Zhang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Wei Xiong
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Juan Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yingze Zhang
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Xinsong Li
- School of Chemistry and Chemical Engineering, Southeast University, 2 Southeast University Road, Nanjing 211189, China
| | - Wei Chen
- Department of Orthopaedic Surgery, the Third Hospital of Hebei Medical University, No. 139 Ziqiang Road, Shijiazhuang 050051, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| |
Collapse
|
9
|
Tong X, Chen L, He SJ, Zuo JP. Artemisinin derivative SM934 in the treatment of autoimmune and inflammatory diseases: therapeutic effects and molecular mechanisms. Acta Pharmacol Sin 2022; 43:3055-3061. [PMID: 36050518 PMCID: PMC9712343 DOI: 10.1038/s41401-022-00978-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/07/2022] [Indexed: 11/09/2022]
Abstract
Artemisinin and its derivatives are the well-known anti-malarial drugs derived from a traditional Chinese medicine. In addition to antimalarial, artemisinin and its derivatives possess distinguished anti-cancer, anti-oxidant, anti-inflammatory and anti-viral activities, but the poor solubility and low bioavailability hinder their clinical application. In the last decades a series of new water-soluble and oil-soluble derivatives were synthesized. Among them, we have found a water-soluble derivative β-aminoarteether maleate (SM934) that exhibits outstanding suppression on lymphocytes proliferation in immunosuppressive capacity and cytotoxicity screening assays with 35-fold higher potency than dihydroartemisinin. SM934 displays significant therapeutic effects on various autoimmune and inflammatory diseases, including systemic lupus erythematosus, antiphospholipid syndrome nephropathy, membranous nephropathy, rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease, and dry eye disease. Here, we summarize the immunomodulatory effects, anti-inflammatory, anti-oxidative and anti-fibrosis activities of SM934 in disease-relevant animal models and present the probable pharmacological mechanisms involved in its therapeutic efficacy. This review also delineates a typical example of natural product-based drug discovery, which might further vitalize natural product exploration and development in pharmacotherapy.
Collapse
Affiliation(s)
- Xiao Tong
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Chen
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shi-Jun He
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Jian-Ping Zuo
- Laboratory of Immunopharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
10
|
Paeoniflorin Inhibits LPS-Induced Activation of Splenic CD4+ T Lymphocytes and Relieves Pathological Symptoms in MRL/lpr Mice by Suppressing IRAK1 Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5161890. [DOI: 10.1155/2022/5161890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/22/2022] [Indexed: 11/27/2022]
Abstract
Interleukin-1receptor-associated kinase 1 (IRAK1) plays a critical role in systemic lupus erythematosus (SLE). It was reported that SLE was associated with an inflammatory response mediated by defective immune tolerance, including overproduction of autoantibodies, chronic inflammation, and organ damage. Previous reports stated paeoniflorin (PF) had an immunosuppressive effect. The purpose of this study was to determine the anti-inflammatory effect of PF in SLE and its underlying mechanisms. Followed by induced with lipopolysaccharide (LPS), the splenocytes and the isolated CD4+ T lymphocytes of MRL/lpr mice were divided into three groups: control group, LPS group, and LPS + PF group, respectively. MRL/MP mice were used as the control group (treated with distilled water). The MRL/lpr mice were randomly divided into three groups: the model group (treated with distilled water), the prednisone group, and the PF group. The MRL/lpr mice were treated with prednisone acetate (5 mg/kg) and PF (25, 50, and 75 mg/kg) for eight weeks. Subsequently, ELISA, qRT-PCR, western blotting, HE, and Masson staining were performed to detect various indicators. The results of Cell Counting Kit-8 (CCK-8) showed that 10 μg/mL of LPS had the optimum effect on cell viability, and 50 μmol/L of PF had no obvious cytotoxicity to LPS-treated cells. PF reduced the expression level of IRAK1-nuclearfactor-κB (NF-κB) and its downstream inflammatory cytokines in the splenocytes and CD4+ T lymphocytes of MRL/lpr mice stimulated by LPS, especially in the latter. The serum antibody contents in the PF group mice were reduced, and the kidney damage was also alleviated accordingly. Moreover, the IRAK1/inhibitor of the nuclear factor-κB kinase (IKK)/NF-κB inhibitor (IκB)/NF-κB pathways was found to be involved in the anti-inflammation effect of PF in the kidney and spleen. In conclusion, it is thought that PF may have the potential to be used as a therapeutic agent to reduce the inflammatory activity of SLE. Inhibition of the IRAK1-NF-κB pathway may help formulate novel therapeutic tactics for SLE.
Collapse
|
11
|
Saurin S, Meineck M, Erkel G, Opatz T, Weinmann-Menke J, Pautz A. Drug Candidates for Autoimmune Diseases. Pharmaceuticals (Basel) 2022; 15:503. [PMID: 35631330 PMCID: PMC9143092 DOI: 10.3390/ph15050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
Most of the immunosuppressive drugs used in the clinic to prevent organ rejection or to treat autoimmune disorders were originally isolated from fungi or bacteria. Therefore, in addition to plants, these are valuable sources for identification of new potent drugs. Many side effects of established drugs limit their usage and make the identification of new immunosuppressants necessary. In this review, we present a comprehensive overview of natural products with potent anti-inflammatory activities that have been tested successfully in different models of chronic inflammatory autoimmune diseases. Some of these candidates already have passed first clinical trials. The anti-inflammatory potency of these natural products was often comparable to those of established drugs, and they could be used at least in addition to standard therapy to reduce their dose to minimize unwanted side effects. A frequent mode of action is the inhibition of classical inflammatory signaling pathways, such as NF-κB, in combination with downregulation of oxidative stress. A drawback for the therapeutic use of those natural products is their moderate bioavailability, which can be optimized by chemical modifications and, in addition, further safety studies are necessary. Altogether, very interesting candidate compounds exist which have the potential to serve as starting points for the development of new immunosuppressive drugs.
Collapse
Affiliation(s)
- Sabrina Saurin
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Myriam Meineck
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Gerhard Erkel
- Department of Molecular Biotechnology and Systems Biology, Technical University, 67663 Kaiserslautern, Germany;
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, 55099 Mainz, Germany;
| | - Julia Weinmann-Menke
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
12
|
Yang S, Wang X, Xiao W, Xu Z, Ye H, Sha X, Yang H. Dihydroartemisinin Exerts Antifibrotic and Anti-Inflammatory Effects in Graves' Ophthalmopathy by Targeting Orbital Fibroblasts. Front Endocrinol (Lausanne) 2022; 13:891922. [PMID: 35663306 PMCID: PMC9157422 DOI: 10.3389/fendo.2022.891922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 03/31/2022] [Indexed: 11/13/2022] Open
Abstract
Graves' ophthalmopathy (GO) is a common orbital disease that threatens visual function and appearance. Orbital fibroblasts (OFs) are considered key target and effector cells in GO. In addition, hyaluronan (HA) production, inflammation, and orbital fibrosis are intimately linked to the pathogenesis of GO. In this study, we explored the therapeutic effects of dihydroartemisinin (DHA), an antimalarial drug, on GO-derived, primary OFs. CCK8 and EdU assays were applied to evaluate the antiproliferative effect of DHA on OFs. Wound healing assays were conducted to assess OF migration capacity, while qRT-PCR, western blotting, ELISA, and immunofluorescence were used to determine the expression of fibrosis-related and pro-inflammatory markers in these cells. Moreover, RNA sequencing was conducted to identify differentially expressed genes (DEGs) in DHA-treated OFs, and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs was performed to explore potential mechanisms mediating the antifibrotic effect of DHA on GO-derived OFs. Results showed that DHA dose-dependently inhibited OF proliferation and downregulated, at the mRNA and protein levels, TGF-β1-induced expression of fibrosis markers, including alpha smooth muscle actin (α-SMA) and connective tissue growth factor (CTGF). Furthermore, DHA inhibited TGF-β1 induced phosphorylation of extracellular signal-regulated protein kinase 1/2 (ERK1/2) and signal transducer and activator of transcription 3 (STAT3), which suggested that DHA exerted antifibrotic effects via suppression of the ERK and STAT3 signaling pathways. In addition, DHA suppressed the expression of pro-inflammatory cytokines and chemokines, including IL-6, IL-8, CXCL-1, MCP-1, and ICAM-1, and attenuated HA production induced by IL-1β in GO-derived OFs. In conclusion, our study provides first-time evidence that DHA may significantly alleviate pathogenic manifestations of GO by inhibiting proliferation, fibrosis- and inflammation-related gene expression, and HA production in OFs. These data suggest that DHA may be a promising candidate drug for treatment of GO.
Collapse
|
13
|
Guan S, Jin T, Han S, Fan W, Chu H, Liang Y. Dihydroartemisinin alleviates morphine-induced neuroinflammation in BV-2 cells. Bioengineered 2021; 12:9401-9410. [PMID: 34854364 PMCID: PMC8810002 DOI: 10.1080/21655979.2021.1982311] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Morphine tolerance poses a great challenge for clinicians, whose pathogenesis has a close connection with microglial activation and neuroinflammation. Dihydroartemisinin (DHA) that derives from artemisinin, may serve as a potential anti-inflammatory drug. In this study, the effects as well as the underlying mechanism of DHA on suppressing microglial activation and neuroinflammation were explored. The microglial cell line BV-2 cells were induced by morphine and treated with DHA or minocycline. With the application of CCK-8, the cell viability was detected. Western blot was employed to assess the expressions of Ki67, IBa-1, and TLR4 and quantitative real-time PCR (qRT-PCR) was adopted to evaluate miRNA-16 (miR-16) expression. With the adoption of ELISA kits and qRT-PCR, the release of inflammatory cytokines was evaluated. Besides, luciferase reporter assay was applied to testify the binding relationship between miR-16 and TLR4. NF-κB expression was measured by immunofluorescence. DHA reduced cell viability and decreased protein expression of Ki67 and IBa-1 in morphine-induced BV-2 cells. Additionally, DHA contributed to the declined release of pro-inflammatory cytokines. miR-16 was down-regulated by morphine but was up-regulated by DHA concentration-dependently in BV-2 cells. The inhibition of miR-16 partly abolished the inhibitory effects of DHA on morphine-induced microglial activation and neuroinflammation. Moreover, TLR4 was found to be bound to miR-16, and the inhibitory effect of DHA on TLR4/NF-κB was partly reversed by miR-16 inhibition. In conclusion, DHA remarkably suppressed microglial activation and neuroinflammation through regulating miR-16-mediated TLR4/NF-κB signaling. This study may provide a new solution to improve clinical analgesic efficacy of morphine.
Collapse
Affiliation(s)
- Sen Guan
- Department of Anesthesiology, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Tingting Jin
- Department of Anesthesiology, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Shuai Han
- Department of Anesthesiology, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Wenjie Fan
- Department of Anesthesiology, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| | - Haichen Chu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Yongxin Liang
- Department of Anesthesiology, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao, Shandong, China
| |
Collapse
|
14
|
Yu R, Jin G, Fujimoto M. Dihydroartemisinin: A Potential Drug for the Treatment of Malignancies and Inflammatory Diseases. Front Oncol 2021; 11:722331. [PMID: 34692496 PMCID: PMC8529146 DOI: 10.3389/fonc.2021.722331] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022] Open
Abstract
Dihydroartemisinin (DHA) has been globally recognized for its efficacy and safety in the clinical treatment of malaria for decades. Recently, it has been found that DHA inhibits malignant tumor growth and regulates immune system function in addition to anti-malaria. In parasites and tumors, DHA causes severe oxidative stress by inducing excessive reactive oxygen species production. DHA also kills tumor cells by inducing programmed cell death, blocking cell cycle and enhancing anti-tumor immunity. In addition, DHA inhibits inflammation by reducing the inflammatory cells infiltration and suppressing the production of pro-inflammatory cytokines. Further, genomics, proteomics, metabolomics and network pharmacology of DHA therapy provide the basis for elucidating the pharmacological effects of DHA. This review provides a summary of the recent research progress of DHA in anti-tumor, inhibition of inflammatory diseases and the relevant pharmacological mechanisms. With further research of DHA, it is likely that DHA will become an alternative therapy in the clinical treatment of malignant tumors and inflammatory diseases.
Collapse
Affiliation(s)
- Ran Yu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Guihua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University, Osaka, Japan.,Laboratory of Cutaneous Immunology, Osaka University Immunology Frontier Research Center, Osaka, Japan
| |
Collapse
|
15
|
Qiu F, Liu J, Mo X, Liu H, Chen Y, Dai Z. Immunoregulation by Artemisinin and Its Derivatives: A New Role for Old Antimalarial Drugs. Front Immunol 2021; 12:751772. [PMID: 34567013 PMCID: PMC8458561 DOI: 10.3389/fimmu.2021.751772] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 08/25/2021] [Indexed: 01/11/2023] Open
Abstract
Artemisinin and its derivatives (ARTs) are known as conventional antimalarial drugs with clinical safety and efficacy. Youyou Tu was awarded a Nobel Prize in Physiology and Medicine due to her discovery of artemisinin and its therapeutic effects on malaria. Apart from antimalarial effects, mounting evidence has demonstrated that ARTs exert therapeutic effects on inflammation and autoimmune disorders because of their anti-inflammatory and immunoregulatory properties. In this aspect, tremendous progress has been made during the past five to seven years. Therefore, the present review summarizes recent studies that have explored the anti-inflammatory and immunomodulatory effects of ARTs on autoimmune diseases and transplant rejection. In this review, we also discuss the cellular and molecular mechanisms underlying the immunomodulatory effects of ARTs. Recent preclinical studies will help lay the groundwork for clinical trials using ARTs to treat various immune-based disorders, especially autoimmune diseases.
Collapse
Affiliation(s)
- Feifei Qiu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Junfeng Liu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiumei Mo
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huazhen Liu
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchao Chen
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhenhua Dai
- Section of Immunology & Joint Immunology Program, Guangdong Provincial Academy of Chinese Medical Sciences & Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Diseases, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Liu JM, Jin QX, Fujimoto M, Li FF, Jin LB, Yu R, Yan GH, Zhu LH, Meng FP, Zhang QG, Jin GH. Dihydroartemisinin Alleviates Imiquimod-Induced Psoriasis-like Skin Lesion in Mice Involving Modulation of IL-23/Th17 Axis. Front Pharmacol 2021; 12:704481. [PMID: 34483908 PMCID: PMC8415163 DOI: 10.3389/fphar.2021.704481] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Background: Psoriasis is a T help 17 (Th17) cell-mediated chronic inflammatory skin disease. Recent studies have shown that dihydroartemisinin (DHA) can significantly reduce experimental autoimmune encephalomyelitis and rheumatoid arthritis by regulating Th17 cells. Objective: To verify whether DHA can improve the symptoms of psoriasis and to further explore the possible mechanism. Methods: The efficiency of DHA was preliminary detected on human keratinocytes (HaCaT) cells in psoriatic condition. Then, imiquimod-induced psoriasis-like model in BALB/c mice was established to evaluate the effects of DHA in vivo. Results: Under the stimulation of tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), DHA inhibited the proliferation of HaCaT cells and significantly affected the mRNA expression levels of IFN-γ, interleukin (IL), IL-17A and IL-23. DHA treatment reduced the severity of psoriasis-like skin and resulted in less infiltration of immune cells in skin lesions. DHA restored the expression of IFN-γ, IL-17A, and IL-23 in skins, as well as a decrease of cytokines and chemokines in skin supernatant. DHA also altered the cellular composition in the spleen, which is the makeup of the T cells, dendritic cells (DCs), and macrophages. DHA recovered Th17-related profile with decreased frequency of IL-17+CD4+T cells from splenocyte of mice. Furthermore, DHA also inhibited the concentration of IL-17 from Th17 cells and the expression of Th17 cell-related transcription factors retinoid-related orphan receptor-gamma t (ROR-γt) in vitro. In addition, phosphorylation of signal transducer and activator of transcription-3 (STAT3) was significantly reduced in DHA treatment mice, suggesting that the IL-23/Th17 axis plays a pivotal role. Conclusion: DHA inhibits the progression of psoriasis by regulating IL-23/Th17 axis and is expected to be an effective drug for the treatment of psoriasis.
Collapse
Affiliation(s)
- Jiang-Min Liu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Quan-Xin Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Manabu Fujimoto
- Department of Dermatology, Graduate School of Medicine, Osaka University; Laboratory of Cutaneous Immunology, Osaka University Immunology Frontier Research Center, Osaka, Japan
| | - Fang-Fang Li
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Lin-Bo Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Ran Yu
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Guang-Hai Yan
- Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University Medical College, Yanji, China
| | - Lian-Hua Zhu
- Department of Dermatology, Yanbian University Hospital, Yanji, China
| | - Fan-Ping Meng
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| | - Qing-Gao Zhang
- Chronic Disease Research Center, Dalian University, Dalian, China
| | - Gui-Hua Jin
- Department of Immunology and Pathogenic Biology, Yanbian University Medical College, Yanji, China
| |
Collapse
|
17
|
Efferth T, Oesch F. The immunosuppressive activity of artemisinin-type drugs towards inflammatory and autoimmune diseases. Med Res Rev 2021; 41:3023-3061. [PMID: 34288018 DOI: 10.1002/med.21842] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 04/09/2021] [Accepted: 06/15/2021] [Indexed: 12/26/2022]
Abstract
The sesquiterpene lactone artemisinin from Artemisia annua L. is well established for malaria therapy, but its bioactivity spectrum is much broader. In this review, we give a comprehensive and timely overview of the literature regarding the immunosuppressive activity of artemisinin-type compounds toward inflammatory and autoimmune diseases. Numerous receptor-coupled signaling pathways are inhibited by artemisinins, including the receptors for interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), β3-integrin, or RANKL, toll-like receptors and growth factor receptors. Among the receptor-coupled signal transducers are extracellular signal-regulated protein kinase (ERK), c-Jun N-terminal kinase (JNK), phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K), AKT serine/threonine kinase (AKT), mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK) kinase (MEK), phospholipase C γ1 (PLCγ), and others. All these receptors and signal transduction molecules are known to contribute to the inhibition of the transcription factor nuclear factor κ B (NF-κB). Artemisinins may inhibit NF-κB by silencing these upstream pathways and/or by direct binding to NF-κB. Numerous NF-κB-regulated downstream genes are downregulated by artemisinin and its derivatives, for example, cytokines, chemokines, and immune receptors, which regulate immune cell differentiation, apoptosis genes, proliferation-regulating genes, signal transducers, and genes involved in antioxidant stress response. In addition to the prominent role of NF-κB, other transcription factors are also inhibited by artemisinins (mammalian target of rapamycin [mTOR], activating protein 1 [AP1]/FBJ murine osteosarcoma viral oncogene homologue [FOS]/JUN oncogenic transcription factor [JUN]), hypoxia-induced factor 1α (HIF-1α), nuclear factor of activated T cells c1 (NF-ATC1), Signal transducers and activators of transcription (STAT), NF E2-related factor-2 (NRF-2), retinoic-acid-receptor-related orphan nuclear receptor γ (ROR-γt), and forkhead box P-3 (FOXP-3). Many in vivo experiments in disease-relevant animal models demonstrate therapeutic efficacy of artemisinin-type drugs against rheumatic diseases (rheumatoid arthritis, osteoarthritis, lupus erythematosus, arthrosis, and gout), lung diseases (asthma, acute lung injury, and pulmonary fibrosis), neurological diseases (autoimmune encephalitis, Alzheimer's disease, and myasthenia gravis), skin diseases (dermatitis, rosacea, and psoriasis), inflammatory bowel disease, and other inflammatory and autoimmune diseases. Randomized clinical trials should be conducted in the future to translate the plethora of preclinical results into clinical practice.
Collapse
Affiliation(s)
- Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg University, Mainz, Germany
| | - Franz Oesch
- Oesch-Tox Toxicological Consulting and Expert Opinions, Ingelheim, Germany and Institute of Toxicology, Johannes Gutenberg University of Mainz, Mainz, Germany
| |
Collapse
|
18
|
Meng Y, Ma N, Lyu H, Wong YK, Zhang X, Zhu Y, Gao P, Sun P, Song Y, Lin L, Wang J. Recent pharmacological advances in the repurposing of artemisinin drugs. Med Res Rev 2021; 41:3156-3181. [PMID: 34148245 DOI: 10.1002/med.21837] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/27/2021] [Accepted: 05/21/2021] [Indexed: 12/18/2022]
Abstract
Artemisinins are a family of sesquiterpene lactones originally derived from the sweet wormwood (Artemisia annua). Beyond their well-characterized role as frontline antimalarial drugs, artemisinins have also received increased attention for other potential pharmaceutical effects, which include antiviral, antiparsitic, antifungal, anti-inflammatory, and anticancer activities. With concerted efforts in further preclinical and clinical studies, artemisinin-based drugs have the potential to be viable treatments for a great variety of human diseases. Here, we provide a comprehensive update on recent reports of pharmacological actions and applications of artemisinins outside of their better-known antimalarial role and highlight their potential therapeutic viability for various diseases.
Collapse
Affiliation(s)
- Yuqing Meng
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nan Ma
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Haining Lyu
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yin Kwan Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xing Zhang
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yongping Zhu
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Gao
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peng Sun
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yali Song
- Center for Reproductive Medicine, Dongguan Maternal And Child Health Care Hospital, Southern Medical University, Dongguan, China
| | - Lizhu Lin
- Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jigang Wang
- Artemisinin Research Center and the Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.,Oncology Center, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China.,Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, China
| |
Collapse
|
19
|
Guo S, Li W, Chen F, Yang S, Huang Y, Tian Y, Xu D, Cao N. Polysaccharide of Atractylodes macrocephala Koidz regulates LPS-mediated mouse hepatitis through the TLR4-MyD88-NFκB signaling pathway. Int Immunopharmacol 2021; 98:107692. [PMID: 34116287 DOI: 10.1016/j.intimp.2021.107692] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022]
Abstract
Feed corruption and poor breeding environment could cause widespread bacterial infection which could cause severe liver inflammation and lead to liver damage, even death. It has been proved that Polysaccharide of Atractylodes macrocephala Koidz (PAMK) could improve the immunity of animal, but the mechanism of its protective effect on hepatitis has been rarely reported. This study investigated the protective effect of PAMK on mouse liver through LPS-induced liver inflammatory. The results showed that LPS caused swelling of hepatocytes, disappearance of hepatic cord structure and infiltration of a large number of inflammatory cells, and LPS could up-regulated mRNA and protein expression levels of TLR4, MyD88, IKBα and NFκB, increased cytokines IL-1β, IL-4, IL-6 and TNF-α levels, enhance the levels of antioxidant enzymes CAT, GSH-PX, SOD, iNOs and MDA. PAMK pretreatment could relieved histopathological damage caused by LPS, and could activate the TLR4-MyD88-NFκB signalling pathway, reduce the levels of IL-1β, IL-6 and TNF-α, increase IL-4 levels, inhibit the levels of GSH-PX and MDA. These results indicate that PAMK could reduce inflammatory damage and oxidative stress in mice and play a protective role in the early stages of LPS invasion of the liver.
Collapse
Affiliation(s)
- Sixuan Guo
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China.
| | - Wanyan Li
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China.
| | - Feiyue Chen
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China.
| | - Shuzhan Yang
- Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China; Guangzhou Customs Technology Center, Guangzhou, Guangdong 510623, China.
| | - Yunmao Huang
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China.
| | - Yunbo Tian
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China.
| | - Danning Xu
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China.
| | - Nan Cao
- Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong 510225, China; Guangdong Province Key Laboratory of Waterfowl Healthy Breeding, Guangzhou, Guangdong 510225, China.
| |
Collapse
|
20
|
Bai B, Wu F, Ying K, Xu Y, Shan L, Lv Y, Gao X, Xu D, Lu J, Xie B. Therapeutic effects of dihydroartemisinin in multiple stages of colitis-associated colorectal cancer. Am J Cancer Res 2021; 11:6225-6239. [PMID: 33995655 PMCID: PMC8120200 DOI: 10.7150/thno.55939] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/18/2021] [Indexed: 12/11/2022] Open
Abstract
Colitis-associated colorectal cancer (CAC) develops from chronic intestinal inflammation. Dihydroartemisinin (DHA) is an antimalarial drug exhibiting anti-inflammatory and anti-tumor effects. Nonetheless, the therapeutic effects of DHA on CAC remain unestablished. Methods: Mice were challenged with azoxymethane (AOM) and dextran sulfate sodium (DSS) to establish CAC models. DHA was administered via oral gavage in different stages of CAC models. Colon and tumor tissues were obtained from the AOM/DSS models to investigate inflammatory responses and tumor development. Inflammatory cytokines in the murine models were detected through qRT-PCR and ELISA. Toll-like receptor 4 (TLR4) signaling-related proteins were detected by western blot. Macrophage infiltration was measured using immunostaining analysis, and apoptosis in the colon cancer cells was detected by flow cytometry and western blot. Results: DHA inhibited inflammatory responses in the early stage of the AOM/DSS model and subsequent tumor formation. In the early stage, DHA reversed macrophage infiltration in colon mucosa and decreased the expression of pro-inflammatory cytokines. DHA inhibited the activation of macrophage by suppressing the TLR4 signal pathway. In the late stage of CAC, DHA inhibited tumor growth by enhancing cell cycle arrest and apoptosis in tumor cells. Administration of DHA during the whole period of the AOM/DSS model generated an addictive effect based on the inhibition of inflammation and tumor growth, thereby improving the therapeutic effect of DHA on CAC. Conclusion: Our study indicated that DHA could be a potent agent in managing the initiation and development of CAC without obvious side effects, warranting further clinical translation of DHA for CAC treatment.
Collapse
|
21
|
Chen Y, Tao T, Wang W, Yang B, Cha X. Dihydroartemisinin attenuated the symptoms of mice model of systemic lupus erythematosus by restoring the Treg/Th17 balance. Clin Exp Pharmacol Physiol 2021; 48:626-633. [PMID: 33469936 DOI: 10.1111/1440-1681.13461] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 09/29/2020] [Accepted: 12/24/2020] [Indexed: 12/16/2022]
Abstract
The Treg/Th17 imbalance is associated with the development of systemic lupus erythematosus (SLE). Dihydroartemisinin (DHA), a semi-synthetic derivative of artemisinin, is isolated from the traditional Chinese herb Artemisia annua Artemisia annua L. This study aims to evaluate the effects of DHA alone or in combination with prednisone in immunodeficiency of SLE. In vivo, the therapeutical effect of DHA alone or in combination with prednisone was assessed in the pristane-induced SLE mouse model. Then, the level of serum antibodies, creatinine (Cre), blood urea nitrogen (BUN), urine protein, kidney histopathology, interleukin (IL)-17, IL-6, transforming growth factor (TGF)-β, the expression of RORγt and Foxp3, the percentages of Treg and Th17 in peripheral blood and spleen were assayed. In vitro, the mouse spleen lymphocytes were separated and treated with DHA alone or DHA in combination with prednisone. Then the percentages of Treg and Th17, the concentration of IL-17, IL-6, TGF-β, and the expression of RORγt and Foxp3 were assayed. It was shown that DHA alone or in combination with prednisone treatment significantly alleviated the manifestations of pristane-induced SLE mice, suppressed inflammation and restored the Treg/Th17 balance. DHA alone or in combination with prednisone significantly inhibited Th17 cell differentiation while induced Treg cell differentiation in vitro. DHA alone or in combination with prednisone also reduced the transcription of RORγt and increased Foxp3 in lymphocytes, as well as IL-17 and TGF-β levels. Our data indicated that DHA can produce synergistic effect with prednisone to attenuate the symptoms of SLE by restoring Treg/Th17 balance.
Collapse
MESH Headings
- Animals
- Lupus Erythematosus, Systemic/drug therapy
- Lupus Erythematosus, Systemic/immunology
- Lupus Erythematosus, Systemic/metabolism
- Lupus Erythematosus, Systemic/pathology
- Artemisinins/pharmacology
- Artemisinins/therapeutic use
- T-Lymphocytes, Regulatory/drug effects
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- Th17 Cells/drug effects
- Th17 Cells/immunology
- Th17 Cells/metabolism
- Mice
- Disease Models, Animal
- Female
- Prednisone/pharmacology
- Prednisone/therapeutic use
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Forkhead Transcription Factors/metabolism
- Mice, Inbred BALB C
Collapse
Affiliation(s)
- Yan Chen
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Dermatology, Yangjiang People's Hospital, Yangjiang, China
| | - Tingjun Tao
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
- The First Clinical Academy, Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Dermatology, Yangjiang People's Hospital, Yangjiang, China
| | - Weiliang Wang
- Department of Dermatology, Yangjiang People's Hospital, Yangjiang, China
| | - Botao Yang
- Department of Dermatology, Guangdong Provincial People's Hospital's Nanhai Hospital, Foshan, China
| | - Xushan Cha
- Department of Dermatology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
22
|
薛 雪, 董 哲, 邓 愉, 殷 淑, 王 萍, 廖 燕, 胡 国, 陈 英. [Dihydroartemisinin alleviates atopic dermatitis in mice by inhibiting mast cell infiltration]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2020; 40:1480-1487. [PMID: 33118501 PMCID: PMC7606240 DOI: 10.12122/j.issn.1673-4254.2020.10.14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To observe the therapeutic effect of different doses of dihydroartemisinin (DHA) on atopic dermatitis (AD) in mice and explore the mechanism. METHODS Forty-two C57BL/6 mice were randomly divided into 7 groups (n=6), including a blank control group, a 2, 4-dinitrochlorobenzene (DNCB)-induced AD model group, a solvent-treated group, 3 DHA treatment groups treated with 25, 75, and 125 mg/kg DHA, and a dexamethasone treatment group. The counts of skin scratches were recorded and the lesion scores were evaluated on a daily basis. After 7 consecutive days of treatment, skin tissues were sampled from the lesions on the back and ear of the mice for pathological examination with HE staining, Masson staining and toluidine blue staining. RESULTS Treatment with 25, 75, and 125 mg/kg DHA and dexamethasone all alleviated AD symptoms of mice, reduced the severity scores of skin lesions, and ameliorated pathological changes of the skin tissue. DHA at 125 mg/kg produced the most obvious therapeutic effect and significantly alleviated mast cell infiltration in the lesions as compared with the other treatment groups (P < 0.05). CONCLUSIONS DHA is effective for the treatment of AD in mice with an optimal dose of 125 mg/kg. The therapeutic effect of DHA is achieved probably through regulation of local immunity by inhibiting mast cell infiltration in the lesions.
Collapse
Affiliation(s)
- 雪 薛
- 南方医科大学基础医学院组织胚胎学教研室,广东 广州 510515Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 哲宇 董
- 南方医科大学基础医学院组织胚胎学教研室,广东 广州 510515Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 愉 邓
- 南方医科大学基础医学院组织胚胎学教研室,广东 广州 510515Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 淑娴 殷
- 南方医科大学南方医院呼吸内科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 萍 王
- 南方医科大学基础医学院组织胚胎学教研室,广东 广州 510515Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - 燕霞 廖
- 南方医科大学南方医院呼吸内科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 国栋 胡
- 南方医科大学南方医院呼吸内科,广东 广州 510515Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - 英华 陈
- 南方医科大学基础医学院组织胚胎学教研室,广东 广州 510515Department of Histology and Embryology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- 广东省组织构建与检测重点实验室,广东 广州 510515Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China
| |
Collapse
|
23
|
Application of LC-MS/MS method for determination of dihydroartemisin in human plasma in a pharmacokinetic study. Bioanalysis 2020; 12:1635-1646. [PMID: 33118839 DOI: 10.4155/bio-2020-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim: Dihydroartemisinin (DHA) was also found therapeutic potential for the treatment of systemic lupus erythematosus (SLE). To assess the pharmacokinetic profile of DHA, the concentration of DHA in plasma of SLE patients needed be accurately determined based on a rapid and reliable analytical method. Experimental method & results: Developed method utilizes stable isotope-labeled internal standards and SPE method for sample preparation, applied XBridge C18 column (2.1 × 50 mm, 3.5 μm) for chromatography separation. Detection of the analytes was achieved by an AB Sciex 4000 mass spectrometer under positive electrospray ionization mode. The method was validated in accordance with international guidelines on bioanalytical methods validations. Conclusion: DHA concentrations in human plasma of Chinese SLE patients were quantified by developed LC-MS/MS (no. 2016L02562).
Collapse
|
24
|
Septembre-Malaterre A, Lalarizo Rakoto M, Marodon C, Bedoui Y, Nakab J, Simon E, Hoarau L, Savriama S, Strasberg D, Guiraud P, Selambarom J, Gasque P. Artemisia annua, a Traditional Plant Brought to Light. Int J Mol Sci 2020; 21:E4986. [PMID: 32679734 PMCID: PMC7404215 DOI: 10.3390/ijms21144986] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/23/2022] Open
Abstract
Traditional remedies have been used for thousand years for the prevention and treatment of infectious diseases, particularly in developing countries. Of growing interest, the plant Artemisia annua, known for its malarial properties, has been studied for its numerous biological activities including metabolic, anti-tumor, anti-microbial and immunomodulatory properties. Artemisia annua is very rich in secondary metabolites such as monoterpenes, sesquiterpenes and phenolic compounds, of which the biological properties have been extensively studied. The purpose of this review is to gather and describe the data concerning the main chemical components produced by Artemisia annua and to describe the state of the art about the biological activities reported for this plant and its compounds beyond malaria.
Collapse
Affiliation(s)
- Axelle Septembre-Malaterre
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Mahary Lalarizo Rakoto
- Faculté de Médecine, Université d’Antananarivo, Campus Universitaire Ambohitsaina, BP 375, Antananarivo 101, Madagascar;
| | - Claude Marodon
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Yosra Bedoui
- INSERM, UMR 1188 Diabète athérothrombose Thérapies Réunion Océan Indien (DéTROI), Université de La Réunion, 97400 Saint Denis de La Réunion, France;
| | - Jessica Nakab
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Elisabeth Simon
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Ludovic Hoarau
- APLAMEDOM Réunion, 1, rue Emile Hugot, Batiment B, Parc Technologique de Saint Denis, 97490 Sainte Clotilde, La Réunion, France; (C.M.); (J.N.); (E.S.); (L.H.)
| | - Stephane Savriama
- EA929 Archéologie Industrielle, Histoire, Patrimoine/Géographie-Développement Environnement de la Caraïbe (AIHP-GEODE), Université des Antilles, Campus Schoelcher, BP7207, 97275 Schoelcher Cedex Martinique, France;
| | - Dominique Strasberg
- Unité Mixte de Recherche Peuplements Végétaux et Bio-agresseurs en Milieu Tropical (PVBMT), Pôle de Protection des Plantes, Université de La Réunion, 7 Chemin de l’IRAT, 97410 Saint-Pierre, La Réunion, France;
| | - Pascale Guiraud
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Jimmy Selambarom
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
| | - Philippe Gasque
- Unité de recherche Etudes Pharmaco-Immunologie (EPI), Université de La Réunion, CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France; (P.G.); (J.S.); (P.G.)
- Laboratoire d’immunologie clinique et expérimentale de la zone de l’océan indien (LICE-OI) CHU La Réunion site Félix Guyon, Allée des Topazes, CS11021, 97400 Saint Denis de La Réunion, France
| |
Collapse
|
25
|
Tang Y, Liu J, Zhang D, Xu Z, Ji J, Wen C. Cytokine Storm in COVID-19: The Current Evidence and Treatment Strategies. Front Immunol 2020; 11:1708. [PMID: 32754163 PMCID: PMC7365923 DOI: 10.3389/fimmu.2020.01708] [Citation(s) in RCA: 712] [Impact Index Per Article: 142.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 06/26/2020] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) is the pathogen that causes coronavirus disease 2019 (COVID-19). As of 25 May 2020, the outbreak of COVID-19 has caused 347,192 deaths around the world. The current evidence showed that severely ill patients tend to have a high concentration of pro-inflammatory cytokines, such as interleukin (IL)-6, compared to those who are moderately ill. The high level of cytokines also indicates a poor prognosis in COVID-19. Besides, excessive infiltration of pro-inflammatory cells, mainly involving macrophages and T-helper 17 cells, has been found in lung tissues of patients with COVID-19 by postmortem examination. Recently, increasing studies indicate that the "cytokine storm" may contribute to the mortality of COVID-19. Here, we summarize the clinical and pathologic features of the cytokine storm in COVID-19. Our review shows that SARS-Cov-2 selectively induces a high level of IL-6 and results in the exhaustion of lymphocytes. The current evidence indicates that tocilizumab, an IL-6 inhibitor, is relatively effective and safe. Besides, corticosteroids, programmed cell death protein (PD)-1/PD-L1 checkpoint inhibition, cytokine-adsorption devices, intravenous immunoglobulin, and antimalarial agents could be potentially useful and reliable approaches to counteract cytokine storm in COVID-19 patients.
Collapse
Affiliation(s)
| | | | | | | | - Jinjun Ji
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chengping Wen
- College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
26
|
Diao L, Tao J, Wang Y, Hu Y, He W. Co-Delivery Of Dihydroartemisinin And HMGB1 siRNA By TAT-Modified Cationic Liposomes Through The TLR4 Signaling Pathway For Treatment Of Lupus Nephritis. Int J Nanomedicine 2019; 14:8627-8645. [PMID: 31806961 PMCID: PMC6839745 DOI: 10.2147/ijn.s220754] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Background and purpose Systemic lupus erythematous (SLE) is an autoimmune disease caused by many factors. Lupus nephritis (LN) is a common complication of SLE and represents a major cause of morbidity and mortality. Previous studies have shown the advantages of multi-targeted therapy for LN and that TLR4 signaling is a target of anti-LN drugs. High-mobility group box 1 (HMGB1), a nuclear protein with a proinflammatory cytokine activity, binds specifically to TLR4 to induce inflammation. We aimed to develop PEGylated TAT peptide-cationic liposomes (TAT-CLs) to deliver anti-HMGB1 siRNA and dihydroartemisinin (DHA) to increase LN therapeutic efficiency and explore their treatment mechanism. Methods We constructed the TAT-CLs-DHA/siRNA delivery system using the thin film hydration method. The uptake and localization of Cy3-labeled siRNA were detected by confocal microscopy and flow cytometry. MTT assays were used to detect glomerular mesangial cell proliferation. Real-time PCR, Western blot analysis, and ELISA evaluated the anti-inflammatory mechanism of TAT-CLs-DHA/siRNA. Results We constructed the TAT-CLs-DHA/siRNA delivery system measuring approximately 140 nm with superior storage and serum stabilities. In vitro, it showed significantly greater uptake compared with unmodified liposomes and significant inhibition of glomerular mesangial cell proliferation. TAT-CLs-DHA/siRNA inhibited NF-κB activation in a concentration-dependent manner. Real-time PCR and Western blot analysis showed that TAT-CLs-DHA/siRNA downregulated expression of HMGB1 mRNA and protein. TAT-CLs-DHA/siRNA markedly diminished Toll-like receptor 4 (TLR4) expression and subsequent activation of MyD88, IRAK4, and NF-κB. Conclusion TAT-CLs-DHA/siRNA may have the potential for treatment of inflammatory diseases such as LN mediated by the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Lu Diao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China.,College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, People's Republic of China
| | - Jin Tao
- College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, People's Republic of China
| | - Yiqi Wang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 311402, People's Republic of China
| | - Ying Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China.,College of Pharmacy, Zhejiang Pharmaceutical College, Ningbo, Zhejiang 315100, People's Republic of China
| | - Wenfei He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, People's Republic of China
| |
Collapse
|
27
|
Li D, Qi J, Wang J, Pan Y, Li J, Xia X, Dou H, Hou Y. Protective effect of dihydroartemisinin in inhibiting senescence of myeloid-derived suppressor cells from lupus mice via Nrf2/HO-1 pathway. Free Radic Biol Med 2019; 143:260-274. [PMID: 31419476 DOI: 10.1016/j.freeradbiomed.2019.08.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/21/2019] [Accepted: 08/12/2019] [Indexed: 12/20/2022]
Abstract
Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease characterized by multi-organ injury. However, whether myeloid-derived suppressor cells (MDSCs) senescence exists and participates in SLE pathogenesis remains unclear. And whether dihydroartemisinin (DHA) attenuates the symptoms of SLE via relieving MDSCs senescence remains elusive. In the present study, we measured the senescence of MDSCs in SLE using SA-β-gal staining, senescence-associated secretory phenotype (SASP) and Western blot analysis of aging-related protein P21, P53 and P16. We identified that the MDSCs senescence promoted the SLE progress by adaptive transfer MDSCs assays. Meanwhile, we further showed DHA ameliorated the symptoms of pristane-induced lupus by histopathological detection, Western blot analysis, immunofluorescence, QPCR and flow cytometry analysis. DHA reversed MDSCs senescence by detecting SA-β-gal staining, senescence-associated secretory phenotype (SASP) and Western blot analysis of aging-related protein P21, P53 and P16. Furthermore, mechanistic analysis indicated that the inhibitory effect of DHA on MDSCs senescence was blocked by ML385, the specific antagonist of Nrf2, which revealed that the effect of DHA on MDSCs senescence was dependent on the induction of Nrf2/HO-1 pathway. Of note, we revealed that DHA inhibited MDSCs senescence to ameliorate the SLE development by adaptive transfer DHA-treated MDSCs assays. In conclusion, MDSCs senescence played a vital role in the pathogenesis of SLE, and DHA attenuated the symptoms of SLE via relieving MDSCs aging involved in the induction of Nrf2/HO-1 pathway.
Collapse
Affiliation(s)
- Dan Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jingjing Qi
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jiali Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Yuchen Pan
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Jingman Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Xiaoyu Xia
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China
| | - Huan Dou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, PR China.
| | - Yayi Hou
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, 210093, PR China; Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210008, China; Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, 210093, PR China.
| |
Collapse
|
28
|
Liu X, Lu J, Liao Y, Liu S, Chen Y, He R, Men L, Lu C, Chen Z, Li S, Xiong G, Yang S. Dihydroartemisinin attenuates lipopolysaccharide-induced acute kidney injury by inhibiting inflammation and oxidative stress. Biomed Pharmacother 2019; 117:109070. [DOI: 10.1016/j.biopha.2019.109070] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 12/19/2022] Open
|
29
|
Zhang T, Zhang Y, Jiang N, Zhao X, Sang X, Yang N, Feng Y, Chen R, Chen Q. Dihydroartemisinin regulates the immune system by promotion of CD8 + T lymphocytes and suppression of B cell responses. SCIENCE CHINA-LIFE SCIENCES 2019; 63:737-749. [PMID: 31290095 DOI: 10.1007/s11427-019-9550-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/18/2019] [Indexed: 01/06/2023]
Abstract
Artemisia annua is an anti-fever herbal medicine first described in traditional Chinese medicine 1,000 years ago. Artemisinin, the extract of A. annua, and its derivatives (dihydroartemisinin (DHA), artemether, and artesunate) have been used for the treatment of malaria with substantial efficacy. Recently, DHA has also been tested for the treatment of lupus erythematosus, indicating that it may function to balance the immune response in immunocompromised individuals. In the present study, the regulatory effect of artemisinin on the murine immune system was systematically investigated in mice infected with two different protozoan parasites (Toxoplasma gondii and Plasmodium berghei). Our results revealed that the mouse spleen index significantly increased (spleen enlargement) in the healthy mice after DHA administration primarily due to the generation of an extra number of lymphocytes and CD8+ T lymphocytes in both the spleen and circulation. DHA could increase the proportion of T helper cells and CD8+ T cells, as well as decrease the number of splenic and circulatory B cells. Further, DHA could reduce the production of proinflammatory cytokines. Our study revealed that apart from their anti-parasitic activity, artemisinin and its derivatives can also actively modulate the immune system to directly benefit the host.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xu Zhao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Na Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
30
|
Design, Synthesis, and Mechanism of Dihydroartemisinin⁻Coumarin Hybrids as Potential Anti-Neuroinflammatory Agents. Molecules 2019; 24:molecules24091672. [PMID: 31035404 PMCID: PMC6539525 DOI: 10.3390/molecules24091672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 11/17/2022] Open
Abstract
Cancer patients frequently suffer from cancer-related fatigue (CRF), which is a complex syndrome associated with weakness and depressed mood. Neuroinflammation is one of the major inducers of CRF. The aim of this study is to find a potential agent not only on the treatment of cancer, but also for reducing CRF level of cancer patients. In this study, total-thirty new Dihydroartemisinin-Coumarin hybrids (DCH) were designed and synthesized. The in vitro cytotoxicity against cancer cell lines (HT-29, MDA-MB-231, HCT-116, and A549) was evaluated. Simultaneously, we also tested the anti-neuroinflammatory activity of DCH. DCH could inhibit the activated microglia N9 release of NO, TNF-α, and IL-6. The docking analysis was shown that MD-2, the coreceptor of TLR4, might be one of the targets of DCH.
Collapse
|
31
|
The modulatory effect of Artemisia annua L. on toll-like receptor expression in Acanthamoeba infected mouse lungs. Exp Parasitol 2019; 199:24-29. [PMID: 30796912 DOI: 10.1016/j.exppara.2019.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 12/30/2018] [Accepted: 02/19/2019] [Indexed: 11/21/2022]
Abstract
The genus Acanthamoeba, which may cause different infections in humans, occurs widely in the environment. Lung inflammation caused by these parasites induces pulmonary pathological changes such as pulmonary necrosis, peribronchial plasma cell infiltration, moderate desquamation of alveolar cells and partial destruction of bronchial epithelial cells, and presence of numerous trophozoites and cysts among inflammatory cells. The aim of this study was to assess the influence of plant extracts from Artemisia annua L. on expression of the toll-like receptors TLR2 and TLR4 in lungs of mice with acanthamoebiasis. A. annua, which belongs to the family Asteraceae, is an annual plant that grows wild in Asia. In this study, statistically significant changes of expression of TLR2 and TLR4 were demonstrated. In the lungs of infected mice after application of extract from A. annua the expression of TLRs was observed mainly in bronchial epithelial cells, pneumocytes (to a lesser extent during the outbreak of infection), and in the course of high general TLR expression. TLR4 in particular was also visible in stromal cells of lung parenchyma. In conclusion, we confirmed that a plant extract of A. annua has a modulatory effect on components of the immune system such as TLR2 and TLR4.
Collapse
|
32
|
Artemisinin and its derivatives: a potential therapeutic approach for oral lichen planus. Inflamm Res 2019; 68:297-310. [DOI: 10.1007/s00011-019-01216-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/16/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
|
33
|
Effect of Jieduquyuziyin prescription-treated rat serum on MeCP2 gene expression in Jurkat T cells. In Vitro Cell Dev Biol Anim 2018; 54:692-704. [PMID: 30367366 DOI: 10.1007/s11626-018-0295-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/13/2018] [Indexed: 01/30/2023]
Abstract
How genomic DNA methylation and methyl CpG-binding protein 2 (MeCP2) gene expression affect the pathogenesis of systemic lupus erythematosus (SLE) remains poorly understood. Traditional Chinese medicine has a unique effect in the treatment of SLE patients. This study aimed to investigate the effect of Jieduquyuziyin prescription (JP)-treated rat serum on the gene expression of MeCP2 in Jurkat T cells and its role in the pathogenesis of SLE. Jurkat T cells were harvested, and drug-containing serum was prepared. The ferulic acid and paeoniflorin content in the drug-containing serum were determined by liquid chromatography-mass spectrometry (LC-MS/MS). 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assays were used to screen the optimal concentration of drug-containing serum. The DNA methylation level in Jurkat T cells was detected with a Methylamp™ Total DNA Methylation Kit. The methylation status of the MeCP2 promoter region was detected using bisulfite modification and methylation-specific PCR (MSP). Real-time PCR was used to measure MeCP2 mRNA expression. Western blotting and flow cytometry were done to detect MeCP2 protein expression in Jurkat cell nuclei. Paeoniflorin and ferulic acid were detected in the drug-containing serum of JP-treated rats. The results showed that cell growth was affected in the high serum-containing drug group. The experimental results showed that JP and prednisone acetate increased the level of genomic DNA methylation and MeCP2 gene promoter region methylation in Jurkat cells. MeCP2 mRNA and protein levels were also increased in the JP and prednisone acetate groups. Furthermore, flow cytometry revealed that the expression of MeCP2 protein in Jurkat T cell nuclei was higher in the drug group than the blank control group, and these results were consistent with the western blot analysis results. Our study found that there is a negative correlation between drug-containing serum and cell survival rate. JP upregulated the levels of DNA methylation, MeCP2 mRNA and protein as effectively as prednisone acetate and thus may activate the MeCP2 gene by increasing the methylation level, thereby inhibiting the pathogenesis of SLE. Therefore, JP may potentially be used to treat SLE patients. The Jurkat T lymphocyte in vitro experiments provided a foundation to study the effects of JP on the lupus mouse CD4+ T cell methylation mechanism and to further explore the pathogenesis of SLE.
Collapse
|
34
|
Bonam SR, Wang F, Muller S. Autophagy: A new concept in autoimmunity regulation and a novel therapeutic option. J Autoimmun 2018; 94:16-32. [PMID: 30219390 DOI: 10.1016/j.jaut.2018.08.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 02/07/2023]
Abstract
Nowadays, pharmacologic treatments of autoinflammatory diseases are largely palliative rather than curative. Most of them result in non-specific immunosuppression, which can be associated with broad disruption of natural and induced immunity with significant and sometimes serious unwanted injuries. Among the novel strategies that are under development, tools that modulate the immune system to restore normal tolerance mechanisms are central. In these approaches, peptide therapeutics constitute a class of agents that display many physicochemical advantages. Within this class of potent drugs, the phosphopeptide P140 is very promising for treating patients with lupus, and likely also patients with other chronic inflammatory diseases. We discovered that P140 targets autophagy, a finely orchestrated catabolic process, involved in the regulation of inflammation and in the biology of immune cells. In vitro, P140 acts directly on a particular form of autophagy called chaperone-mediated autophagy, which seems to be hyperactivated in certain subsets of lymphocytes in lupus and in other autoinflammatory settings. In lupus, the "correcting" effect of P140 on autophagy results in a weaker signaling of autoreactive T cells, leading to a significant improvement of pathophysiological status of treated mice. These findings also demonstrated ex vivo in human cells, open novel avenues of therapeutic intervention in pathological conditions, in which specific and not general targeting is highly pursued in the context of the new action plans for personalized medicines.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; CNRS-University of Strasbourg, Laboratory of Excellence Medalis, France
| | - Fengjuan Wang
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; CNRS-University of Strasbourg, Laboratory of Excellence Medalis, France
| | - Sylviane Muller
- CNRS-University of Strasbourg, Biotechnology and Cell Signaling, Illkirch, France; CNRS-University of Strasbourg, Laboratory of Excellence Medalis, France; University of Strasbourg Institute for Advanced Study, Strasbourg, France.
| |
Collapse
|
35
|
Artemisinins—a Promising New Treatment for Systemic Lupus Erythematosus: a Descriptive Review. Curr Rheumatol Rep 2018; 20:55. [DOI: 10.1007/s11926-018-0764-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
36
|
|
37
|
Schmidt KE, Kuepper JM, Schumak B, Alferink J, Hofmann A, Howland SW, Rénia L, Limmer A, Specht S, Hoerauf A. Doxycycline inhibits experimental cerebral malaria by reducing inflammatory immune reactions and tissue-degrading mediators. PLoS One 2018; 13:e0192717. [PMID: 29438386 PMCID: PMC5811026 DOI: 10.1371/journal.pone.0192717] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 01/29/2018] [Indexed: 12/22/2022] Open
Abstract
Malaria ranks among the most important infectious diseases worldwide and affects mostly people living in tropical countries. Mechanisms involved in disease progression are still not fully understood and specific treatments that might interfere with cerebral malaria (CM) are limited. Here we show that administration of doxycycline (DOX) prevented experimental CM (ECM) in Plasmodium berghei ANKA (PbA)-infected C57BL/6 wildtype (WT) mice in an IL-10-independent manner. DOX-treated mice showed an intact blood-brain barrier (BBB) and attenuated brain inflammation. Importantly, if WT mice were infected with a 20-fold increased parasite load, they could be still protected from ECM if they received DOX from day 4-6 post infection, despite similar parasitemia compared to control-infected mice that did not receive DOX and developed ECM. Infiltration of T cells and cytotoxic responses were reduced in brains of DOX-treated mice. Analysis of brain tissue by RNA-array revealed reduced expression of chemokines and tumour necrosis factor (TNF) in brains of DOX-treated mice. Furthermore, DOX-administration resulted in brains of the mice in reduced expression of matrix metalloproteinase 2 (MMP2) and granzyme B, which are both factors associated with ECM pathology. Systemic interferon gamma production was reduced and activated peripheral T cells accumulated in the spleen in DOX-treated mice. Our results suggest that DOX targeted inflammatory processes in the central nervous system (CNS) and prevented ECM by impaired brain access of effector T cells in addition to its anti-parasitic effect, thereby expanding the understanding of molecular events that underlie DOX-mediated therapeutic interventions.
Collapse
Affiliation(s)
- Kim E. Schmidt
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Janina M. Kuepper
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Beatrix Schumak
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
- * E-mail:
| | - Judith Alferink
- Department of Psychiatry and Psychotherapy, University Hospital Muenster, Muenster, Germany
| | - Andrea Hofmann
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Shanshan W. Howland
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Andreas Limmer
- Clinic for Anaesthesiology and Intensive Care, University Hospital Essen, Essen, Germany
- Institutes of Molecular Medicine and Experimental Immunology, University Hospital Bonn, Bonn, Germany
| | - Sabine Specht
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Achim Hoerauf
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
38
|
Misra DP, Negi VS. Interferon targeted therapies in systemic lupus erythematosus. Mediterr J Rheumatol 2017; 28:13-19. [PMID: 32185249 PMCID: PMC7045923 DOI: 10.31138/mjr.28.1.13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 03/06/2017] [Accepted: 03/14/2017] [Indexed: 12/26/2022] Open
Abstract
Type I interferons secreted by plasmacytoid dendritic cells (pDCs) play a crucial role in the pathogenesis of systemic lupus erythematosus by driving the formation of autoantibodies against nuclear debris. Inherited mutations causing activation of the Type I interferon pathway result in a phenotype of systemic autoimmunity which resembles some of the manifestations of lupus. Patients with lupus have increased expression of interferon-stimulated genes in the peripheral blood mononuclear cells which is abrogated following immunosuppressive treatment. Recent therapeutic approaches have involved monoclonal antibodies directly targeting interferon alpha (sifalimumab, rontalizumab) or the use of interferon alpha kinoid to stimulate endogenous production of anti-interferon antibodies in lupus. Other drugs used in lupus such as hydroxychloroquine and bortezomib also reduce circulating levels of type I interferons. Newer therapeutic strategies being investigated in preclinical models of lupus that reduce the production of Type I interferons include dihydroartemisinin, Bruton’s tyrosine kinase antagonists, Bcl-2 antagonists and sphingosine-1 phosphate agonists.
Collapse
Affiliation(s)
- Durga Prasanna Misra
- Department of Clinical Immunology, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Vir Singh Negi
- Department of Clinical Immunology, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| |
Collapse
|
39
|
The pharmacological activities and mechanisms of artemisinin and its derivatives: a systematic review. Med Chem Res 2017. [DOI: 10.1007/s00044-016-1778-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
40
|
|
41
|
Several Critical Cell Types, Tissues, and Pathways Are Implicated in Genome-Wide Association Studies for Systemic Lupus Erythematosus. G3-GENES GENOMES GENETICS 2016; 6:1503-11. [PMID: 27172182 PMCID: PMC4889647 DOI: 10.1534/g3.116.027326] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We aimed to elucidate the cell types, tissues, and pathways influenced by common variants in systemic lupus erythematosus (SLE). We applied a nonparameter enrichment statistical approach, termed SNPsea, in 181 single nucleotide polymorphisms (SNPs) that have been identified to be associated with the risk of SLE through genome-wide association studies (GWAS) in Eastern Asian and Caucasian populations, to manipulate the critical cell types, tissues, and pathways. In the two most significant cells’ findings (B lymphocytes and CD14+ monocytes), we subjected the GWAS association evidence in the Han Chinese population to an enrichment test of expression quantitative trait locus (QTL) sites and DNase I hypersensitivity, respectively. In both Eastern Asian and Caucasian populations, we observed that the expression level of SLE GWAS implicated genes was significantly elevated in xeroderma pigentosum B cells (P ≤ 1.00 × 10−6), CD14+ monocytes (P ≤ 2.74 × 10−4) and CD19+ B cells (P ≤ 2.00 × 10−6), and plasmacytoid dendritic cells (pDCs) (P ≤ 9.00 × 10−6). We revealed that the SLE GWAS-associated variants were more likely to reside in expression QTL in B lymphocytes (q1/q0 = 2.15, P = 1.23 × 10−44) and DNase I hypersensitivity sites (DHSs) in CD14+ monocytes (q1/q0 = 1.41, P = 0.08). We observed the common variants affected the risk of SLE mostly through by regulating multiple immune system processes and immune response signaling. This study sheds light on several immune cells and responses, as well as the regulatory effect of common variants in the pathogenesis of SLE.
Collapse
|
42
|
|
43
|
A Systems Biology-Based Investigation into the Pharmacological Mechanisms of Sheng-ma-bie-jia-tang Acting on Systemic Lupus Erythematosus by Multi-Level Data Integration. Sci Rep 2015; 5:16401. [PMID: 26560501 PMCID: PMC4642335 DOI: 10.1038/srep16401] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/12/2015] [Indexed: 11/08/2022] Open
Abstract
Sheng-ma-bie-jia-tang (SMBJT) is a Traditional Chinese Medicine (TCM) formula that is widely used for the treatment of Systemic Lupus Erythematosus (SLE) in China. However, molecular mechanism behind this formula remains unknown. Here, we systematically analyzed targets of the ingredients in SMBJT to evaluate its potential molecular mechanism. First, we collected 1,267 targets from our previously published database, the Traditional Chinese Medicine Integrated Database (TCMID). Next, we conducted gene ontology and pathway enrichment analyses for these targets and determined that they were enriched in metabolism (amino acids, fatty acids, etc.) and signaling pathways (chemokines, Toll-like receptors, adipocytokines, etc.). 96 targets, which are known SLE disease proteins, were identified as essential targets and the rest 1,171 targets were defined as common targets of this formula. The essential targets directly interacted with SLE disease proteins. Besides, some common targets also had essential connections to both key targets and SLE disease proteins in enriched signaling pathway, e.g. toll-like receptor signaling pathway. We also found distinct function of essential and common targets in immune system processes. This multi-level approach to deciphering the underlying mechanism of SMBJT treatment of SLE details a new perspective that will further our understanding of TCM formulas.
Collapse
|