1
|
Cirella R, Andretta E, De Simone Carone L, Olmeo F, Sun ML, Zhang YZ, Mercogliano M, Molinaro A, Silipo A, Di Lorenzo F. Cold-Adapted Lipid A from Polaribacter sp. SM1127: A Study of Structural Heterogeneity and Immunostimulatory Properties. Chembiochem 2025:e2500100. [PMID: 40163369 DOI: 10.1002/cbic.202500100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/27/2025] [Accepted: 03/31/2025] [Indexed: 04/02/2025]
Abstract
Polaribacter sp. SM1127, a cold-adapted marine Gram-negative bacterium isolated from Laminaria in Arctic waters, plays a crucial role in nutrient cycling and biopolymer degradation in cold environments. Additionally, its exopolysaccharide (EPS) exhibits promising biotechnological potential, including antioxidant and wound-healing properties. This study focuses on the isolation and characterization of lipid A, the glycolipid component of Polaribacter sp. SM1127 lipopolysaccharide (LPS), by bypassing full LPS extraction and working directly with the ethanol precipitation product containing both EPS and bacterial cells. Mass spectrometry analysis reveals significant structural heterogeneity in the lipid A, with variations in fatty acid chain length, branching, saturation, and hydroxylation. These features likely enable the bacterium to fine-tune its response to fluctuating temperatures or other cold-related environmental stresses, contributing to resilience in the Arctic Ocean ecosystem. Furthermore, immunological assays demonstrate that both LPS and EPS produced by Polaribacter sp. SM1127 induce weak Toll-like receptor 4 activation and, in general, poorly stimulate the nuclear factor kappa-light-chain-enhancer of activated B cells pathway, compared to Escherichia coli LPS. These findings suggest their potential as immunomodulatory agents, like vaccine adjuvants.
Collapse
Affiliation(s)
- Roberta Cirella
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Emanuela Andretta
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Luca De Simone Carone
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Francesca Olmeo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Mei-Ling Sun
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, 5 Yushan Rd, Shinan District, Shandong, Qingdao, 266005, China
- Joint Research Center for Marine Microbial Science and Technology, Shandong University, Jinan, Licheng District, Jinan, Shanda S Rd, 27, Shandong, Qingdao, 250100, China
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, 5 Yushan Rd, Shinan District, Shandong, Qingdao, 266005, China
- Joint Research Center for Marine Microbial Science and Technology, Shandong University, Jinan, Licheng District, Jinan, Shanda S Rd, 27, Shandong, Qingdao, 250100, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Jinan, Licheng District, Jinan, Shanda S Rd, 27, Shandong, Qingdao, 250100, China
| | - Marcello Mercogliano
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
- CEINGE, Istituto di Biotecnologie avanzate, Via Gaetano Salvatore 486, 80131, Naples, Italy
- Department of Chemistry, School of Science, Osaka University, 1-1 Osaka University Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
- CEINGE, Istituto di Biotecnologie avanzate, Via Gaetano Salvatore 486, 80131, Naples, Italy
| | - Flaviana Di Lorenzo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126, Naples, Italy
- CEINGE, Istituto di Biotecnologie avanzate, Via Gaetano Salvatore 486, 80131, Naples, Italy
| |
Collapse
|
2
|
Wu Y, Xu Y, Xu L. Pharmacological therapy targeting the immune response in atherosclerosis. Int Immunopharmacol 2024; 141:112974. [PMID: 39168023 DOI: 10.1016/j.intimp.2024.112974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease characterized by the formation of atherosclerotic plaques that consist of numerous cells including smooth muscle cells, endothelial cells, immune cells, and foam cells. The most abundant innate and adaptive immune cells, including neutrophils, monocytes, macrophages, B cells, and T cells, play a pivotal role in the inflammatory response, lipoprotein metabolism, and foam cell formation to accelerate atherosclerotic plaque formation. In this review, we have discussed the underlying mechanisms of activated immune cells in promoting AS and reviewed published clinical trials for the treatment of AS by suppressing immune cell activation. We have also presented some crucial shortcomings of current clinical trials. Lastly, we have discussed the therapeutic potential of novel compounds, including herbal medicine and dietary food, in alleviating AS in animals. Despite these limitations, further clinical trials and experimental studies will enhance our understanding of the mechanisms modulated by immune cells and promote widespread drug use to treat AS by suppressing immune system-induced inflammation.
Collapse
Affiliation(s)
- Yirong Wu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China
| | - Yizhou Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China.
| | - Linhao Xu
- Department of Cardiology, Hangzhou First People's Hospital, 310006 Zhejiang, China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou 310006, Zhejiang, China.
| |
Collapse
|
3
|
Kanno T, Tada R, Nakasone T, Okamatsu S, Iwakura Y, Tamura K, Miyaoka H, Adachi Y. Cordyceps militaris fruit body activates myeloid dendritic cells via a Dectin-1-mediated pathway. Mol Immunol 2024; 175:112-120. [PMID: 39341081 DOI: 10.1016/j.molimm.2024.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024]
Abstract
Cordyceps militaris, an entomopathogenic fungus, has been traditionally used in East Asian medicine. Recent research indicates that the fruit bodies of C. militaris are rich in bioactive compounds, such as polysaccharides and nucleosides, which may offer health benefits. However, the specific components responsible for its immunostimulatory effects and the mechanisms involved remain unclear. This study explored the immunomodulatory activity of a fruit body extract from C. militaris, named Ryukyu-kaso (RK), and examined the effect of the β-glucan receptor Dectin-1 on bone marrow-derived dendritic cells (BMDCs). Our results demonstrated that RK, which contains 1,3-β-glucan, effectively stimulated BMDCs to secrete pro-inflammatory and immunoregulatory cytokines and upregulated surface markers indicative of maturation and activation. Notably, these immunostimulatory effects were completely absent in BMDCs derived from Dectin-1-knockout mice, confirming that Dectin-1 is crucial for RK-induced immunomodulation. These findings provide new insights into the immunostimulatory mechanisms of C. militaris and underscore the potential of RK as a natural immunomodulatory agent for various therapeutic applications.
Collapse
Affiliation(s)
- Takashi Kanno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Rui Tada
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | | | | | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Kazuhiro Tamura
- Department of Endocrine Pharmacology, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Hiroaki Miyaoka
- Department of Biomolecular Organic Chemistry, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoshiyuki Adachi
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan.
| |
Collapse
|
4
|
Diamantis I, Dedousi M, Melanouri EM, Dalaka E, Antonopoulou P, Adelfopoulou A, Papanikolaou S, Politis I, Theodorou G, Diamantopoulou P. Impact of Spent Mushroom Substrate Combined with Hydroponic Leafy Vegetable Roots on Pleurotus citrinopileatus Productivity and Fruit Bodies Biological Properties. Microorganisms 2024; 12:1807. [PMID: 39338481 PMCID: PMC11434184 DOI: 10.3390/microorganisms12091807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/21/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Agricultural activities produce large quantities of organic byproducts and waste rich in lignocellulosic materials, which are not sufficiently utilized. In this study, alternative agricultural waste products, namely, spent mushroom substrate (SMS) from the cultivation of edible Pleurotus ostreatus mushrooms and the roots of leafy vegetables from hydroponic cultivation (HRL), were evaluated for their potential to be used as substrates for the cultivation of Pleurotus citrinopileatus and their effects on the quality, the nutritional value, the chemical properties (lipid, protein, carbohydrate, ash, fatty acid and carbohydrate composition) and the bioactive content (total phenolic compounds and antioxidant activity) of produced mushrooms. SMS and HRL (in different ratios with and without additives) and wheat straw with additives (WS-control) were used. During incubation, the linear growth rate of the mycelium (Kr, mm/day) was measured and used for screening. Mushroom cultivation took place in bags, where several characteristics were examined: earliness (duration between the day of substrate inoculation and the day of first harvest) and biological efficiency (B.E. %, the ratio of the weight of fresh mushrooms produced per dry weight of the substrate × 100). Furthermore, this study aimed to investigate the effect of the protein extract (PE) and carbohydrate extract (CE) of P. citrinopileatus after in vitro digestion (fraction less than 3kDa: PE-DP-3; digestate fraction: CE-D, respectively) on the expression of antioxidant-related genes in the THP-1 cell line. The results showed that mushrooms grown on SMS 50%-HRL 40% had the fastest growth (6.1 mm/d) and the highest protein and lipid contents (34.7% d.w.; 5.1% d.w.). The highest B.E. (73.5%), total carbohydrate (65.7%) and total phenolic compound (60.2 mg GAE/g d.w.) values were recorded on the control substrate. Antioxidant activity was observed in all extracts; the total flavonoid content was low in the samples, and the maximum total triterpene value was detected in SMS 80%-HRL 20% (9.8 mg UA/g d.w.). In all mushrooms, linoleic acid (C18:2) was the main fatty acid (above 60%), and fructose was the dominant individual saccharide. In the investigation of the regulation pathway, NFE2L2 gene expression was upregulated only in the SMS 60%-HRL 40% intervention during incubation with CE-D samples. Additionally, the transcription levels of antioxidant-related genes, SOD1, CAT, HMOX1 and GSR, were increased in the SMS 60-30% intervention. Compared to WS, the alternative substrates are observed to trigger a pathway concerning CE that may resist oxidative stress. This study supports the utilization of agricultural byproducts through sustainable and environmentally friendly practices while simultaneously producing high-value-added products such as mushrooms. Therefore, alternative substrates, particularly those containing HRL, could serve as natural sources of antioxidant potential.
Collapse
Affiliation(s)
- Ilias Diamantis
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization—Dimitra, 1, Sofokli Venizelou, 14123 Lykovryssi, Greece; (I.D.); (M.D.); (E.-M.M.); (P.A.)
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Marianna Dedousi
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization—Dimitra, 1, Sofokli Venizelou, 14123 Lykovryssi, Greece; (I.D.); (M.D.); (E.-M.M.); (P.A.)
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Eirini-Maria Melanouri
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization—Dimitra, 1, Sofokli Venizelou, 14123 Lykovryssi, Greece; (I.D.); (M.D.); (E.-M.M.); (P.A.)
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Eleni Dalaka
- Laboratory of Animal Breeding & Husbandry, Department of Animal Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (E.D.); (A.A.); (I.P.); (G.T.)
| | - Paraskevi Antonopoulou
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization—Dimitra, 1, Sofokli Venizelou, 14123 Lykovryssi, Greece; (I.D.); (M.D.); (E.-M.M.); (P.A.)
| | - Alexandra Adelfopoulou
- Laboratory of Animal Breeding & Husbandry, Department of Animal Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (E.D.); (A.A.); (I.P.); (G.T.)
| | - Seraphim Papanikolaou
- Laboratory of Food Microbiology and Biotechnology, Department of Food Science and Human Nutrition, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece;
| | - Ioannis Politis
- Laboratory of Animal Breeding & Husbandry, Department of Animal Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (E.D.); (A.A.); (I.P.); (G.T.)
| | - Georgios Theodorou
- Laboratory of Animal Breeding & Husbandry, Department of Animal Science, Agricultural University of Athens, 75 Iera Odos, 11855 Athens, Greece; (E.D.); (A.A.); (I.P.); (G.T.)
| | - Panagiota Diamantopoulou
- Laboratory of Edible Fungi, Institute of Technology of Agricultural Products (ITAP), Hellenic Agricultural Organization—Dimitra, 1, Sofokli Venizelou, 14123 Lykovryssi, Greece; (I.D.); (M.D.); (E.-M.M.); (P.A.)
| |
Collapse
|
5
|
Lin H, Han R, Wu W. Glucans and applications in drug delivery. Carbohydr Polym 2024; 332:121904. [PMID: 38431411 DOI: 10.1016/j.carbpol.2024.121904] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Glucan is a natural polysaccharide widely distributed in cereals and microorganisms that has various biological activities, including immunomodulatory, anti-infective, anti-inflammatory, and antitumor activities. In addition to wide applications in the broad fields of food, healthcare, and biomedicines, glucans hold promising potential as drug delivery carrier materials or ligands. Specifically, glucan microparticles or yeast cell wall particles are naturally enclosed vehicles with an interior cavity that can be exploited to carry and deliver drug payloads. The biological activities and targeting capacities of glucans depend largely on the recognition of glucan moieties by receptors such as dectin-1 and complement receptor 3, which are widely expressed on the cell membranes of mononuclear phagocytes, dendritic cells, neutrophils, and some lymphocytes. This review summarizes the chemical structures, sources, fundamental properties, extraction methods, and applications of these materials, with an emphasis on drug delivery. Glucans are utilized mainly as vaccine adjuvants, targeting ligands and as carrier materials for various drug entities. It is believed that glucans and glucan microparticles may be useful for the delivery of both small-molecule and macromolecular drugs, especially for potential treatment of immune-related diseases.
Collapse
Affiliation(s)
- Hewei Lin
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Rongze Han
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China.
| | - Wei Wu
- Key Laboratory of Smart Drug Delivery of MOE, School of Pharmacy, Fudan University, Shanghai 201203, China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China; Center for Medical Research and Innovation, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai 201399, China; Fudan Zhangjiang Institute, Shanghai 201203, China.
| |
Collapse
|
6
|
Mizuno M, Minato KI. Anti-inflammatory and immunomodulatory properties of polysaccharides in mushrooms. Curr Opin Biotechnol 2024; 86:103076. [PMID: 38364705 DOI: 10.1016/j.copbio.2024.103076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/18/2024]
Abstract
Mushrooms are distinguished as important food-containing polysaccharides possessing potent anti-inflammatory and immunomodulating properties. These compounds belong mostly to polysaccharides that are mostly β-D-glucans. Among them, β-1,3-glucan with β-1,6 side chains of glucose residues, has more important roles in their properties. In this review, we have introduced polysaccharides mainly from Lentinula edodes and Pleurotus citrinopileatus with anti-inflammatory and immunomodulating properties. In addition, the mechanisms of activation of their physiological properties and signal cascade are also reviewed.
Collapse
Affiliation(s)
- Masashi Mizuno
- Department of Health and Nutrition, Faculty of Human Science, Osaka Aoyama University, 2-11-1 Niina, Minoh, Osaka 562-8580, Japan.
| | - Ken-Ichiro Minato
- Department of Applied Biological Chemistry, The Graduate School of Agriculture, Meijo University, Nagoya 468-8502, Japan
| |
Collapse
|
7
|
Bao X, Ke D, Wang W, Ye F, Zeng J, Zong Y. High fatty acid accumulation and coloration molecular mechanism of the elm mushroom (Pleurotus citrinopileatus). Biosci Biotechnol Biochem 2024; 88:437-444. [PMID: 38171531 DOI: 10.1093/bbb/zbad183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Pleurotus citrinopileatus is a low-cholesterol, protein-rich, and high-nutrient food. The molecular mechanisms of the compounds and coloration have not been reported. Metabolome and transcriptome were used to clarify the molecular mechanisms of key compounds biosynthesis. K-means analysis identified 19 compounds in P. citrinopileatus, mainly lipids and alkaloids in class 8. In addition, 84 lipids were higher and that the different compounds were mainly enriched in linoleic acid metabolism. A total of 14 compounds detected in the linoleic acid metabolism pathway were significantly up-regulated, while 3 sterol regulatory element binding protein (SREBP) transcription factors were screened. Tryptophan metabolism and riboflavin biosynthesis pathway analysis indicated that 3 Unigenes had tryptophan decarboxylase similar elements, which belonged to tyrosine decarboxylase 1. Moreover, CL15618.Contig5_All had high homology with MFS. In conclusion, the expression of 3 SREBP, the synthesis of isobavachalcone D, and the regulation of riboflavin transport by MCH5 were the reasons for fatty acid accumulation and yellow cap formation in the P. citrinopileatus.
Collapse
Affiliation(s)
- Xuemei Bao
- Key Laboratory of Medicinal Animal and Plant Resources of Qinghai-Tibetan Plateau in Qinghai Province, Qinghai Normal University, Xining, Qinghai, China
| | - Danmin Ke
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Academy of Animal Science and Veterinary Medicine, Qinghai University, Xining, Qinghai, China
| | - Fahui Ye
- University of Chinese Academy of Sciences, Beijing, China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Xining, Qinghai, China
| | - Jiangyi Zeng
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yuan Zong
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Guangzhou, China
- Qinghai Province Key Laboratory of Crop Molecular Breeding, Northwest Institute of Plateau Biology, Xining, Qinghai, China
| |
Collapse
|
8
|
Zhang Y, Zhao M, He J, Chen L, Wang W. In vitro and in vivo immunomodulatory activity of acetylated polysaccharides from Cyclocarya paliurus leaves. Int J Biol Macromol 2024; 259:129174. [PMID: 38181912 DOI: 10.1016/j.ijbiomac.2023.129174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
In this study, we aimed to investigate the immunomodulatory effects of polysaccharides from Cyclocarya paliurus leaves after acetylation modification (Ac-CPP0.1) on dendritic cells (DCs) and immunosuppressed mice. In vitro, Ac-CPP0.1 promoted phenotypic and functional maturation of DCs. Specifically, it increased the expression of costimulatory molecules (CD80, CD86, and MHC II) and the secretion of cytokines (TNF-α, IL-6, IL-1β, IL-10, IL-12p70) of DCs. In vivo, Ac-CPP0.1 significantly improved immunosuppression of mice, which was manifested by increased body weight and immune organ index, up-regulated cytokines (IL-4, IL-17, TGF-β3, and TNF-α), and restored short-chain fatty acid (SCFAs) levels of intestinal. The immunoactivation of Ac-CPP0.1 in DCs and in mice is linked to the activation of the TLR4/NF-κB signaling pathway. Furthermore, Ac-CPP0.1 reversed intestinal flora imbalance caused by cyclophosphamide. At the species level, Ac-CPP0.1 increased the abundance of unclassified_Muribaculaceae, unclassified_Desulfovibrio, Bacteroides_acidifaciens and Faecalibaculum_rodentium, decreased the level of Lactobacillus_johnsonii, unclassified_g_Staphylococcus and Staphylococcus_nepalensis. In summary, Ac-CPP0.1 has considerable immunomodulatory potential, which is beneficial to the future utilization and development of Cyclocarya paliurus.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Zhao
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing He
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingli Chen
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
9
|
Li M, Huang X, Wen J, Chen S, Wu X, Ma W, Cui SW, Xie M, Nie S. Innate immune receptors co-recognition of polysaccharides initiates multi-pathway synergistic immune response. Carbohydr Polym 2023; 305:120533. [PMID: 36737186 DOI: 10.1016/j.carbpol.2022.120533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
The law and mechanism of the interaction between polysaccharides and pattern recognition receptors (PRRs) has been unclear. Herein, three glucomannans with different structures were selected to explore the universal mechanism for PRRs to recognize glucomannans. Screening results showed that the silence of TLR4 but not TLR2 severely blocked the production of inflammatory cytokines and the transduction of signal pathways. In-depth results revealed that the participation of myeloid differentiation protein 2 (MD2) and CD14 and the dimerization of the TLR4-MD2 complex were required for glucomannan-activated TLR4 signal transduction. Mannose receptor (MR) was also engaged in glucomannan-induced respiratory burst, endocytosis, and inflammatory signaling pathways in a spleen tyrosine kinase-dependent manner. The internalization of glucomannans into the cytoplasm by MR directly initiated complex intracellular signaling cascades. Finally, molecular docking characterized the binding energy and binding sites between glucomannans and multiple receptors from other perspectives. The essence of glucomannans recognized by PRRs was the non-covalent interaction of multiple receptors and the subsequent transmission of the signal cascade was triggered in a multi-channel and cooperative manner. As a result, the hypothesis that "Innate immune receptors co-recognition of polysaccharides initiates multi-pathway synergistic immune response" was proposed to outline these meaningful phenomena.
Collapse
Affiliation(s)
- Mingzhi Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiajia Wen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shikang Chen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xincheng Wu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Wanning Ma
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Steve W Cui
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China; Agriculture and Agri-Food Canada, Guelph Research and Development Centre, 93 Stone Road West, Guelph, Ontario NIG 5C9, Canada
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
10
|
Zerva A, Mohammadi M, Dimopoulos G, Taoukis P, Topakas E. Transglycosylation of Stevioside by a Commercial β-Glucanase with Fungal Extracted β-Glucans as Donors. WASTE AND BIOMASS VALORIZATION 2023; 14:1-11. [PMID: 36713934 PMCID: PMC9872074 DOI: 10.1007/s12649-023-02052-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Abstract Alternative sweeteners, such as steviol glucosides from the plant Stevia rebaudiana Bertoni, are becoming increasingly popular for the design of next-generation foodstuffs. However, the bitter aftertaste of native steviol glucosides is one of the main reasons behind consumer reluctance towards stevia-containing products. Biocatalysis could be a sustainable solution to this problem, through addition of glucosyl moieties to the molecule. Glycoside hydrolases are enzymes performing transglycosylation reactions, and they can be exploited for such modifications. In the present work, the commercial β-glucanase Finizym 250L® was employed for the transglycosylation of stevioside. After optimization of several reaction parameters, the maximal reaction yield obtained was 19%, with barley β-glucan as the glycosyl donor. With the aim to develop a sustainable process, β-glucan extracts from different fungal sources were prepared. Pulsed Electric Field pretreatment of mycelial biomass resulted in extracts with higher β-glucan content. The extracts were tested as alternative glucosyl donors, reaching up to 15.5% conversion yield, from Pleurotus-extracted β-glucan. Overall, in the present work a novel enzymatic process for the modification of stevioside is proposed, with concomitant valorization of β-glucans extracted from fungal biomass, potentially generated as a byproduct from other applications, in concert with the principles of circular economy. Graphical Abstract
Collapse
Affiliation(s)
- Anastasia Zerva
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Milad Mohammadi
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Georgios Dimopoulos
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Petros Taoukis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| | - Evangelos Topakas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, 15780 Athens, Greece
| |
Collapse
|
11
|
Han X, Luo R, Ye N, Hu Y, Fu C, Gao R, Fu S, Gao F. Research progress on natural β-glucan in intestinal diseases. Int J Biol Macromol 2022; 219:1244-1260. [PMID: 36063888 DOI: 10.1016/j.ijbiomac.2022.08.173] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 12/20/2022]
Abstract
β-Glucan, an essential natural polysaccharide widely distributed in cereals and microorganisms, exhibits extensive biological activities, including immunoregulation, anti-inflammatory, antioxidant, antitumor properties, and flora regulation. Recently, increasing evidence has shown that β-glucan has activities that may be useful for treating intestinal diseases, such as inflammatory bowel disease (IBD), and colorectal cancer. The advantages of β-glucan, which include its multiple roles, safety, abundant sources, good encapsulation capacity, economic development costs, and clinical evidence, indicate that β-glucan is a promising polysaccharide that could be developed as a health product or medicine for the treatment of intestinal disease. Unfortunately, few reports have summarized the progress of studies investigating natural β-glucan in intestinal diseases. This review comprehensively summarizes the structure-activity relationship of β-glucan, its pharmacological mechanism in IBD and colorectal cancer, its absorption and transportation mechanisms, and its application in food, medicine, and drug delivery, which will be beneficial to further understand the role of β-glucan in intestinal diseases.
Collapse
Affiliation(s)
- Xiaoqin Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ruifeng Luo
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Naijing Ye
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture, Chengdu University, Chengdu 610106, China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China
| | - Ru Gao
- Department of Nursing, Chengdu Wenjiang People's Hospital, Chengdu, Sichuan 611100, China.
| | - Shu Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| | - Fei Gao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611130, China.
| |
Collapse
|
12
|
Lv Y, Liu Z, Duan X, Cui J, Zhang W, Ma W, Liu Y, Song X, Fan Y. Immunoenhancement and antioxidative damage effects of Polygonum Cillinerve polysaccharide on RAW264.7 cells. J Pharm Pharmacol 2021; 74:435-445. [PMID: 34894135 DOI: 10.1093/jpp/rgab160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 10/27/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES The effects of Polygonum Cillinerve polysaccharide (PCP) on the immune and antioxidant activity were studied. METHODS The effects of PCP on cell proliferation, phagocytic activity, cell uptake, the secretion of NO, iNOS, IL-6, IL-12, CAT and POD, intracellular ROS, cell apoptosis and antioxidative mechanism were measured by MTT, ELISA, fluorescence staining, flow cytometry and western blot. KEY FINDINGS The results showed that PCP had no toxic effect at 31.25-1.95 µg/ml, could improve the uptake of neutral red and fluorescein isothiocyanate-labelled ovalbumin and promote the release of nitric oxide and nitric oxide synthase. Moreover, PCP also could promote the secretion of IL-6 and IL-12. The damage of RAW264.7 cells induced by hydrogen peroxide was significantly alleviated by PCP at 15.63-0.975 µg/ml. The mechanism of antioxidative damage might be that PCP inhibited the upstream p38 and the phosphorylation of JNK and ERK proteins, and down-regulated caspase 3 and up-regulated the protein expressions of cytochrome C and Bcl-2, finally PCP improved the antioxidative capacity and protected the oxidative damage of cells. CONCLUSIONS These results indicated that PCP had the better immunopotentiation and antioxidative damage activity.
Collapse
Affiliation(s)
- Yizhou Lv
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| | - Zhenxiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| | - Xueqin Duan
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| | - Jing Cui
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| | - Xiaoping Song
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, Yangling District, Xianyang, Shaanxi, P.R. China
| |
Collapse
|
13
|
Li M, Wen J, Huang X, Nie Q, Wu X, Ma W, Nie S, Xie M. Interaction between polysaccharides and toll-like receptor 4: Primary structural role, immune balance perspective, and 3D interaction model hypothesis. Food Chem 2021; 374:131586. [PMID: 34839969 DOI: 10.1016/j.foodchem.2021.131586] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/08/2021] [Accepted: 11/08/2021] [Indexed: 12/12/2022]
Abstract
Various structural types of polysaccharides are recognized by toll-like receptor 4 (TLR4). However, the mechanism of interaction between the polysaccharides with different structures and TLR4 is unclarified. This review summarized the primary structure of polysaccharides related to TLR4, mainly including molecular weight, monosaccharide composition, glycosidic bonds, functional groups, and branched-chain structure. The optimal primary structure for interacting with TLR4 was obtained by the statistical analysis. Besides, the dual-directional regulation of TLR4 signaling cascade by polysaccharides was also elucidated from an immune balance perspective. Finally, the 3D interaction model of polysaccharides to TLR4-myeloid differentiation factor 2 (MD2) complex was hypothesized according to the LPS-TLR4-MD2 dimerization model and the polysaccharides solution conformation. The essence of polysaccharides binding to TLR4-MD2 complex is a multivalent non-covalent bond interaction. All the arguments summarized in this review are intended to provide some new insights into the interaction between polysaccharides and TLR4.
Collapse
Affiliation(s)
- Mingzhi Li
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Jiajia Wen
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Xiaojun Huang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Qixing Nie
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, and the Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
| | - Xincheng Wu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Wanning Ma
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
14
|
Guo Y, Chen X, Gong P. Classification, structure and mechanism of antiviral polysaccharides derived from edible and medicinal fungus. Int J Biol Macromol 2021; 183:1753-1773. [PMID: 34048833 PMCID: PMC8144117 DOI: 10.1016/j.ijbiomac.2021.05.139] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 11/25/2022]
Abstract
The deficiency of chemical-synthesized antiviral drugs when applied in clinical therapy, such as drug resistance, and the lack of effective antiviral drugs to treat some newly emerging virus infections, such as COVID-19, promote the demand of novelty and safety anti-virus drug candidate from natural functional ingredient. Numerous studies have shown that some polysaccharides sourcing from edible and medicinal fungus (EMFs) exert direct or indirect anti-viral capacities. However, the internal connection of fungus type, polysaccharides structural characteristics, action mechanism was still unclear. Herein, our review focus on the two aspects, on the one hand, we discussed the type of anti-viral EMFs and the structural characteristics of polysaccharides to clarify the structure-activity relationship, on the other hand, the directly or indirectly antiviral mechanism of EMFs polysaccharides, including virus function suppression, immune-modulatory activity, anti-inflammatory activity, regulation of population balance of gut microbiota have been concluded to provide a comprehensive theory basis for better clinical utilization of EMFs polysaccharides as anti-viral agents.
Collapse
Affiliation(s)
- Yuxi Guo
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xuefeng Chen
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; Shaanxi Research Institute of Agricultural Product Processing Technology, Xi'an 710021, China
| | - Pin Gong
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China.
| |
Collapse
|
15
|
Li H, Tian Y, Menolli N, Ye L, Karunarathna SC, Perez-Moreno J, Rahman MM, Rashid MH, Phengsintham P, Rizal L, Kasuya T, Lim YW, Dutta AK, Khalid AN, Huyen LT, Balolong MP, Baruah G, Madawala S, Thongklang N, Hyde KD, Kirk PM, Xu J, Sheng J, Boa E, Mortimer PE. Reviewing the world's edible mushroom species: A new evidence-based classification system. Compr Rev Food Sci Food Saf 2021; 20:1982-2014. [PMID: 33599116 DOI: 10.1111/1541-4337.12708] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/04/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022]
Abstract
Wild mushrooms are a vital source of income and nutrition for many poor communities and of value to recreational foragers. Literature relating to the edibility of mushroom species continues to expand, driven by an increasing demand for wild mushrooms, a wider interest in foraging, and the study of traditional foods. Although numerous case reports have been published on edible mushrooms, doubt and confusion persist regarding which species are safe and suitable to consume. Case reports often differ, and the evidence supporting the stated properties of mushrooms can be incomplete or ambiguous. The need for greater clarity on edible species is further underlined by increases in mushroom-related poisonings. We propose a system for categorizing mushroom species and assigning a final edibility status. Using this system, we reviewed 2,786 mushroom species from 99 countries, accessing 9,783 case reports, from over 1,100 sources. We identified 2,189 edible species, of which 2,006 can be consumed safely, and a further 183 species which required some form of pretreatment prior to safe consumption or were associated with allergic reactions by some. We identified 471 species of uncertain edibility because of missing or incomplete evidence of consumption, and 76 unconfirmed species because of unresolved, differing opinions on edibility and toxicity. This is the most comprehensive list of edible mushrooms available to date, demonstrating the huge number of mushrooms species consumed. Our review highlights the need for further information on uncertain and clash species, and the need to present evidence in a clear, unambiguous, and consistent manner.
Collapse
Affiliation(s)
- Huili Li
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| | - Yang Tian
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Nelson Menolli
- Núcleo de Pesquisa em Micologia, Instituto de Botânica, São Paulo, Brazil.,Departamento de Ciências da Natureza e Matemática (DCM), Subárea de Biologia (SAB), Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP), São Paulo, Brazil
| | - Lei Ye
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| | - Samantha C Karunarathna
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| | | | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Md Harunur Rashid
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | | | - Leela Rizal
- The University of Queensland, School of Biological Sciences, Brisbane, Queensland, Australia
| | - Taiga Kasuya
- Department of Biology, Keio University, Yokohama, Kanagawa, Japan
| | - Young Woon Lim
- School of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul, Korea
| | - Arun Kumar Dutta
- Department of Botany, West Bengal State University, Barasat, West Bengal, India
| | | | - Le Thanh Huyen
- Department of Toxicology and Environmental Monitoring, Faculty of Environment, Hanoi University of Natural Resources and Environment, Tu Liem North District, Hanoi, Vietnam
| | - Marilen Parungao Balolong
- Department of Biology, College of Arts and Sciences, University of the Philippines, Manila, the Philippines
| | - Gautam Baruah
- Balipara Tract and Frontier Foundation, Guwahati, Assam, India
| | - Sumedha Madawala
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, Sri Lanka
| | - Naritsada Thongklang
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai, Thailand
| | - Kevin D Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, Thailand.,School of Science, Mae Fah Luang University, Chiang Rai, Thailand.,Mushroom Research Foundation, Chiang Mai, Thailand
| | - Paul M Kirk
- Biodiversity Informatics and Spatial Analysis, Jodrell Laboratory, Royal Botanic Gardens Kew, Surrey, UK
| | - Jianchu Xu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,East and Central Asia Regional Office, World Agroforestry Centre (ICRAF), Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| | - Jun Sheng
- Key Laboratory for Agro-biodiversity and Pest Control of Ministry of Education, Yunnan Agricultural University, Kunming, China
| | - Eric Boa
- Institute of Biology, University of Aberdeen, Aberdeen, UK
| | - Peter E Mortimer
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China.,Centre for Mountain Futures, Kunming Institute of Botany, Kunming, Yunnan, China
| |
Collapse
|
16
|
Hao Y, Sun H, Zhang X, Wu L, Zhu Z. A novel acid polysaccharide from fermented broth of Pleurotus citrinopileatus: Hypoglycemic activity in vitro and chemical structure. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128717] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
17
|
Hao Y, Sun H, Zhang X, Wu L, Zhu Z. A novel polysaccharide from Pleurotus citrinopileatus mycelia: Structural characterization, hypoglycemic activity and mechanism. FOOD BIOSCI 2020. [DOI: 10.1016/j.fbio.2020.100735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
18
|
Yang Y, Wang D, Li Q, He J, Wang B, Li J, Zhang A. Immune-Enhancing Activity of Aqueous Extracts from Artemisia rupestris L. via MAPK and NF-kB Pathways of TLR4/TLR2 Downstream in Dendritic Cells. Vaccines (Basel) 2020; 8:vaccines8030525. [PMID: 32933167 PMCID: PMC7565461 DOI: 10.3390/vaccines8030525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/11/2020] [Accepted: 09/11/2020] [Indexed: 12/12/2022] Open
Abstract
Artemisia rupestris L. has long been used as a traditional herbal medicine owing to its immunomodulatory activity. Aqueous extracts of Artemisia rupestris L. (AEAR) contain the main functional component and can activate the maturation of dendritic cells (DCs) and enhance the adaptive immunity as the adjuvant against infections. To explore the underlying mechanism of immunomodulatory activities of AEAR, DCs were produced from bone-marrow cells of mice and the effects of AEAR on cell viability were assessed by the Cell Counting Kit 8 (CCK8) method and annexin V/propidium iodide staining assays. Then, the effects of AEAR on the morphology, maturation, and function of DCs were detected using a microscope, flow cytometry-based surface receptor characterization, and endocytosis assays. The secretion levels of cytokines were then analyzed with enzyme-linked immunosorbent assay (ELISA). The activation state of DCs was evaluated by the mixed lymphocyte reaction (MLR). The activity of MAPKs and NF-κB pathways, which were involved in the regulation of AEAR on DCs, was further detected by Western blot. AEAR did not have a cytotoxic effect on DCs or mouse splenocytes. AEAR remarkably enhanced the phenotypic maturation of DCs and promoted the expression of costimulatory molecules and the secretion of cytokines in DCs. AEAR also significantly decreased the phagocytic ability of DCs and augmented the abilities of DCs to present antigens and stimulate allogeneic T-cell proliferation. Simultaneously, AEAR potently activated toll-like receptor (TLR)4-/TLR2-related MAPKs and induced the degradation of IκB and the translocation of NF-κB. In short, AEAR can profoundly enhance the immune-modulating activities of DCs via TLR4-/TLR2-mediated activation of MAPKs and NF-κB signaling pathways and is a promising candidate immunopotentiator for vaccines.
Collapse
Affiliation(s)
- Yu Yang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.Y.); (D.W.); (Q.L.); (J.L.)
| | - DanYang Wang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.Y.); (D.W.); (Q.L.); (J.L.)
| | - QuanXiao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.Y.); (D.W.); (Q.L.); (J.L.)
| | - Jiang He
- Key Laboratory of Uighur Medicine, Xinjiang Institute of Materia Medica, Xinjiang 830004, China;
| | - Bin Wang
- Key Lab of Medical Molecular Virology, School of Basic Medical Science, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.Y.); (D.W.); (Q.L.); (J.L.)
| | - Ailian Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China; (Y.Y.); (D.W.); (Q.L.); (J.L.)
- Correspondence:
| |
Collapse
|
19
|
Del Cornò M, Gessani S, Conti L. Shaping the Innate Immune Response by Dietary Glucans: Any Role in the Control of Cancer? Cancers (Basel) 2020; 12:cancers12010155. [PMID: 31936360 PMCID: PMC7016572 DOI: 10.3390/cancers12010155] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/20/2019] [Accepted: 12/20/2019] [Indexed: 12/12/2022] Open
Abstract
β-glucans represent a heterogeneous group of naturally occurring and biologically active polysaccharides found in many kinds of edible mushrooms, baker’s yeast, cereals and seaweeds, whose health-promoting effects have been known since ancient times. These compounds can be taken orally as food supplements or as part of daily diets, and are safe to use, nonimmunogenic and well tolerated. A main feature of β-glucans is their capacity to function as biological response modifiers, exerting regulatory effects on inflammation and shaping the effector functions of different innate and adaptive immunity cell populations. The potential to interfere with processes involved in the development or control of cancer makes β-glucans interesting candidates as adjuvants in antitumor therapies as well as in cancer prevention strategies. Here, the regulatory effects of dietary β-glucans on human innate immunity cells are reviewed and their potential role in cancer control is discussed.
Collapse
|
20
|
Rodrigues Barbosa J, Dos Santos Freitas MM, da Silva Martins LH, de Carvalho RN. Polysaccharides of mushroom Pleurotus spp.: New extraction techniques, biological activities and development of new technologies. Carbohydr Polym 2019; 229:115550. [PMID: 31826512 DOI: 10.1016/j.carbpol.2019.115550] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 10/22/2019] [Accepted: 10/27/2019] [Indexed: 02/07/2023]
Abstract
The biodiversity of mushrooms Pleurotus spp. is impressive due to its complexity and diversity related to the composition of chemical structures such as polysaccharides, glycoproteins and secondary metabolites such as alkaloids, flavonoids and betalains. Recent studies of polysaccharides and their structural elucidation have helped to direct research and development of technologies related to pharmacological action, production of bioactive foods and application of new, more sophisticated extraction tools. The diversity of bioactivities related to these biopolymers, their mechanisms and routes of action are constant focus of researches. The elucidation of bioactivities has helped to formulate new vaccines and targeted drugs. In this context, in terms of polysaccharides and the diversity of mushrooms Pleurotus spp., this review seeks to revisit the genus, making an updated approach on the recent discoveries of polysaccharides, new extraction techniques and bioactivities, emphasising on their mechanisms and routes in order to update the reader on the recent technologies related to these polymers.
Collapse
Affiliation(s)
- Jhonatas Rodrigues Barbosa
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Maurício Madson Dos Santos Freitas
- LAPOA/FEA (Laboratory of Products of Animal Origin/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Luiza Helena da Silva Martins
- LABIOTEC/FEA (Biotechnological Process Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| | - Raul Nunes de Carvalho
- LABEX/FEA (Extraction Laboratory/Faculty of Food Engineering), ITEC (Institute of Technology), UFPA (Federal University of Para), Rua Augusto Corrêa S/N, Guamá, 66075-900 Belém, PA, Brazil.
| |
Collapse
|
21
|
Liu C, Choi MW, Xue X, Cheung PCK. Immunomodulatory Effect of Structurally Characterized Mushroom Sclerotial Polysaccharides Isolated from Polyporus rhinocerus on Bone Marrow Dendritic Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:12137-12143. [PMID: 31566976 DOI: 10.1021/acs.jafc.9b03294] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
This study evaluated the immunomodulatory effects of two high-molecular-weight and structurally different mushroom polysaccharides, an alkali-soluble polysaccharide (mPRSon) and a water-soluble polysaccharide-protein complex (PRW), isolated previously from the sclerotia of Pleurotus rhinocerus, on the maturation of murine bone-marrow-derived dendritic cells (BMDCs). The effects of mPRSon and PRW on the expression of morphological change, surface molecules, phagocytic activity, and cytokine release in BMDCs were determined by flow cytometry and a mouse cytokine array. The results showed that both mPRSon and PRW could induce phenotypic and functional maturation of BMDCs. At the same time, mPRSon upregulated the expression of membrane phenotypic marker CD86 and PRW markedly upregulated CD40, CD80, and CD86. In addition, mPRSon could bind to the dectin-1 receptor and stimulate the release of MIP-1α, MIP-2, and IL-2, while PRW could bind to complement receptor 3 and toll-like receptor 2 with an upregulation of the expression of IL-2, IL-6, MIP-1α, MIP-2, RANTES, IL-12p40p70, IL-12p70, TIMP-1, IFN-γ, KC, MCP-1, and GCSF. The study provides additional information on how structural differences in sclerotial polysaccharides influence their immunomodulatory activities on BMDCs involving different PAMP receptors. It is anticipated that more understanding of the interactions between the sclerotial polysaccharides and their receptors in immune cells can facilitate their future application for cancer immunotherapy.
Collapse
Affiliation(s)
- Chaoran Liu
- Medical Research Center , The People's Hospital of Longhua , Shenzhen , 518109 , People's Republic of China
- Food and Nutritional Sciences, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong Special Administrative Region of the People's Republic of China
| | - Man Wing Choi
- Food and Nutritional Sciences, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong Special Administrative Region of the People's Republic of China
| | - Xingkui Xue
- Medical Research Center , The People's Hospital of Longhua , Shenzhen , 518109 , People's Republic of China
| | - Peter C K Cheung
- Food and Nutritional Sciences, School of Life Sciences , The Chinese University of Hong Kong , Shatin , New Territories , Hong Kong Special Administrative Region of the People's Republic of China
| |
Collapse
|
22
|
Bai J, Ren Y, Li Y, Fan M, Qian H, Wang L, Wu G, Zhang H, Qi X, Xu M, Rao Z. Physiological functionalities and mechanisms of β-glucans. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
23
|
Sheng Y, Zhao C, Zheng S, Mei X, Huang K, Wang G, He X. Anti-obesity and hypolipidemic effect of water extract from Pleurotus citrinopileatus in C57BL/6J mice. Food Sci Nutr 2019; 7:1295-1301. [PMID: 31024702 PMCID: PMC6475757 DOI: 10.1002/fsn3.962] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 12/19/2018] [Accepted: 01/25/2019] [Indexed: 12/03/2022] Open
Abstract
Obesity has become one of the most important health problems worldwide requiring urgent need for efficient control. Pleurotus citrinopileatus (P. citrinopileatus)-a type of edible mushroom with abundant bioactive molecules-is a promising source for achieving this goal. In the present study, we evaluated the anti-obesity and hypolipidemic effect of P. citrinopileatus water extract (PWE) using a series of biochemical assays in randomized high-fat diet-induced obese (DIO) C57BL/6J mice, which were gavaged daily with low or high levels of PWE (400 or 800 mg/kg of body weight, respectively) in addition to high-fat diet for 12 weeks. Results showed that PWE significantly reduced the weight gain, fat accumulation, and food intake of DIO mice within 12 weeks. PWE also decreased the serum triglycerides, cholesterol and low-density lipoprotein, aspartate transaminase, nonesterified fatty acid, and creatinine, but increased high-density lipoprotein. Additionally, PWE improved the glucose tolerance of mice fed with high fat. From above, we conclude that PWE has great potential as functional foods for management of obesity and/or associated metabolic disorders.
Collapse
Affiliation(s)
- Yao Sheng
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Changhui Zhao
- Department of Food Quality and SafetyCollege of Food Science and EngineeringJilin UniversityChangchunChina
| | - Shujuan Zheng
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Xiaohong Mei
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Kunlun Huang
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| | - Guoyi Wang
- Logistics SchoolBeijing Wuzi UniversityBeijingChina
| | - Xiaoyun He
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Food Science and Nutritional EngineeringChina Agricultural UniversityBeijingChina
| |
Collapse
|
24
|
Minato KI, Laan LC, van Die I, Mizuno M. Pleurotus citrinopileatus polysaccharide stimulates anti-inflammatory properties during monocyte-to-macrophage differentiation. Int J Biol Macromol 2019; 122:705-712. [DOI: 10.1016/j.ijbiomac.2018.10.157] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 10/09/2018] [Accepted: 10/24/2018] [Indexed: 01/27/2023]
|
25
|
Li X, Jin Q, Zhang Y, Wu YL, Jin CM, Cui BW, Li Y, Jin MJ, Shang Y, Jiang M, Yang HX, Wu M, Liu J, Lian LH, Nan JX. Inhibition of P2X7R-NLRP3 Inflammasome Activation by Pleurotus citrinopileatus: A Possible Protective Role in Alcoholic Hepatosteatosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13183-13190. [PMID: 30497264 DOI: 10.1021/acs.jafc.8b05756] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pleurotus citrinopileatus (golden oyster mushroom) is a widely used edible mushroom. We investigated the inhibitory effect of P. citrinopileatus aqueous extract against alcoholic steatohepatitis and its underlying mechanism. Acute and chronic ethanol-feeding murine models were established by intragastrically administering ethanol or feeding an ethanol-containing Lieber-DeCarli liquid diet to male C57BL/6 mice. In both models, P. citrinopileatus decreased serum alanine aminotransferase (ALT), aspartate transaminase (AST), triglyceride (TG), and hepatic TG levels. Hematoxylin and eosin (HE) and Oil Red O staining confirmed that P. citrinopileatus ameliorated both acute and chronic alcoholic hepatosteatosis, characterized by regulation of lipid-metabolism-related proteins, including sirtuin 1 (SIRT1), AMP-activated kinase (AMPK), and sterol regulatory element-binding protein (SREBP1). P. citrinopileatus reversed inflammatory response via modulating purinergic receptor P2X ligand-gated ion channel 7 (P2X7R)-NOD-like receptor pyrin domain 3 (NLRP3) inflammasome. P. citrinopileatus restored the expressions of those proteins to a normal level. In addition, HepG2 cells were incubated with P. citrinopileatus prior to ethanol stimulation. P. citrinopileatus reduced ethanol exposure-induced lipid deposition. Concomitantly, P. citrinopileatus increased AMPK and SIRT1 expressions, which were reduced by ethanol treatment. P. citrinopileatus ameliorated alcoholic hepatic steatosis and accompanied inflammatory response via regulating SIRT1-AMPK and P2X7R-NLRP3 inflammasome activation, highlighting a promising strategy and utility of P. citrinopileatus for alcoholic steatohepatitis as dietary health supplements.
Collapse
Affiliation(s)
- Xia Li
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Quan Jin
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Yu Zhang
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Yan-Ling Wu
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Cheng-Min Jin
- Analysis Center , Dt&CRO, Incorporated , Yongin-si , Gyeonggi-do 17042 , Republic of Korea
| | - Ben-Wen Cui
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Ying Li
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Ming-Ji Jin
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Yue Shang
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Min Jiang
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Hong-Xu Yang
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Mei Wu
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Jian Liu
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Li-Hua Lian
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
| | - Ji-Xing Nan
- Key Laboratory for Natural Resource of Changbai Mountain and Functional Molecules, Ministry of Education, College of Pharmacy , Yanbian University , Yanji , Jilin 133002 , People's Republic of China
- Clinical Research Center , Yanbian University Hospital , Yanji , Jilin 133002 , People's Republic of China
| |
Collapse
|
26
|
A 3-O-methylated heterogalactan from Pleurotus eryngii activates macrophages. Carbohydr Polym 2018; 206:706-715. [PMID: 30553376 DOI: 10.1016/j.carbpol.2018.11.063] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 11/19/2018] [Accepted: 11/19/2018] [Indexed: 01/27/2023]
Abstract
Mushroom-derived polysaccharides exhibit various biological activities owing to their diverse structural features. Here, we purified a 3-O-methylated heterogalactan (WPEP-N-b, Mw 21.4 kDa) from the fruiting bodies of Pleurotus eryngii. WPEP-N-b is composed primarily of galactose (43.8%), mannose (39.3%), methyl-galactose (11.7%) and glucose (9.2%) residues, with the main chain being composed of α-1,6-linked D-Galp and 3-O-Me-D-Galp, branched at O-2 with single t-β-D-Manp as major the side chain. β-1,6-D-Glcp residues are present as minor components either in side-chains or backbone. WPEP-N-b increases macrophage phagocytosis and secretion of NO, TNF-α, IL-6 and IL-1β. Mechanistic studies demonstrate that WPEP-N-b promotes the degradation of IκB-α, and enhances phosphorylation of MAPKs and the NF-κB p65 subunit. Our results also indicate that this polysaccharide activates RAW264.7 cells via MAPK and NF-κB signaling pathways and the Toll-like receptor 2(TLR2). These results increase our understanding as to how mushroom-derived polysaccharides modulate the immunologic process.
Collapse
|
27
|
Pang G, Wang F, Zhang LW. Dose matters: Direct killing or immunoregulatory effects of natural polysaccharides in cancer treatment. Carbohydr Polym 2018; 195:243-256. [PMID: 29804974 DOI: 10.1016/j.carbpol.2018.04.100] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/25/2018] [Accepted: 04/25/2018] [Indexed: 12/11/2022]
Abstract
Polysaccharides from natural resources possess anti-tumor activities for decades, but the efficacy of polysaccharides as the adjuvant drugs for cancer treatment at prescribed doses remains open for debate. In this review, molecular mechanisms involved in direct killing effects of polysaccharides, including apoptosis, cell cycle arrest and mitochondria/DNA damage were described. However, the concentrations/doses used to reach the direct killing effects are too high to be applicable. Polysaccharides can also exert anti-tumor effects through immunoregulation at lower doses, and the effects of polysaccharides on natural killer cells, dendritic cells and other lymphocytes for tumor destruction, along with the receptor recognition and downstream signaling pathways, were delineated. Unfortunately, the prescribed doses of polysaccharides are too low to stimulate immunoresponse, resulting in the failure of some clinical trials. Therefore, understanding the sophisticated mechanisms of the immunoregulatory function of natural polysaccharides with refined doses for clinical use will help the standardization of traditional medicine.
Collapse
Affiliation(s)
- Guibin Pang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, 201210, China
| | - Fujun Wang
- Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Zhejiang Reachall Pharmaceutical Co. Ltd., Zhejiang, 322100, China; Shanghai R&D Centre for Standardization of Chinese Medicines, Shanghai, 201210, China.
| | - Leshuai W Zhang
- School for Radiological and Interdisciplinary Sciences (RAD-X), State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China; Zhejiang Reachall Pharmaceutical Co. Ltd., Zhejiang, 322100, China.
| |
Collapse
|
28
|
Chen Q, Qi C, Peng G, Liu Y, Zhang X, Meng Z. Immune-enhancing effects of a polysaccharide PRG1-1 from Russula griseocarnosa on RAW264.7 macrophage cells via the MAPK and NF-κB signalling pathways. FOOD AGR IMMUNOL 2018. [DOI: 10.1080/09540105.2018.1461198] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Qian Chen
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, China
| | - Chong Qi
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, China
| | - Gong Peng
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, China
| | - Yang Liu
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
| | - Xinyuan Zhang
- Jilin Academy of Social Science, Institute of Japanese Studies, Changchun, China
| | - Zhaoli Meng
- Department of Translational Medicine Research Institute, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
29
|
Brito DR, Carbonero ER, Viana SR, Silva EV, Ruthes AC, Lião LM, Iacomini M. Partially methylated galactans containing different proportions of 3-O-methyl-galactose from Pleurotus citrinopileatus. Carbohydr Res 2018; 458-459:29-34. [DOI: 10.1016/j.carres.2018.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/01/2018] [Accepted: 02/01/2018] [Indexed: 11/16/2022]
|
30
|
A Proinflammatory Effect of the β-Glucan from Pleurotus cornucopiae Mushroom on Macrophage Action. Mediators Inflamm 2017; 2017:8402405. [PMID: 28611507 PMCID: PMC5458384 DOI: 10.1155/2017/8402405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 11/17/2022] Open
Abstract
PCPS from P. citrinopileatus mushroom extract is a β-1,6-glucan possessing a proinflammatory effect on innate immune cells. The PCPS stimulated THP-1 macrophages to secrete significant levels of TNF. Moreover, the mRNA expressions of TNF and IL-1β were significantly enhanced by PCPS treatment. However, the PCPS did not induce to express both IL-12 and IL-10 mRNA in the macrophages. Next, the P. cornucopiae extract (containing mainly PCPS) treatment against mice showed significant increases in TNF and IL-1β mRNA expressions in the peritoneal macrophages of them. In this study, the expression levels of IFNγ mRNA in the spleen were almost the same between the extract- (PCPS-) treated group and control group. However, the expression of IL-4 mRNA showed a lower level in the extract-treated group than that in the control. Our results suggested that the PCPS could induce proinflammatory action in the immune response. In addition, the proinflammatory effect of the PCPS on THP-1 was enhanced by 5′-GMP-Na, while it was reduced by vitamin D2. These two compounds are majorly contained in the P. citrinopileatus mushroom. Therefore, these results suggested that the P. citrinopileatus mushroom might contain other immune regulative compounds, such as vitamin D2, as well as PCPS.
Collapse
|