1
|
Chen L, Zhang R, Xiao J, Liang Y, Lan Z, Fan Y, Yu X, Xia S, Yang H, Bao X, Meng H, Xu Y, Yu L, Zhu X. Neuroprotective Effects of Eugenol Acetate Against Ischemic Stroke. J Inflamm Res 2025; 18:133-146. [PMID: 39802508 PMCID: PMC11720997 DOI: 10.2147/jir.s487482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025] Open
Abstract
Objective To explore the neuroprotective effect of Eugenol Acetate (EA) on post-stroke neuroinflammation and investigate the underlying mechanisms. Methods For in vitro experiments, primary microglia were pre-incubated with EA for 2 hours, followed by lipopolysaccharide (LPS) stimulation for 24 hours or Oxygen-Glucose Deprivation (OGD) treatment for 4 hours. Real-time quantitative PCR, enzyme-linked immunosorbent assay (ELISA) and Western blot were performed to examine the expression levels of inflammatory cytokines in primary microglia. The activation of NF-κB signaling pathway was evaluated by immunofluorescence staining and Western blot. For in vivo experiments, middle cerebral artery occlusion (MCAO) was constructed to mimic ischemic brain injury on 8-week-old male C57BL/6J mice. The mice were continuously injected intraperitoneally with EA or vehicle after MCAO. Neurobehavioral tests and TTC staining were conducted to estimate the neurological deficits and infarct area. Moreover, the white matter integrity after MCAO was observed via immunofluorescence staining. Results EA significantly reduced the expression of pro-inflammatory cytokines in LPS or OGD treated primary microglia, and inhibited LPS-induced activation of the NF-κB signaling pathway. In addition, EA alleviated ischemic brain injury and improved neuromotor function of MCAO mice. Furthermore, long-term neurological deficits and white matter integrity were improved by EA treatment after MCAO. Conclusion EA alleviated ischemic injury and restored white matter integrity in MCAO mice, which might be associated with the inhibition of NF-κB signaling pathway in microglia. Therefore, EA might be a promising candidate for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Liqiu Chen
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Ran Zhang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Jing Xiao
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Ying Liang
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Zhen Lan
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, People’s Republic of China
| | - Yingao Fan
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Xi Yu
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
| | - Shengnan Xia
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, People’s Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, People’s Republic of China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, People’s Republic of China
| | - Haiyan Yang
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, People’s Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, People’s Republic of China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, People’s Republic of China
| | - Xinyu Bao
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, People’s Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, People’s Republic of China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, People’s Republic of China
| | - Hailan Meng
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, People’s Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, People’s Republic of China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, People’s Republic of China
- Nanjing Neurology Medical Center, Nanjing, 210008, People’s Republic of China
| | - Yun Xu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, People’s Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, People’s Republic of China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, People’s Republic of China
- Nanjing Neurology Medical Center, Nanjing, 210008, People’s Republic of China
| | - Linjie Yu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, People’s Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, People’s Republic of China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, People’s Republic of China
- Nanjing Neurology Medical Center, Nanjing, 210008, People’s Republic of China
| | - Xiaolei Zhu
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing University of Chinese Medicine, Nanjing, 210008, People’s Republic of China
- Department of Neurology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, People’s Republic of China
- Department of Neurology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, 210008, People’s Republic of China
- State Key Laboratory of Pharmaceutical Biotechnology and Institute of Translational Medicine for Brain Critical Diseases, Nanjing University, Nanjing, 210008, People’s Republic of China
- Jiangsu Provincial Key Discipline of Neurology, Nanjing, 210008, People’s Republic of China
- Nanjing Neurology Medical Center, Nanjing, 210008, People’s Republic of China
| |
Collapse
|
2
|
Kaya M, Ceylan D, Kacira T, Yener MT, Eman A, Cakiroglu H, Cokluk E, Cengiz N. Effect of Intrathecal Eugenol on Cerebral Vasospasm in an Experimental Subarachnoid Hemorrhage Model. World Neurosurg 2024; 187:e825-e831. [PMID: 38719078 DOI: 10.1016/j.wneu.2024.04.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/30/2024]
Abstract
BACKGROUND Eugenol has various curative properties. It affects the dilatation of cerebral arteries through voltage-dependent Ca2+ channel inhibition. This study is the first to explore the impact of eugenol on neuroprotection and vasospasm in an experimental subarachnoid hemorrhage (SAH) model. METHODS Twenty-four adult male Sprague-Dawley rats were indiscriminately separated into 3 groups: the control group (n = 8), the SAH group (n = 8), and the eugenol group (n = 8). A double-bleeding method was used. The eugenol group received intracisternal eugenol (Sigma-Aldrich, St. Louis, MO, USA) at 30 μg/20 μl after induction of SAH. On the day 7, all groups were euthanized. Measurements were taken for basilar artery wall thickness, lumen diameter, serum endothelin-1 (ET-1), and caspase-3 levels. RESULTS The eugenol group exhibited significantly lower wall thickness, ET-1, oxidative stress index, and caspase-3 levels compared to the SAH group. In comparison to the control group, the eugenol group showed a higher oxidative stress index along with higher ET-1 and caspase-3 levels, but these differences were not statistically significant. Wall thickness was significantly higher in the eugenol group than in the control group. CONCLUSIONS This study represents the first literature exploration of intrathecal eugenol's impact on vasospasm induced after experimental SAH. Administration of intrathecal eugenol demonstrates a positive effect on the treatment of experimental vasospasm as well as on the reduction of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Mustafa Kaya
- Department of Neurosurgery, Sakarya Universty Faculty of Medicine, Sakarya, Turkey.
| | - Davut Ceylan
- Department of Neurosurgery, Sakarya Universty Faculty of Medicine, Sakarya, Turkey
| | - Tibet Kacira
- Department of Neurosurgery, Sakarya Universty Faculty of Medicine, Sakarya, Turkey
| | | | - Ali Eman
- Sakarya University Training and Research Hospitaly Department of Anesthesia and Reanimation, Sakarya, Turkey
| | - Huseyin Cakiroglu
- Experimental Animal Unit, Sakarya Universty Faculty of Medicine, Sakarya, Turkey
| | - Erdem Cokluk
- Department of Biochemistry, Sakarya Universty Faculty of Medicine, Sakarya, Turkey
| | - Nureddin Cengiz
- Department of Histology, Bandırma Onyedi Eylül Universty Faculty of Medicine, Balıkesir, Turkey
| |
Collapse
|
3
|
Nagaraju PG, S A, Rao PJ, Priyadarshini P. Assessment of acute and subacute toxicity, pharmacokinetics, and biodistribution of eugenol nanoparticles after oral exposure in Wistar rats. Nanotoxicology 2024; 18:87-105. [PMID: 38349196 DOI: 10.1080/17435390.2024.2314483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/01/2024] [Indexed: 03/27/2024]
Abstract
The present study aimed to assess the safety, toxicity, biodistribution, and pharmacokinetics of eugenol nanoparticles (EONs) following oral administration in Wistar rat models. In the acute toxicity study, the rats were given a fixed dose of 50, 300, and 2000 mg/kg body weight per group orally and screened for 2 weeks after administration. In the subacute study, three different doses (500, 1000, and 2000 mg/kg BW) of EON were administered for 28 days. The results indicated no significant differences in food and water consumption, bodyweight change, hematological and biochemical parameters, relative organ weights, gross findings, or histopathology compared to the control. Additionally, no significant changes were observed in the expression profiles of inflammatory cytokines such as IL-1, IL-6, and TNFα in the plasma, confirming the absence of systemic inflammation. Biodistribution analysis revealed rapid absorption of eugenol and improved bioavailability due to gradual and sustained release, leading to a maximum eugenol concentration of 15.05 μg/mL (Cmax) at approximately 8 h (Tmax) in the blood plasma. Thus, the study provides valuable insights into the utilization of EON for enhancing the stability, solubility, and sustained release of eugenol and highlights its promising safety profile in vivo.
Collapse
Affiliation(s)
- Pramod G Nagaraju
- Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashwini S
- Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Pooja J Rao
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
- Plantation Products, Spices and Flavour Technology, CSIR Central Food Technological Research Institute, Mysuru, India
| | - Poornima Priyadarshini
- Department of Molecular Nutrition, CSIR - Central Food Technological Research Institute, Mysuru, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
da Silva PR, Nunes Pazos ND, de Andrade JC, de Sousa NF, Oliveira Pires HF, de Figueiredo Lima JL, Dias AL, da Silva Stiebbe Salvadori MG, de Oliveira Golzio AMF, de Castro RD, Scotti MT, Patil VM, Bezerra Felipe CF, de Almeida RN, Scotti L. An In Silico Approach to Exploring the Antinociceptive Biological Activities of Linalool and its Metabolites. Mini Rev Med Chem 2024; 24:1556-1574. [PMID: 38243945 DOI: 10.2174/0113895575261945231122062659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 01/22/2024]
Abstract
Pain is characterized by the unpleasant sensory and emotional sensation associated with actual or potential tissue damage, whereas nociception refers to the mechanism by which noxious stimuli are transmitted from the periphery to the CNS. The main drugs used to treat pain are nonsteroidal anti-inflammatory drugs (NSAIDs) and opioid analgesics, which have side effects that limit their use. Therefore, in the search for new drugs with potential antinociceptive effects, essential oils have been studied, whose constituents (monoterpenes) are emerging as a new therapeutic possibility. Among them, linalool and its metabolites stand out. The present study aims to investigate the antinociceptive potential of linalool and its metabolites through a screening using an in silico approach. Molecular docking was used to evaluate possible interactions with important targets involved in antinociceptive activity, such as α2-adrenergic, GABAergic, muscarinic, opioid, adenosinergic, transient potential, and glutamatergic receptors. The compounds in the investigated series obtained negative energies for all enzymes, representing satisfactory interactions with the targets and highlighting the multi-target potential of the L4 metabolite. Linalool and its metabolites have a high likelihood of modulatory activity against the targets involved in nociception and are potential candidates for future drugs.
Collapse
Affiliation(s)
- Pablo Rayff da Silva
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natalia Diniz Nunes Pazos
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Jéssica Cabral de Andrade
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Natália Ferreira de Sousa
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Hugo Fernandes Oliveira Pires
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Jaislânia Lucena de Figueiredo Lima
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Arthur Lins Dias
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | | | | | - Ricardo Dias de Castro
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Marcus T Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Vaishali M Patil
- KIET School of Pharmacy, KIET Group of Institutions, Ghaziabad 201206, Uttar Pradesh, India
| | - Cícero Francisco Bezerra Felipe
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Reinaldo Nóbrega de Almeida
- Psychopharmacology Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051- 085, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| | - Luciana Scotti
- Cheminformatics Laboratory, Institute of Drugs and Medicines Research, Federal University of Paraíba, 58051-900, Via Ipê Amarelo, S/N, João Pessoa, Paraíba, Brazil
| |
Collapse
|
5
|
Godoy R, Macedo AB, Gervazio KY, Ribeiro LR, Lima JLF, Salvadori MGSS. Effects of ortho-eugenol on anxiety, working memory and oxidative stress in mice. BRAZ J BIOL 2023; 83:e271785. [PMID: 37610945 DOI: 10.1590/1519-6984.271785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/21/2023] [Indexed: 08/25/2023] Open
Abstract
Ortho-eugenol is a synthetic derivative from eugenol, the major compound of clove essential oil, which has demonstrated antidepressant and antinociceptive effects in pioneering studies. Additionally, its effects appear to be dependent on the noradrenergic and dopaminergic systems. Depression and anxiety disorders are known to share a great overlap in their pathophysiology, and many drugs are effective in the treatment of both diseases. Furthermore, high levels of anxiety are related to working memory deficits and increased oxidative stress. Thus, in this study we investigated the effects of acute treatment of ortho-eugenol, at 50, 75 and 100 mg/kg, on anxiety, working memory and oxidative stress in male Swiss mice. Our results show that the 100 mg/kg dose increased the number of head-dips and reduced the latency in the hole-board test. The 50 mg/kg dose reduced malondialdehyde levels in the prefrontal cortex and the number of Y-maze entries compared to the MK-801-induced hyperlocomotion group. All doses reduced nitrite levels in the hippocampus. It was also possible to assess a statistical correlation between the reduction of oxidative stress and hyperlocomotion after the administration of ortho-eugenol. However, acute treatment was not able to prevent working memory deficits. Therefore, the present study shows that ortho-eugenol has an anxiolytic and antioxidant effect, and was able to prevent substance-induced hyperlocomotion. Our results contribute to the elucidation of the pharmacological profile of ortho-eugenol, as well as to direct further studies that seek to investigate its possible clinical applications.
Collapse
Affiliation(s)
- R Godoy
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
| | - A B Macedo
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
| | - K Y Gervazio
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Bioativos Naturais e Sintéticos - PgPNSB, João Pessoa, PB, Brasil
| | - L R Ribeiro
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
| | - J L F Lima
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Bioativos Naturais e Sintéticos - PgPNSB, João Pessoa, PB, Brasil
| | - M G S S Salvadori
- Universidade Federal da Paraíba, Instituto de Pesquisa em Fármacos e Medicamentos, Laboratório de Psicofarmacologia, João Pessoa, PB, Brasil
- Universidade Federal da Paraíba, Centro de Ciências da Saúde, Programa de Pós-graduação em Produtos Bioativos Naturais e Sintéticos - PgPNSB, João Pessoa, PB, Brasil
| |
Collapse
|
6
|
Alam MM. Synthesis and anticancer activity of novel Eugenol derivatives against breast cancer cells. Nat Prod Res 2022; 37:1632-1640. [PMID: 35872637 DOI: 10.1080/14786419.2022.2103809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Eugenol chemically known as 4-allyl-2-methoxyphenol is a major phenolic component of Syzigium aromaticum and associated with significant biological activities. In the present work, new eugenol 1,2,3-triazole derivatives have been synthesized, characterized using NMR, mass spectrometry, IR, and elemental analysis and screened for their anticancer activity against breast cancer cells. Compound 9, namely 3-(4-((4-allyl-2-methoxyphenoxy)methyl)-1H-1,2,3-triazol-1-yl)-N'-(4-methylbenzoyl) benzohydrazide was found to be the most potent candidate and better than eugenol in exhibiting cytotoxicity with IC50 6.91 and 3.15 μM, comparable to Doxorubicin with IC50 6.58 and 3.21 μM against MDA-MB-231 and MCF-7 cells, respectively. Furthermore, compound 9 treated MCF-7 cells as observed by propidium iodide staining significantly increased cell population of S phase and G2 phase to 43.64% and 35.19%, respectively therefore arresting cell cycle at G2 and S phase. These results indicate that eugenol linked 1,2,3-triazole ring could be used as anticancer leads for the treatment of this deadly diseases.
Collapse
Affiliation(s)
- Mohammad Mahboob Alam
- Department of Chemistry, Faculty of Science, Al Baha University, Al Baha, Kingdom of Saudi Arabia
| |
Collapse
|
7
|
Yu B, Li C, Gu L, Zhang L, Wang Q, Zhang Y, Lin J, Hu L, Jia Y, Yin M, Zhao G. Eugenol protects against Aspergillus fumigatus keratitis by inhibiting inflammatory response and reducing fungal load. Eur J Pharmacol 2022; 924:174955. [DOI: 10.1016/j.ejphar.2022.174955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/26/2022] [Accepted: 04/11/2022] [Indexed: 11/03/2022]
|
8
|
Oubella A, Taia A, Byadi S, Ait Lahcen M, Bimoussa A, Essaber M, Podlipnik C, Morjani H, Ait Itto MY, Aatif A. Chemical profiling, cytotoxic activities through apoptosis induction in human fibrosarcoma and carcinoma cells, and molecular docking of some 1,2,3-triazole-isoxazoline hybrids using the eugenol as a precursors. J Biomol Struct Dyn 2022; 41:2759-2771. [PMID: 35174765 DOI: 10.1080/07391102.2022.2037466] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this research paper, we report the cytotoxic and apoptotic effects of 1,2,3-triazole derivatives in a unique 7a-g or hybrid form with isoxazoline 8a-g using the eugenol as a precursor in HT-1080 fibrosarcoma, MCF-7, and MDA-MB-231 breast carcinoma, and A-549 lung carcinoma. Data obtained on the cytotoxic effects have shown that hybrid compounds 8a-e induced a significant anticancer activity and are more important than the ones of 1,2,3-triazole derivatives 7a-g with IC50 ranging from 18 to 43 μM for the hybrids 8a-e and from 15 to 29 μM for mono-adducts 7a-g in all cell lines. Concerning the apoptotic study, compounds 7b and 8a can induce apoptosis in HT-1080 and A-549 cells as revealed by Annexin-V labeling and caspase-3/7 activity, also, the apoptotic effect was accompanied by cell cycle arrest at G2/M phase in the case of compounds 7b and 8a. Both compounds were evaluated in-silico through molecular docking and molecular dynamics and compound 8a is very active against Bcl-2 protein triggering apoptosis phenomenon by intrinsic pathway, therefore compound 8a is a potential candidate to inhibit the anti-apoptotic protein (Bcl-2).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ali Oubella
- Department of Chemistry, Faculty of Sciences Semlalia, Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Marrakech, Morocco
| | - Abdelmaoujoud Taia
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, Marrakech, Morocco
| | - Said Byadi
- Equipe de spectroscopie d'extraction et de valorisation, Synthese organique, Laboratoire d'extraction et de valorisation, Faculté des sciences d'Ain Chock, Universite Hassan II, Casablanca, Morocco
| | - Marouane Ait Lahcen
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, Marrakech, Morocco
| | - Abdoullah Bimoussa
- Department of Chemistry, Faculty of Sciences Semlalia, Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Marrakech, Morocco
| | - Mohamed Essaber
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, Marrakech, Morocco
| | - Crtomir Podlipnik
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Hamid Morjani
- BioSpectroscopieTranslationnelle, BioSpecT-EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims Cedex, France
| | - My Youssef Ait Itto
- Department of Chemistry, Faculty of Sciences Semlalia, Laboratory of Organic Synthesis and Physico-Molecular Chemistry, Marrakech, Morocco
| | - Abdeljalil Aatif
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, Marrakech, Morocco
| |
Collapse
|
9
|
Sousa D, Braga R, Andrade H, Cruz R, Maia M, Lima C, Santos A, Miranda A, Duarte A, Scotti M, Almeida R. Analgesic-like activity of perillyl acetate: In vivo and in silico studies. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.340560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
10
|
Coelho CMM, Pereira R, Vieira TF, Teixeira CM, Fernandes MJG, Rodrigues ARO, Pereira DM, Sousa S, Gil Fortes A, Castanheira EMS, T Gonçalves MS. Synthesis, computational and nanoencapsulation studies on eugenol-derived insecticides. NEW J CHEM 2022. [DOI: 10.1039/d2nj01893d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new set of alkoxy alcohols were synthesised by reaction of eugenol oxirane with aliphatic and aromatic alcohols. These eugenol derivatives were evaluated against their effect upon the viability of...
Collapse
|
11
|
Pereira RB, Pinto NFS, Fernandes MJG, Vieira TF, Rodrigues ARO, Pereira DM, Sousa SF, Castanheira EMS, Fortes AG, Gonçalves MST. Amino Alcohols from Eugenol as Potential Semisynthetic Insecticides: Chemical, Biological, and Computational Insights. Molecules 2021; 26:molecules26216616. [PMID: 34771025 PMCID: PMC8587747 DOI: 10.3390/molecules26216616] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 02/07/2023] Open
Abstract
A series of β-amino alcohols were prepared by the reaction of eugenol epoxide with aliphatic and aromatic amine nucleophiles. The synthesized compounds were fully characterized and evaluated as potential insecticides through the assessment of their biological activity against Sf9 insect cells, compared with a commercial synthetic pesticide (chlorpyrifos, CHPY). Three derivatives bearing a terminal benzene ring, either substituted or unsubstituted, were identified as the most potent molecules, two of them displaying higher toxicity to insect cells than CHPY. In addition, the most promising molecules were able to increase the activity of serine proteases (caspases) pivotal to apoptosis and were more toxic to insect cells than human cells. Structure-based inverted virtual screening and molecular dynamics simulations demonstrate that these molecules likely target acetylcholinesterase and/or the insect odorant-binding proteins and are able to form stable complexes with these proteins. Encapsulation assays in liposomes of DMPG and DPPC/DMPG (1:1) were performed for the most active compound, and high encapsulation efficiencies were obtained. A thermosensitive formulation was achieved with the compound release being more efficient at higher temperatures.
Collapse
Affiliation(s)
- Renato B. Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.B.P.); (D.M.P.)
| | - Nuno F. S. Pinto
- Centre of Chemistry, Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (N.F.S.P.); (M.J.G.F.); (A.G.F.)
| | - Maria José G. Fernandes
- Centre of Chemistry, Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (N.F.S.P.); (M.J.G.F.); (A.G.F.)
| | - Tatiana F. Vieira
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (T.F.V.); (S.F.S.)
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Ana Rita O. Rodrigues
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.R.O.R.); (E.M.S.C.)
| | - David M. Pereira
- REQUIMTE/LAQV, Laboratory of Pharmacognosy, Department of Chemistry, Faculty of Pharmacy, University of Porto, R. Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (R.B.P.); (D.M.P.)
| | - Sérgio F. Sousa
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal; (T.F.V.); (S.F.S.)
- UCIBIO—Applied Molecular Biosciences Unit, BioSIM—Department of Biomedicine, Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal
| | - Elisabete M. S. Castanheira
- Centre of Physics of Minho and Porto Universities (CF-UM-UP), University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (A.R.O.R.); (E.M.S.C.)
| | - A. Gil Fortes
- Centre of Chemistry, Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (N.F.S.P.); (M.J.G.F.); (A.G.F.)
| | - M. Sameiro T. Gonçalves
- Centre of Chemistry, Department of Chemistry, University of Minho, Campus of Gualtar, 4710-057 Braga, Portugal; (N.F.S.P.); (M.J.G.F.); (A.G.F.)
- Correspondence: ; Tel.: +351-253-604-372
| |
Collapse
|
12
|
Anand T, Anbukkarasi M, Thomas PA, Geraldine P. A comparison between plain eugenol and eugenol-loaded chitosan nanoparticles for prevention of in vitro selenite-induced cataractogenesis. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Orumwensodia KO, Uadia PO, Choudhary MI. Phytotoxicity, cytotoxicity and chemical composition of Spondias mombin Linn. Stem bark. CLINICAL PHYTOSCIENCE 2021. [DOI: 10.1186/s40816-021-00297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2025] Open
Abstract
Abstract
Background
Spondias mombin Linn. is a tropical climate plant with wide applications in ethnomedicinal practice. This study evaluates the phytotoxicity, cytotoxicity and chemical composition of the plant’s stem bark.
Methods
Dried stem bark sample of Spondias mombin Linn. was subjected to exhaustive extraction and partitioned into sub-fractions (hexane-ethylacetate, ethylacetate, ethylacetate-methanol and methanol) by graded polarity technique. The phytotoxicity and cytotoxicity indices of the crude hydro-ethanol extract and fractions were evaluated using Lemna minor and brine shrimp lethality assays, respectively, while chemical composition of the oily hexane:ethylacetate fraction was determined by gas chromatography-mass spectroscopy (GC-MS) technique.
Results
Phytotoxicity was dose-dependent which ranged from low (crude plant extract), moderate (hexane-ethylacetate and methanol fractions), high (ethylaacetate-methanol fraction) to significant toxicity (ethylacetate fraction) at the highest dose. However, for brine shrimp lethality assay only hexane-ethylacetate (LD50: 284.02 μg/mL) and ethylacetate (LD50: 210.24 μg/mL) fractions were cytotoxic at the highest dose. The GC-MS profile of the oily hexane:ethylacetate fraction identified sixty-eight compounds comprising hydrocarbons, fatty acids, alcohols, steroids, nitrogen and fluoride-containing compounds, terpenes and esters.
Conclusion
This study concludes that fractions of Spondias mombin Lin. could be potentially toxic. While its phytotoxic potential can be useful in the agrochemical industry for the production of natural herbicides, its cytotoxic property can be cautiously harnessed for ethnomedicinal purposes.
Collapse
|
14
|
Taia A, Ibrahimi BE, Benhiba F, Ashfaq M, Tahir MN, Essaber M, Aatif A, Hökelek T, Mague JT, Sebbar NK, Essassi EM. Syntheses, single crystal X-ray structure, Hirshfeld surface analyses, DFT computations and Monte Carlo simulations of New Eugenol derivatives bearing 1,2,3-triazole moiety. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130189] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
15
|
AlAli M, Alqubaisy M, Aljaafari MN, AlAli AO, Baqais L, Molouki A, Abushelaibi A, Lai KS, Lim SHE. Nutraceuticals: Transformation of Conventional Foods into Health Promoters/Disease Preventers and Safety Considerations. Molecules 2021; 26:molecules26092540. [PMID: 33925346 PMCID: PMC8123587 DOI: 10.3390/molecules26092540] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/27/2022] Open
Abstract
Nutraceuticals are essential food constituents that provide nutritional benefits as well as medicinal effects. The benefits of these foods are due to the presence of active compounds such as carotenoids, collagen hydrolysate, and dietary fibers. Nutraceuticals have been found to positively affect cardiovascular and immune system health and have a role in infection and cancer prevention. Nutraceuticals can be categorized into different classes based on their nature and mode of action. In this review, different classifications of nutraceuticals and their potential therapeutic activity, such as anti-cancer, antioxidant, anti-inflammatory and anti-lipid activity in disease will be reviewed. Moreover, the different mechanisms of action of these products, applications, and safety upon consumers including current trends and future prospect of nutraceuticals will be included.
Collapse
Affiliation(s)
- Mudhi AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Maream Alqubaisy
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Mariam Nasser Aljaafari
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Asma Obaid AlAli
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Laila Baqais
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Aidin Molouki
- Department of Avian Disease Research and Diagnostic, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO), Karaj 31585-854, Iran;
| | - Aisha Abushelaibi
- Dubai Colleges, Higher Colleges of Technology, Dubai 16062, United Arab Emirates;
| | - Kok-Song Lai
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
| | - Swee-Hua Erin Lim
- Health Sciences Division, Abu Dhabi Women’s College, Higher Colleges of Technology, Abu Dhabi 41012, United Arab Emirates; (M.A.); (M.A.); (M.N.A.); (A.O.A.); (L.B.); (K.-S.L.)
- Correspondence: or ; Tel.: +971-56-389-3757
| |
Collapse
|
16
|
da Silva Calixto P, de Almeida RN, Stiebbe Salvadori MGS, Dos Santos Maia M, Filho JMB, Scotti MT, Scotti L. In Silico Study Examining New Phenylpropanoids Targets with Antidepressant Activity. Curr Drug Targets 2021; 22:539-554. [PMID: 32881667 DOI: 10.2174/1389450121666200902171838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 05/09/2020] [Accepted: 05/18/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Natural products, such as phenylpropanoids, which are found in essential oils derived from aromatic plants, have been explored during non-clinical psychopharmacology studies, to discover new molecules with relevant pharmacological activities in the central nervous system, especially antidepressant and anxiolytic activities. Major depressive disorder is a highly debilitating psychiatric disorder and is considered to be a disabling public health problem, worldwide, as a primary factor associated with suicide. Current clinically administered antidepressants have late-onset therapeutic actions, are associated with several side effects, and clinical studies have reported that some patients do not respond well to treatment or reach complete remission. OBJECTIVE To review important new targets for antidepressant activity and to select phenylpropanoids with antidepressant activity, using Molegro Virtual Docker and Ossis Data Warris, and to verify substances with more promising antidepressant activity. RESULTS AND CONCLUSION An in silico molecular modeling study, based on homology, was conducted to determine the three-dimensional structure of the 5-hydroxytryptamine 2A receptor (5- HT2AR), then molecular docking studies were performed and the predisposition for cytotoxicity risk among identified molecules was examined. A model for 5-HT2AR homology, with satisfactory results, was obtained indicating the good stereochemical quality of the model. The phenylpropanoid 4-allyl-2,6-dimethoxyphenol showed the lowest binding energy for 5-HT2AR, with results relevant to the L-arginine/nitric oxide (NO)/cGMP pathway, and showed no toxicity within the parameters of mutagenicity, carcinogenicity, reproductive system toxicity, and skin-tissue irritability, when evaluated in silico; therefore, this molecule can be considered promising for the investigation of antidepressant activity.
Collapse
Affiliation(s)
| | - Reinaldo Nóbrega de Almeida
- Department of Physiology and Pathology, Laboratory of Psychopharmacology, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | | | - José Maria Barbosa Filho
- Department of Pharmaceutical Sciences, Pharmaceutical Technology Laboratory, Federal University of Paraiba, Joao Pessoa, Brazil
| | | | - Luciana Scotti
- Laboratory of Chemoinformatics, Federal University of Paraiba, Joao Pessoa, Brazil
| |
Collapse
|
17
|
Avoseh ON, Mtunzi FM, Ogunwande IA, Ascrizzi R, Guido F. Albizia lebbeck and Albizia zygia volatile oils exhibit anti-nociceptive and anti-inflammatory properties in pain models. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113676. [PMID: 33301915 DOI: 10.1016/j.jep.2020.113676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 11/28/2020] [Accepted: 12/04/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Albizia lebbeck and Albizia zygia are used in Nigeria, South Africa and other countries for the treatment of flu, fever, pain, epilepsy, and inflammation. AIM OF THE STUDY Application of plant essence for treating ailments is common among local communities. This research was designed to characterize the volatile compounds and evaluate the toxicity, anti-inflammatory and anti-nociceptive properties of this plant species. MATERIALS AND METHODS The volatile oils were analysed comprehensively utilizing gas chromatography-flame ionization detector (GC-FID) and gas chromatography coupled with mass spectrometry (GC/MS) using the HP-5 column. The toxicity was evaluated using the toxicity assay. The anti-nociceptive and anti-inflammatory assays were analysed by a hot plate, Formalin, and carrageenan-induced edema assays, respectively. RESULTS The essential oils were obtained in a yield of 0.1% (v/w) calculated on a dry weight basis for both oils. The main compounds of A. lebbeck were 2-pentylfuran (16.4%), (E)-geranyl acetone (15.46%), (E)-α-ionone (15.45%) and 3-Octanone (11.61%), while the oil of A. zygia is mainly hexahydrofarnesyl acetone (33.14%), (E)-methyl isoeugenol (11.7%) and 2-methyl tetradecane (6.64%). The volatile oils are non-toxic to about 5000 mg/kg dose. Albizia zygia significantly (P < 0.001) suppressed the nociceptive afferent fibres in a non-dose dependent manner in comparison to A. lebbeck in the hot plate model. Both oils inhibited nociceptive mediators at both phases of the formalin-induced assay, with a maximum inhibition (100%) at the inflammatory stage. The volatile oils inhibited the Carrageenan-induced inflammation at all phases ranging from P < 0.05 to P < 0.001. The probable pro-inflammatory inhibitory mechanism might be the suppression of some pain biomarkers such as histamine, serotonin, bradykinin, and the Interleukins (ILs) induced by the edema. Volatile constituents such as ionones, eugenol derivatives and other compounds cause the anti-nociceptive and anti-inflammatory activities reported. CONCLUSION This is the first report of the volatile oils and bioassays of Albizia zygia, while the study also confirms previous studies of A. lebbeck. Generally, the findings further prove the use of the plants as pain ameliorating agents.
Collapse
Affiliation(s)
- Opeyemi N Avoseh
- Institute of Chemical and Biotechnology (ICBT), Sebokeng Campus, Vaal University of Technology, Vanderbijlpark, South Africa; Department of Chemistry, Faculty of Science, Lagos State University, Badagry Expressway, Ojo, PMB 0001, LASU. Post Office, Ojo, Lagos, Nigeria.
| | - Fanyana M Mtunzi
- Institute of Chemical and Biotechnology (ICBT), Sebokeng Campus, Vaal University of Technology, Vanderbijlpark, South Africa.
| | | | - Roberta Ascrizzi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy.
| | - Flamini Guido
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 33, 56126, Pisa, Italy.
| |
Collapse
|
18
|
Triaux Z, Petitjean H, Marchioni E, Steyer D, Marcic C. Comparison of Headspace, Hydrodistillation and Pressurized Liquid Extraction of Terpenes and Terpenoids from Food Matrices—Qualitative and Quantitative Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2021. [DOI: 10.1134/s1061934821030151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Synthesis and First-Time Assessment of o-Eugenol Derivatives against Mycobacterium tuberculosis. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
20
|
Taia A, Essaber M, Oubella A, Aatif A, Bodiguel J, Jamart-Grégoire B, Ait Itto MY, Morjani H. Synthesis, characterization, and biological evaluation of new heterocyclic systems 1, 2, 3-triazole-isoxazoline from eugenol by the mixed condensation reactions. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1762224] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Abdelmaoujoud Taia
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, Marrakech, Morocco
| | - Mohamed Essaber
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, Marrakech, Morocco
| | - Ali Oubella
- Département de Chimie, Faculté des Sciences, Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Marrakech, Morocco
| | - Abdeljalil Aatif
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, Marrakech, Morocco
| | - Jacques Bodiguel
- Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-Université de Lorraine 7375, Nancy Cedex, France
| | - Brigitte Jamart-Grégoire
- Laboratoire de Chimie Physique Macromoléculaire, UMR CNRS-Université de Lorraine 7375, Nancy Cedex, France
| | - My Youssef Ait Itto
- Département de Chimie, Faculté des Sciences, Laboratoire de Synthèse Organique et Physico-Chimie Moléculaire, Marrakech, Morocco
| | - Hamid Morjani
- BioSpectroscopie Translationnelle, BioSpecT - EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, Reims Cedex, France
| |
Collapse
|
21
|
Taia A, Essaber M, Hökelek T, Aatif A, Mague JT, Alsalme A, Al-Zaqri N. Crystal structure, Hirshfeld surface analysis and DFT studies of 1,3-bis-[2-meth-oxy-4-(prop-2-en-1-yl)phen-oxy]propane. Acta Crystallogr E Crystallogr Commun 2020; 76:344-348. [PMID: 32148873 PMCID: PMC7057369 DOI: 10.1107/s2056989020001681] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/05/2020] [Indexed: 11/10/2022]
Abstract
The asymmetric unit of the title compound, C23H28O4, comprises two half-mol-ecules, with the other half of each mol-ecule being completed by the application of twofold rotation symmetry. The two completed mol-ecules both have a V-shaped appearance but differ in their conformations. In the crystal, each independent mol-ecule forms chains extending parallel to the b axis with its symmetry-related counterparts through C-H⋯π(ring) inter-actions. Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (65.4%), H⋯C/C⋯H (21.8%) and H⋯O/O⋯H (12.3%) inter-actions. Optimized structures using density functional theory (DFT) at the B3LYP/6-311 G(d,p) level are compared with the experimentally determined mol-ecular structures in the solid state. The HOMO-LUMO behaviour was elucidated to determine the energy gap.
Collapse
Affiliation(s)
- Abdelmaoujoud Taia
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, PB. 2390, 40001 Marrakech, Morocco
| | - Mohamed Essaber
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, PB. 2390, 40001 Marrakech, Morocco
| | - Tuncer Hökelek
- Department of Physics, Hacettepe University, 06800 Beytepe, Ankara, Turkey
| | - Abdeljalil Aatif
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, PB. 2390, 40001 Marrakech, Morocco
| | - Joel T. Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA
| | - Ali Alsalme
- Department of Chemistry, College of Science, King Saud University, P.O.Box 2455, Riyadh 11451, Saudi Arabia
| | - Nabil Al-Zaqri
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
22
|
Triaux Z, Petitjean H, Marchioni E, Boltoeva M, Marcic C. Deep eutectic solvent–based headspace single-drop microextraction for the quantification of terpenes in spices. Anal Bioanal Chem 2020; 412:933-948. [DOI: 10.1007/s00216-019-02317-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/19/2019] [Accepted: 12/03/2019] [Indexed: 01/22/2023]
|
23
|
Saldanha AA, Vieira L, de Oliveira FM, Lopes DDO, Ribeiro RIMDA, Thomé RG, Dos Santos HB, Silva DB, Carollo CA, de Siqueira JM, Soares AC. Anti-inflammatory and central and peripheral anti-nociceptive activities of α-asarone through the inhibition of TNF-α production, leukocyte recruitment and iNOS expression, and participation of the adenosinergic and opioidergic systems. Inflammopharmacology 2019; 28:1039-1052. [PMID: 31865494 DOI: 10.1007/s10787-019-00679-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 12/11/2019] [Indexed: 12/18/2022]
Abstract
Alpha-asarone has been found to possess many pharmacological activities, which can improve cognitive function and exert anti-oxidant, anxiolytic, anti-epileptic and protective effects against endothelial cell injury. The anti-inflammatory activity of α-asarone was evaluated using lipopolysaccharide (LPS)-induced paw oedema. Moreover, leukocyte migration, inducible nitric oxide synthase (iNOS) expression and tumour necrosis factor-alpha (TNF-α) levels were quantified in footpads. Formalin and LPS-induced thermal hyperalgesia models were generated using adenosinergic, opioidergic, serotonergic and muscarinic receptor antagonists. The effects on motor coordination were evaluated by means of the rota-rod test. Oral treatment (p.o.) with α-asarone (3 mg/kg) significantly inhibited paw oedema by 62.12 and 72.22%, 2 and 4 h post LPS injection, respectively. Alpha-asarone (3 mg/kg, p.o.) attenuated the inflammatory infiltrate 1, 3 and 6 h after LPS injection. Furthermore, α-asarone (3 mg/kg, p.o.) suppressed iNOS expression and TNF-α production, 6 and 1 h after inflammatory stimulus, respectively. Alpha-asarone (3, 10 and 30 mg/kg, p.o.) inhibited both phases of formalin-induced licking. In the hot-plate test, α-asarone (10 and 30 mg/kg, p.o.) increased the latency to response 3 and 5 h post LPS stimulus. Caffeine and naloxone abolished the central anti-nociceptive effect of α-asarone (neurogenic phase of formalin and hot plate tests), suggesting the participation of the adenosinergic and opioidergic systems. Furthermore, naloxone reversed the peripheral activity of α-asarone (inflammatory phase of formalin test), indicating the possible involvement of the opioidergic pathway. In the rota-rod test, α-asarone did not change motor coordination. These findings suggest that α-asarone has anti-inflammatory, peripheral and central anti-nociceptive effects and could represent a promising agent for future research.
Collapse
Affiliation(s)
- Aline Aparecida Saldanha
- Laboratório de Farmacologia da Dor e Inflamação, Universidade Federal de São João del-Rei, Divinópolis, 35501-296, Brazil.,Laboratório de Farmacognosia/Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Letícia Vieira
- Laboratório de Farmacologia da Dor e Inflamação, Universidade Federal de São João del-Rei, Divinópolis, 35501-296, Brazil
| | | | - Débora de Oliveira Lopes
- Laboratório de Biologia Molecular, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | | | - Ralph Gruppi Thomé
- Laboratório de Processamento de Tecidos (LAPROTEC), Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Hélio Batista Dos Santos
- Laboratório de Processamento de Tecidos (LAPROTEC), Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Denise Brentan Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LAPNEM), Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | - Carlos Alexandre Carollo
- Laboratório de Produtos Naturais e Espectrometria de Massas (LAPNEM), Universidade Federal do Mato Grosso do Sul, Campo Grande, Brazil
| | - João Máximo de Siqueira
- Laboratório de Farmacognosia/Química de Produtos Naturais, Universidade Federal de São João del-Rei, Divinópolis, Brazil
| | - Adriana Cristina Soares
- Laboratório de Farmacologia da Dor e Inflamação, Universidade Federal de São João del-Rei, Divinópolis, 35501-296, Brazil.
| |
Collapse
|
24
|
Optimization by experimental design of headspace sorptive extraction and solid-phase microextraction for the determination of terpenes in spices. FOOD ANAL METHOD 2019. [DOI: 10.1007/s12161-019-01622-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
25
|
2-Allylphenol Reduces IL-1 β and TNF- α, Promoting Antinociception through Adenosinergic, Anti-Inflammatory, and Antioxidant Mechanisms. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1346878. [PMID: 31049124 PMCID: PMC6462329 DOI: 10.1155/2019/1346878] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/06/2018] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
2-Allylphenol (2-AP) is a synthetic phenylpropanoid, structurally related to cardanol, thymol, and ortho-eugenol. Phenylpropanoids are described in the literature as being capable of promoting biological activity. Due to the similarity between 2-AP and other bioactive phenylpropanoids, the present research aims at evaluating the antioxidant, antinociceptive, and anti-inflammatory potential of 2-AP in silico, in vitro, and in vivo. At 30 min prior to the start of in vivo pharmacological testing, administration of 2-AP (25, 50, 75, and 100 mg/kg i.p.), morphine (6 mg/kg i.p.), dexamethasone (2 mg/kg s.c.), or vehicle alone was performed. In the acetic acid-induced abdominal writhing tests, pretreatment with 2-AP significantly reduced the number of abdominal writhes, as well as decreased licking times in the glutamate and formalin tests. Investigation of the mechanism of action using the formalin model led to the conclusion that the opioid system does not participate in its activity. However, the adenosinergic system is involved. In the peritonitis tests, 2-AP inhibited leukocyte migration and reduced releases of proinflammatory mediators TNF-α and IL-1β. In vitro antioxidant assays demonstrated that 2-AP presents significant ability to sequester superoxide radicals. In silico docking studies confirmed interaction between 2-AP and the adenosine A2a receptor through hydrogen bonds with the critical asparagine 253 residues present in the active site. Investigation of 2-AP demonstrated its nociception inhibition and ability to reduce reactive oxygen species. Its interaction with A2a receptors may well be related to proinflammatory cytokines TNF-α and IL-1β reduction activity, corroborating its antinociceptive effect.
Collapse
|
26
|
Maurya AK, Agarwal K, Gupta AC, Saxena A, Nooreen Z, Tandon S, Ahmad A, Bawankule DU. Synthesis of eugenol derivatives and its anti-inflammatory activity against skin inflammation. Nat Prod Res 2018; 34:251-260. [PMID: 30580605 DOI: 10.1080/14786419.2018.1528585] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Eugenol is a phytochemical present in aromatic plants has generated considerable interest in the pharmaceutical industries mainly in cosmetics. A series of eugenol esters (ST1-ST7) and chloro eugenol (ST8) have been synthesized. The structures of newly synthesized compounds were confirmed by 1H and 13C NMR and mass spectrometry. In an effort to evaluate the pharmacological activity of eugenol derivatives, we explored its anti-inflammatory potential against skin inflammation using in-vitro and in-vivo bioassay. Synthesized derivatives significantly inhibited the production of pro-inflammatory cytokines against LPS-induced inflammation in macrophages. Among all derivatives, ST8 [Chloroeugenol (6-chloro, 2-methoxy-4-(prop-2-en-1-yl)-phenol)] exhibited most potent anti-inflammatory activity without any cytotoxic effect. We have further evaluated the efficacy and safety in in-vivo condition. ST8 exhibited significant anti-inflammatory activity against TPA-induced skin inflammation without any skin irritation effect on experimental animals. These findings suggested that ST8 may be a useful therapeutic candidate for the treatment of skin inflammation.
Collapse
Affiliation(s)
- Anil Kumar Maurya
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Sai Nath University, Ranchi, India
| | - Karishma Agarwal
- Process Chemistry and Technology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Amit Chand Gupta
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Archana Saxena
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Zulfa Nooreen
- Process Chemistry and Technology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India
| | - Sudeep Tandon
- Process Chemistry and Technology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Ateeque Ahmad
- Process Chemistry and Technology, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi 110025, India
| | - Dnyaneshwar Umrao Bawankule
- Molecular Bioprospection Department, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow, India.,Academy of Scientific and Innovative Research, New Delhi 110025, India
| |
Collapse
|
27
|
da Silva FFM, Monte FJQ, de Lemos TLG, do Nascimento PGG, de Medeiros Costa AK, de Paiva LMM. Eugenol derivatives: synthesis, characterization, and evaluation of antibacterial and antioxidant activities. Chem Cent J 2018; 12:34. [PMID: 29611004 PMCID: PMC5880794 DOI: 10.1186/s13065-018-0407-4] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/27/2018] [Indexed: 01/06/2023] Open
Abstract
Eugenol is the major component of clove essential oil and has demonstrated relevant biological potential with well-known antimicrobial and antioxidant action. Therefore, this work carried out the synthesis, purification, characterization, and evaluation of the antioxidant and antibacterial potential of 19 eugenol derivatives. The derivatives were produced by esterification reactions in the hydroxyl group (−OH) of eugenol with different carboxylic acids and also by addition reactions in the double bond of the allyl group. The derivatives had a promising antibacterial potential, including a lower minimum inhibitory concentration of 500 μg/mL than eugenol (1000 μg/mL). In addition, the derivatives were active against bacterial strains (Escherichia coli, Staphylococcus aureus) that eugenol itself showed no activity, thus increasing the spectrum of antibacterial action. As for the antioxidant activity, it was observed that the derivatives that involved esterification reactions in the hydroxyl group (−OH) of the eugenol molecule’s phenol resulted in a significant reduction of the antioxidant action (IC50 > 100 μg/mL) when compared with the eugenol precursor molecule (IC50 = 4.38 μg/mL). On the other hand, the structural changes located in the double bond affected much more smoothly the capacity of capturing radicals than the starting molecule, also being obtained derivatives with proximal antioxidant capacity (IC50 = 19.30 μg/mL) to commercial standards such as Trolox (IC50 = 16.00 μg/mL).
Collapse
Affiliation(s)
- Francisco Felipe Maia da Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), RN 233, Km 02 N°999, Chapada do Apodi, Apodi, RN, 59700-000, Brazil. .,Programa de Pós-Graduação em Química da Universidade Federal do Ceará (UFC), Avenida Humberto Monte, S/N, Campus do pici, Fortaleza, CE, 60455-900, Brazil.
| | - Francisco José Queiroz Monte
- Programa de Pós-Graduação em Química da Universidade Federal do Ceará (UFC), Avenida Humberto Monte, S/N, Campus do pici, Fortaleza, CE, 60455-900, Brazil
| | - Telma Leda Gomes de Lemos
- Programa de Pós-Graduação em Química da Universidade Federal do Ceará (UFC), Avenida Humberto Monte, S/N, Campus do pici, Fortaleza, CE, 60455-900, Brazil
| | - Patrícia Georgina Garcia do Nascimento
- Programa de Pós-Graduação em Química da Universidade Federal do Ceará (UFC), Avenida Humberto Monte, S/N, Campus do pici, Fortaleza, CE, 60455-900, Brazil
| | - Alana Kelly de Medeiros Costa
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), RN 233, Km 02 N°999, Chapada do Apodi, Apodi, RN, 59700-000, Brazil
| | - Luanda Misley Mota de Paiva
- Instituto Federal de Educação, Ciência e Tecnologia do Rio Grande do Norte (IFRN), RN 233, Km 02 N°999, Chapada do Apodi, Apodi, RN, 59700-000, Brazil
| |
Collapse
|
28
|
Ma L, Mu Y, Zhang Z, Sun Q. Eugenol promotes functional recovery and alleviates inflammation, oxidative stress, and neural apoptosis in a rat model of spinal cord injury. Restor Neurol Neurosci 2018; 36:659-668. [PMID: 30040768 DOI: 10.3233/rnn-180826] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Eugenol, a natural phenolic compound found in essential oils, shows a variety of remedial properties, while its effect on spinal cord injury (SCI) is still unknown. OBJECTIVE To study the effects of Eugenol on SCI-related impairments in rats. METHODS Rats received SCI or sham surgery were administered by oral gavage with Eugenol or physiological saline 6 hours following SCI and once a day for seven consecutive weeks. Basso, Beattie, Bresnahan (BBB) score and inclined plane test were used to assess locomotion function, while mechanical allodynia and thermal hyperalgesia were used to evaluate the withdrawal response to painful stimuli. Spinal cord water content was counted and permeability of the blood-spinal cord barrier was assessed by Evans blue extravasation. Serum tumor necrosis factor (TNF)-α, interleukin (IL)-1β, interleukin (IL)-6, nuclear factor (NF)-κB p65, superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA), and glutathione peroxidase (GSH-Px) were determined by ELISA (enzyme-linked immunosorbent assay), while NF-κB p65, p38 mitogen-activated protein kinase (MAPK), inducible nitric oxide synthase (iNOS), and Caspase-3 in the spinal cord were detected by Western blot. RESULTS Eugenol markedly improved locomotor function and alleviated neuropathic pain, accompanied by decreased inflammation, oxidative stress, and neural apoptosis-associated molecules in the serum and injured spinal cord. Downregulated pathway molecules NF-κB and p38 MAPK were also found in the spinal cord. CONCLUSIONS These findings suggest that down-regulating NF-κB and MAPK signaling pathway may support the neuroprotective effect of Eugenol against traumatic SCI.
Collapse
Affiliation(s)
- Lili Ma
- Department of Physical Medicine and Rehabilitation, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong, PR China
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Zibo, Shandong, PR China
| | - Ying Mu
- Department of Intensive Care Medicine, Zhangdian People's Hospital, Zibo, Shandong, PR China
| | - Zhaobo Zhang
- Department of Physical Medicine and Rehabilitation, Zibo Central Hospital, Zibo, Shandong, PR China
| | - Qiansan Sun
- Department of Physical Medicine and Rehabilitation, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong, PR China
| |
Collapse
|
29
|
Abuohashish HM, Khairy DA, Abdelsalam MM, Alsayyah A, Ahmed MM, Al-Rejaie SS. In-vivo assessment of the osteo-protective effects of eugenol in alveolar bone tissues. Biomed Pharmacother 2017; 97:1303-1310. [PMID: 29156519 DOI: 10.1016/j.biopha.2017.11.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/05/2017] [Accepted: 11/10/2017] [Indexed: 10/18/2022] Open
Abstract
Estrogen deficiency following menopausal provokes alveolar bone loss, remodeling and inflammation. Eugenol is a phenolic compound with wide dental applications and anti-inflammatory properties. In the present study, the potential protective role of eugenol against alveolar bone deformities was investigated in an ovariectomized (OVX) rodent model. Two doses of eugenol (2.5 and 5 mg/kg/d) were administered to OVX animals for 12 weeks. In Serum, markers of bone metabolism and pro-inflammatory cytokines were estimated using ELISA. Alveolar bone morphometry was analyzed using high-resolution micro-computed tomography (CT). Bone histological analysis (H&E stain) was also performed. Alveolar bone expression of osteoclastogenesis modulating factors, such as osteoprotegerin (OPG), receptor activator of nuclear factor kappa-b ligand (RANKL) and inflammatory mediators, were measured using immunohistochemistry. Eugenol failed to correct elevated body weights and uterine atrophy in OVX rats. The significant elevation of bone metabolic markers and inflammatory cytokines in OVX animals were markedly improved by eugenol treatment, particularly the higher dose. Eugenol treatment considerably attenuated morphometric trabecular alterations of the alveolar bone and improved alveolar resorption and gingival infiltration. Alveolar bone of OVX animals showed augmented expression of RANKL, OPG and inflammatory cytokines, which were corrected by eugenol treatment. Alveolar bone loss and remodeling associated with estrogen insufficiency was ameliorated by eugenol owing to its anti-inflammatory properties, suggesting an extra dental impact for eugenol.
Collapse
Affiliation(s)
- Hatem M Abuohashish
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia.
| | - Dina A Khairy
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Maha M Abdelsalam
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Ahmed Alsayyah
- Department of Laboratory Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, 31441, Saudi Arabia
| | - Mohammed M Ahmed
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Salim S Al-Rejaie
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
30
|
Analgesic-Like Activity of Essential Oil Constituents: An Update. Int J Mol Sci 2017; 18:ijms18122392. [PMID: 29232831 PMCID: PMC5751100 DOI: 10.3390/ijms18122392] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 12/18/2022] Open
Abstract
The constituents of essential oils are widely found in foods and aromatic plants giving characteristic odor and flavor. However, pharmacological studies evidence its therapeutic potential for the treatment of several diseases and promising use as compounds with analgesic-like action. Considering that pain affects a significant part of the world population and the need for the development of new analgesics, this review reports on the current studies of essential oils’ chemical constituents with analgesic-like activity, including a description of their mechanisms of action and chemical aspects.
Collapse
|
31
|
Zhang LL, Zhang LF, Xu JG, Hu QP. Comparison study on antioxidant, DNA damage protective and antibacterial activities of eugenol and isoeugenol against several foodborne pathogens. Food Nutr Res 2017; 61:1353356. [PMID: 28804441 PMCID: PMC5533134 DOI: 10.1080/16546628.2017.1353356] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/04/2017] [Indexed: 12/02/2022] Open
Abstract
Eugenol and its isomer isoeugenol are both used as flavouring agents or food additives in food products, and have both some similar biological properties. However, the difference in biological activities between eugenol and isoeugenol is rarely studied. In this study, the profiles of antioxidant, DNA-protective effects and antibacterial activities of eugenol and isoeugenol against several common foodborne pathogens were investigated and compared under various experiment conditions. Results showed that eugenol and isoeugenol had strong antioxidant activity, the protective effect against DNA damage and antibacterial activity. In addition, it was found that isoeugenol exhibited the higher biological activities mentioned above than eugenol, which was because isoeugenol had a carbon–carbon double bond closer to the benzene ring compared with eugenol. However, the specific reason needs to be further studied.
Collapse
Affiliation(s)
- Liang-Liang Zhang
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, China
| | - Li-Fang Zhang
- School of Chemistry and Material Science, Shanxi Normal University, Linfen, China
| | - Jian-Guo Xu
- School of Food Science, Shanxi Normal University, Linfen, China
| | - Qing-Ping Hu
- School of Life Science, Shanxi Normal University, Linfen, China
| |
Collapse
|