1
|
Rao J, Wang T, Wang K, Qiu F. Integrative analysis of metabolomics and proteomics reveals mechanism of berberrubine-induced nephrotoxicity. Toxicol Appl Pharmacol 2024; 488:116992. [PMID: 38843998 DOI: 10.1016/j.taap.2024.116992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/11/2024]
Abstract
Berberrubine (BRB), a main metabolite of berberine, has stronger hypoglycemic and lipid-lowering activity than its parent form. We previously found that BRB could cause obvious nephrotoxicity, but the molecular mechanism involved remains unknown. In this study, we systematically integrated metabolomics and quantitative proteomics to reveal the potential mechanism of nephrotoxicity caused by BRB. Metabolomic analysis revealed that 103 significant- differentially metabolites were changed. Among the mentioned compounds, significantly upregulated metabolites were observed for phosphorylcholine, sn-glycerol-3-phosphoethanolamine, and phosphatidylcholine. The top three enriched KEGG pathways were the mTOR signaling pathway, central carbon metabolism in cancer, and choline metabolism in cancer. ERK1/2 plays key roles in all three metabolic pathways. To further confirm the main signaling pathways involved, a proteomic analysis was conducted to screen for key proteins (such as Mapk1, Mapk14, and Caspase), indicating the potential involvement of cellular growth and apoptosis. Moreover, combined metabolomics and proteomics analyses revealed the participation of ERK1/2 in multiple metabolic pathways. These findings indicated that ERK1/2 regulated the significant- differentially abundant metabolites determined via metabolomics analysis. Notably, through a cellular thermal shift assay (CETSA) and molecular docking, ERK1/2 were revealed to be the direct binding target involved in BRB-induced nephrotoxicity. To summarize, this study sheds light on the understanding of severe nephrotoxicity caused by BRB and provides scientific basis for its safe use and rational development.
Collapse
Affiliation(s)
- Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Tianwang Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China
| | - Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, PR China.
| |
Collapse
|
2
|
Das A, Jana G, Sing S, Basu A. Insights into the interaction and inhibitory action of palmatine on lysozyme fibrillogenesis: Spectroscopic and computational studies. Int J Biol Macromol 2024; 268:131703. [PMID: 38643915 DOI: 10.1016/j.ijbiomac.2024.131703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Interaction under amyloidogenic condition between naturally occurring protoberberine alkaloid palmatine and hen egg white lysozyme was executed by adopting spectrofluorometric and theoretical molecular docking and dynamic simulation analysis. In spetrofluorometric method, different types of experiments were performed to explore the overall mode and mechanism of interaction. Intrinsic fluorescence quenching of lysozyme (Trp residues) by palmatine showed effective binding interaction and also yielded different binding parameters like binding constant, quenching constant and number of binding sites. Synchronous fluorescence quenching and 3D fluorescence map revealed that palmatine was able to change the microenvironment of the interacting site. Fluorescence life time measurements strongly suggested that this interaction was basically static in nature. Molecular docking result matched with fluorimetric experimental data. Efficient drug like interaction of palmatine with lysozyme at low pH and high salt concentration prompted us to analyze its antifibrillation potential. Different assays and microscopic techniques were employed for detailed analysis of lysozyme amyloidosis.Thioflavin T(ThT) assay, Congo Red (CR) assay, 8-anilino-1-naphthalenesulfonic acid (ANS) assay, Nile Red (NR) assay, anisotropy and intrinsic fluorescence measurements confirmed that palmatine successfully retarded and reduced lysozyme fibrillation. Dynamic light scattering (DLS) and atomic force microscopy (AFM) further reiterated the excellent antiamyloidogenic potency of palmatine.
Collapse
Affiliation(s)
- Arindam Das
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Gouranga Jana
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Shukdeb Sing
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India
| | - Anirban Basu
- Department of Chemistry and Chemical Technology, Vidyasagar University, Midnapore 721 102, India.
| |
Collapse
|
3
|
Li C, Huo D, Liu X, Yang H, Pang Y, Tang Q, Xing H, Shi Y, Chen X. Interpreting the chemical changes and therapeutic effect of Coptidis Rhizoma against ulcerative colitis before and after processing based on mathematical statistics and network pharmacology. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:271-287. [PMID: 37779218 DOI: 10.1002/pca.3287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 10/03/2023]
Abstract
INTRODUCTION Coptidis Rhizoma (CR) is one of the most frequently used herbs to treat ulcerative colitis (UC) and is often processed before usage. However, the composition changes and therapeutic effects of CR before and after processing in the treatment of UC are still unclear. OBJECTIVE The purpose of the study is to explore the chemical components and therapeutic effects of crude and processed CR. MATERIAL AND METHODS CR was processed according to the 2020 version of the Chinese Pharmacopoeia. The liquid chromatography-mass spectrometry (LC-MS) and multivariate statistical analysis were used to screen the different compounds before and after processing. The network pharmacological prediction was carried out. The mechanism and therapeutic effects between crude and processed CR were verified by using dextran sulphate sodium-induced UC mice assay. RESULTS Ten compounds distinguish crude and processed CR based on multivariate statistical analysis. Network pharmacology predicts that the 10 compounds mainly play a role through TNF-α and IL-6 targets and PI3K/Akt and HIF-1 signalling pathways, and these results are verified by molecular biology experiments. For IL-6, IL-10 and TNF-α inflammatory factors, CR is not effective, while CR stir-fried with Evodiae Fructus (CRFE) and ginger juice (CRGJ) are. For PI3K/p-Akt, Cleaved caspase3, NF- κBp65 and HIF-1α signalling pathways, CR has therapeutic effects, while CRFE and CRGJ are significant. CONCLUSION Overall, CRFE and CRGJ show better effects in treating UC. The chemical changes of processing and the efficacy of processed CR are correlated, which provides a scientific basis for the clinical use of crude and processed CR.
Collapse
Affiliation(s)
- Chunxia Li
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Bingjing, China
| | - Dongna Huo
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiuxue Liu
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hongxia Yang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuqing Pang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qian Tang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hong Xing
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yumeng Shi
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaopeng Chen
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Haihe Laboratory of Modern Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Yoo MJ, Choi J, Jang YJ, Park SY, Seol JW. Anti-cancer effect of palmatine through inhibition of the PI3K/AKT pathway in canine mammary gland tumor CMT-U27 cells. BMC Vet Res 2023; 19:223. [PMID: 37880653 PMCID: PMC10601335 DOI: 10.1186/s12917-023-03782-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023] Open
Abstract
Canine mammary gland tumors (CMTs) are the most common and lethal cancers in female dogs. Dysregulated phosphoinositide 3-kinases (PI3K)/AKT pathway reportedly was involved in the growth and metastasis of CMTs. However, there are few studies on therapeutic strategies for targeting the PI3K pathway in CMTs. In this study, we aimed to determine whether palmatine, a natural isoquinoline alkaloid with anti-cancer properties, could inhibit the growth of CMTs and whether the inhibitory effect was mediated through the PI3K/AKT pathway. Our in vitro experiments on CMT-U27, a CMT cell line, showed that palmatine reduced cell proliferation and induced cell death. Western blotting results revealed that palmatine decreased the protein expression of PI3K, PTEN, AKT, and mechanistic target of rapamycin in the PI3K/AKT pathway, which was supported by the results of immunocytochemistry. Additionally, palmatine suppressed the migration and tube formation of canine aortic endothelial cells as well as the migration of CMT U27 cells. Our in vivo results showed that palmatine inhibited tumor growth in a CMT-U27 mouse xenograft model. We observed a decreased expression of proteins in the PI3K/AKT pathway in tumor tissues, similar to the in vitro results. Furthermore, palmatine significantly disrupted the tumor vasculature and inhibited metastasis to adjacent lymph nodes. In conclusion, our findings demonstrate that palmatine exerts anti-cancer effects against CMTs by inhibiting PI3K/AKT signaling pathway, suggesting that palmatine has potential as a canine-specific PI3K inhibitor for the treatment of CMTs.
Collapse
Affiliation(s)
- Min-Jae Yoo
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-Do, 54596, Republic of Korea
| | - Jawun Choi
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-Do, 54596, Republic of Korea
| | - Ye-Ji Jang
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-Do, 54596, Republic of Korea
| | - Sang-Youel Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-Do, 54596, Republic of Korea
| | - Jae-Won Seol
- College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-Do, 54596, Republic of Korea.
| |
Collapse
|
5
|
Song Y, Lin W, Zhu W. Traditional Chinese medicine for treatment of sepsis and related multi-organ injury. Front Pharmacol 2023; 14:1003658. [PMID: 36744251 PMCID: PMC9892725 DOI: 10.3389/fphar.2023.1003658] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 01/02/2023] [Indexed: 01/20/2023] Open
Abstract
Sepsis is a common but critical illness in patients admitted to the intensive care unit and is associated with high mortality. Although there are many treatments for sepsis, specific and effective therapies are still lacking. For over 2,000 years, traditional Chinese medicine (TCM) has played a vital role in the treatment of infectious diseases in Eastern countries. Both anecdotal and scientific evidence show that diverse TCM preparations alleviate organ dysfunction caused by sepsis by inhibiting the inflammatory response, reducing oxidative stress, boosting immunity, and maintaining cellular homeostasis. This review reports on the efficacy and mechanism of action of various TCM compounds, herbal monomer extracts, and acupuncture, on the treatment of sepsis and related multi-organ injury. We hope that this information would be helpful to better understand the theoretical basis and empirical support for TCM in the treatment of sepsis.
Collapse
Affiliation(s)
- Yaqin Song
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weiji Lin
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Zhu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
6
|
Chen G, Liu C, Zhang M, Wang X, Xu Y. Niloticin binds to MD-2 to promote anti-inflammatory pathway activation in macrophage cells. Int J Immunopathol Pharmacol 2022; 36:3946320221133017. [PMID: 36314579 PMCID: PMC9629566 DOI: 10.1177/03946320221133017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES Niloticin is an active compound isolated from Cortex phellodendri with uncharacterized anti-inflammatory activity. We assessed the drug potential of niloticin and examined its ability to target myeloid differentiation protein 2 (MD-2) to ascertain the mechanism for its anti-inflammatory activity. METHODS The Traditional Chinese Medicine Systems Pharmacology Database was used to evaluate niloticin. Bio-layer interferometry and molecular docking technologies were used to explore how niloticin targets MD-2, which mediates a series of toll-like receptor 4 (TLR4)-dependent inflammatory responses. The cytokines involved in the lipopolysaccharide (LPS)-TLR4/MD-2-NF-κB pathway were evaluated using ELISA, RT-qPCR, and western blotting. RESULTS Niloticin could bind to MD-2 and had no evident effects on cell viability. Niloticin treatment significantly decreased the levels of NO, IL-6, TNF-α, and IL-1β induced by LPS (p < 0.01). IL-1β, IL-6, iNOS, TNF-α, and COX-2 mRNA expression levels were decreased by niloticin (all p < 0.01). Compared with that in the control group, the increase in TLR4, p65, MyD88, p-p65, and iNOS expression levels induced by LPS were suppressed by niloticin (all p < 0.01). CONCLUSION Our results suggest that niloticin has therapeutic potential and binds to MD-2. Niloticin binding to MD-2 antagonized the effects of LPS binding to the TLR4/MD-2 complex, resulting in the inhibition of the LPS-TLR4/MD-2-NF-κB signaling pathway.
Collapse
Affiliation(s)
- Guirong Chen
- Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Dalian, China,Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Chang Liu
- Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Mingbo Zhang
- Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xiaobo Wang
- Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Dalian, China,Xiaobo Wang, Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Dalian, China.
| | - Yubin Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China,Yubin Xu, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China.
| |
Collapse
|
7
|
Wang XH, Xu DQ, Chen YY, Yue SJ, Fu RJ, Huang L, Tang YP. Traditional Chinese Medicine: A promising strategy to regulate inflammation, intestinal disorders and impaired immune function due to sepsis. Front Pharmacol 2022; 13:952938. [PMID: 36188532 PMCID: PMC9523403 DOI: 10.3389/fphar.2022.952938] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
Sepsis is described as a dysregulation of the immune response to infection, which leads to life-threatening organ dysfunction. The interaction between intestinal microbiota and sepsis can't be ignored. Furthermore, the intestinal microbiota may regulate the progress of sepsis and attenuate organ damage. Thus, maintaining or restoring microbiota may be a new way to treat sepsis. Traditional Chinese medicine (TCM) assumes a significant part in the treatment of sepsis through multi-component, multi-pathway, and multi-targeting abilities. Moreover, TCM can prevent the progress of sepsis and improve the prognosis of patients with sepsis by improving the imbalance of intestinal microbiota, improving immunity and reducing the damage to the intestinal barrier. This paper expounds the interaction between intestinal microbiota and sepsis, then reviews the current research on the treatment of sepsis with TCM, to provide a theoretical basis for its clinical application.
Collapse
Affiliation(s)
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, China
| | | | | | | | | | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, State Key Laboratory of Research & Development of Characteristic Qin Medicine Resources (Cultivation), Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, Shaanxi University of Chinese Medicine, Xi’an, China
| |
Collapse
|
8
|
Chen G, Wang X, Liu C, Zhang M, Han X, Xu Y. The interaction of MD-2 with small molecules in huanglian jiedu decoction play a critical role in the treatment of sepsis. Front Pharmacol 2022; 13:947095. [PMID: 36160407 PMCID: PMC9500189 DOI: 10.3389/fphar.2022.947095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/17/2022] [Indexed: 12/05/2022] Open
Abstract
Huanglian Jiedu Decoction (HJD) is used for treating sepsis in China. Active components from HJD refer to various active ingredients of HJD, while active component formulation (ACF) refers to the combination of palmatine, berberine, baicalin, and geniposide from HJD according to the quantity of HJD. The detailed mechanisms of the active components from HJD and ACF in sepsis treatment are unclear. Molecular docking, surface plasmon resonance (SPR), ELISA, RT-qPCR, and Western blotting were used to assay the possible mechanism in vitro. The efficacy and mechanism of ACF and HJD were assessed by pharmacodynamics and metabolomics analyses, respectively. The results revealed that palmatine, berberine, baicalin, and geniposide showed good binding capacity to MD-2; decreased the release of NO, TNF-α, IL-6, and IL-1β; inhibited the mRNA expression of iNOS, TNF-α, IL-6, IL-1β, and COX-2; and downregulated the protein expressions of MD-2, MyD88, p-p65, and iNOS induced by LPS; which indicated that they can inactivate the LPS-TLR4/MD-2-NF-κB pathway. Thus, ACF was formed, and the pharmacodynamics assay suggested that ACF can reduce inflammatory cell infiltration and organ damage in accordance with HJD. Furthermore, 39 metabolites were selected and identified and the regulatory effect of these metabolites by ACF and HJD was almost consistent, but ACF might alleviate physical damage caused by HJD through regulating metabolites, such as 3-hydroxyanthranilic acid. ACF could represent HJD as a new formulation to treat sepsis.
Collapse
Affiliation(s)
- Guirong Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
- Institute of Pharmacy, 967th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Dalian, China
| | - Xiaobo Wang
- Institute of Pharmacy, 967th Hospital of the Joint Logistics Support Force of the Chinese People’s Liberation Army, Dalian, China
| | - Chang Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mingbo Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xueying Han
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- *Correspondence: Xueying Han, ; Yubin Xu,
| | - Yubin Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
- *Correspondence: Xueying Han, ; Yubin Xu,
| |
Collapse
|
9
|
Cheng JJ, Ma XD, Ai GX, Yu QX, Chen XY, Yan F, Li YC, Xie JH, Su ZR, Xie QF. Palmatine Protects Against MSU-Induced Gouty Arthritis via Regulating the NF-κB/NLRP3 and Nrf2 Pathways. Drug Des Devel Ther 2022; 16:2119-2132. [PMID: 35812134 PMCID: PMC9259749 DOI: 10.2147/dddt.s356307] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022] Open
Abstract
Purpose Gouty arthritis could be triggered by the deposition of monosodium uric acid (MSU) crystals. Palmatine (PAL), a protoberberine alkaloid, has been proven to possess compelling health-beneficial activities. In this study, we aimed to explore the effect of PAL on LPS plus MSU crystal-stimulated gouty arthritis in vitro and in vivo. Methods PMA-differentiated THP-1 macrophages were primed with LPS and then stimulated with MSU crystal in the presence or absence of PAL. The expression of pro-inflammatory cytokines and oxidative stress-related biomarkers and signal pathway key targets were determined by ELISA kit, Western blot, immunohistochemistry and qRT-PCR, respectively. In addition, the anti-inflammatory and antioxidant activities of PAL on MSU-induced arthritis mice were also evaluated. Results The results indicated that PAL (20, 40 and 80 μM) dose-dependently decreased the mRNA expression and levels of pro-inflammatory cytokines (interleukin-1beta (IL-1β), IL-6, IL-18 and tumor necrosis factor alpha (TNF-α)). The levels of superoxide dismutase (SOD) and glutathione (GSH) were remarkably enhanced, while the level of malondialdehyde (MDA) was reduced. Western blot analysis revealed that PAL appreciably inhibited NF-κB/NLRP3 signaling pathways through inhibiting the phosphorylation of p-65 and IκBα, blocking the expression of NLRP3, ASC, IL-1β and Caspase-1, as well as enhancing the antioxidant protein expression of Nrf2 and HO-1. In vivo, PAL attenuated MSU-induced inflammation in gouty arthritis, as evidenced by mitigating the joint swelling, and decreasing the productions of IL-1β, IL-6, IL-18, TNF-α and MDA, while enhancing the levels of SOD and GSH. Moreover, PAL further attenuated the infiltration of neutrophils into joint synovitis. Conclusion PAL protected against MSU-induced inflammation and oxidative stress via regulating the NF-κB/NLRP3 and Nrf2 pathways. PAL may represent a potential candidate for the treatment of gouty arthritis.
Collapse
Affiliation(s)
- Juan-Juan Cheng
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Xing-Dong Ma
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Gao-Xiang Ai
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Qiu-Xia Yu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China
| | - Xiao-Ying Chen
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Fang Yan
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China.,Li Ke and Qi Yu-ru Academic Experience Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Yu-Cui Li
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Jian-Hui Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China.,State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China.,Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, People's Republic of China
| | - Zi-Ren Su
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| | - Qing-Feng Xie
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, People's Republic of China.,Li Ke and Qi Yu-ru Academic Experience Inheritance Studio, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
10
|
Molecular mechanisms of Huanglian jiedu decoction on ulcerative colitis based on network pharmacology and molecular docking. Sci Rep 2022; 12:5526. [PMID: 35365737 PMCID: PMC8972650 DOI: 10.1038/s41598-022-09559-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022] Open
Abstract
Huanglian jiedu decoction (HLJDD) is a heat-clearing and detoxifying agent composed of four kinds of Chinese herbal medicine. Previous studies have shown that HLJDD can improve the inflammatory response of ulcerative colitis (UC) and maintain intestinal barrier function. However, its molecular mechanism is not completely clear. In this study, we verified the bioactive components (BCI) and potential targets of HLJDD in the treatment of UC using network pharmacology and molecular docking, and constructed the pharmacological network and PPI network. Then the core genes were enriched by GO and KEGG. Finally, the bioactive components were docked with the key targets to verify the binding ability between them. A total of 54 active components related to UC were identified. Ten genes are very important to the PPI network. Functional analysis showed that these target genes were mainly involved in the regulation of cell response to different stimuli, IL-17 signal pathway and TNF signal pathway. The results of molecular docking showed that the active components of HLJDD had a good binding ability with the Hub gene. This study systematically elucidates the “multi-component, multi-target, multi-pathway” mechanism of anti-UC with HLJDD for the first time, suggesting that HLJDD or its active components may be candidate drugs for the treatment of ulcerative colitis.
Collapse
|
11
|
Chen J, Chen S, Chen J, Shen B, Jiang Z, Xu Y. Study on the Molecular Basis of Huanglian Jiedu Decoction Against Atopic Dermatitis Integrating Chemistry, Biochemistry, and Metabolomics Strategies. Front Pharmacol 2022; 12:770524. [PMID: 34970141 PMCID: PMC8712871 DOI: 10.3389/fphar.2021.770524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/24/2021] [Indexed: 11/27/2022] Open
Abstract
Atopic dermatitis (AD) is a common chronic relapsing skin inflammation, which severely affect the quality of life of patients. Inhibiting itching and enhancing immunity to mitigate scratching are key elements in the fight against AD. Huanglian Jiedu decoction (HLJDD) has multiple pharmacological effects in the treatment of AD. However, the effective ingredients and underlying molecular mechanisms have not yet been fully explored. Thus, this study integrates chemistry, biochemistry, and metabolomics strategies to evaluate the active substance basis of HLJDD against AD. First, HLJDD was split to five fractions (CPF, 40AEF, 90AEF, PEF and WEF) and 72 chemical components were identified. NSD (Non-similarity degree) among the different fractions showed significant chemical differences (>81%). Interleukin IL-13, IL-17A, IL-3, IL-31, IL-33, IL4, IL-5, TSLP, IgE, and histamine in the serum, and IL-4Rα, JAK1, and HRH4 levels in skin, participating in inhibiting itching and regulating immunity signaling, were found to be restored to varying degrees in AD treating with HLJDD and its fractions, especially 40AEF and CPF. Untargeted metabolomics analysis demonstrated that forty metabolites were differential metabolites in plasma between the HLJDD-treated group and the AD group, involving in histidine metabolism, arginine biosynthesis, pyrimidine metabolism, and so on. Further, targeted metabolomics analysis revealed that eleven differential metabolites, associating with physiological and biochemical indices, were significant improved in the HLJDD and its fractions groups. In conclusion, HLJDD exhibited anti-AD effects by inhibiting itching and enhancing immunity, which in turn regulating the levels of relative metabolites, and CPF and 40AEF were considered the most important components of HLJDD.
Collapse
Affiliation(s)
- Jing Chen
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Lin Hai, China
| | - Saizhen Chen
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Jinguang Chen
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Bixin Shen
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhengli Jiang
- Department of Pharmacy, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Lin Hai, China
| | - Yubin Xu
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
12
|
Li X, Wei S, Ma X, Li H, Jing M, Liu H, Niu S, Tong Y, Chen L, Wei Y, Ren S, Zhao Y. Huanglian Jiedu Decoction Exerts Antipyretic Effect by Inhibiting MAPK Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:2209574. [PMID: 35003291 PMCID: PMC8741374 DOI: 10.1155/2021/2209574] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 12/15/2021] [Indexed: 01/17/2023]
Abstract
AIM The aim of this study was to explore the antipyretic effect and potential mechanism of Huanglian Jiedu Decoction (HLJDD) on LPS-induced fever in rats. MATERIALS AND METHODS The fever rat model was established by LPS. Anal temperature of rats was measured every 1 hour after modeling. TNF-α, IL-6, PGE2, and cAMP in rat serum or hypothalamus tissue were detected by ELISA kit. In order to explore the potential active ingredients and mechanism of antipyretic effect of HLJDD, we predicted the underlying antipyretic mechanism by using network pharmacology and then verified its mechanism by Western Blotting. RESULTS The results showed that HLJDD can alleviate LPS-induced fever in rats. The expression levels of TNF-α, IL-6, PGE2, and cAMP in the treatment group were significantly lower than those in the model group. Western Blotting results showed that the protein expression of p-ERK, p-JNK, and p-P38 was significantly inhibited. CONCLUSION The findings suggest that HLJDD has a good antipyretic effect on LPS-induced fever in rats, which may be closely related to the inhibition of MAPK signaling pathway.
Collapse
Affiliation(s)
- Xing Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shizhang Wei
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao Ma
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Haotian Li
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Manyi Jing
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Honghong Liu
- Integrated TCM and Western Medicine Department, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Shengqi Niu
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Pharmacy, Medical Supplies Centre of PLA General Hospital, Beijing, China
| | - Yuling Tong
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lisheng Chen
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- Department of Pharmacy, Hebei North University, Zhangjiakou, China
| | - Ying Wei
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Sichen Ren
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- Department of Pharmacy, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Xu Y, Chen S, Zhang L, Chen G, Chen J. The Anti-Inflammatory and Anti-Pruritus Mechanisms of Huanglian Jiedu Decoction in the Treatment of Atopic Dermatitis. Front Pharmacol 2021; 12:735295. [PMID: 34925005 PMCID: PMC8675233 DOI: 10.3389/fphar.2021.735295] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Atopic dermatitis (AD) is a common chronic skin disease driven by a T-cell-mediated immune response, with inflammation and pruritus being its main clinical manifestations. Huanglian Jiedu decoction (HLJDT), which is an ancient Chinese medicine herbal formula derived from Wai-Tai-Mi-Yao, is a potentially effective treatment for AD. We aimed to clarify the anti-inflammatory and anti-pruritus mechanisms of HLJDT in AD treatment. We performed immunohistochemistry, Western blotting, reverse transcriptase-polymerase chain reaction, Luminex-based direct multiplex immunoassay, enzyme-linked immunosorbent assays, and flow cytometry to address the abovementioned aims. HLJDT significantly reduced clinical symptoms and ear swelling in AD-like mice by inhibiting the production of cytokines [histamine, interleukin (IL)-3, IL-4, IL-5, IL-13, IL-17A, IL-31, and IL-33], substance P (SP), transient receptor potential cation channel subfamily V member 1 (TRPV-1), and gastrin-releasing peptide (GRP). Additionally, HLJDT significantly suppressed the protein expression levels and positive cell percentage of CD28, CD80, CD86, CD207, CD326, MHCII, and OX40 in the lymphoid nodes. Moreover, HLJDT significantly suppressed mRNA and protein expression of tyrosine–protein kinase (JAK1), histamine H4 receptor, and IL-4Rα, as well as the protein expression of GRP, SP, and TRPV-1 in the root ganglion. Our findings indicate that HLJDT can treat AD by regulating the antigen presentation function of dendritic cells, weakening T-lymphocyte activation, and subsequently exerting anti-inflammatory and anti-pruritus effects.
Collapse
Affiliation(s)
- Yubin Xu
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Saizhen Chen
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Lingling Zhang
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Guirong Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, China.,67th Hospital of the Joint Logistics Support Force of the Chinese People's Liberation Army, Dalian, China
| | - Jinguang Chen
- Department of Dermatology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
14
|
Alhassen L, Dabbous T, Ha A, Dang LHL, Civelli O. The Analgesic Properties of Corydalis yanhusuo. Molecules 2021; 26:molecules26247498. [PMID: 34946576 PMCID: PMC8704877 DOI: 10.3390/molecules26247498] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/29/2022] Open
Abstract
Corydalis yanhusuo extract (YHS) has been used for centuries across Asia for pain relief. The extract is made up of more than 160 compounds and has been identified as alkaloids, organic acids, volatile oils, amino acids, alcohols, and sugars. However, the most crucial biological active constituents of YHS are alkaloids; more than 80 have been isolated and identified. This review paper aims to provide a comprehensive review of the phytochemical and pharmacological effects of these alkaloids that have significant ties to analgesia.
Collapse
Affiliation(s)
- Lamees Alhassen
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92697, USA; (L.A.); (T.D.); (A.H.); (L.H.L.D.)
| | - Travis Dabbous
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92697, USA; (L.A.); (T.D.); (A.H.); (L.H.L.D.)
| | - Allyssa Ha
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92697, USA; (L.A.); (T.D.); (A.H.); (L.H.L.D.)
| | - Leon Hoang Lam Dang
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92697, USA; (L.A.); (T.D.); (A.H.); (L.H.L.D.)
| | - Olivier Civelli
- Department of Pharmaceutical Sciences, School of Pharmacy, University of California-Irvine, Irvine, CA 92697, USA; (L.A.); (T.D.); (A.H.); (L.H.L.D.)
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California-Irvine, Irvine, CA 92697, USA
- Correspondence:
| |
Collapse
|
15
|
Huang Z, Hou Z, Liu F, Zhang M, Hu W, Xu S. Scientometric Analysis of Medicinal and Edible Plant Coptis. Front Pharmacol 2021; 12:725162. [PMID: 34456737 PMCID: PMC8387930 DOI: 10.3389/fphar.2021.725162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 08/04/2021] [Indexed: 11/29/2022] Open
Abstract
Objective: A scientometric analysis to obtain knowledge mapping of Coptis revealed the current research situation, knowledge base and research hotspots in Coptis research. Methods: Coptis-related documents published from 1987 to 2020 were selected through the Web of Science Core Collection. CiteSpace, VOSviewer and Microsoft Excel were used to construct knowledge maps of the Coptis research field. Results: A total of 367 documents and their references were analyzed. These papers were primarily published in mainland China (214), followed by Japan (57) and South Korea (52), and they each formed respective cooperation networks. The document co-citation analysis suggested that the identification of Coptis Salisb. species, the production of alkaloids, and the mechanisms of action of these alkaloids formed the knowledge bases in this field. A keyword analysis further revealed that the research hotspots were primarily concentrated in three fields of research involving berberine, Coptis chinensis Franch, and Coptis japonica (Thunb) Makino. Oxidative stress, rat plasma (for the determination of plasma alkaloid contents), and Alzheimer's disease are recent research hotspots associated with Coptis. Conclusion: Coptis research was mainly distributed in three countries: China, Japan, and South Korea. Researchers were concerned with the identification of Coptis species, the production of Coptis alkaloids, and the efficacy and pharmacological mechanism of the constituent alkaloids. In addition, the anti-oxidative stress, pharmacokinetics, and Alzheimer's disease treatment of Coptis are new hotspots in this field. This study provides a reference for Coptis researchers.
Collapse
Affiliation(s)
- Zhibang Huang
- Postgraduate College, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhengkun Hou
- Department of Gastroenterology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fengbin Liu
- Department of Gastroenterology, First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
- Baiyun Hospital of the First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Mei Zhang
- Department of Integrative Medicine, Changsha Central Hospital, University of South China, Changsha, China
| | - Wen Hu
- Intensive Care Unit, Huanggang Hospital of Traditional Chinese Medicine, Huanggang, China
| | - Shaofen Xu
- Postgraduate College, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Pharmacokinetics, tissue distribution and plasma protein binding rate of palmatine following intragastric and intravenous administration in rats using liquid chromatography tandem mass spectrometry. J Pharm Biomed Anal 2021; 203:114226. [PMID: 34182412 DOI: 10.1016/j.jpba.2021.114226] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Palmatine is a natural isoquinoline alkaloid widely found in traditional Chinese medicines. In this study, a simple, sensitive and rapid ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed and validated for the quantification of palmatine in the plasma and tissue samples in rats. Sample preparation involved a simple protein precipitation extraction technique using acetonitrile as the precipitating solvent. Chromatographic separation was accomplished on an ACQUITY UPLC BEH C18 column with a mobile phase of acetonitrile-5 mM ammonium acetate solution (70:30, v/v) at a flow rate of 0.3 mL/min. Coptisine was selected as the internal standard. The protonated analytes were determined with MRM in the positive ion mode. The assay exhibited a linear dynamic range of 1.0-1000 ng/mL for palmatine in each biological matrix and the low limit of quantification was 1.0 ng/mL. Non-compartmental pharmacokinetic parameters indicated that there is a significant difference in the apparent distribution volume and half-life between intragastric and intravenous administration modes. Palmatine could be detected in different tissues and the content in liver and kidney is relatively high, suggesting that liver and kidney might be the targeting organs of palmatine. The plasma protein binding rate test showed that the percent binding of palmatine is medium, and was found to be higher in human than in rats.
Collapse
|
17
|
Ning Y, Xu F, Xin R, Yao F. Palmatine regulates bile acid cycle metabolism and maintains intestinal flora balance to maintain stable intestinal barrier. Life Sci 2020; 262:118405. [PMID: 32926925 DOI: 10.1016/j.lfs.2020.118405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Palmatine (PAL) is a natural isoquinoline alkaloid that has been widely used in the pharmaceutical field. The current study aimed to investigate the function of PAL in improving hyperlipidemia induced by high-fat diet (HFD) in rats. METHODS Biochemical analysis of triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDLC) was performed on rats. Total bile acid (TBA) and stool TC and TBA were also measured to assess the changes in total bile acid excretion. RT-qPCR was employed to detect the expression of genes related to bile acid metabolism, and the Western blot assay was used to detect the levels of CYP7A1, ZO-1, ZO-2, and Claudin-1. The siRNA experiment was employed to further investigate whether PAL regulated CYP7A1 through PPARα. Lipopolysaccharide (LPS) and FITC-dextran (FD-4) were also tested to assess the intestinal permeability. RESULTS AL-treated rats had lower TC, TG, LDL-C levels, lower serum TBA levels, and increased fecal TBA and TC levels. Furthermore, CYP7A1 protein expression was up-regulated in PAL-treated rats. Additionally, PAL regulated bile acid metabolism by up-regulating the expression of CYP7A1 and PPARα and down-regulating the expression of FXR. Besides, the area of plasma FD-4 and LPS content in the PAL group were reduced, and the expression of proteins ZO-1, ZO-2 and Claudin-1 related to intestinal permeability was increased. CONCLUSION All in all, PAL could mediate the PPARα-CYP7A1 pathway to maintain the balance of intestinal flora, regulate the bile acid metabolism, and reduce the blood lipids of rats, thereby protecting against hyperlipidemia.
Collapse
Affiliation(s)
- Yayuan Ning
- Department of Cardiology, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Fei Xu
- Department of Acupuncture, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Rui Xin
- Department of Radiology, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Fang Yao
- Department of Cardiology, the Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
18
|
Dehydrocorydaline Accounts the Majority of Anti-Inflammatory Property of Corydalis Rhizoma in Cultured Macrophage. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:4181696. [PMID: 33299450 PMCID: PMC7701211 DOI: 10.1155/2020/4181696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 10/20/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
Corydalis Rhizoma (CR) is a commonly used traditional Chinese medicine for its potency in activating blood circulation and analgesia. In clinic, CR extracts or components are commonly used in the treatment of myocardial ischemia, rheumatism, and dysmenorrhea with different types of inflammation. However, due to different mechanism of pain and inflammation, the anti-inflammatory property of CR has not been fully revealed. Here, the major chromatographic peaks of CR extracts in different extracting solvents were identified, and the anti-inflammatory activities of CR extracts and its major alkaloids were evaluated in LPS-treated macrophages by determining expressions of proinflammatory cytokines, IκBα and NF-κB. The most abundant alkaloid in CR extract was dehydrocorydaline, having >50% of total alkaloids. Besides, the anti-inflammatory activities of dehydrocorydaline and its related analogues were demonstrated. The anti-inflammatory roles were revealed in LPS-treated cultured macrophages, including (i) inhibiting proinflammatory cytokines release, for example, TNF-α, IL-6; (ii) suppressing mRNA expressions of proinflammatory cytokines; (iii) promoting IκBα expression and suppressing activation of NF-κB transcriptional element; and (iv) reducing the nuclear translocation of NF-κB. The results supported that dehydrocorydaline was the major alkaloid in CR extract, which, together with its analogous, accounted the anti-inflammatory property of CR.
Collapse
|
19
|
Wang K, Rao J, Zhang T, Gao Q, Zhang J, Guang C, Ding L, Qiu F. Metabolic Activation and Covalent Protein Binding of Berberrubine: Insight into the Underlying Mechanism Related to Its Hepatotoxicity. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4423-4438. [PMID: 33122887 PMCID: PMC7588839 DOI: 10.2147/dddt.s274627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 09/26/2020] [Indexed: 01/02/2023]
Abstract
Introduction Berberrubine (BRB), an isoquinoline alkaloid, is a major constituent of medicinal plants Coptis chinensis Franch or Phellodendron chinense Schneid. BRB exhibits various pharmacological activities, whereas exposure to BRB may cause toxicity in experimental animals. Methods In this study, we thoroughly investigated the liver injury induced by BRB in mice and rats. To explore the underlying mechanism, a study of the metabolic activation of BRB was conducted. Furthermore, covalent modifications of cysteine residues of proteins were observed in liver homogenate samples of animals after exposure to BRB, by application of an exhaustive proteolytic digestion method. Results It was demonstrated that BRB-induced hepatotoxicities in a time- and dose-dependent manner, based on the biochemical parameters ALT and AST. H&E stained histopathological examination showed the occurrence of obvious edema in liver of mice after intraperitoneal (i.p.) administration of BRB at a single dose of 100 mg/kg. Slight hepatotoxicity was also observed in rats given the same doses of BRB after six weeks of gavage. As a result, four GSH adducts derived from reactive metabolites of BRB were detected in microsomal incubations with BRB fortified with GSH as a trapping agent. Moreover, four cys-based adducts derived from reaction of electrophilic metabolites of BBR with proteins were found in livers. Conclusion These results suggested that the formation of protein adducts originating from metabolic activation of BRB could be a crucial factor of the mechanism of BRB-induced toxicities.
Collapse
Affiliation(s)
- Kai Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Jinqiu Rao
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Tingting Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Qing Gao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China
| | - Jichao Zhang
- State Key Laboratory of Component-based Chinese Medicine,Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Chenxi Guang
- State Key Laboratory of Component-based Chinese Medicine,Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Liqin Ding
- State Key Laboratory of Component-based Chinese Medicine,Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Feng Qiu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, People's Republic of China.,State Key Laboratory of Component-based Chinese Medicine,Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| |
Collapse
|
20
|
Heat-Clearing Chinese Medicines in Lipopolysaccharide-Induced Inflammation. Chin J Integr Med 2020; 26:552-559. [DOI: 10.1007/s11655-020-3256-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2019] [Indexed: 01/20/2023]
|
21
|
Zhang S, Zhou L, Zhang M, Wang Y, Wang M, Du J, Gu W, Kui F, Li J, Geng S, Du G. Berberine Maintains the Neutrophil N1 Phenotype to Reverse Cancer Cell Resistance to Doxorubicin. Front Pharmacol 2020; 10:1658. [PMID: 32063859 PMCID: PMC7000449 DOI: 10.3389/fphar.2019.01658] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 12/17/2019] [Indexed: 02/06/2023] Open
Abstract
This study explores the contributions of neutrophils to chemotherapeutic resistance and berberine-regulated cancer cell sensitivity to doxorubicin (DOX). In vitro experiments, continuous DOX treatment led to the shift of HL-60 cells to N2 neutrophils and thus induced chemotherapeutic resistance. The combination treatment with DOX and 2 µM berberine resulted in the differentiation of HL-60 cells toward N1 and therefore stimulated HL-60 cell immune clearance. Berberine increased reactive oxygen species (ROS) and decreased autophagy and therefore induced apoptosis in HL-60-N2 cells with morphological changes, but had no effect on cell viability in HL-60-N1 cells. The neutrophil-regulating efficacy of berberine was confirmed in the urethane-induced lung carcinogenic model and H22 liver cancer allograft model. Furthermore, we found that DOX-derived neutrophils had high levels of CD133 and CD309 surface expression, which prevented both chemotherapeutic sensitivity and immune rejection by self-expression of PD-L1 and surface expression of PD-1 receptor on T cells, whereas berberine could downregulate CD133 and CD309 surface expression. Finally, berberine-relevant targets and pathways were evaluated. This study first suggests an important role of berberine in regulating neutrophil phenotypes to maintain cancer cell sensitivity to DOX.
Collapse
Affiliation(s)
- Shuhui Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Lin Zhou
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Mengdi Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Yuehua Wang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Mengqi Wang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Jincheng Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
- Chinese Medical School, Hunan University of Chinese Medicine, Changsha, China
| | - Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Fuguang Kui
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Jiahuan Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Shengnan Geng
- School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
- School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, China
| |
Collapse
|
22
|
Qi Y, Zhang Q, Zhu H. Huang-Lian Jie-Du decoction: a review on phytochemical, pharmacological and pharmacokinetic investigations. Chin Med 2019; 14:57. [PMID: 31867052 PMCID: PMC6918586 DOI: 10.1186/s13020-019-0277-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Huang-Lian Jie-Du decoction (HLJDD), a famous traditional Chinese prescription constituted by Rhizoma Coptidis, Radix Scutellariae, Cortex Phellodendri and Fructus Gradeniae, has notable characteristics of dissipating heat and detoxification, interfering with tumors, hepatic diseases, metabolic disorders, inflammatory or allergic processes, cerebral diseases and microbial infections. Based on the wide clinical applications, accumulating investigations about HLJDD focused on several aspects: (1) chemical analysis to explore the underlying substrates responsible for the therapeutic effects; (2) further determination of pharmacological actions and the possible mechanisms of the whole prescription and of those representative ingredients to provide scientific evidence for traditional clinical applications and to demonstrate the intriguing molecular targets for specific pathological processes; (3) pharmacokinetic feature studies of single or all components of HLJDD to reveal the chemical basis and synergistic actions contributing to the pharmacological and clinically therapeutic effects. In this review, we summarized the main achievements of phytochemical, pharmacological and pharmacokinetic profiles of HLJDD and its herbal or pharmacologically active chemicals, as well as our understanding which further reveals the significance of HLJDD clinically.
Collapse
Affiliation(s)
- Yiyu Qi
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China
| | - Qichun Zhang
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China.,4Department of Pharmacology, Pharmacy College, Nanjing University of Chinese Medicine, Nanjing, China
| | - Huaxu Zhu
- 1Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China.,2Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing, China.,3Jiangsu Research Center of Botanical Medicine Refinement Engineering, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
23
|
Tarabasz D, Kukula-Koch W. Palmatine: A review of pharmacological properties and pharmacokinetics. Phytother Res 2019; 34:33-50. [PMID: 31496018 DOI: 10.1002/ptr.6504] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/18/2019] [Accepted: 08/19/2019] [Indexed: 12/11/2022]
Abstract
The aim of this review is to collect together the results of the numerous studies over the last two decades on the pharmacological properties of palmatine published in scientific databases like Scopus and PubMed, which are scattered across different publications. Palmatine, an isoquinoline alkaloid from the class of protoberberines, is a yellow compound present in the extracts from different representatives of Berberidaceae, Papaveraceae, Ranunculaceae, and Menispermaceae. It has been extensively used in traditional medicine of Asia in the treatment of jaundice, liver-related diseases, hypertension, inflammation, and dysentery. New findings describe its possible applications in the treatment of civilization diseases like central nervous system-related problems. This review intends to let this alkaloid come out from the shade of a more frequently described alkaloid: berberine. The toxicity, pharmacokinetics, and biological activities of this protoberberine alkaloid will be developed in this work.
Collapse
Affiliation(s)
| | - Wirginia Kukula-Koch
- Chair and Department of Pharmacognosy with Medicinal Plants Unit, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
24
|
Palmatine: A review of its pharmacology, toxicity and pharmacokinetics. Biochimie 2019; 162:176-184. [DOI: 10.1016/j.biochi.2019.04.008] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
|
25
|
Xu Y, Guo S, Chen G, Zhang M, Zhang X, Dou D. Evaluation of anti-sepsis activity by compounds with high affinity to lipid a from HuanglianJiedu decoction. Immunopharmacol Immunotoxicol 2017; 39:364-370. [PMID: 28975862 DOI: 10.1080/08923973.2017.1380661] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yubin Xu
- Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, China
| | - Song Guo
- Department of Computer Science, Shenyang Sport University, Sujiatun, Shenyang, China
| | - Guirong Chen
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Mingbo Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Xu Zhang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| | - Deqiang Dou
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Dalian, China
| |
Collapse
|