1
|
Sun Q, Wang Q, Zhu Y, Mao M, Liao R, Yan X, Zhu B, Qin L. Traditional Uses and Phytochemical and Pharmacological Analyses of Caesalpinia sappan Linn. Chem Biodivers 2025:e202402681. [PMID: 40345215 DOI: 10.1002/cbdv.202402681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 03/07/2025] [Accepted: 03/31/2025] [Indexed: 05/11/2025]
Abstract
The heartwood of Caesalpinia sappan Linn. (Sappan Lignum) has been traditionally utilized as an herbal drug in China for treating several diseases, including osteoporosis and wounds. This review presents a systematic summary of botanical, pharmacological, phytochemical, and pharmacokinetic characteristics; traditional applications; and safety profile of C. sappan to highlight requirements for conducting further studies on this plant and to report its potential uses. We conducted a literature search of relevant articles on C. sappan published in several databases. Additional information was collected from peer-reviewed academic journals, doctoral dissertations, master's theses, and Chinese herbal medicine books. We confirmed plant taxonomy by searching The Plant List database (http://www.theplantlist.org). According to traditional Chinese medicine (TCM) literature, Sappan Lignum promotes blood circulation by eliminating blood stasis, induces detumescence, and provides pain relief. A total of 127 active components were identified and isolated from C. sappan; these include terpenoids, flavonoids, quinones, phenols, steroids, and alkaloids, showing protective effects against inflammation and carcinogenesis of cardio-cerebrovascular, hepatic, and renal systems. According to recent pharmacological studies, C. sappan has several pharmacological applications for treating cancer, inflammation, and cardio-cerebrovascular diseases. Most activities of C. sappan could be attributed to flavonoids; however, there is limited information regarding the underlying molecular mechanisms, metabolic activities, structure-function relationships, and toxicology of the bioactive substances of C. sappan. Additional extensive investigations are required to analyze the medicinal properties of C. sappan.
Collapse
Affiliation(s)
- Qingmei Sun
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Qiongxiao Wang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yichun Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Meiqin Mao
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongjun Liao
- Quzhou Forest Resources Conservation Center, Quzhou, China
| | - Xiaojie Yan
- Quzhou Wuxi River Potable Water Sources Protection and Management Center, Quzhou, China
| | - Bo Zhu
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Luping Qin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Fu J, Chen X, Li J, Peng L. Research advances of Sappanone A in inflammation-related diseases. Front Med (Lausanne) 2025; 12:1569732. [PMID: 40406412 PMCID: PMC12095284 DOI: 10.3389/fmed.2025.1569732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Accepted: 04/21/2025] [Indexed: 05/26/2025] Open
Abstract
Sappanone A (SA), a kind of homoisoflavanone extracted from the dry heartwood of Caesalpinia sappan L., has been shown to possess diverse bioactivities involving anti-inflammatory, antioxidant, and anti-apoptotic properties. Sustained proinflammatory state is a major factor in the occurrence and development of various diseases. Given the characteristics of SA, many studies have explored the effect of SA on inflammation-related diseases, which uncovered the multifaceted therapeutic potential of SA in such diseases. In this mini-review, we summarized the current achievements of SA on inflammation-related diseases (such as myocardial ischemia-reperfusion injury, liver injury, respiratory diseases, and kidney injury, etc.), in order to provide useful insights into the role of SA in inflammation-related diseases and benefit future clinical applications.
Collapse
Affiliation(s)
- Jie Fu
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiu Chen
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinglun Li
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Lilei Peng
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
3
|
Wang YZ, Wang YL, Che HJ, Jia YH, Wang HF, Zuo LF, Yang K, Li TT, Wang JX. Sappanone A: A natural PDE4 inhibitor with dual anti-inflammatory and antioxidant activities from the heartwood of Caesalpinia sappan L. JOURNAL OF ETHNOPHARMACOLOGY 2023; 304:116020. [PMID: 36529254 DOI: 10.1016/j.jep.2022.116020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Sumu (Lignum sappan), the dry heartwood of Caesalpinia sappan L., is a traditional Chinese medicine used as an analgesic and anti-inflammatory agent. AIM OF THE STUDY The study aspired to discover natural phosphodiesterase 4 (PDE4) inhibitors with dual anti-inflammatory and antioxidant activities from Sumu for the treatment of chronic obstructive pulmonary disease (COPD). MATERIALS AND METHODS To accurately and efficiently identify natural PDE4 inhibitors from Sumu, molecular docking and molecular dynamics (MD) analysis methods were used for structure-based virtual screening of a self-built database of primary polyphenols in Sumu. According to the previous studies of Sumu and the free radical scavenging mechanism of polyphenols, the reported antioxidant components from Sumu and the potential antioxidants with the antioxidant pharmacophore of catechol and π-conjugated moieties were selected from the potential PDE4 inhibitors predicted by docking. Sappanone A, a potential PDE4 inhibitor with antioxidant activity from Sumu, was selected, calculated and synthesized to evaluate its dual anti-inflammatory and antioxidant functions in vitro and in vivo studies. Herein sappanone A was assayed for its inhibitory effects against PDE4 enzyme activity, tumor necrosis factor-alpha (TNF-α) production induced by lipopolysaccharide (LPS) in RAW264.7 macrophages and malondialdehyde (MDA) production induced by Fe2+ in mouse lung homogenate; sappanone A was also assayed for its abilities of radical (DPPH) scavenging, reducing Fe3+ and complexing Fe2+ in vitro. Additionally, LPS-induced acute lung injury (ALI) in mice was used to evaluate its anti-inflammatory activity as a PDE4 inhibitor in vivo, and the levels of TNF-α and total protein in bronchoalveolar lavage fluid (BALF) and myeloperoxidase (MPO) activity in the lung were assayed. RESULTS The present study predicted and validated that sappanone A was a promising PDE4 inhibitor from Sumu with dual anti-inflammation and antioxidant activities from Sumu. In vitro, sappanone A remarkably inhibited PDE4 enzyme activity and reduced TNF-α production induced by LPS in RAW264.7 macrophages and MDA production induced by Fe2+ in mouse lung homogenate. Meanwhile, it showed outstanding abilities of scavenging DPPH radicals, reducing Fe3+ and complexing Fe2+. In vivo, sappanone A (25 mg/kg and 50 mg/kg, i.p., twice daily for 7 days) distinctly prevented LPS-induced ALI in mice by reducing the levels of TNF-α and total protein in BALF and MPO activity in the lung. CONCLUSION Sappanone A is a natural PDE4 inhibitor with dual anti-inflammatory and antioxidant activities from the traditional Chinese medicine Sumu, which may be a promising therapeutic agent to prevent the vicious cycle of COPD inflammation and oxidative stress.
Collapse
Affiliation(s)
- You-Zhi Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yu-Long Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hao-Jie Che
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Yi-He Jia
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Hui-Fang Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lin-Fei Zuo
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding, 071002, China
| | - Ting-Ting Li
- Department of Pharmacology, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Jin-Xin Wang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Sappanone A Alleviated IL-1β-Induced Inflammation in OA Chondrocytes through Modulating the NF-κB and Nrf2/HO-1 Pathways. DISEASE MARKERS 2022; 2022:2380879. [PMID: 36157214 PMCID: PMC9507726 DOI: 10.1155/2022/2380879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/17/2022]
Abstract
Objective This study was to examine the anti-inflammatory effect of sappanone A on interleukin- (IL-) 1β-stimulated osteoarthritis (OA) chondrocytes. Methods Chondrocytes were pretreated with sappanone A for 2 h before subsequent IL-1β stimulation. The mRNA expression levels of iNOs, COX-2, aggrecan, and collagen-II were measured with qRT-PCR. The levels of TNF-α, IL-6, IL-8, MMP-3, and MMP-13 were determined by ELISA. The protein levels of iNOs, COX-2, ADAMTS-4, ADAMTS-5, aggrecan, collagen-II, p-p65, p65, IκBα, Nrf2, and HO-1 were assessed by Western blot. Results Sappanone A inhibited the IL-1β-stimulated production of NO, PGE2, iNOS, COX-2, TNF-α, IL-6, and IL-8 in OA chondrocytes. In addition, sappanone A suppressed the expression of MMP-3, MMP-13, ADAMTS-4, and ADAMTS-5 in IL-1β-stimulated OA chondrocytes. The degradation of ECM components was reversed by sappanone A. Sappanone A prevented NF-κB activation while enhanced Nrf2/HO-1 activation in IL-1β-treated chondrocytes. Conclusion Sappanone A may be a potent therapeutic agent for OA.
Collapse
|
5
|
Wang Z, Chen Z, Wang X, Hu Y, Kong J, Lai J, Li T, Hu B, Zhang Y, Zheng X, Liu X, Wang S, Ye S, Zhou Q, Zheng C. Sappanone a prevents diabetic kidney disease by inhibiting kidney inflammation and fibrosis via the NF-κB signaling pathway. Front Pharmacol 2022; 13:953004. [PMID: 36052141 PMCID: PMC9426375 DOI: 10.3389/fphar.2022.953004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/01/2022] [Indexed: 11/30/2022] Open
Abstract
Background: Low grade of sterile inflammation plays detrimental roles in the progression of diabetic kidney disease (DKD). Sappanone A (SA), a kind of homoisoflavanone isolated from the heartwood of Caesalpinia sappan, exerts anti-inflammatory effects in acute kidney injury. However, whether SA has beneficial effects on diabetic kidney disease remains further exploration. Methods and Results: In the present study, uninephrectomized male mice were treated with Streptozotocin (STZ, 50 mg/kg) for five consecutive days to induce diabetes. Next, the diabetic mice were administered orally with SA (10, 20, or 30 mg/kg) or vehicle once per day. Our results showed that STZ treatment significantly enhanced damage in the kidney, as indicated by an increased ratio of kidney weight/body weight, elevated serum creatinine and blood urea nitrogen (BUN), as well as increased 24-h urinary protein excretion, whereas SA-treated mice exhibited a markedly amelioration in these kidney damages. Furthermore, SA attenuated the pathological changes, alleviated fibrotic molecules transforming growth factor-β1 (TGF-β1) and Collagen-IV (Col-IV) production, decreased inflammatory cytokines interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) expression in STZ-treated mice. Similarly, in glomerular mesangial cells, SA pretreatment decreased high glucose (HG)-induced proliferation, inflammatory cytokines excretion, and fibrotic molecules expression. Mechanistically, SA decreased the expression of nuclear factor kappa B (NF-κB) and restored the expression of total NF-κB inhibitor alpha (IκBα) both in vivo and in vitro. Conclusion: Our data suggest that SA may prevent diabetes-induced kidney inflammation and fibrosis by inhibiting the NF-κB pathway. Hence, SA can be potential and specific therapeutic value in DKD.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Zhida Chen
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyi Wang
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yepeng Hu
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Kong
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jiabin Lai
- Department of Pathology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tiekun Li
- Nanjing Kingmed Center for Clinical Laboratory Co., Ltd., Nanjing, China
| | - Bibi Hu
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yikai Zhang
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xianan Zheng
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxian Liu
- Department of Nephrology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shengyao Wang
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
| | - Shu Ye
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qiao Zhou
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chao Zheng
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Endocrinology, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Chao Zheng,
| |
Collapse
|
6
|
Prommee N, Itharat A, Thongdeeying P, Makchuchit S, Pipatrattanaseree W, Tasanarong A, Ooraikul B, Davies NM. Exploring in vitro anti-proliferative and anti-inflammatory activities of Prasachandaeng remedy, and its bioactive compounds. BMC Complement Med Ther 2022; 22:217. [PMID: 35953870 PMCID: PMC9373486 DOI: 10.1186/s12906-022-03678-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 07/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background Prasachandaeng (PSD) remedy has been empirically used in Thai traditional medicine to treat fever in bile duct and liver and cancer patients through Thai folk doctors. However, there have been no scientific reports on the bioactive compounds and bioactivities related to inflammation-associated carcinogenesis or cytotoxicity against cancer cell lines. In this study, we investigated the chemical content of the remedy, and evaluated its cytotoxic activity against two cancer cell lines in comparison with a non-cancerous cell line and determined tumor necrosis factor-alpha (TNF-α) production in a murine macrophage cell line (RAW 264.7) to evaluate anti-inflammatory activity. A novel HPLC method was used for quality control of its chemical content. Methods Pure compounds from the EtOH extract of D. cochinchinensis were isolated using bioassay-guided fractionation and chemical content of the PSD remedy was determined using HPLC. The cytotoxic activity against the hepatocarcinoma cell line (HepG2) and cholangiocarcinoma cell line (KKU-M156), in comparison with non-cancerous cell line (HaCaT), were investigated using antiproliferative assay (SRB). The anti-inflammatory activity measured by TNF-α production in RAW 264.7 was determined using ELISA. Results All crude extracts and isolated compounds exhibited significant differences from vincristine sulfate (****p < 0.0001) in their cytotoxic activity against HepG2, KKU-M156, and HaCaT. The PSD remedy exhibited cytotoxic activity against HepG2 and KKU-M156 with IC50 values of 10.45 ± 1.98 (SI = 5.3) and 4.53 ± 0.74 (SI = 12.2) µg/mL, respectively. Some constituents from C. sappan, D. cochinchinensis, M. siamensis, and M. fragrans also exhibited cytotoxic activity against HepG2 and KKU-M156, with IC50 values less than 10 µg/mL. The isolated compounds, i.e., Loureirin B (1), 4-Hydroxy-2,4’-dimethoxydihydrochalcone (2), and Eucomol (3) exhibited moderate cytotoxicity against two cancer cell lines. None of the crude extracts and isolated compounds showed cytotoxicity against HaCaT. D. cochinchinensis and PSD remedy exhibited higher anti-inflammatory activity measured as TNF-α production than acetaminophen. Conclusion The findings provide evidence of bioactivity for EtOH extracts of PSD remedy and the isolated compounds of D. Cochinchinensis. The results consistent the use clinical activity and use of PSD remedy as a antipyretic treatment for liver and bile duct cancer patients by Thai traditional practitioners.
Collapse
|
7
|
Domingo IK, Latif A, Bhavsar AP. Pro-Inflammatory Signalling PRRopels Cisplatin-Induced Toxicity. Int J Mol Sci 2022; 23:7227. [PMID: 35806229 PMCID: PMC9266867 DOI: 10.3390/ijms23137227] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023] Open
Abstract
Cisplatin is a platinum-based chemotherapeutic that has long since been effective against a variety of solid-cancers, substantially improving the five-year survival rates for cancer patients. Its use has also historically been limited by its adverse drug reactions, or cisplatin-induced toxicities (CITs). Of these reactions, cisplatin-induced nephrotoxicity (CIN), cisplatin-induced peripheral neuropathy (CIPN), and cisplatin-induced ototoxicity (CIO) are the three most common of several CITs recognised thus far. While the anti-cancer activity of cisplatin is well understood, the mechanisms driving its toxicities have only begun to be defined. Most of the literature pertains to damage caused by oxidative stress that occurs downstream of cisplatin treatment, but recent evidence suggests that the instigator of CIT development is inflammation. Cisplatin has been shown to induce pro-inflammatory signalling in CIN, CIPN, and CIO, all of which are associated with persisting markers of inflammation, particularly from the innate immune system. This review covered the hallmarks of inflammation common and distinct between different CITs, the role of innate immune components in development of CITs, as well as current treatments targeting pro-inflammatory signalling pathways to conserve the use of cisplatin in chemotherapy and improve long-term health outcomes of cancer patients.
Collapse
Affiliation(s)
| | | | - Amit P. Bhavsar
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, AB T6G 2E1, Canada; (I.K.D.); (A.L.)
| |
Collapse
|
8
|
Wang Y, Zhang YH, Tang YR, Lan J, Huang ZY, Tian W, Huang Q, Peng Y, Gao Y, Hu YQ, Zhang XN. Protective effects of tanshinone Ⅰ against cisplatin-induced nephrotoxicity in mice. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:414-418. [PMID: 35656184 PMCID: PMC9148410 DOI: 10.22038/ijbms.2022.58959.13102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 02/12/2022] [Indexed: 11/23/2022]
Abstract
Objective(s): Cisplatin (CDDP) is a highly effective chemotherapeutic agent, but its clinical application has been limited by nephrotoxicity. Tanshinone Ⅰ (T-I), a phenanthrenequinone compound extracted from the Chinese herb Danshen, has been used to improve circulation and treat cardiovascular diseases. The aim of this study was to investigate the protective effect of T-I on CDDP-induced nephrotoxicity in mice. Materials and Methods: The BALB/c mouse models of nephrotoxicity were established by a single intraperitoneal injection of 20 mg/kg CDDP on the first day of the experiment. Three hours prior to CDDP administration, the mice were dosed with 10 mg/kg and 30 mg/kg T-I for 3 consecutive days intraperitoneally to explore nephroprotection of T-I. Results: Treatment with T-I significantly reduced blood urea nitrogen and creatinine levels in serum observed in CDDP-administered mice, especially at a dose of 30 mg/kg. T-I at 30 mg/kg significantly decreased malondialdehyde levels and increased glutathione levels and the enzymatic activity of catalase in kidney tissue compared to CDDP. Additionally, T-I (30 mg/kg) significantly reversed the CDDP-decreased expression level of superoxide dismutase 2 protein in renal tissue. Histopathological evaluation of the kidneys further confirmed the protective effect of T-I. Conclusion: The findings of this study demonstrate that T-I can protect against CDDP-induced nephrotoxicity through suppression of oxidative stress.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443003, P.R. China
| | - Yun-Hui Zhang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Yin-Ru Tang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Jie Lan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Zhi-Ying Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, P.R. China
| | - Wei Tian
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443003, P.R. China
| | - Qian Huang
- Department of Nephrology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital,Yichang 443003, P.R. China
| | - Yan Peng
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443003, P.R. China
| | - Yuan Gao
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443003, P.R. China
| | - Yue-Qin Hu
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443003, P.R. China
| | - Xue-Nong Zhang
- Department of Pharmacy, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang 443003, P.R. China
| |
Collapse
|
9
|
Natural products: potential treatments for cisplatin-induced nephrotoxicity. Acta Pharmacol Sin 2021; 42:1951-1969. [PMID: 33750909 PMCID: PMC8633358 DOI: 10.1038/s41401-021-00620-9] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/01/2021] [Indexed: 12/13/2022]
Abstract
Cisplatin is a clinically advanced and highly effective anticancer drug used in the treatment of a wide variety of malignancies, such as head and neck, lung, testis, ovary, breast cancer, etc. However, it has only a limited use in clinical practice due to its severe adverse effects, particularly nephrotoxicity; 20%–35% of patients develop acute kidney injury (AKI) after cisplatin administration. The nephrotoxic effect of cisplatin is cumulative and dose dependent and often necessitates dose reduction or withdrawal. Recurrent episodes of AKI result in impaired renal tubular function and acute renal failure, chronic kidney disease, uremia, and hypertensive nephropathy. The pathophysiology of cisplatin-induced AKI involves proximal tubular injury, apoptosis, oxidative stress, inflammation, and vascular injury in the kidneys. At present, there are no effective drugs or methods for cisplatin-induced kidney injury. Recent in vitro and in vivo studies show that numerous natural products (flavonoids, saponins, alkaloids, polysaccharide, phenylpropanoids, etc.) have specific antioxidant, anti-inflammatory, and anti-apoptotic properties that regulate the pathways associated with cisplatin-induced kidney damage. In this review we describe the molecular mechanisms of cisplatin-induced nephrotoxicity and summarize recent findings in the field of natural products that undermine these mechanisms to protect against cisplatin-induced kidney damage and provide potential strategies for AKI treatment.
Collapse
|
10
|
Regression Modeling of the Antioxidant-to-Nephroprotective Relation Shows the Pivotal Role of Oxidative Stress in Cisplatin Nephrotoxicity. Antioxidants (Basel) 2021; 10:antiox10091355. [PMID: 34572987 PMCID: PMC8464812 DOI: 10.3390/antiox10091355] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/14/2022] Open
Abstract
The clinical utility of the chemotherapeutic drug cisplatin is significantly limited by its nephrotoxicity, which is characterized by electrolytic disorders, glomerular filtration rate decline, and azotemia. These alterations are consequences of a primary tubulopathy causing injury to proximal and distal epithelial cells, and thus tubular dysfunction. Oxidative stress plays a role in cisplatin nephrotoxicity and cytotoxicity, but its relative contribution to overall toxicity remains unknown. We studied the relation between the degree of oxidative reduction (provided by antioxidant treatment) and the extent of nephrotoxicity amelioration (i.e., nephroprotection) by means of a regression analysis of studies in animal models. Our results indicate that a linear relation exists between these two parameters, and that this relation very nearly crosses the value of maximal nephroprotection at maximal antioxidant effect, suggesting that oxidative stress seems to be a pivotal and mandatory mechanism of cisplatin nephrotoxicity, and, hence, an interesting, rationale-based target for clinical use. Our model also serves to identify antioxidants with enhanced effectiveness by comparing their actual nephroprotective power with that predicted by their antioxidant effect. Among those, this study identified nanoceria, erythropoietin, and maltol as highly effective candidates affording more nephroprotection than expected from their antioxidant effect for prospective clinical development.
Collapse
|
11
|
Liu B, Zhang Y, Wu Q, Wang L, Hu B. Alleviation of isoprenaline hydrochloride induced myocardial ischemia injury by brucine through the inhibition of Na+/K+-ATPase. Exp Gerontol 2021; 149:111332. [PMID: 33781843 DOI: 10.1016/j.exger.2021.111332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 03/19/2021] [Accepted: 03/22/2021] [Indexed: 11/28/2022]
Abstract
Myocardial infarction (MI) is the most extensive manifestations of cardiovascular disease (CVD), associated with prolonged supply and demand blood oxygen imbalance to the heart muscle. The treatment of MI includes several conventional medicines which are beta-blockers and calcium antagonists. Though, these were reported to be either not efficient or associated with life threatening adverse effects. Brucine, the main alkaloid bioactive compound from Strychnos nux-vomica seeds, offers unique compatibility advantages in inflammatory diseases associated clinical practices. Thus, the present investigation was projected to explore the activity of brucine towards MI provoked by isoprenaline hydrochloride (ISO) in rats. The cardioprotective properties of brucine were evaluated via detecting the infarct size, serum cardiac marker enzymes (CK, CK-MB, cTnT, and cTnI), endogenous antioxidants (CAT, SOD, GPx), and lipid peroxidation (TBARS and LOOH), inflammatory mediators (NF-κB, TNF-α and IL-6) and histopathological analysis. The results demonstrated, brucine effectively restored the infarct size by increasing the endogenous antioxidants and decreasing the status of TBARS and LOOH, marker enzymes and ameliorated the histopathological injuries. Brucine's cardioprotective effect might be associated with TNF-α, IL-6 signaling molecules activation, revealing its pharmacological actions.
Collapse
Affiliation(s)
- Bin Liu
- Second Department of Cardiology, Shandong Provincial Western Hospital, Shandong ENT Hospital, No. 4 Duanxing West Road, Jinan, Shandong Province 25002, China
| | - Yuqing Zhang
- Department of Vertigo, The People's Hospital of Huaiyin, Jinan, Shandong Province 250000, China
| | - Qingke Wu
- Shandong Shangheng Biotechnology Co., Ltd, Jinan, Shandong Province 250000, China
| | - Li Wang
- Shandong Shangheng Biotechnology Co., Ltd, Jinan, Shandong Province 250000, China
| | - Bo Hu
- Department of Emergency, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, No. 324 Jingwu Weiqi Road, Jinan, Shandong 250021, China; Department of Emergency, Shandong Provincial Hospital affiliated to Shandong First Medical University, No. 324 Jingwu Weiqi Road, Jinan, Shandong 250021, China.
| |
Collapse
|
12
|
Prommee N, Itharat A, Panthong S, Makchuchit S, Ooraikul B. Ethnopharmacological analysis from Thai traditional medicine called prasachandaeng remedy as a potential antipyretic drug. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113520. [PMID: 33129948 DOI: 10.1016/j.jep.2020.113520] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Prasachandaeng (PSD) remedy is a famous antipyretic drug for adults and children in Thai traditional medicine used and is described in Thailand's National List of Essential Medicine. Relationship between the taste of this herbal medicine, ethnopharmacological used and its pharmacological properties was reviewed. AIMS OF STUDY Since there has been no scientific report on the antipyretic activity of PSD, aim of this study was to investigate the efficacy related antipyretic drug of the remedy and its 12 herbal ingredients. It involved quality evaluation of raw materials, extraction of PSD and its ingredients, in vitro evaluation of their inhibitory activities on fever mediators, i.e. NO and PGE2 production in murine macrophage (RAW 264.7) cell line stimulated by lipopolysaccharide, and its stability study of the 95% ethanolic extract of PSD remedy. MATERIALS AND METHODS PSD remedy was extracted by maceration with 50% and 95% ethanol (PSD50 and PSD95), by decoction with distilled water (PSDW), and hydrolysis of PSDW with 0.1 N HCl (PSDH). The 12 plant ingredients were extracted with 95% ethanol. Quality evaluation of PSD ingredients was performed according to the standard procedures for the quality control of herbal materials. The inhibitory activity on nitric oxide production was determined by the Griess reaction and the inhibition of prostaglandin E2 production was determined using the ELISA test kit. RESULTS PSD ingredients passed the quality standard stipulated for herbal materials. PSD95 exhibited the highest inhibitory activities on the production of NO and PGE2 with the IC50 values of 42.40 ± 0.72 and 4.65 ± 0.76 μg/mL, respectively. A standard drug acetaminophen (ACP) exhibited inhibition of NO and PGE2 production with the IC50 values of 99.50 ± 0.43 and 6.110 ± 0.661 μg/mL, respectively. The stability study was suggested two years shelf-life of PSD95. This is the first report on the activity related antipyretic activity of PSD remedy and its ingredients against two fever mediators, NO and PGE2. CONCLUSION The results suggested that the 95% ethanolic extracts of PSD remedy and some of its ingredients, were better than ACP in reducing fever. PSD should be further studied using in vivo models and clinical trials to support its use as an antipyretic drug in Thai traditional medicine.
Collapse
Affiliation(s)
- Nuntika Prommee
- Student of Doctor of Philosophy (Applied Thai Traditional Medicine), Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12120, Thailand.
| | - Arunporn Itharat
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani 12120, Thailand; Center of Excellence in Applied Thai Traditional Medicine Research (CEATMR), Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12120, Thailand.
| | - Sumalee Panthong
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani 12120, Thailand; Center of Excellence in Applied Thai Traditional Medicine Research (CEATMR), Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12120, Thailand.
| | - Sunita Makchuchit
- Department of Applied Thai Traditional Medicine, Faculty of Medicine, Thammasat University (Rangsit Campus), Klongluang, Pathumthani 12120, Thailand; Center of Excellence in Applied Thai Traditional Medicine Research (CEATMR), Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12120, Thailand.
| | - Buncha Ooraikul
- Center of Excellence in Applied Thai Traditional Medicine Research (CEATMR), Thammasat University (Rangsit Campus), Klongluang, Pathumthani, 12120, Thailand; Professor Emeritus, Department of Agricultural Food and Nutritional Science, Faculty of Agricultural Life and Environmental Sciences, University of Alberta, Edmonton, Bualuang ASEAN Chair Professor, Thammasat University, Canada.
| |
Collapse
|
13
|
Sappanone A alleviates hypoxia/reoxygenation-induced cardiomyocytes injury through inhibition of mitochondrial apoptosis and activation of PI3K-Akt-Gsk-3β pathway. Biosci Rep 2021; 40:222121. [PMID: 32095825 PMCID: PMC7042124 DOI: 10.1042/bsr20192442] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 02/10/2020] [Accepted: 02/13/2020] [Indexed: 01/14/2023] Open
Abstract
Myocardial ischemia reperfusion injury (MIRI) is a complex pathophysiological process involved with the activation of oxidative stress, inflammation and apoptosis. Sappanone A (SA), a homoisoflavanone isolated from the heartwood of Caesalpinia sappan L., could exhibit antioxidant, anti-inflammatory and anti-apoptotic activities. Therefore, we assumed that SA has a potential use for preventing against MIRI. The present study aimed to investigate the effect of SA treatment on MIRI and its mechanism. Cardiomyocytes (H9c2 cells) were treated with SA for 1 h, followed by 6 h of hypoxia/3 h of reoxygenation. Cell viability assay was detected by CCK-8 assay. Apoptosis was measured by flow cytometry and Hoechst staining. Mitochondrial permeability transition pore (mPTP) opening and mitochondrial transmembrane potential (ΔΨm) were measured by spectrophotometry and JC-1 staining. The changes of mitochondrial apoptosis-related proteins and PI3K–Akt–Gsk-3β signaling pathway were evaluated by Western blotting. The results showed that SA pretreatment enhanced the cell viability and decreased the activity of myocardial enzyme in a dose-dependent manner. Moreover, SA pretreatment significantly inhibited apoptosis, blocked mPTP opening, suppressed the release of ΔΨm, prevented the cytochrome c releasing from mitochondria into cytoplasm, and repressed the cleavage of caspase-9 and caspase-3. Furthermore, SA pretreatment increased the phosphorylation levels of Akt and Gsk-3β but not of Stat-3. Meanwhile, the protective effect of SA was abrogated by PI3K inhibitor (LY294002). In conclusion, our results demonstrate that SA could prevent hypoxia/reoxygenation-induced cardiomyocytes injury through inhibition of mitochondrial apoptosis and activation of PI3K–Akt–Gsk-3β pathway. Thus, SA may have a potential use for the prevention of MIRI.
Collapse
|
14
|
Abdul Salam AA, T. S, Kumar S. M, Bankapur A, Sinha RK, Simon L, Chidangil S. Effect of OH substitution in 3-benzylchroman-4-ones: crystallographic, CSD, DFT, FTIR, Hirshfeld surface, and energy framework analysis. RSC Adv 2021; 11:20123-20136. [PMID: 35479932 PMCID: PMC9033682 DOI: 10.1039/d1ra02245h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 05/22/2021] [Indexed: 11/21/2022] Open
Abstract
3-Benzylchroman-4-ones (homoisoflavanones) are oxygen-containing heterocycles with a sixteen-carbon skeleton. They belong to the class of naturally occurring polyphenolic flavonoids with limited occurrence in nature and possess anti-inflammatory, antibacterial, antihistaminic, antimutagenic, antiviral, and angioprotective properties. Recently, we reported the synthesis and anticancer activity studies of fifteen 3-benzylchroman-4-one molecules, and most of them were proven to be effective against BT549 and HeLa cells. In this work, we report the single-crystal X-ray crystallographic studies of two molecules 3-[(2-hydroxyphenyl)methyl]-3,4-dihydro-2H-1-benzopyran-4-one and 3-[(2,4-dimethoxyphenyl)methyl]-3,4-dihydro-2H-1-benzopyran-4-one. The single crystals were grown using a novel laser-induced crystallization technique. We observed that the 3-benzylchroman-4-one derivative bearing OH substitution at the 2′ position adopted different conformation due to formation of dimers through O–H⋯O, and C–H⋯O intermolecular hydrogen bondings. The role of OH substitution in the aforementioned conformational changes was evaluated using density functional theory (DFT), Hirshfeld surface, energy framework and FTIR spectroscopy analysis. In addition, we have carried out a Cambridge Structural Database (CSD) study to understand the conformational changes using five analogue structures. X-ray crystallographic, computational, and spectroscopic studies of 3-benzylchroman-4-ones provided an insight into the role of substitution at benzyl moieties in stabilizing the three-dimensional (3D) structures. Laser-induced crystallization, single crystal X-ray crystallography, CSD, DFT, FTIR, Hirshfeld surface, and energy frameworks analysis of two new 3-benzylchroman-4-one structures.![]()
Collapse
Affiliation(s)
- Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics
- Centre for Applied Nanosciences
- Manipal Academy of Higher Education
- Manipal 576 104
- India
| | - Shilpa T.
- Department of Atomic and Molecular Physics
- Centre for Applied Nanosciences
- Manipal Academy of Higher Education
- Manipal 576 104
- India
| | | | - Aseefhali Bankapur
- Department of Atomic and Molecular Physics
- Centre of Excellence for Biophotonics
- Manipal Academy of Higher Education
- Manipal 576 104
- India
| | - Rajeev K. Sinha
- Department of Atomic and Molecular Physics
- Centre of Excellence for Biophotonics
- Manipal Academy of Higher Education
- Manipal 576 104
- India
| | - Lalitha Simon
- Department of Chemistry
- Manipal Institute of Technology
- Manipal Academy of Higher Education
- Manipal 576 104
- India
| | - Santhosh Chidangil
- Department of Atomic and Molecular Physics
- Centre of Excellence for Biophotonics
- Manipal Academy of Higher Education
- Manipal 576 104
- India
| |
Collapse
|
15
|
Casanova AG, Hernández-Sánchez MT, Martínez-Salgado C, Morales AI, Vicente-Vicente L, López-Hernández FJ. A meta-analysis of preclinical studies using antioxidants for the prevention of cisplatin nephrotoxicity: implications for clinical application. Crit Rev Toxicol 2020; 50:780-800. [PMID: 33170047 DOI: 10.1080/10408444.2020.1837070] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Cisplatin is an effective chemotherapeutic drug whose clinical use and efficacy are limited by its nephrotoxicity, which affects mainly the renal tubules and vasculature. It accumulates in proximal and distal epithelial tubule cells and causes oxidative stress-mediated cell death and malfunction. Consequently, many antioxidants have been tested for their capacity to prevent cisplatin nephrotoxicity. In this study, we made a systematic review of the literature and meta-analyzed 152 articles, which tested the nephroprotective effect of isolated compounds or mixtures of natural origin on cisplatin nephrotoxicity in preclinical models. This meta-analysis identified the most effective candidates and examined the efficacy obtained by antioxidants administered by the oral and intraperitoneal routes. By comparing with a recent, similar meta-analysis performed on clinical studies, this article identifies a disconnection between preclinical and clinical research, and contextualizes, discusses, and integrates the existing preclinical information toward the optimized selection of candidates to be further explored (clinical level). Despite proved efficacy, this article discusses the barriers limiting the clinical development of natural mixtures, such as those in extracts from Calendula officinalis flowers and Heliotropium eichwaldii roots. On the contrary, isolated compounds are more straightforward candidates, among which arjunolic acid and quercetin stand out in this meta-analysis.
Collapse
Affiliation(s)
- Alfredo G Casanova
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - M Teresa Hernández-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Carlos Martínez-Salgado
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Ana I Morales
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
| | - Laura Vicente-Vicente
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain
| | - Francisco J López-Hernández
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain.,Department of Physiology and Pharmacology, University of Salamanca (USAL), Salamanca, Spain.,Fundación Instituto de Estudios de Ciencias de la Salud de Castilla y León (IECSCYL), Soria, Spain.,Group of Translational Research on Renal and Cardiovascular Diseases (TRECARD), Salamanca, Spain.,National Network for Kidney Research REDINREN, Instituto de Salud Carlos III, Madrid, Spain.,Group of Biomedical Research on Critical Care (BioCritic), Valladolid, Spain
| |
Collapse
|
16
|
Shi X, Tao G, Ji L, Tian G. Sappanone A Protects Against Myocardial Ischemia Reperfusion Injury by Modulation of Nrf2. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:61-71. [PMID: 32021092 PMCID: PMC6955610 DOI: 10.2147/dddt.s230358] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/05/2019] [Indexed: 12/27/2022]
Abstract
Background Oxidative stress is a major contributor to the onset and development of myocardial ischemia reperfusion injury (MIRI). Sappanone A (SA), a homoisoflavanone extracted from the heartwood of Caesalpinia sappan L., has been demonstrated to possess powerful antioxidant activity. Therefore, this study aimed to determine the protective effect of SA on MIRI and investigate its underlying mechanism. Methods The rat hearts were isolated and underwent 30-min ischemia, followed by 120-min reperfusion to establish the MIRI model, using the Langendorff method. SA was administrated intraperitoneally into rats 1 h prior to heart isolation. The myocardial infarct size and apoptosis were measured by TTC and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. Myocardial enzyme activity, MDA content and the activities of SOD and GSH-Px were detected by colorimetric spectrophotometric method. Reactive oxygen species (ROS) level was detected by DCFH-DA probe. The change in Keap1/Nrf2 signaling pathway was evaluated by Western blotting. Results SA reduced myocardial infarct size and the release of CK-MB and LDH in a dose-dependent manner. Moreover, SA improved the recovery of cardiac function, inhibited MIRI-induced apoptosis, repressed the production of ROS and MDA, and enhanced the activities of SOD and GSH-Px. Mechanistically, SA downregulated Keap1, induced Nrf2 nuclear accumulation, and enhanced Nrf2 transcriptional activity, subsequently resulting in an increase in the expression of the Nrf2 target genes heme oxygenase-1 and NAD(P)H quinone dehydrogenase 1. Moreover, SA enhanced the phosphorylation of Nfr2, but the enhancement in Nfr2 phosphorylation was abrogated by PKC or PI3K inhibitor. Conclusion Collectively, it was demonstrated that SA prevents MIRI via coordinating the cellular antioxidant defenses and maintaining the redox balance, by modulation of Nrf2 via the PKC or PI3K pathway. Therefore, SA was a potential therapeutic drug for treating MIRI.
Collapse
Affiliation(s)
- Xiaojing Shi
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Guizhou Tao
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Lili Ji
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| | - Ge Tian
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, People's Republic of China
| |
Collapse
|
17
|
Raman spectroscopy: A novel experimental approach to evaluating cisplatin induced tissue damage. Talanta 2019; 207:120343. [PMID: 31594623 DOI: 10.1016/j.talanta.2019.120343] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 09/04/2019] [Accepted: 09/09/2019] [Indexed: 01/24/2023]
Abstract
The aim of this work is to clarify the effect of curcumin and beta-carotene on cisplatin-induced tissue damage and to demonstrate the potential of Raman spectroscopy to detect tissue changes consistent with liver and kidney histopathology as a potential diagnostic adjunct. İn the study, 56 Wistar albino female rats were used and randomly divided into 7 groups (n:8). Sham group received only sesame oil; Cisplatin group, received a single dose injection of cisplatin; Beta-carotene group, treated with beta-carotene orally; Cisplatin + Beta-carotene group, pretreated with beta-carotene 30 min prior to the cisplatin injection, then received cisplatin; Curcumin group, orally treated with curcumin; Cisplatin + Curcumin group, pretreated with curcumin 30min prior to the cisplatin injection, then received cisplatin. The second application was performed 1 week after the first application. One of the liver and kidney tissues was taken to 10% form for histopathological examinations and the others were taken to -80 °C for raman spectroscopy. Received sections were hematoxylin-eosin stained. The avidin-biotin peroxidase method was used for to investigate anti-TNF-α and IL1-β activities. TUNEL method was applied to determine apoptotic cells. According to our histopathological findings, beta-carotene and especially curcumin have been found to possess hepatorenal protective activities. These datas were supported by the microscopic damage scores. Although some of these findings were observed in both the cisplatin + curcumin and cisplatin + beta-carotene groups, the incidence and severity of histopathological lesions were less than the cisplatin group. Both immunohistochemical studies and Raman spectroscopy results consistent with histopathological examination of hematoxylen-eosin stained sections. Raman spectroscopy represents a suitable tool to provide insights into structural factors involved in the mechanisms underlying antitumor effects of platinum drug.
Collapse
|
18
|
Sappanone A prevents hypoxia-induced injury in PC-12 cells by down-regulation of miR-15a. Int J Biol Macromol 2018; 123:35-41. [PMID: 30395900 DOI: 10.1016/j.ijbiomac.2018.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 09/27/2018] [Accepted: 11/01/2018] [Indexed: 11/20/2022]
Abstract
OBJECTIVE We aimed to explore the effect of Sappanone A on neurologic damage induced by hypoxia. METHODS PC-12 cells were pre-treated with Sappanone A and were simulated by hypoxia. miRNA transfection was performed to overexpress or suppress the expression of miR-15a in PC-12 cells. Cell viability, apoptosis, migration, and expression levels of miR-15a were tested to evaluate the in vitro impact of Sappanone A on hypoxia-injured PC-12 cells. RESULTS Hypoxia exposure induced a significant damage in PC-12 cells, as evidenced by the repressed cell growth, the induced apoptosis and the impaired migrating capacity. Sappanone A pretreatment protected PC-12 cells against hypoxia-mediated cell damage. More interestingly, Sappanone A treatment down-regulated miR-15a, and the neuroprotective effects of Sappanone A were attenuated by miR-15a overexpression while were accelerated by miR-15a suppression. Finally, Sappanone A significantly activated Wnt/β-catenin and PI3K/AKT signaling pathways. And the activation of these two signaling induced by Sappanone A were repressed by miR-15a overexpression and were enhanced by miR-15a suppression. CONCLUSION Sappanone A exerted protective activity in PC-12 cells which were stimulated by hypoxia. One of the possible mechanisms of the neuroprotective effect is that: Sappanone A down-regulated the expression of miR-15a, and thus activated Wnt/β-catenin and PI3K/AKT signaling pathways.
Collapse
|
19
|
Rayavara K, Kurosky A, Stafford SJ, Garg NJ, Brasier AR, Garofalo RP, Hosakote YM. Proinflammatory Effects of Respiratory Syncytial Virus-Induced Epithelial HMGB1 on Human Innate Immune Cell Activation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:2753-2766. [PMID: 30275049 PMCID: PMC6200588 DOI: 10.4049/jimmunol.1800558] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/29/2018] [Indexed: 01/21/2023]
Abstract
High mobility group box 1 (HMGB1) is a multifunctional nuclear protein that translocates to the cytoplasm and is subsequently released to the extracellular space during infection and injury. Once released, it acts as a damage-associated molecular pattern and regulates immune and inflammatory responses. Respiratory syncytial virus (RSV) is a major cause of acute lower respiratory tract infections in infants and elderly, for which no effective treatment or vaccine is currently available. This study investigated the effects of HMGB1 on cytokine secretion, as well as the involvement of NF-κB and TLR4 pathways in RSV-induced HMGB1 release in human airway epithelial cells (AECs) and its proinflammatory effects on several human primary immune cells. Purified HMGB1 was incubated with AECs (A549 and small alveolar epithelial cells) and various immune cells and measured the release of proinflammatory mediators and the activation of NF-κB and P38 MAPK. HMGB1 treatment significantly increased the phosphorylation of NF-κB and P38 MAPK but did not induce the release of cytokines/chemokines from AECs. However, addition of HMGB1 to immune cells did significantly induce the release of cytokines/chemokines and activated the NF-κB and P38 MAPK pathways. We found that activation of NF-κB accounted for RSV-induced HMGB1 secretion in AECs in a TLR4-dependent manner. These results indicated that HMGB1 secreted from AECs can facilitate the secretion of proinflammatory mediators from immune cells in a paracrine mechanism, thus promoting the inflammatory response that contributes to RSV pathogenesis. Therefore, blocking the proinflammatory function of HMGB1 may be an effective approach for developing novel therapeutics.
Collapse
Affiliation(s)
- Kempaiah Rayavara
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Alexander Kurosky
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Susan J Stafford
- Department of Biochemistry and Molecular Biology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Nisha J Garg
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555
| | - Allan R Brasier
- Division of Endocrinology, Department of Internal Medicine, The University of Texas Medical Branch, Galveston, TX 77555
- Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX 77555
| | - Roberto P Garofalo
- Department of Pediatrics, The University of Texas Medical Branch, Galveston, TX 77555; and
- Sealy Center for Vaccine Development, The University of Texas Medical Branch, Galveston, TX 77555
| | - Yashoda M Hosakote
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555;
- Institute for Translational Sciences, The University of Texas Medical Branch, Galveston, TX 77555
| |
Collapse
|
20
|
Oh SM, Park G, Lee SH, Seo CS, Shin HK, Oh DS. Assessing the recovery from prerenal and renal acute kidney injury after treatment with single herbal medicine via activity of the biomarkers HMGB1, NGAL and KIM-1 in kidney proximal tubular cells treated by cisplatin with different doses and exposure times. Altern Ther Health Med 2017; 17:544. [PMID: 29258482 PMCID: PMC5738030 DOI: 10.1186/s12906-017-2055-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 12/07/2017] [Indexed: 12/20/2022]
Abstract
Background Acute kidney injury (AKI) is an initial factor in many kidney disorders. Pre- and intra-renal AKI biomarkers have recently been reported. Recovery from AKI by herbal medicine has rarely been reported. Thus, this study aimed to investigate the dose- and time-dependent effects of herbal medicines to protect against AKI in cisplatin-induced human kidney 2 (HK-2) cells by assessing the activities of high-mobility group box protein 1 (HMGB1), neutrophil gelatinase-associated lipocalin (NGAL) and kidney injury molecule-1 (KIM-1). Methods Proximal tubular HK-2 cell lines were treated with either 400 μM of cisplatin for 6 h or 10 μM of cisplatin for 24 h and then exposed to ten types of single herbal medicines, including Nelumbo nymphaea (NY) at a dose of 100 μg/mL. The AKI biomarkers HMGB1, NGAL and KIM-1 were repeatedly measured by an ELISA assay at 2, 4, and 6 h in the group treated with 400 μM of cisplatin to confirm necrotic cell death and at 6, 24, and 48 h in the group treated with 10 μM of cisplatin to examine apoptotic cell death. Recovery confirm was conducted through in vivo study using ICR mice for 3 day NY or Paeonia suffruticosa intake. Results Cisplatin treatment at a concentration of 10 μM decreased cell viability. Treatment with 400 μM of cisplatin reduced HMBG1 activity and resulted in lactate dehydrogenase release. In longer exposure durations (up to 48 h), NGAL and KIM-1 exhibited activity from 24 h onward. Additionally, NY treatment resulted in an approximately 50% change in all three biomarkers. The time-dependent profiles of HMGB1, NGAL and KIM-1 activities up to 48 h were notably different; HMGB1 exhibited a 7-fold change at 6 h, and NGAL and KIM-1 exhibited 1.7-fold changes at 24 h, respectively. Consistently, serum and urine NGAL and KIM-1 activities were all reduced in ICR mice. Conclusions Several single herbal medicines, including NY, have a potential as effectors of AKI due to their ability to inhibit the activation of HMGB1, NGAL and KIM-1 in an in vitro AKI-mimicked condition and simple in vivo confirm. Furthermore, an in vivo proof-of-concept study is needed. Electronic supplementary material The online version of this article (doi:10.1186/s12906-017-2055-y) contains supplementary material, which is available to authorized users.
Collapse
|
21
|
Simon L, Abdul Salam AA, Madan Kumar S, Shilpa T, Srinivasan KK, Byrappa K. Synthesis, anticancer, structural, and computational docking studies of 3-benzylchroman-4-one derivatives. Bioorg Med Chem Lett 2017; 27:5284-5290. [PMID: 29074256 DOI: 10.1016/j.bmcl.2017.10.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 10/12/2017] [Accepted: 10/13/2017] [Indexed: 12/28/2022]
Abstract
A series of 3-Benzylchroman-4-ones were synthesized and screened for anticancer activity by MTT assay. The compounds were evaluated against two cancerous cell lines BT549 (human breast carcinoma), HeLa (human cervical carcinoma), and one noncancerous cell line vero (normal kidney epithelial cells). 3b was found to be the most active molecule against BT549 cells (IC50 = 20.1 µM) and 3h against HeLa cells (IC50 = 20.45 µM). 3b also exhibited moderate activity against HeLa cells (IC50 = 42.8 µM). The molecular structures of 3h and 3i were solved by single crystal X-ray crystallographic technique. Additionally, the molecular docking studies between the tumour suppressor protein p53 with the lead compound 3h, which exhibited better anticancer activity against HeLa cells was examined.
Collapse
Affiliation(s)
- Lalitha Simon
- Department of Chemistry, Manipal Institute of Technology, Manipal University, Manipal 576 104, India
| | - Abdul Ajees Abdul Salam
- Department of Atomic and Molecular Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104, India.
| | - S Madan Kumar
- PURSE Lab, Mangalagangotri, Mangalore University, Mangalore 574 199, India
| | - T Shilpa
- Department of Atomic and Molecular Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104, India
| | - K K Srinivasan
- Department of Chemistry, Shri Madhwa Vadiraja Institute of Technology and Management, Vishwothama Nagar, Bantakal, Udupi 576 115, India
| | - K Byrappa
- Department of Material Science, Mangalagangotri, Mangalore University, Mangalore 574 199, India
| |
Collapse
|
22
|
Huang H, Shen Z, Geng Q, Wu Z, Shi P, Miao X. Protective effect of Schisandra chinensis bee pollen extract on liver and kidney injury induced by cisplatin in rats. Biomed Pharmacother 2017; 95:1765-1776. [PMID: 28962082 DOI: 10.1016/j.biopha.2017.09.083] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 09/14/2017] [Accepted: 09/18/2017] [Indexed: 01/11/2023] Open
Abstract
Cisplatin (CP) has been used to cure numerous forms of cancers effectively in clinics, however, it could induce some toxic effects. Bee pollen is a natural compound, produced by honey bees. It is obtained from collected flower pollen and nectar, mixed with bee saliva. Bee pollen produced from Schisandra chinensis plants is described to exert potent antioxidant effects and to be a free radical scavenger. The purpose of this study was to investigate the effects of therapeutic treatment with Schisandra chinensis bee pollen extract (SCBPE) on liver and kidney injury induced by CP. The rats were intragastrically administrated with different doses of SCBPE (400mg/kg/day, 800mg/kg/day, 1200mg/kg/day) and vitamin C (400mg/kg/day, positive control group) for 12days, and the liver and kidney injury models were established by single intraperitoneal injection of CP (8mg/kg) at seventh day. The effect of SCBPE on CP toxicity was evaluated by measuring markers of liver and kidney injury in serum, levels of lipid peroxidation and antioxidants in liver and kidney, observing pathological changes of tissue, and quantified expression of NFκB, IL-1β, IL-6, cytochrome C, caspase3, caspase9, p53 and Bax in liver and kidney. Compared with the model group, the activities of aspartate aminotransferase (AST), alanine aminotransferase (ALT) and the content of blood urea nitrogen (BUN), creatinine (Cr) in serum all decreased in SCBPE high dose group. Meanwhile, the activities of superoxide dismutase (SOD), catalase (CAT) and the content of reduced glutathione (GSH) in liver and kidney increased, and the content of malondialdehyde (MDA) and inducible nitric oxide synthase (iNOS) decreased. In addition, the histopathologic aspects showed that the pathological changes of liver and kidney were found in the model group, and SCBPE group reduced to varying degrees. Moreover, the expression of NFκB, IL-1β, IL-6, cytochrome C, caspase3, caspase9, p53 and Bax in liver and kidney decreased. Therefore, SCBPE could reduce the damage of liver and kidney caused by CP by reducing the level of oxidative stress, and improving the antioxidant, anti-inflammatory and anti-apoptotic capacity of the body.
Collapse
Affiliation(s)
- Haibo Huang
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhuang Shen
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qianqian Geng
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhenhong Wu
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peiying Shi
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xiaoqing Miao
- Apitherapy Institute, College of Bee Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State and Local Joint Engineering Laboratory of Natural Biotoxins, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
23
|
Chao CS, Tsai CS, Chang YP, Chen JM, Chin HK, Yang SC. Hyperin inhibits nuclear factor kappa B and activates nuclear factor E2-related factor-2 signaling pathways in cisplatin-induced acute kidney injury in mice. Int Immunopharmacol 2016; 40:517-523. [DOI: 10.1016/j.intimp.2016.09.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/19/2016] [Accepted: 09/22/2016] [Indexed: 10/20/2022]
|
24
|
Liu X, Yu D, Wang T. Sappanone A Attenuates Allergic Airway Inflammation in Ovalbumin-Induced Asthma. Int Arch Allergy Immunol 2016; 170:180-6. [PMID: 27576536 DOI: 10.1159/000448331] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/12/2016] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sappanone A (SA) is isolated from the heartwood of Caesalpinia sappan and exerts a wide range of pharmacological activities. In the present study, we investigated the protective effects of SA on allergic asthma in a murine model of ovalbumin (OVA)-induced asthma. METHODS BALB/c mice were sensitized and challenged. Then, the mice were intraperitoneally injected with SA (12.5, 25 and 50 mg/kg) 1 h before OVA challenge; 24 h after the last challenge, the mice were sacrificed, and data were collected by different experimental methods. RESULTS The results showed that SA dose-dependently reduced inflammatory cell counts, levels of cytokines IL-4, IL-5 and IL-13, and OVA-specific IgE in bronchoalveolar lavage fluid. The level of IFN-γ decreased by OVA was upregulated by the treatment with SA. Furthermore, SA was found to attenuate the airway inflammation and mucus hypersecretion induced by the OVA challenge. In addition, SA dose-dependently upregulated the expression of Nrf2 and HO-1. SA inhibited OVA-induced asthma by activating the Nrf2 signaling pathway. CONCLUSIONS These data suggest that SA may have a potential use as a therapeutic agent for asthma.
Collapse
Affiliation(s)
- Xueshibojie Liu
- Departments of Otolaryngology, Head and Neck Surgery, 2nd Hospital Affiliated to Jilin University, Changchun, China
| | | | | |
Collapse
|