1
|
Khan FM, Abbasi MA, Rehman AU, Siddiqui SZ, Sadiq Butt AR, Raza H, Hassan M, Ali Shah SA, Shahid M, Kim SJ. Design of potent tyrosinase inhibiting N-arylated-4-yl-benzamides bearing 2-aminothiazole-triazole bi-heterocycles: mechanistic insight through enzyme inhibition, kinetics and computational studies. RSC Adv 2024; 14:16546-16559. [PMID: 38774615 PMCID: PMC11106707 DOI: 10.1039/d4ra01063a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 05/06/2024] [Indexed: 05/24/2024] Open
Abstract
By using a convergent methodology, a unique series of N-arylated 4-yl-benzamides containing a bi-heterocyclic thiazole-triazole core was synthesized and the structures of these hybrid molecules, 9a-k, were corroborated through spectral analyses. The in vitro studies of these multi-functional molecules demonstrated their potent mushroom tyrosinase inhibition relative to the standard used. The kinetics mechanism was exposed by lineweaver-burk plots which revealed that, 9c, inhibited mushroom tyrosinase non-competitively by forming an enzyme-inhibitor complex. The inhibition constant Ki calculated from Dixon plots for this compound was 0.016 μM. The computational study was also consistent with the experimental results and these molecules disclosed good results of all scoring functions and interactions, which suggested a good binding to mushroom tyrosinase. So, it was predicted from the inferred results that these molecules might be considered as promising medicinal scaffolds for the diseases associated with the over-expression of this enzyme.
Collapse
Affiliation(s)
- Farhan Mahmood Khan
- Department of Chemistry, Government College University Lahore 54000 Pakistan (+92)-42-111000010 Ext. 266
| | - Muhammad Athar Abbasi
- Department of Chemistry, Government College University Lahore 54000 Pakistan (+92)-42-111000010 Ext. 266
| | - Aziz-Ur Rehman
- Department of Chemistry, Government College University Lahore 54000 Pakistan (+92)-42-111000010 Ext. 266
| | - Sabahat Zahra Siddiqui
- Department of Chemistry, Government College University Lahore 54000 Pakistan (+92)-42-111000010 Ext. 266
| | - Abdul Rehman Sadiq Butt
- Department of Chemistry, Government College University Lahore 54000 Pakistan (+92)-42-111000010 Ext. 266
| | - Hussain Raza
- Department of Biological Sciences, College of Natural Sciences, Kongju National University Gongju 32588 South Korea
| | - Mubashir Hassan
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children Hospital Columbus Ohio 43205 USA
| | - Syed Adnan Ali Shah
- Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam Bandar Puncak Alam Selangor 42300 Malaysia
- Atta-ur-Rahman Institute for Natural Product Discovery (AuRIns), Universiti Teknologi MARA Cawangan Selangor Kampus Puncak Alam Bandar Puncak Alam Selangor 42300 Malaysia
| | - Muhammad Shahid
- Department of Biochemistry, University of Agriculture Faisalabad 38040 Pakistan
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University Gongju 32588 South Korea
| |
Collapse
|
2
|
Ahmed HB, Mikhail MM, Abdallah AEM, El-Shahat M, Emam HE. Pyrimidine-5-carbonitrile derivatives as sprout for CQDs proveniences: Antitumor and anti-inflammatory potentiality. Bioorg Chem 2023; 141:106902. [PMID: 37806048 DOI: 10.1016/j.bioorg.2023.106902] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/10/2023]
Abstract
A comparative study is proposed to show the effect of variation in the heteroatoms in the main skeleton of CQDs proveniences, on their affinity for nucleation of CQDs, as anti-inflammatory and anticancer drugs. Heterocyclic-based CQDs sprout was successfully exploited for preparation of three CQDs proveniences, named as; 2-(2,5-dimethoxyphenyl)-4,6-dioxo-6,11-dihydro-4H-pyrimido[2,1-b] quinazoline-3-carbonitrile (compound A), 2-(2,5-dimethoxyphenyl)-4,6-dioxo-4H,6H-benzo[e]pyrimido[2,1-b][1,3]oxazine-3-carbonitrile (compound S) and 2-(2,5-dimethoxyphenyl)-4,6-dioxo-4H,6H-benzo[e]pyrimido[2,1-b][1,3] thiazine-3-carbonitrile (compound T). Chemical formulas of CQDs proveniences & CQDs were verified via FTIR, 1HNMR, 13CNMR & XRD. Particle size of TM-CQDs, A-CQDs, S-CQDs & T-CQDs were estimated to be 3.7 ± 1.4, 4.6 ± 1.6, 5.9 ± 1.6 nm and 3.0 ± 1.3 nm, respectively. All of CQDs proveniences & CQDs were examined for their affinity as anti-inflammatory drugs via Griess assay. CQDs ingrained from TM (TM-CQDs) were detected with the highest NO inhibition% by increasing its concentration from 10 up to 100 μM to be 40 % to 89 %, respectively. Moreover, their anti-tumor performance against MCF-7: breast Adenocarcinoma cell line was approved via sulforhodamine B assay, whereas, IC50 was evaluated for TM-CQDs, A-CQDs, S-CQDs and T-CQDs to be 38.16, 36.09, 100 and 100 μg/ml, respectively.
Collapse
Affiliation(s)
- Hanan B Ahmed
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795, Egypt.
| | - Mary M Mikhail
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795, Egypt
| | - Amira E M Abdallah
- Chemistry Department, Faculty of Science, Helwan University, Ain-Helwan, Cairo 11795, Egypt
| | - Mahmoud El-Shahat
- Photochemistry Department, Chemical Industries Research Institute, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt
| | - Hossam E Emam
- Department of Pretreatment and Finishing of Cellulosic Fibers, Textile Research and Technology Institute, National Research Centre, 33 EL Buhouth St., Dokki, Giza 12622, Egypt.
| |
Collapse
|
3
|
Noriega S, Cardoso-Ortiz J, López-Luna A, Cuevas-Flores MDR, Flores De La Torre JA. The Diverse Biological Activity of Recently Synthesized Nitro Compounds. Pharmaceuticals (Basel) 2022; 15:717. [PMID: 35745635 PMCID: PMC9230682 DOI: 10.3390/ph15060717] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
The search for new and efficient pharmaceuticals is a constant struggle for medicinal chemists. New substances are needed in order to treat different pathologies affecting the health of humans and animals, and these new compounds should be safe, effective and have the fewest side effects possible. Some functional groups are known for having biological activity; in this matter, the nitro group (NO2) is an efficient scaffold when synthesizing new bioactive molecules. Nitro compounds display a wide spectrum of activities that include antineoplastic, antibiotic, antihypertensive, antiparasitic, tranquilizers and even herbicides, among many others. Most nitro molecules exhibit antimicrobial activity, and several of the compounds mentioned in this review may be further studied as lead compounds for the treatment of H. pylori, P. aeruginosa, M. tuberculosis and S. mutans infections, among others. The NO2 moiety triggers redox reactions within cells causing toxicity and the posterior death of microorganisms, not only bacteria but also multicellular organisms such as parasites. The same effect may be present in humans as well, so the nitro groups can be considered both a pharmacophore and a toxicophore at the same time. The role of the nitro group itself also has a deep effect on the polarity and electronic properties of the resulting molecules, and hence favors interactions with some amino acids in proteins. For these reasons, it is fundamental to analyze the recently synthesized nitro molecules that show any potential activity in order to develop new pharmacological treatments that enhance human health.
Collapse
Affiliation(s)
| | - Jaime Cardoso-Ortiz
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (S.N.); (A.L.-L.); (M.D.R.C.-F.); (J.A.F.D.L.T.)
| | | | | | | |
Collapse
|
4
|
Zhang J, Guo S, Guo Y, Yang Y. The crystal structure of N-cyclopentyl-3-hydroxy-4-methoxybenzamide, C 13H 17NO 3. Z KRIST-NEW CRYST ST 2022. [DOI: 10.1515/ncrs-2022-0070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C13H17NO3, monoclinic, Cc (no. 9), a = 11.6502(8) Å, b = 13.8752(8) Å, c = 7.9644(5) Å, β = 106.051(2)°, V = 1237.25(14) Å3, Z = 4, R
gt
(F) = 0.0427, wR
ref(F
2) = 0.1023, T = 170 K.
Collapse
Affiliation(s)
- Jingxiao Zhang
- College of Food and Medicine, Luoyang Normal University , Luoyang , China
| | - Shubin Guo
- College of Chemistry and Chemical Engineering, Luoyang Normal University , Luoyang , China
| | - Yongnan Guo
- College of Chemistry and Chemical Engineering, Luoyang Normal University , Luoyang , China
| | - Yanliang Yang
- College of Chemistry and Chemical Engineering, Luoyang Normal University , Luoyang , China
| |
Collapse
|
5
|
Ozleyen A, Cinar ZO, Karav S, Bayraktar A, Arslan A, Kayili HM, Salih B, Tumer TB. Biofortified Whey/Deglycosylated Whey and Chickpea Protein Matrices: Functional Enrichment by Black Mulberry Polyphenols. PLANT FOODS FOR HUMAN NUTRITION (DORDRECHT, NETHERLANDS) 2022; 77:51-61. [PMID: 34850338 DOI: 10.1007/s11130-021-00943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
Morus nigra L. (black mulberry-BM) is a promising nutraceutical fruit containing biologically active polyphenols like anthocyanins, proanthocyanidins, catechins, and stilbenes, with well-established anti-inflammatory, antidiabetic, anti-obesity, and anticancer biofunctions. However, these health-promoting properties in raw fruit are greatly masked due to the presence of soluble and insoluble carbohydrates in excess amounts restricting daily intake of the required dose to achieve targeted effects. In the current study, different protein sources (defatted whey and chickpea flours) were optimized through different conditions to capture polyphenols from BM juice while diminishing its glucose content. To optimize polyphenol-protein interactions, various pHs (3.7, 4.2, and 4.7), matrix concentrations (20, 50, and 80 g protein/L), and incubation times (5, 20, and 45 min) were tested. In the present work, optimized BM polyphenol enriched whey matrix inhibited pro-inflammatory mediators and promoted Nrf-2 dependent cytoprotective enzyme expressions in lipopolysaccharide (LPS) induced macrophages at low doses. In addition, whey proteins were also subjected to an enzymatic deglycosylation process by using recently identified EndoBI-1 enzyme for the specific cleavage of N-glycan core in all glycan types including high mannoses, hybrids as well as complex glycans found on defatted whey proteins. After this process, the polyphenol sorption capacity of deglycosylated whey proteins was found to be significantly higher (37%) than the capacity of non-treated normal whey protein under optimized conditions. In conclusion, deglycosylation of protein matrices could be a novel strategy for efficient sorption/concentration of polyphenols from fruits and vegetables, however, more detailed studies are needed to understand this effect.
Collapse
Affiliation(s)
- Adem Ozleyen
- Graduate Program of Biomolecular Sciences, School of Graduate Studies, Canakkale Onsekiz Mart University, 17020, Çanakkale, Turkey
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
| | - Zeynep Ozlem Cinar
- Graduate Program of Molecular Biology and Genetics, School of Graduate Studies, Canakkale Onsekiz Mart University, 17020, Çanakkale, Turkey
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Çanakkale Onsekiz Mart University, 17020, Çanakkale, Turkey
| | - Ayse Bayraktar
- Graduate Program of Biomolecular Sciences, School of Graduate Studies, Canakkale Onsekiz Mart University, 17020, Çanakkale, Turkey
| | - Aysenur Arslan
- Graduate Program of Molecular Biology and Genetics, School of Graduate Studies, Canakkale Onsekiz Mart University, 17020, Çanakkale, Turkey
| | - H Mehmet Kayili
- Department of Biomedical Engineering, Faculty of Engineering, Karabuk University, 78000, Karabuk, Turkey
| | - Bekir Salih
- Department of Chemistry, Faculty of Science, Hacettepe University, 06500, Ankara, Turkey
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Çanakkale Onsekiz Mart University, 17020, Çanakkale, Turkey.
| |
Collapse
|
6
|
Güngör T, Ozleyen A, Yılmaz YB, Siyah P, Ay M, Durdağı S, Tumer TB. New nimesulide derivatives with amide/sulfonamide moieties: Selective COX-2 inhibition and antitumor effects. Eur J Med Chem 2021; 221:113566. [PMID: 34077833 DOI: 10.1016/j.ejmech.2021.113566] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/15/2021] [Accepted: 05/18/2021] [Indexed: 12/16/2022]
Abstract
Seventeen new amide/sulfonamide containing nimesulide derivatives were synthesized and characterized by several spectroscopic techniques and primarily investigated for their inhibitory potential on COX enzymes and other pro-inflammatory factors. Experimental analyses showed that among seventeen compounds, N8 and N10 have remarkable potency and selectivity for the COX-2 enzyme over COX-1 at very low doses as compared to nimesulide. Moreover, both N8 and N10 selectively reduced the Lipopolysaccharide (LPS)-stimulated COX-2 mRNA expression level while the COX-1 level remained stable. Both PGE2 release and nitric oxide production in macrophage cells were significantly suppressed by the N8 and N10 treatment groups. In silico ADME/Tox, molecular docking and molecular dynamics (MD) simulations were also conducted. Additionally, all compounds were also screened in a panel of cancer cell lines for their antiproliferative properties by MTT and SRB assays. Compound N17 exhibited a considerable antiproliferative effect on the colon (IC50: 9.24 μM) and breast (IC50: 11.35 μM) cancer cell lines. N17 exposure for 48 h decreased expression of anti-apoptotic protein BCL-2 and increased the expression of apoptogenic BAX. Besides, the BAX/BCL-2 ratio was increased with visible ultrastructural changes and apoptotic bodies under scanning electron microscopy. In order to investigate the structural and dynamical properties of selected hits on the target structures, multiscale molecular modeling studies are also conducted. Our combined in silico and in vitro results suggest that N8 and N10 could be further developed as potential nonsteroidal anti-inflammatory drugs (NSAIDs), while cytotoxic N17 might be studied as a potential lead compound that could be developed as an anticancer agent.
Collapse
Affiliation(s)
- Tuğba Güngör
- Department of Chemistry, Faculty of Sciences and Arts, Natural Products and Drug Research Laboratory, Çanakkale Onsekiz Mart University, Çanakkale, 17020, Turkey.
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, School of Graduate Studies, Canakkale Onsekiz Mart University, 17020, Çanakkale, Turkey; School of Chemistry, University of Leicester, LE1 7RH, Leicester, United Kingdom
| | - Yakup Berkay Yılmaz
- Graduate Program of Biomolecular Sciences, School of Graduate Studies, Canakkale Onsekiz Mart University, 17020, Çanakkale, Turkey; Department of Molecular Biology and Genetics, Faculty of Arts and Science, Çanakkale Onsekiz Mart University, 17020, Çanakkale, Turkey
| | - Pinar Siyah
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, 34353, Istanbul, Turkey
| | - Mehmet Ay
- Department of Chemistry, Faculty of Sciences and Arts, Natural Products and Drug Research Laboratory, Çanakkale Onsekiz Mart University, Çanakkale, 17020, Turkey
| | - Serdar Durdağı
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, 34353, Istanbul, Turkey
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Çanakkale Onsekiz Mart University, 17020, Çanakkale, Turkey.
| |
Collapse
|
7
|
Koksal M, Dedeoglu-Erdogan A, Bader M, Gurdal EE, Sippl W, Reis R, Ozgurbuz M, Sipahi H, Celik T. Design, synthesis, and molecular docking of novel 3,5-disubstituted-1,3,4-oxadiazole derivatives as iNOS inhibitors. Arch Pharm (Weinheim) 2021; 354:e2000469. [PMID: 33969533 DOI: 10.1002/ardp.202000469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/13/2021] [Accepted: 04/16/2021] [Indexed: 11/06/2022]
Abstract
To obtain new anti-inflammatory agents, recent studies have aimed to replace the carboxylate functionality of nonsteroidal anti-inflammatory drugs with less acidic heterocyclic bioisosteres like 1,3,4-oxadiazole to protect the gastric mucosa from free carboxylate moieties. In view of these observations, we designed and synthesized a series of 3,5-disubstituted-1,3,4-oxadiazole derivatives as inhibitors of prostaglandin E2 (PGE2 ) and NO production with an improved activity profile. As initial screening, and to examine the anti-inflammatory activities of the compounds, the inhibitions of the productions of lipopolysaccharide-induced NO and PGE2 in RAW 264.7 macrophages were evaluated. The biological assays showed that, compared with indomethacin, compounds 5a, 5g, and 5h significantly inhibited NO production with 12.61 ± 1.16, 12.61 ± 1.16, and 18.95 ± 3.57 µM, respectively. Consequently, the three compounds were evaluated for their in vivo anti-inflammatory activities. Compounds 5a, 5g, and 5h showed a potent anti-inflammatory activity profile almost equivalent to indomethacin at the same dose in the carrageenan-induced paw edema test. Moreover, the treatment with 40 mg/kg of 5h produced significant anti-inflammatory activity data. Furthermore, docking studies were performed to reveal possible interactions with the inducible nitric oxide synthase enzyme. Docking results were able to rationalize the biological activity data of the studied inhibitors. In summary, our data suggest that compound 5h is identified as a promising candidate for further anti-inflammatory drug development with an extended safety profile.
Collapse
Affiliation(s)
- Meric Koksal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Ayca Dedeoglu-Erdogan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Marwa Bader
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey.,Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Omar Al-Mukhtar University, Al Bayda, Libya
| | - Enise E Gurdal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey.,Department of Pharmaceutical Chemistry and Clinical Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry and Clinical Pharmacy, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Rengin Reis
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey.,Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Acibadem University, Istanbul, Turkey
| | - Melda Ozgurbuz
- Department of Pharmacology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Hande Sipahi
- Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| | - Turgay Celik
- Department of Pharmacology, Faculty of Pharmacy, Yeditepe University, Istanbul, Turkey
| |
Collapse
|
8
|
Anti-inflammatory activity of novel thiosemicarbazone compounds indole-based as COX inhibitors. Pharmacol Rep 2021; 73:907-925. [PMID: 33590474 DOI: 10.1007/s43440-021-00221-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND In this article, a series of 20 new thiosemicarbazone derivatives containing indole were synthesized and evaluated for their anti-inflammatory potential. METHODS The compounds were obtained through a synthetic route of only two steps, with yields that varied between 33.6 and 90.4%, and characterized by spectroscopic and spectrometric techniques. RESULTS An initial screening through the lymphoproliferation assay revealed that compounds LT76, LT81, and LT87 were able to inhibit lymphocyte proliferation, with CC50 of 0.56 ± 0.036, 0.9 ± 0.01 and 0.5 ± 0.07 µM, respectively, better results than indomethacin (CC50 > 12 µM). In addition, these compounds were able to suppress the in-vitro production of TNF-α and NO, in addition to stimulating the production of IL-4. Reinforcing in-vitro assays, the compounds were able to inhibit COX-2 similar to Celecoxib showing greater selectivity for this isoform (LT81 SI: 23.06 versus Celecoxib SI: 11.88). Animal studies showed that compounds LT76 (64.8% inhibition after 6 h), LT81 (89% inhibition after 6 h) and LT87 (100% inhibition after 4 h) were able to suppress edema in mice after inoculation carrageenan with greater potency than indomethacin, and immunohistochemistry revealed that the groups treated with LT76, LT81 and LT87 reduced the expression of COX-2, similar or better results when compared to indomethacin. Complementarily, in-silico studies have shown that these compounds have a good pharmacokinetic profile, for respecting the parameters of Lipinski and Veber, showing their good bioavailability. CONCLUSIONS These results demonstrate the potency of thiosemicarbazone derivatives containing indole and confirm their importance as scaffolds of molecules with notorious anti-inflammatory activity.
Collapse
|
9
|
Mittal A, Kakkar R. Nitric Oxide Synthases and Their Inhibitors: A Review. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190222154457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric Oxide (NO), an important biological mediator, is involved in the regulation of the cardiovascular, nervous and immune systems in mammals. Synthesis of NO is catalyzed by its biosynthetic enzyme, Nitric Oxide Synthase (NOS). There are three main isoforms of the enzyme, neuronal NOS, endothelial NOS and inducible NOS, which have very similar structures but differ in their expression and activities. NO is produced in the active site of the enzyme in two distinct cycles from oxidation of the substrate L-arg (L-arginine) in nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reaction. NOS has gained considerable attention of biochemists due to its complexity and unique catalytic mechanism. The review focuses on NOS structure, its function and catalytic reaction mechanism. In particular, the review is concluded with a discussion on the role of all three isoforms of NOS in physiological and pathological conditions and their inhibitors with a focus on the role of computational techniques in their development.
Collapse
Affiliation(s)
- Anshika Mittal
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
10
|
Roriz BC, Buccini DF, Santos BFD, Silva SRDS, Domingues NLDC, Moreno SE. Synthesis and biological activities of a nitro-shiff base compound as a potential anti-inflammatory agent. Eur J Pharm Sci 2020; 148:105300. [PMID: 32160953 DOI: 10.1016/j.ejps.2020.105300] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/02/2020] [Accepted: 03/07/2020] [Indexed: 12/20/2022]
Abstract
In order to discover a new compound having anti-inflammatory activity, a nitro-Schiff base was evaluated. The compound was synthesized and characterized by 1H NMR and 13C NMR. The cytotoxic activity was evaluated in vitro by hemolysis and MTT cell viability assay. To evaluate genotoxicity, the micronucleus assay was performed in vivo. The anti-inflammatory effects of the compound were examined using in vivo models of inflammation such as neutrophil migration assay, paw edema, and exudation assay. The production of NO was also estimated in vivo and in vitro. The data showed that the compound did not induce hemolysis at all the tested concentrations. Similarly, the compound did not induce cytotoxicity and genotoxicity to the cells. The neutrophil migration assay showed that the compound reduced the number of neutrophils recruited to the peritoneal cavity by approximately 60% at all the tested concentrations. In the exudation assay, the compound showed a reduction in extravasation by 24%. The paw edema model demonstrated a significant reduction in the paw volume at all the evaluated time points. The production of NO was decreased both in vitro and in vivo. These results suggest that the nitro-Schiff base compound efficiently inhibited inflammation and might be a good candidate for the treatment of inflammatory-associated conditions.
Collapse
Affiliation(s)
- Beatriz Cardoso Roriz
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade Federal de Mato Grosso do Sul, Cidade Universitária, Avenida Costa e Silva - Pioneiros, Campo Grande, MS, 79070-900, Brazil
| | - Danieli Fernanda Buccini
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Avenida Tamandaré, 6000 - Jardim seminário, Campo Grande, MS, 79117-010, Brazil
| | - Beatriz Fuzinato Dos Santos
- Programa de Pós-Graduação em Química em Associação, Universidade Federal da Grande Dourados, Dourados, MS, Brazil
| | - Suellen Rolon de Sousa Silva
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Avenida Tamandaré, 6000 - Jardim seminário, Campo Grande, MS, 79117-010, Brazil
| | | | - Susana Elisa Moreno
- Programa de Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Avenida Tamandaré, 6000 - Jardim seminário, Campo Grande, MS, 79117-010, Brazil.
| |
Collapse
|
11
|
Kurt B, Ozleyen A, Antika G, Yilmaz YB, Tumer TB. Multitarget Profiling of a Strigolactone Analogue for Early Events of Alzheimer's Disease: In Vitro Therapeutic Activities against Neuroinflammation. ACS Chem Neurosci 2020; 11:501-507. [PMID: 32017526 DOI: 10.1021/acschemneuro.9b00694] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Neuropathological changes in Alzheimer's disease (AD) are directly linked to the early inflammatory microenvironment in the brain. Therefore, disease-modifying agents targeting neuroinflammation may open up new avenues in the treatment of AD. Strigolactones (SLs), subclasses of structurally diverse and biologically active apocarotenoids, have been recently identified as novel phytohormones. In spite of the remarkable anticancer capacity shown by SLs, their effects on the brain remained unexplored. Herein, the SIM-A9 microglial cell line was used as a phenotypic screening tool to search for the representative SL, GR24, demonstrating marked potency in the suppression of lipopolysaccharide (LPS)-induced neuroinflammatory/neurotoxic mediators by regulating NF-κB, Nrf2, and PPARγ signaling. GR24 also in the brain endothelial cell line bEnd.3 mitigated the LPS-increased permeability as evidenced by reduced Evans' blue extravasation through enhancing the expression of tight junction protein, occludin. Collectively, the present work shows the anti-neuroinflammatory and glia/neuroprotective properties of GR24, making SLs promising scaffolds for the development of novel anti-AD candidates.
Collapse
Affiliation(s)
- Begum Kurt
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| | - Gizem Antika
- Graduate Program of Molecular Biology and Genetics, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| | - Yakup Berkay Yilmaz
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, Canakkale, 17020 Turkey
| |
Collapse
|
12
|
Shou J, Kong X, Wang X, Tang Y, Wang C, Wang M, Zhang L, Liu Y, Fei C, Xue F, Li J, Zhang K. Tizoxanide Inhibits Inflammation in LPS-Activated RAW264.7 Macrophages via the Suppression of NF-κB and MAPK Activation. Inflammation 2020; 42:1336-1349. [PMID: 30937840 DOI: 10.1007/s10753-019-00994-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Tizoxanide is the main active metabolite of nitazoxanide. Nitazoxanide and tizoxanide have a broad-spectrum anti-infective effect, including parasites, bacteria, and virus. In the present study, we investigated the anti-inflammatory effect of tizoxanide on lipopolysaccharide (LPS)-stimulated RAW264.7 cells and revealed underlying molecular mechanisms. The results showed that tizoxanide significantly suppressed production of NO as well as pro-inflammatory cytokines, such as IL-1β, IL-6, and TNF-α in dose-dependent manner. Meanwhile, the levels of gene expression of these cytokines were inhibited significantly by tizoxanide that was discovered using RT-PCR. The increased protein levels of inducible nitric oxide synthase, heme oxygenase-1, and cyclooxygenase-2 by LPS in the cells were also reduced by tizoxanide. Moreover, we found that tizoxanide inhibited the phosphorylation of IKK-α and degradation of IκB by LPS in macrophage cells. The increased protein levels of p65 induced by LPS in the cytoplasm and nucleus were both decreased by tizoxanide, and the nuclear translocation of p65 was also restrained in cell imaging. In addition, tizoxanide considerably also inhibited LPS-activated JNK, p38, and ERK phosphorylation in RAW264.7 cells. Taken together, our results suggested that tizoxanide exerts anti-inflammatory effects, by inhibiting the production of pro-inflammatory cytokines and suppressing of the activation of the NF-κB and the MAPK signaling pathways in LPS-treated macrophage cells.
Collapse
Affiliation(s)
- Jiaoqin Shou
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China.,College of Chemistry, Xiangtan University, Yuhu District, Xiangtan, 411105, Hunan, China
| | - Xiangzhen Kong
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Xiaoyang Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Ying Tang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Chunmei Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Mi Wang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Lifang Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Yingchun Liu
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Chenzhong Fei
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Feiqun Xue
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China
| | - Juan Li
- College of Chemistry, Xiangtan University, Yuhu District, Xiangtan, 411105, Hunan, China
| | - Keyu Zhang
- Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 518 Ziyue RD, Minhang District, Shanghai, 200241, China.
| |
Collapse
|
13
|
Kulabas SS, Onder FC, Yılmaz YB, Ozleyen A, Durdagi S, Sahin K, Ay M, Tumer TB. In vitro and in silico studies of nitrobenzamide derivatives as potential anti-neuroinflammatory agents. J Biomol Struct Dyn 2019; 38:4655-4668. [DOI: 10.1080/07391102.2019.1684368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Seda Savranoglu Kulabas
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Ferah Comert Onder
- Natural Products and Drug Research Laboratory, Department of Chemistry, Faculty of Science and Art, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Yakup Berkay Yılmaz
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Serdar Durdagi
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Kader Sahin
- Computational Biology and Molecular Simulations Laboratory, Department of Biophysics, School of Medicine, Bahçeşehir University, Istanbul, Turkey
| | - Mehmet Ay
- Natural Products and Drug Research Laboratory, Department of Chemistry, Faculty of Science and Art, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Science and Art, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
14
|
Andrade JT, Alves SLG, Lima WG, Sousa CDF, Carmo LF, De Sá NP, Morais FB, Johann S, Villar JAFP, Ferreira JMS. Pharmacologic potential of new nitro-compounds as antimicrobial agents against nosocomial pathogens: design, synthesis, and in vitro effectiveness. Folia Microbiol (Praha) 2019; 65:393-405. [PMID: 31401762 DOI: 10.1007/s12223-019-00747-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/29/2019] [Indexed: 11/24/2022]
Abstract
Nosocomial infections are an important cause of morbi-mortality worldwide. The increase in the rate of resistance to conventional drugs in these microorganisms has stimulated the search for new therapeutic options. The nitro moiety (NO2) is an important pharmacophore of molecules with high anti-infective activity. We aimed to synthesize new nitro-derivates and to evaluate their antibacterial and anti-Candida potential in vitro. Five compounds [3-nitro-2-phenylchroman-4-ol (3); 3-nitro-2-phenyl-2H-chromene (4a); 3-nitro-2-(4-chlorophenyl)-2H-chromene (4b); 3-nitro-2-(4-fluorophenyl)-2H-chromene (4c), and 3-Nitro-2-(2,3-dichlorophenyl)-2H-chromene (4d)] were efficiently synthesized by Michael-aldol reaction of 2-hydroxybenzaldehyde with nitrostyrene, resulting in one β-nitro-alcohol (3) and four nitro-olefins (4a-4d). The antibacterial and anti-Candida potentials were evaluated by assaying minimal inhibitory concentration (MIC), minimum fungicidal concentration (MFC), and minimum bactericidal concentration (MBC). Mono-halogenated nitro-compounds (4b and 4c) showed anti-staphylococcal activity with MIC values of 15.6-62.5 μg/mL and MBC of 62.5 μg/mL. However, the activity against Gram-negative strains was showed to be considerably lower and our data suggests that this effect was associated with the outer membrane. Furthermore, nitro-compounds 4c and 4d presented activity against Candida spp. with MIC values ranging from 7.8-31.25 μg/mL and MFC of 15.6-500 μg/mL. In addition, these compounds were able to induce damage in fungal cells increasing the release of intracellular material, which was associated with actions on the cell wall independent of quantitative changes in chitin and β-glucan. Together, these findings show that nitro-compounds can be exploited as anti-staphylococcal and anti-Candida prototypes.
Collapse
Affiliation(s)
- Jéssica Tauany Andrade
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei (UFSJ), Campus Centro Oeste Dona Lindu/Universidade Federal de São João Del-Rei. Rua Sebastião Gonçalves Coelho, 400, Chanadour, Divinópolis, Minas Gerais, 35501-293, Brazil
| | - Silmara Lucia Grego Alves
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del-Rei (UFSJ) - Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - William Gustavo Lima
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei (UFSJ), Campus Centro Oeste Dona Lindu/Universidade Federal de São João Del-Rei. Rua Sebastião Gonçalves Coelho, 400, Chanadour, Divinópolis, Minas Gerais, 35501-293, Brazil
| | - Carla Daiane Ferreira Sousa
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei (UFSJ), Campus Centro Oeste Dona Lindu/Universidade Federal de São João Del-Rei. Rua Sebastião Gonçalves Coelho, 400, Chanadour, Divinópolis, Minas Gerais, 35501-293, Brazil
| | - Lucas Fernandes Carmo
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del-Rei (UFSJ) - Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Nívea Pereira De Sá
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda Barbara Morais
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei (UFSJ), Campus Centro Oeste Dona Lindu/Universidade Federal de São João Del-Rei. Rua Sebastião Gonçalves Coelho, 400, Chanadour, Divinópolis, Minas Gerais, 35501-293, Brazil
| | - Susana Johann
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - José Augusto Ferreira Perez Villar
- Laboratório de Síntese Orgânica e Nanoestruturas, Universidade Federal de São João del-Rei (UFSJ) - Campus Centro Oeste Dona Lindu, Divinópolis, Minas Gerais, Brazil
| | - Jaqueline Maria Siqueira Ferreira
- Laboratório de Microbiologia Médica, Universidade Federal de São João del-Rei (UFSJ), Campus Centro Oeste Dona Lindu/Universidade Federal de São João Del-Rei. Rua Sebastião Gonçalves Coelho, 400, Chanadour, Divinópolis, Minas Gerais, 35501-293, Brazil.
| |
Collapse
|
15
|
Güngör T, Önder FC, Tokay E, Gülhan ÜG, Hacıoğlu N, Tok TT, Çelik A, Köçkar F, Ay M. PRODRUGS FOR NITROREDUCTASE BASED CANCER THERAPY- 2: Novel amide/Ntr combinations targeting PC3 cancer cells. Eur J Med Chem 2019; 171:383-400. [DOI: 10.1016/j.ejmech.2019.03.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
|
16
|
Salehi B, Zakaria ZA, Gyawali R, Ibrahim SA, Rajkovic J, Shinwari ZK, Khan T, Sharifi-Rad J, Ozleyen A, Turkdonmez E, Valussi M, Tumer TB, Monzote Fidalgo L, Martorell M, Setzer WN. Piper Species: A Comprehensive Review on Their Phytochemistry, Biological Activities and Applications. Molecules 2019; 24:E1364. [PMID: 30959974 PMCID: PMC6479398 DOI: 10.3390/molecules24071364] [Citation(s) in RCA: 186] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/23/2022] Open
Abstract
Piper species are aromatic plants used as spices in the kitchen, but their secondary metabolites have also shown biological effects on human health. These plants are rich in essential oils, which can be found in their fruits, seeds, leaves, branches, roots and stems. Some Piper species have simple chemical profiles, while others, such as Piper nigrum, Piper betle, and Piper auritum, contain very diverse suites of secondary metabolites. In traditional medicine, Piper species have been used worldwide to treat several diseases such as urological problems, skin, liver and stomach ailments, for wound healing, and as antipyretic and anti-inflammatory agents. In addition, Piper species could be used as natural antioxidants and antimicrobial agents in food preservation. The phytochemicals and essential oils of Piper species have shown strong antioxidant activity, in comparison with synthetic antioxidants, and demonstrated antibacterial and antifungal activities against human pathogens. Moreover, Piper species possess therapeutic and preventive potential against several chronic disorders. Among the functional properties of Piper plants/extracts/active components the antiproliferative, anti-inflammatory, and neuropharmacological activities of the extracts and extract-derived bioactive constituents are thought to be key effects for the protection against chronic conditions, based on preclinical in vitro and in vivo studies, besides clinical studies. Habitats and cultivation of Piper species are also covered in this review. In this current work, available literature of chemical constituents of the essential oils Piper plants, their use in traditional medicine, their applications as a food preservative, their antiparasitic activities and other important biological activities are reviewed.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran.
| | - Zainul Amiruddin Zakaria
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Rabin Gyawali
- Department of Food and Nutritional Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Salam A Ibrahim
- Department of Food and Nutritional Sciences, North Carolina A&T State University, Greensboro, NC 27411, USA.
| | - Jovana Rajkovic
- Institute of Pharmacology, Clinical Pharmacology and Toxicology, Medical Faculty, University of Belgrade, 11129 Belgrade, Serbia.
| | - Zabta Khan Shinwari
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Tariq Khan
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Javad Sharifi-Rad
- Food Safety Research Center (salt), Semnan University of Medical Sciences, Semnan 35198-99951, Iran.
| | - Adem Ozleyen
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.
| | - Elif Turkdonmez
- Graduate Program of Biomolecular Sciences, Institute of Natural and Applied Sciences, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.
| | - Marco Valussi
- European Herbal and Traditional Medicine Practitioners Association (EHTPA), 25 Lincoln Close, GL20 5TY Tewkesbury, UK.
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, 17020 Canakkale, Turkey.
| | - Lianet Monzote Fidalgo
- Parasitology Department, Institute of Tropical Medicine "Pedro Kouri", 10400 Havana, Cuba.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, 4070386 Concepcion, VIII-Bio Bio Region, Chile.
| | - William N Setzer
- Department of Chemistry, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
- Aromatic Plant Research Center, 230 N 1200 E, Suite 100, Lehi, UT 84043, USA.
| |
Collapse
|
17
|
Tumer TB, Yılmaz B, Ozleyen A, Kurt B, Tok TT, Taskin KM, Kulabas SS. GR24, a synthetic analog of Strigolactones, alleviates inflammation and promotes Nrf2 cytoprotective response: In vitro and in silico evidences. Comput Biol Chem 2018; 76:179-190. [DOI: 10.1016/j.compbiolchem.2018.07.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/13/2018] [Accepted: 07/18/2018] [Indexed: 12/17/2022]
|
18
|
Wei ZY, Chi KQ, Wang KS, Wu J, Liu LP, Piao HR. Design, synthesis, evaluation, and molecular docking of ursolic acid derivatives containing a nitrogen heterocycle as anti-inflammatory agents. Bioorg Med Chem Lett 2018; 28:1797-1803. [PMID: 29678461 DOI: 10.1016/j.bmcl.2018.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/08/2018] [Accepted: 04/10/2018] [Indexed: 01/14/2023]
Abstract
Ursolic acid derivatives containing oxadiazole, triazolone, and piperazine moieties were synthesized in an attempt to develop potent anti-inflammatory agents. Structures of the synthesized compounds were elucidated by 1H NMR, 13C NMR, and HRMS. Most of the synthesized compounds showed pronounced anti-inflammatory effects at 100 mg/kg. In particular, compound 11b, which displayed the most potent anti-inflammatory activity of all of the compounds prepared, with 69.76% inhibition after intraperitoneal administration, was more potent than the reference drugs indomethacin and ibuprofen. The cytotoxicity of the compounds was also assessed by the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide (MTT) assay, and no compounds showed any appreciable cytotoxic activity (IC50 >100 μmol/L). Furthermore, molecular docking studies of the synthesized compounds were performed to rationalize the obtained biological results. Overall, the results indicate that compound 11b could be a therapeutic candidate for the treatment of inflammation.
Collapse
Affiliation(s)
- Zhi-Yu Wei
- Medical College of Dalian University, Dalian, Liaoning Province 116622, China
| | - Ke-Qiang Chi
- Medical College of Dalian University, Dalian, Liaoning Province 116622, China
| | - Ke-Si Wang
- Medical College of Dalian University, Dalian, Liaoning Province 116622, China
| | - Jie Wu
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, China
| | - Li-Ping Liu
- Medical College of Dalian University, Dalian, Liaoning Province 116622, China.
| | - Hu-Ri Piao
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, Yanbian University College of Pharmacy, Yanji, Jilin Province 133002, China.
| |
Collapse
|
19
|
Structural design, synthesis and substituent effect of hydrazone-N-acylhydrazones reveal potent immunomodulatory agents. Bioorg Med Chem 2018. [DOI: 10.1016/j.bmc.2018.02.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Ahn J, Chae HS, Chin YW, Kim J. Alkaloids from aerial parts of Houttuynia cordata and their anti-inflammatory activity. Bioorg Med Chem Lett 2017; 27:2807-2811. [DOI: 10.1016/j.bmcl.2017.04.072] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 04/19/2017] [Accepted: 04/24/2017] [Indexed: 11/25/2022]
|