1
|
Chen L, Zou X, Liu CC, Yan P, Deng J, Wang C, Chen MY, Tang XQ, Shi JM, Xin WJ, Zhang XZ, Feng X, Xu T, Xie JD. Earlier onset of chemotherapy-induced neuropathic pain in females by ICAM-1-mediated accumulation of perivascular macrophages. SCIENCE ADVANCES 2025; 11:eadu2159. [PMID: 40238872 PMCID: PMC12002127 DOI: 10.1126/sciadv.adu2159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 03/14/2025] [Indexed: 04/18/2025]
Abstract
Sex differences in the pathogenesis of a variety of diseases have drawn increasing attention. However, it remains unclear whether such differences exist in chemotherapy-induced neuropathic pain. Here, we conducted a retrospective analysis of clinical case data and found that peripheral sensory disorders occurred earlier in females than in males following bortezomib (BTZ) treatment in patients with multiple myeloma. BTZ treatment led to an early elevation of intercellular adhesion molecule-1, which triggered the infiltration of peripheral monocytes into the perivascular region of the spinal cord in female mice. The CC-chemokine ligand 1 released by infiltrating macrophages directly activated neurons or indirectly activated neurons by enhancing the astrocyte activity, ultimately leading to the earlier onset of BTZ-induced neuropathic pain in females. Together, clarifying the mechanism underlying the earlier onset of BTZ-induced neuropathic pain will contribute to the precise treatment of multiple myeloma in females.
Collapse
Affiliation(s)
- Li Chen
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Xin Zou
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Cui-Cui Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Rehabilitation Medicine, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510120, China
| | - Pu Yan
- Department of Hematology, Shenzhen Longgang District People’s Hospital, Shenzhen, Guangdong 518172, China
| | - Jie Deng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Chen Wang
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Mu-Yang Chen
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Xiao-Qing Tang
- Department of Neurology, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jing-Ming Shi
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province 712082, China
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
- Key Laboratory for Molecular Genetic Mechanisms and Intervention Research on High Altitude Disease of Tibet Autonomous Region, School of Medicine, Xizang Minzu University, Xian Yang, Shaanxi Province 712082, China
| | - Xiang-Zhong Zhang
- Department of Hematology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510010, China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease, Department of Physiology and Pain Research Center, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jing-Dun Xie
- Department of Anesthesiology, State Key Laboratory of Oncology in Southern China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China
| |
Collapse
|
2
|
Sha J, Yang M, Lei Y, Sun L, Meng C, Zhu D. Interaction between nasal epithelial cells and Tregs in allergic rhinitis responses to allergen via CCL1/CCR8. Front Immunol 2025; 16:1526081. [PMID: 40051629 PMCID: PMC11882574 DOI: 10.3389/fimmu.2025.1526081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/21/2025] [Indexed: 03/09/2025] Open
Abstract
Background The airway epithelial barrier is the first defence against aeroallergens. Nasal epithelial cells (NECs) are vital in regulating innate and adaptive mucosal immunity in allergic rhinitis (AR). Tregs produce cytokines essential for the immunomodulatory activities in allergen immunotherapy. Understanding the relationship between NECs and Tregs in the airway hyperresponsiveness network is essential for developing novel treatments. Methods Using an in vitro human Treg-NEC co-culture system of AR and health control group, the chemokine expression profiles of NECs were examined using immunohistochemistry, RT-PCR, and ELISA, and functional surface markers of Tregs were detected using flow cytometric analysis. Correlation analysis was performed between cytokines derived from NECs and surface markers of CD4+CD8+Foxp3+ Tregs in the AR group after co-culture, including TSLP/CTLA4, CCL1/CTLA4, TSLP/CTLA4, TSLP/CCR8, and CCL1/CCR8. Results CCR8 and CTLA-4 expressions after co-culturing were higher than single culture. Following Derp1 stimulation, TSLP, IL-25 and TGF-β expressions in the AR + Derp1 group were increased. CCL1 mRNA was lower in the AR + Derp1 group than control group. In the AR + Derp1 group, TSLP was higher, and CCL1 protein levels were decreased. There were no significant differences in IL-25, TGF-β and IL-10. When Treg co-culture group added, changes were similar to that observed in pNECs. After co-culture, CCL1/CCR8 was positively correlated in AR. Conclusion Human pNECs can communicate with Tregs directly, CCL1/CCR8 may be the pathway between NECs and Tregs in vitro and may play a key role in the immune network of AR.
Collapse
Affiliation(s)
| | | | | | | | | | - Dongdong Zhu
- Department of Otorhinolaryngology Head and Neck Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
3
|
Ciapała K, Pawlik K, Ciechanowska A, Makuch W, Mika J. Astaxanthin has a beneficial influence on pain-related symptoms and opioid-induced hyperalgesia in mice with diabetic neuropathy-evidence from behavioral studies. Pharmacol Rep 2024; 76:1346-1362. [PMID: 39528765 PMCID: PMC11582234 DOI: 10.1007/s43440-024-00671-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The treatment of painful diabetic neuropathy is still a clinical problem. The aim of this study was to determine whether astaxanthin, a substance that inhibits mitogen-activated protein kinases, activates nuclear factor erythroid 2-related factor 2 and influences N-methyl-D-aspartate receptor, affects nociceptive transmission in mice with diabetic neuropathy. METHODS The studies were performed on streptozotocin-induced mouse diabetic neuropathic pain model. Single intrathecal and intraperitoneal administrations of astaxanthin at various doses were conducted in both males and females. Additionally, repeated twice-daily treatment with astaxanthin (25 mg/kg) and morphine (30 mg/kg) were performed. Hypersensitivity was evaluated with von Frey and cold plate tests. RESULTS This behavioral study provides the first evidence that in a mouse model of diabetic neuropathy, single injections of astaxanthin similarly reduce tactile and thermal hypersensitivity in both male and female mice, regardless of the route of administration. Moreover, repeated administration of astaxanthin slightly delays the development of morphine tolerance and significantly suppresses the occurrence of opioid-induced hyperalgesia, although it does not affect blood glucose levels, body weight, or motor coordination. Surprisingly, astaxanthin administered repeatedly produces a better analgesic effect when administered alone than in combination with morphine, and its potency becomes even more pronounced over time. CONCLUSIONS These behavioral results provide a basis for further evaluation of the potential use of astaxanthin in the clinical treatment of diabetic neuropathy and suggest that the multidirectional action of this substance may have positive effects on relieving neuropathic pain in diabetes.
Collapse
Affiliation(s)
- Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Wioletta Makuch
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, Kraków, 31-343, Poland.
| |
Collapse
|
4
|
Bober A, Mika J, Piotrowska A. A Missing Puzzle in Preclinical Studies-Are CCR2, CCR5, and Their Ligands' Roles Similar in Obesity-Induced Hypersensitivity and Diabetic Neuropathy?-Evidence from Rodent Models and Clinical Studies. Int J Mol Sci 2024; 25:11323. [PMID: 39457105 PMCID: PMC11508617 DOI: 10.3390/ijms252011323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/16/2024] [Accepted: 10/19/2024] [Indexed: 10/28/2024] Open
Abstract
Research has shown that obesity is a low-grade inflammatory disease that is often associated with comorbidities, such as diabetes and chronic pain. Recent data have indicated that chemokines may play a role in these conditions due to their pronociceptive and chemotactic properties, which promote hypersensitivity and inflammation. Accumulating evidence suggests that CCR2, CCR5, and their ligands (CCL2, CCL3, CCL4, CCL5, CCL7, CCL8, CCL11 CCL12, and/or CCL13) play a role in rodent models of pain and obesity, as well as in patients with diabetes and obesity. It was proven that the blockade of CCR2 and CCR5, including the simultaneous blockade of both receptors by dual antagonists, effectively reduces hypersensitivity to thermal and mechanical stimuli in chronic pain states, including diabetic neuropathy. The present review discusses these chemokine receptors and the role of their ligands in diabetes and obesity, as well as their involvement in diabetic neuropathy and obesity-induced hypersensitivity.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland;
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland;
| |
Collapse
|
5
|
Bober A, Piotrowska A, Pawlik K, Ciapała K, Maciuszek M, Makuch W, Mika J. A New Application for Cenicriviroc, a Dual CCR2/CCR5 Antagonist, in the Treatment of Painful Diabetic Neuropathy in a Mouse Model. Int J Mol Sci 2024; 25:7410. [PMID: 39000516 PMCID: PMC11242565 DOI: 10.3390/ijms25137410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024] Open
Abstract
The ligands of chemokine receptors 2 and 5 (CCR2 and CCR5, respectively) are associated with the pathomechanism of neuropathic pain development, but their role in painful diabetic neuropathy remains unclear. Therefore, the aim of our study was to examine the function of these factors in the hypersensitivity accompanying diabetes. Additionally, we analyzed the analgesic effect of cenicriviroc (CVC), a dual CCR2/CCR5 antagonist, and its influence on the effectiveness of morphine. An increasing number of experimental studies have shown that targeting more than one molecular target is advantageous compared with the coadministration of individual pharmacophores in terms of their analgesic effect. The advantage of using bifunctional compounds is that they gain simultaneous access to two receptors at the same dose, positively affecting their pharmacokinetics and pharmacodynamics and consequently leading to improved analgesia. Experiments were performed on male and female Swiss albino mice with a streptozotocin (STZ, 200 mg/kg, i.p.) model of diabetic neuropathy. We found that the blood glucose level increased, and the mechanical and thermal hypersensitivity developed on the 7th day after STZ administration. In male mice, we observed increased mRNA levels of Ccl2, Ccl5, and Ccl7, while in female mice, we observed additional increases in Ccl8 and Ccl12 levels. We have demonstrated for the first time that a single administration of cenicriviroc relieves pain to a similar extent in male and female mice. Moreover, repeated coadministration of cenicriviroc with morphine delays the development of opioid tolerance, while the best and longest-lasting analgesic effect is achieved by repeated administration of cenicriviroc alone, which reduces pain hypersensitivity in STZ-exposed mice, and unlike morphine, no tolerance to the analgesic effects of CVC is observed until Day 15 of treatment. Based on these results, we suggest that targeting CCR2 and CCR5 with CVC is a potent therapeutic option for novel pain treatments in diabetic neuropathy patients.
Collapse
Affiliation(s)
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (A.B.); (K.P.); (K.C.); (M.M.); (W.M.)
| | | | | | | | | | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Krakow, Poland; (A.B.); (K.P.); (K.C.); (M.M.); (W.M.)
| |
Collapse
|
6
|
Ciechanowska A, Mika J. CC Chemokine Family Members' Modulation as a Novel Approach for Treating Central Nervous System and Peripheral Nervous System Injury-A Review of Clinical and Experimental Findings. Int J Mol Sci 2024; 25:3788. [PMID: 38612597 PMCID: PMC11011591 DOI: 10.3390/ijms25073788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Despite significant progress in modern medicine and pharmacology, damage to the nervous system with various etiologies still poses a challenge to doctors and scientists. Injuries lead to neuroimmunological changes in the central nervous system (CNS), which may result in both secondary damage and the development of tactile and thermal hypersensitivity. In our review, based on the analysis of many experimental and clinical studies, we indicate that the mechanisms occurring both at the level of the brain after direct damage and at the level of the spinal cord after peripheral nerve damage have a common immunological basis. This suggests that there are opportunities for similar pharmacological therapeutic interventions in the damage of various etiologies. Experimental data indicate that after CNS/PNS damage, the levels of 16 among the 28 CC-family chemokines, i.e., CCL1, CCL2, CCL3, CCL4, CCL5, CCL6, CCL7, CCL8, CCL9, CCL11, CCL12, CCL17, CCL19, CCL20, CCL21, and CCL22, increase in the brain and/or spinal cord and have strong proinflammatory and/or pronociceptive effects. According to the available literature data, further investigation is still needed for understanding the role of the remaining chemokines, especially six of them which were found in humans but not in mice/rats, i.e., CCL13, CCL14, CCL15, CCL16, CCL18, and CCL23. Over the past several years, the results of studies in which available pharmacological tools were used indicated that blocking individual receptors, e.g., CCR1 (J113863 and BX513), CCR2 (RS504393, CCX872, INCB3344, and AZ889), CCR3 (SB328437), CCR4 (C021 and AZD-2098), and CCR5 (maraviroc, AZD-5672, and TAK-220), has beneficial effects after damage to both the CNS and PNS. Recently, experimental data have proved that blockades exerted by double antagonists CCR1/3 (UCB 35625) and CCR2/5 (cenicriviroc) have very good anti-inflammatory and antinociceptive effects. In addition, both single (J113863, RS504393, SB328437, C021, and maraviroc) and dual (cenicriviroc) chemokine receptor antagonists enhanced the analgesic effect of opioid drugs. This review will display the evidence that a multidirectional strategy based on the modulation of neuronal-glial-immune interactions can significantly improve the health of patients after CNS and PNS damage by changing the activity of chemokines belonging to the CC family. Moreover, in the case of pain, the combined administration of such antagonists with opioid drugs could reduce therapeutic doses and minimize the risk of complications.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Kraków, Poland;
| |
Collapse
|
7
|
Wu D, Zhong S, Du H, Han S, Wei X, Gong Q. MiR-184-5p represses neuropathic pain by regulating CCL1/CCR8 signaling interplay in the spinal cord in diabetic mice. Neurol Res 2024; 46:54-64. [PMID: 37842802 DOI: 10.1080/01616412.2023.2257454] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 06/18/2023] [Indexed: 10/17/2023]
Abstract
BACKGROUND Diabetic neuropathic pain (DNP) is a serious complication for diabetic patients involving nervous system. MicroRNAs (miRNAs) are small-noncoding RNAs which are dysregulated in neuropathic pain, and might be critical molecules for pain treatment. Our previous study has shown miR-184-5p was significantly downregulated in DNP. Therefore, the mechanism of miR-184-5p in DNP was investigated in this study. METHODS A DNP model was established through streptozotocin (STZ). The pharmacological tools were injected intrathecally, and pain behavior was evaluated by paw withdrawal mechanical thresholds (PWMTs). Bioinformatics analysis, Dual-luciferase reporter assay and fluorescence-in-situ-hybridization (FISH) were used to seek and confirm the potential target genes of miR-184-5p. The expression of relative genes and proteins was analyzed by quantitative reverse transcriptase real-time PCR (qPCR) and western blotting. RESULTS MiR-184-5p expression was down-regulated in spinal dorsal on days 7 and 14 after STZ, while intrathecal administration of miR-184-5p agomir attenuates neuropathic pain induced by DNP and intrathecal miR-184-5p antagomir induces pain behaviors in naïve mice. Chemokine CC motif ligand 1 (CCL1) was found to be a potential target of miR-184-5p and the protein expression of CCL1 and the mRNA expression of CCR8 were up-regulated in spinal dorsal on days 7 and 14 after STZ. The luciferase reporter assay and FISH demonstrated that CCL1 is a direct target of miR-184-5p. MiR-184-5p overexpression attenuated the expression of CCL1/CCR8 in DNP; intrathecal miR-184-5p antagomir increased the expression of CCL1/CCR8 in spinal dorsal of naïve mice. CONCLUSION This research illustrates that miR-184-5p alleviates DNP through the inhibition of CCL1/CCR8 signaling expression.
Collapse
Affiliation(s)
- Danlei Wu
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shuotao Zhong
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Huiying Du
- Department of Anesthesiology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Shuang Han
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Xuhong Wei
- Department of Physiology and Pain Research Center, Zhongshan Medical School, Sun Yat-Sen University, Guangzhou, China
| | - Qingjuan Gong
- Department of Pain Medicine, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
8
|
Pawlik K, Mika J. Targeting Members of the Chemokine Family as a Novel Approach to Treating Neuropathic Pain. Molecules 2023; 28:5766. [PMID: 37570736 PMCID: PMC10421203 DOI: 10.3390/molecules28155766] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
Neuropathic pain is a debilitating condition that affects millions of people worldwide. Numerous studies indicate that this type of pain is a chronic condition with a complex mechanism that tends to worsen over time, leading to a significant deterioration in patients' quality of life and issues like depression, disability, and disturbed sleep. Presently used analgesics are not effective enough in neuropathy treatment and may cause many side effects due to the high doses needed. In recent years, many researchers have pointed to the important role of chemokines not only in the development and maintenance of neuropathy but also in the effectiveness of analgesic drugs. Currently, approximately 50 chemokines are known to act through 20 different seven-transmembrane G-protein-coupled receptors located on the surface of neuronal, glial, and immune cells. Data from recent years clearly indicate that more chemokines than initially thought (CCL1/2/3/5/7/8/9/11, CXCL3/9/10/12/13/14/17; XCL1, CX3CL1) have pronociceptive properties; therefore, blocking their action by using neutralizing antibodies, inhibiting their synthesis, or blocking their receptors brings neuropathic pain relief. Several of them (CCL1/2/3/7/9/XCL1) have been shown to be able to reduce opioid drug effectiveness in neuropathy, and neutralizing antibodies against them can restore morphine and/or buprenorphine analgesia. The latest research provides irrefutable evidence that chemokine receptors are promising targets for pharmacotherapy; chemokine receptor antagonists can relieve pain of different etiologies, and most of them are able to enhance opioid analgesia, for example, the blockade of CCR1 (J113863), CCR2 (RS504393), CCR3 (SB328437), CCR4 (C021), CCR5 (maraviroc/AZD5672/TAK-220), CXCR2 (NVPCXCR220/SB225002), CXCR3 (NBI-74330/AMG487), CXCR4 (AMD3100/AMD3465), and XCR1 (vMIP-II). Recent research has shown that multitarget antagonists of chemokine receptors, such as CCR2/5 (cenicriviroc), CXCR1/2 (reparixin), and CCR2/CCR5/CCR8 (RAP-103), are also very effective painkillers. A multidirectional strategy based on the modulation of neuronal-glial-immune interactions by changing the activity of the chemokine family can significantly improve the quality of life of patients suffering from neuropathic pain. However, members of the chemokine family are still underestimated pharmacological targets for pain treatment. In this article, we review the literature and provide new insights into the role of chemokines and their receptors in neuropathic pain.
Collapse
Affiliation(s)
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Str., 31-343 Cracow, Poland;
| |
Collapse
|
9
|
Ciechanowska A, Pawlik K, Ciapała K, Mika J. Pharmacological Modulation of the MIP-1 Family and Their Receptors Reduces Neuropathic Pain Symptoms and Influences Morphine Analgesia: Evidence from a Mouse Model. Brain Sci 2023; 13:brainsci13040579. [PMID: 37190544 DOI: 10.3390/brainsci13040579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Neuropathic pain pathophysiology is not fully understood, but it was recently shown that MIP-1 family members (CCL3, CCL4, and CCL9) have strong pronociceptive properties. Our goal was to examine how pharmacological modulation of these chemokines and their receptors (CCR1 and CCR5) influence hypersensitivity after nerve injury in Albino Swiss male mice. The spinal changes in the mRNA/protein levels of the abovementioned chemokines and their receptors were measured using RT-qPCR and ELISA/Western blot techniques in a mouse model of chronic constriction injury of the sciatic nerve. Behavioral studies were performed using the von Frey and cold plate tests after pharmacological treatment with neutralizing antibodies (nAbs) against chemokines or antagonists (CCR1-J113863, CCR5-TAK-220/AZD-5672) alone and in coadministration with morphine on Day 7, when the hypersensitivity was fully developed. Our results showed enhanced protein levels of CCL3 and CCL9 1 and 7 days after nerve injury. The single intrathecal administration of CCL3 or CCL9 nAb, J113863, TAK-220, or AZD-5672 diminished neuropathic pain symptoms and enhanced morphine analgesia. These findings highlight the important roles of CCL3 and CCL9 in neuropathic pain and additionally indicate that these chemokines play essential roles in opioid analgesia. The obtained results suggest CCR1 and CCR5 as new, interesting targets in neuropathy treatment.
Collapse
|
10
|
Mazur G, Pańczyk-Straszak K, Rapacz A, Kiszela J, Smolik M, Gawlik M, Walczak M, Czekajewska J, Poloczek C, Karczewska E, Żesławska E, Nitek W, Niedbał A, Leśniak J, Ciapala K, Pawlik K, Mika J, Waszkielewicz AM. Promising anticonvulsant and/or analgesic compounds among 5-chloro-2- or 5-chloro-4-methyl derivatives of xanthone coupled to aminoalkanol moieties-Design, synthesis and pharmacological evaluation. Chem Biol Drug Des 2023; 101:278-325. [PMID: 35713377 DOI: 10.1111/cbdd.14102] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/26/2022] [Accepted: 06/12/2022] [Indexed: 01/14/2023]
Abstract
A series of 10 aminoalkanol derivatives of 5-chloro-2- or 5-chloro-4-methylxanthone was synthetized and evaluated for anticonvulsant properties (MES test, mice, intraperitoneal) and compared with neurotoxicity rotarod test (NT, mice, i.p.). The best results both in terms of anticonvulsant activity and protective index value were obtained for 3: 5-chloro-2-([4-hydroxypiperidin-1-yl]methyl)-9H-xanthen-9-one hydrochloride. Compounds: 1-3, 7 and 10 revealed ED50 values in MES test: 42.78, 31.64, 25.76, 46.19 and 52.50 mg/kg b.w., respectively. 3 showed 70% and 72% of inhibition control specific binding of sigma-1 (σ1) and sigma-2 (σ2) receptor, respectively. 3 exhibited also antinociceptive activity at dose 2 mg/kg b.w. after chronic constriction injury in mice. 1, 3, 7 and 10 were evaluated on gastrointestinal flora and proved safe. In genotoxicity test (UMU-Chromotest) compounds 1, 7 and 10 proved safe at dose 150-300 μg/ml. The pharmacokinetic analysis showed rapid absorption of all studied molecules from the digestive tract (tmax = 5-30 min). The bioavailability of the compounds ranged from 6.6% (1) to 16% (10). All studied compounds penetrate the blood-brain barrier with brain to plasma ratios varied from 4.15 (3) to 7.6 (compound 7), after i.v. administration, and from 1 (7) to 5.72 (3) after i.g. administration.
Collapse
Affiliation(s)
- Gabriela Mazur
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Pańczyk-Straszak
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Rapacz
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Jan Kiszela
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Magdalena Smolik
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Maciej Gawlik
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Maria Walczak
- Chair and Department of Toxicology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Czekajewska
- Department of Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Celina Poloczek
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Elżbieta Karczewska
- Department of Microbiology, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Ewa Żesławska
- Institute of Biology, Pedagogical University of Krakow, Kraków, Poland
| | - Wojciech Nitek
- Department of Crystallochemistry and Crystallophysics, Faculty of Chemistry, Jagiellonian University, Kraków, Poland
| | - Anna Niedbał
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Joanna Leśniak
- Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| | - Katarzyna Ciapala
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Kraków, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Kraków, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Kraków, Poland
| | - Anna M Waszkielewicz
- Department of Bioorganic Chemistry, Chair of Organic Chemistry, Faculty of Pharmacy, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
11
|
Dong M, Zhang G, Meng J, Liu B, Jiang D, Liu F. MMP9-Associated Tumor Stem Cells, CCL1-Silenced Dendritic Cells, and Cytokine-Induced Killer Cells Have a Remarkable Therapeutic Efficacy for Acute Myeloid Leukemia by Activating T Cells. Stem Cells Int 2023; 2023:2490943. [PMID: 37200633 PMCID: PMC10188259 DOI: 10.1155/2023/2490943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 02/15/2023] [Accepted: 04/06/2023] [Indexed: 05/20/2023] Open
Abstract
Purpose Dendritic cells (DC) are specialized antigen-presenting cells, and cytokine-induced killer (CIK) cells have a specific killing activity to a variety of tumors. However, the underlining mechanism and function of DC-CIK cells in acute myeloid leukemia (AML) remain largely elusive. Methods Gene expression profiles of leukemia patients were obtained from TCGA, DC cell components were evaluated using the quanTIseq method, and cancer stem cell scores were estimated using machine learning methods. The transcriptomes were obtained in DC-CIK cells from normal and AML patients by high-throughput sequencing. Large differentially expressed mRNAs were verified by RT-qPCR assay, and MMP9 and CCL1 were selected for subsequent studies in vivo and in vitro experiments. Results Significant positive correlations were found with DC versus cancer stem cells (p = 0.008) and the expression of MMP9 versus cancer stem cells (p = 0.018). MMP9 and CCL1 were found to be highly expressed in DC-CIK cells from AML patients. DC-CIK cells with MMP9 and CCL1 knockout alone had little effect on leukemia cells, while knockdown of MMP9 and CCL1 in DC-CIK cells increased cytotoxicity, suppressed proliferation, and induced apoptosis of leukemia cells. In addition, we proved that MMP9- and CCL1-silenced DC-CIK cells significantly elevated the CD3+CD4+ and CD3+CD8+ cells and lowered the CD4+PD-1+ and CD8+PD-1+ T cells. Meanwhile, blockage of MMP9 and CCL1 in DC-CIK cells dramatically increased IL-2 and IFN-γ, increased CD107aþ (LAMP-1) and granzyme B (GZMB), and downregulated PD-1, CTLA4, TIM3, and LAG3 T cells from AML patients and AML model mice. Furthermore, activated T cells in DC-CIK cells knocking down MMP9 and CCL1 also prevented proliferation and accelerated apoptosis of AML cells. Conclusion Our findings demonstrated that blockage of MMP9 and CCL1 in DC-CIK cells could markedly enhance the therapeutic efficiency in AML via activating T cells.
Collapse
Affiliation(s)
- Min Dong
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570000, China
| | - Guozhen Zhang
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570000, China
| | - Jie Meng
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570000, China
| | - Biou Liu
- Department of Hematology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Duanfeng Jiang
- Department of Hematology, The Second Affiliated Hospital of Hainan Medical University, Haikou 570000, China
| | - Feng Liu
- Department of Hematology, The Affiliated Hospital of Guilin Medical University, Guilin 541001, China
| |
Collapse
|
12
|
Pharmacological Evidence of the Important Roles of CCR1 and CCR3 and Their Endogenous Ligands CCL2/7/8 in Hypersensitivity Based on a Murine Model of Neuropathic Pain. Cells 2022; 12:cells12010098. [PMID: 36611891 PMCID: PMC9818689 DOI: 10.3390/cells12010098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
Neuropathic pain treatment remains a challenging issue because the therapies currently used in the clinic are not sufficiently effective. Moreover, the mechanism of neuropathy is still not entirely understood; however, much evidence indicates that chemokines are important factors in the initial and late phases of neuropathic pain. To date, the roles of CCR1, CCR3 and their endogenous ligands have not been extensively studied; therefore, they have become the subject of our research. In the present comprehensive behavioral and biochemical study, we detected significant time-dependent and long-lasting increases in the mRNA levels of CCR1 and/or CCR3 ligands, such as CCL2/3/4/5/6/7/8/9, in the murine spinal cord after chronic constriction injury of the sciatic nerve, and these increases were accompanied by changes in the levels of microglial/macrophage, astrocyte and neutrophil cell markers. ELISA results suggested that endogenous ligands of CCR1 and CCR3 are involved in the development (CCL2/3/5/7/8/9) and persistence (CCL2/7/8) of neuropathic pain. Moreover, intrathecal injection of CCL2/3/5/7/8/9 confirmed their possible strong influence on mechanical and thermal hypersensitivity development. Importantly, inhibition of CCL2/7/8 production and CCR1 and CCR3 blockade by selective/dual antagonists effectively reduced neuropathic pain-like behavior. The obtained data suggest that CCL2/7/8/CCR1 and CCL7/8/CCR3 signaling are important in the modulation of neuropathic pain in mice and that these chemokines and their receptors may be interesting targets for future investigations.
Collapse
|
13
|
Ciechanowska A, Rojewska E, Piotrowska A, Barut J, Pawlik K, Ciapała K, Kreiner G, Mika J. New insights into the analgesic properties of the XCL1/XCR1 and XCL1/ITGA9 axes modulation under neuropathic pain conditions - evidence from animal studies. Front Immunol 2022; 13:1058204. [PMID: 36618360 PMCID: PMC9814969 DOI: 10.3389/fimmu.2022.1058204] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Recent studies have indicated the involvement of chemokine-C-motif ligand 1 (XCL1) in nociceptive transmission; however, the participation of its two receptors, canonical chemokine-C-motif receptor 1 (XCR1) and integrin alpha-9 (ITGA9), recently recognized as a second receptor, has not been clarified to date. The aim was to explore by which of these receptors XCL1 reveals its pronociceptive properties and how the XCL1-XCR1 and XCL1-ITGA9 axes blockade/neutralization influence on pain-related behavior and opioid analgesia in the model of neuropathic pain. In our studies we used Albino Swiss mice which were exposed to the unilateral sciatic nerve chronic constriction injury (CCI) as a neuropathic pain model. Animals received single intrathecal (i.t.) injection of XCL1, XCL1 neutralizing antibodies, antagonist of XCR1 (vMIP-II) and neutralizing antibodies of ITGA9 (YA4), using lumbar puncture technique. Additionally we performed i.t. co-administration of abovementioned neutralizing antibodies and antagonists with single dose of morphine/buprenorphine. To assess pain-related behavior the von Frey and cold plate tests were used. To measure mRNA and protein level the RT-qPCR and Western Blot/Elisa/immunofluorescence techniques were performed, respectively. Statistical analysis was conducted using ANOVA with a Bonferroni correction. Presented studies have shown time-dependent upregulation of the mRNA and/or protein expression of XCL1 in the spinal cord after nerve injury as measured on day 1, 4, 7, 14, and 35. Our immunofluorescence study showed that XCL1 is released by astroglial cells located in the spinal cord, despite the neural localization of its receptors. Our results also provided the first evidence that the blockade/neutralization of both receptors, XCR1 and ITGA9, reversed hypersensitivity after intrathecal XCL1 administration in naive mice; however, neutralization of ITGA9 was more effective. In addition, the results proved that the XCL1 neutralizing antibody and, similarly, the blockade of XCR1 and neutralization of ITGA9 diminished thermal and mechanical hypersensitivity in nerve injury-exposed mice after 7 days. Additionally, neutralization of XCL1 improves morphine analgesia. Moreover, blockade of XCR1 positively influences buprenorphine effectiveness, and neutralization of ITGA9 enhances not only buprenorphine but also morphine analgesia. Therefore, blockade of the XCL1-ITGA9 interaction may serve as an innovative strategy for the polypharmacotherapy of neuropathic pain in combination with opioids.
Collapse
Affiliation(s)
- Agata Ciechanowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Ewelina Rojewska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Justyna Barut
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Pawlik
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Katarzyna Ciapała
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Maj Institute of Pharmacology, Polish Academy of Sciences, Kraków, Poland,*Correspondence: Joanna Mika, ,
| |
Collapse
|
14
|
Bogacka J, Pawlik K, Ciapała K, Ciechanowska A, Mika J. CC Chemokine Receptor 4 (CCR4) as a Possible New Target for Therapy. Int J Mol Sci 2022; 23:ijms232415638. [PMID: 36555280 PMCID: PMC9779674 DOI: 10.3390/ijms232415638] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Chemokines and their receptors participate in many biological processes, including the modulation of neuroimmune interactions. Approximately fifty chemokines are distinguished in humans, which are classified into four subfamilies based on the N-terminal conserved cysteine motifs: CXC, CC, C, and CX3C. Chemokines activate specific receptors localized on the surface of various immune and nervous cells. Approximately twenty chemokine receptors have been identified, and each of these receptors is a seven-transmembrane G-protein coupled receptor. Recent studies provide new evidence that CC chemokine receptor 4 (CCR4) is important in the pathogenesis of many diseases, such as diabetes, multiple sclerosis, asthma, dermatitis, and cancer. This review briefly characterizes CCR4 and its ligands (CCL17, CCL22, and CCL2), and their contributions to immunological and neoplastic diseases. The review notes a significant role of CCR4 in nociceptive transmission, especially in painful neuropathy, which accompanies many diseases. The pharmacological blockade of CCR4 seems beneficial because of its pain-relieving effects and its influence on opioid efficacy. The possibilities of using the CCL2/CCL17/CCL22/CCR4 axis as a target in new therapies for many diseases are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Joanna Mika
- Correspondence: or ; Tel.: +48-12-6623-298; Fax: +48-12-6374-500
| |
Collapse
|
15
|
Saito M, Suzuki H, Tanaka T, Asano T, Kaneko MK, Kato Y. Development of an Anti-Mouse CCR8 Monoclonal Antibody (C 8Mab-1) for Flow Cytometry and Immunocytochemistry. Monoclon Antib Immunodiagn Immunother 2022; 41:333-338. [PMID: 35483056 DOI: 10.1089/mab.2021.0069] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
It has been widely accepted that monoclonal antibody (mAb) is an effective tool for cancer immunotherapy. The C-C motif chemokine receptor 8 (CCR8) is highly expressed in regulatory T cells and many cancers and is associated with the progression of the cancers. However, its role in cancer progression remains unclear. Thus, the development of mAbs for CCR8 leads to cancer immunotherapy and elucidation of unknown mechanisms of CCR8-dependent cancer progression. In this study, we have developed an anti-mouse CCR8 (mCCR8) mAb (clone C8Mab-1, rat IgG2a, kappa) using the Cell-Based Immunization and Screening (CBIS) method. We showed that C8Mab-1 and its recombinant antibody (recC8Mab-1) bind to mCCR8-overexpressed Chinese hamster ovary (CHO)-K1 cells (CHO/mCCR8), but not to the parental CHO-K1 cells, in flow cytometry and immunofluorescence. Moreover, C8Mab-1 and recC8Mab-1 specifically reacted to P388 (a mouse lymphocyte-like cells) and J774-1 (a mouse macrophage-like cells), which express endogenous mCCR8, in both applications. These results suggest that C8Mab-1, developed using the CBIS method, is useful for flow cytometry and immunocytochemistry against exogenous and endogenous mCCR8.
Collapse
Affiliation(s)
- Masaki Saito
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Teizo Asano
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Japan.,Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
16
|
Ruff MR, Inan S, Shi XQ, Meissler JJ, Adler MW, Eisenstein TK, Zhang J. Potentiation of morphine antinociception and inhibition of diabetic neuropathic pain by the multi-chemokine receptor antagonist peptide RAP-103. Life Sci 2022; 306:120788. [PMID: 35817166 DOI: 10.1016/j.lfs.2022.120788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 01/18/2023]
Abstract
AIMS We determined the ability of the multi-chemokine receptor (CCR2/CCR5/CCR8) antagonist RAP-103 to modulate pain behaviors in an acute model of surgical pain, with and without an added opioid (morphine), and by itself in a chronic model of Streptozotocin (STZ)-induced diabetic peripheral neuropathy (DPN). MATERIALS AND METHODS Pain behaviors were assessed by mechanical and thermal tests in rats. Cytokine and chemokine biomarkers in sciatic nerve and spinal cord were assessed by in situ qPCR. KEY FINDINGS In the incisional pain assay, RAP-103 (0.01-1 mg/kg, i.p.) alone had no antiallodynic effect post-surgery. RAP-103 (0.5 mg/kg) when co-administered with morphine (0.5-5 mg/kg), reduced the ED50 of morphine from 3.19 mg/kg to 1.42 mg/kg. In a DPN model, rats exhibited persistent mechanical and cold allodynia. Oral administration of RAP-103 (0.5-0.02 mg/kg/day) resulted in a complete reversal of established hypersensitivity in DPN rats (P < .001), which gradually returned to pain hypersensitivity after the cessation of the treatment. The mRNA expression of cytokines, IL-1β, TNFα; chemokines CCL2, CCL3; and chemokine receptors CCR2 and CCR5 in DPN rat sciatic nerve, but not spinal cord, were significantly increased. RAP-103 resulted in significant reductions in sciatic nerve expression of IL-1β, TNFα and CCL3 in STZ-induced diabetic rats with trends toward lower levels for CCL2 and CCR5, while CCR2 was unchanged. SIGNIFICANCE In acute pain, co-administration of RAP-103 with morphine provided the same antinociceptive effect with a reduced dose of morphine, reducing opioid side-effects and risks. RAP-103 by itself is an effective non-opioid antinociceptive treatment for diabetic neuropathic pain.
Collapse
Affiliation(s)
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Xiang Qun Shi
- Alan Edwards Centre for Research on Pain, 740 Doctor Penfield Ave, Suite 3200C, Montreal, QC H3A 0G1, Canada
| | - Joseph J Meissler
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Martin W Adler
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Toby K Eisenstein
- Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Ji Zhang
- Alan Edwards Centre for Research on Pain, 740 Doctor Penfield Ave, Suite 3200C, Montreal, QC H3A 0G1, Canada; Faculty of Dentistry, Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
17
|
Fang XX, Wang H, Song HL, Wang J, Zhang ZJ. Neuroinflammation Involved in Diabetes-Related Pain and Itch. Front Pharmacol 2022; 13:921612. [PMID: 35795572 PMCID: PMC9251344 DOI: 10.3389/fphar.2022.921612] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Accepted: 05/12/2022] [Indexed: 12/25/2022] Open
Abstract
Diabetes mellitus (DM) is a global epidemic with increasing incidence, which results in diverse complications, seriously affects the patient quality of life, and brings huge economic burdens to society. Diabetic neuropathy is the most common chronic complication of DM, resulting in neuropathic pain and chronic itch. The precise mechanisms of diabetic neuropathy have not been fully clarified, hindering the exploration of novel therapies for diabetic neuropathy and its terrible symptoms such as diabetic pain and itch. Accumulating evidence suggests that neuroinflammation plays a critical role in the pathophysiologic process of neuropathic pain and chronic itch. Indeed, researchers have currently made significant progress in knowing the role of glial cells and the pro-inflammatory mediators produced from glial cells in the modulation of chronic pain and itch signal processing. Here, we provide an overview of the current understanding of neuroinflammation in contributing to the sensitization of the peripheral nervous system (PNS) and central nervous system (CNS). In addition, we also summarize the inflammation mechanisms that contribute to the pathogenesis of diabetic itch, including activation of glial cells, oxidative stress, and pro-inflammatory factors. Targeting excessive neuroinflammation may provide potential and effective therapies for the treatment of chronic neuropathic pain and itch in DM.
Collapse
Affiliation(s)
- Xiao-Xia Fang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
- Department of Medical Functional Laboratory, School of Medicine, Nantong University, Nantong, China
| | - Heng Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Hao-Lin Song
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Juan Wang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| | - Zhi-Jun Zhang
- Department of Human Anatomy, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
18
|
Vincenzi M, Milella MS, D’Ottavio G, Caprioli D, Reverte I, Maftei D. Targeting Chemokines and Chemokine GPCRs to Enhance Strong Opioid Efficacy in Neuropathic Pain. Life (Basel) 2022; 12:life12030398. [PMID: 35330149 PMCID: PMC8955776 DOI: 10.3390/life12030398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 12/21/2022] Open
Abstract
Neuropathic pain (NP) originates from an injury or disease of the somatosensory nervous system. This heterogeneous origin and the possible association with other pathologies make the management of NP a real challenge. To date, there are no satisfactory treatments for this type of chronic pain. Even strong opioids, the gold-standard analgesics for nociceptive and cancer pain, display low efficacy and the paradoxical ability to exacerbate pain sensitivity in NP patients. Mounting evidence suggests that chemokine upregulation may be a common mechanism driving NP pathophysiology and chronic opioid use-related consequences (analgesic tolerance and hyperalgesia). Here, we first review preclinical studies on the role of chemokines and chemokine receptors in the development and maintenance of NP. Second, we examine the change in chemokine expression following chronic opioid use and the crosstalk between chemokine and opioid receptors. Then, we examine the effects of inhibiting specific chemokines or chemokine receptors as a strategy to increase opioid efficacy in NP. We conclude that strong opioids, along with drugs that block specific chemokine/chemokine receptor axis, might be the right compromise for a favorable risk/benefit ratio in NP management.
Collapse
Affiliation(s)
- Martina Vincenzi
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Correspondence: (M.V.); (I.R.)
| | - Michele Stanislaw Milella
- Toxicology and Poison Control Center Unit, Department of Emergency, Anesthesia and Critical Care, Policlinico Umberto I Hospital-Sapienza University of Rome, 00161 Rome, Italy;
| | - Ginevra D’Ottavio
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Laboratory Affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Daniele Caprioli
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Laboratory Affiliated to Institute Pasteur Italia-Fondazione Cenci Bolognetti, Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy
| | - Ingrid Reverte
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
- Correspondence: (M.V.); (I.R.)
| | - Daniela Maftei
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University of Rome, 00185 Rome, Italy;
- Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), 00143 Rome, Italy; (G.D.); (D.C.)
| |
Collapse
|
19
|
Nalisa M, Nweke EE, Smith MD, Omoshoro-Jones J, Devar JWS, Metzger R, Augustine TN, Fru PN. Chemokine receptor 8 expression may be linked to disease severity and elevated interleukin 6 secretion in acute pancreatitis. World J Gastrointest Pathophysiol 2021; 12:115-133. [PMID: 34877026 PMCID: PMC8611186 DOI: 10.4291/wjgp.v12.i6.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/08/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory disease, which presents with epigastric pain and is clinically diagnosed by amylase and lipase three times the upper limit of normal. The 2012 Atlanta classification stratifies the severity of AP as one of three risk categories namely, mild AP (MAP), moderately severe AP (MSAP), and severe AP (SAP). Challenges in stratifying AP upon diagnosis suggest that a better understanding of the underlying complex pathophysiology may be beneficial. AIM To identify the role of the chemokine receptor 8 (CCR8), expressed by T-helper type-2 Lymphocytes and peritoneal macrophages, and its possible association to Interleukin (IL)-6 and AP stratification. METHODS This study was a prospective case-control study. A total of 40 patients were recruited from the Chris Hani Baragwanath Academic Hospital and the Charlotte Maxeke Johannesburg Academic Hospital. Bioassays were performed on 29 patients (14 MAP, 11 MSAP, and 4 SAP) and 6 healthy controls as part of a preliminary study. A total of 12 mL of blood samples were collected at Day (D) 1, 3, 5, and 7 post epigastric pain. Using multiplex immunoassay panels, real-time polymerase chain reaction (qRT-PCR) arrays, and multicolour flow cytometry analysis, immune response-related proteins, genes, and cells were profiled respectively. GraphPad Prism™ software and fold change (FC) analysis was used to determine differences between the groups. P<0.05 was considered significant. RESULTS The concentration of IL-6 was significantly different at D3 post epigastric pain in both the MAP group and MSAP group with P = 0.001 and P = 0.013 respectively, in a multiplex assay. When a FC of 2 was applied to identify differentially expressed genes using RT2 Profiler, CCR8 was shown to increase steadily with disease severity from MAP (1.33), MSAP (38.28) to SAP (1172.45) median FC. Further verification studies using RT-PCR showed fold change increases of CCR8 in MSAP and SAP ranging from 1000 to 1000000 times when represented as Log10, compared to healthy control respectively at D3. The findings also showed differing lymphocyte and monocyte cell frequency between the groups. With monocyte population frequency as high as 70% in MSAP at D3. CONCLUSION The higher levels of CCR8 and IL-6 in the severe patients and immune cell differences compared to MAP and controls provide an avenue for exploring AP stratification to improve management.
Collapse
Affiliation(s)
- Mwangala Nalisa
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
| | - Ekene Emmanuel Nweke
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
| | - Martin D Smith
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
- Department of Surgery, Chris Hani Baragwanath Academic Hospital, Johannesburg 1864, Gauteng, South Africa
| | - Jones Omoshoro-Jones
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
- Department of Surgery, Chris Hani Baragwanath Academic Hospital, Johannesburg 1864, Gauteng, South Africa
| | - John WS Devar
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
- Department of Surgery, Chris Hani Baragwanath Academic Hospital, Johannesburg 1864, Gauteng, South Africa
| | - Rebecca Metzger
- Institut für Immunologie, Ludwig-Maximilians-Universität München, München 80539, Germany
| | - Tanya N Augustine
- School of Anatomical Sciences, Faculty of Health Science, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
| | - Pascaline N Fru
- Department of Surgery, School of Clinical Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2193, Gauteng, South Africa
| |
Collapse
|
20
|
Piotrowska A, Ciapała K, Pawlik K, Kwiatkowski K, Rojewska E, Mika J. Comparison of the Effects of Chemokine Receptors CXCR2 and CXCR3 Pharmacological Modulation in Neuropathic Pain Model- In Vivo and In Vitro Study. Int J Mol Sci 2021; 22:ijms222011074. [PMID: 34681732 PMCID: PMC8538855 DOI: 10.3390/ijms222011074] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/02/2021] [Accepted: 10/09/2021] [Indexed: 12/12/2022] Open
Abstract
Recent findings have highlighted the roles of CXC chemokine family in the mechanisms of neuropathic pain. Our studies provide evidence that single/repeated intrathecal administration of CXCR2 (NVP-CXCR2-20) and CXCR3 ((±)-NBI-74330) antagonists explicitly attenuated mechanical/thermal hypersensitivity in rats after chronic constriction injury of the sciatic nerve. After repeated administration, both antagonists showed strong analgesic activity toward thermal hypersensitivity; however, (±)-NBI-74330 was more effective at reducing mechanical hypersensitivity. Interestingly, repeated intrathecal administration of both antagonists decreased the mRNA and/or protein levels of pronociceptive interleukins (i.e., IL-1beta, IL-6, IL-18) in the spinal cord, but only (±)-NBI-74330 decreased their levels in the dorsal root ganglia after nerve injury. Furthermore, only the CXCR3 antagonist influenced the spinal mRNA levels of antinociceptive factors (i.e., IL-1RA, IL-10). Additionally, antagonists effectively reduced the mRNA levels of pronociceptive chemokines; NVP-CXCR2-20 decreased the levels of CCL2, CCL6, CCL7, and CXCL4, while (±)-NBI-74330 reduced the levels of CCL3, CCL6, CXCL4, and CXCL9. Importantly, the results obtained from the primary microglial and astroglial cell cultures clearly suggest that both antagonists can directly affect the release of these ligands, mainly in microglia. Interestingly, NVP-CXCR2-20 induced analgesic effects after intraperitoneal administration. Our research revealed important roles for CXCR2 and CXCR3 in nociceptive transmission, especially in neuropathic pain.
Collapse
MESH Headings
- Acetamides/pharmacology
- Acetamides/therapeutic use
- Analgesics/pharmacology
- Analgesics/therapeutic use
- Animals
- Astrocytes/cytology
- Astrocytes/drug effects
- Astrocytes/metabolism
- Behavior, Animal/drug effects
- Cells, Cultured
- Chemokine CCL3/genetics
- Chemokine CCL3/metabolism
- Down-Regulation/drug effects
- Ganglia, Spinal/metabolism
- Ganglia, Spinal/pathology
- Interleukin-1beta/genetics
- Interleukin-1beta/metabolism
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Male
- Microglia/cytology
- Microglia/drug effects
- Microglia/metabolism
- Neuralgia/chemically induced
- Neuralgia/drug therapy
- Neuralgia/pathology
- Pyrimidines/pharmacology
- Pyrimidines/therapeutic use
- Rats
- Rats, Wistar
- Receptors, CXCR3/antagonists & inhibitors
- Receptors, CXCR3/metabolism
- Receptors, Interleukin-8B/antagonists & inhibitors
- Receptors, Interleukin-8B/metabolism
- Spinal Cord/metabolism
- Spinal Cord/pathology
- Stress, Mechanical
Collapse
|
21
|
García-Domínguez M, González-Rodríguez S, Hidalgo A, Baamonde A, Menéndez L. Kappa-opioid receptor-mediated thermal analgesia evoked by the intrathecal administration of the chemokine CCL1 in mice. Fundam Clin Pharmacol 2021; 35:1109-1118. [PMID: 33905573 DOI: 10.1111/fcp.12685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND The chemokine CC motif ligand 1 (CCL1) participates in immune cell recruitment and, as other chemokines, is also involved in nociceptive processing. In contrast with previous reports indicating its participation in allodynia and cold hypernociception when spinally administered, its ability to evoke heat thermal analgesia, mediated by circulating leukocytes and endocannabinoids, after systemic administration has recently been reported. OBJECTIVES Aiming to explore the role played by CCL1 on spinal nociception, we study here the effect of its intrathecal administration on thermal nociception in mice. METHODS Behavioral nociceptive assays, immunohistochemical experiments, white cell blood depletion procedures and qRT-PCR experiments were performed. RESULTS The intrathecal administration of CCL1 (0.3-30 ng) produced analgesia as measured by the unilateral hot plate test. This effect peaked 1 h after injection, was prevented by the CCR8 antagonist R243 and was accompanied by a reduction of c-Fos expression in spinal neurons. Whereas blood leukocyte depletion did not modify it, analgesia was abolished by the microglial inhibitor minocycline, but not the astroglial inhibitor aminoadipate. Furthermore, antinociception remained unmodified by the coadministration of cannabinoid type 1 or 2 receptors antagonists. However, it was reversed by naloxone but not by selective blockade of mu- or delta-opioid receptors. The inhibitory effect induced by the selective kappa-opioid receptor antagonist, nor-binaltorphimine, and by an anti-dynorphin A 1-17 antibody indicates that analgesia evoked by spinal CCL1 is mediated by endogenous dynorphins acting on kappa-opioid receptors. CONCLUSIONS Endogenous dynorphin and microglia behave as key players in heat thermal analgesia evoked by spinal CCL1 in mice.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Sara González-Rodríguez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Agustín Hidalgo
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Ana Baamonde
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| | - Luis Menéndez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
| |
Collapse
|
22
|
Abstract
Neuropathy is a common complication of long-term diabetes that impairs quality of life by producing pain, sensory loss and limb amputation. The presence of neuropathy in both insulin-deficient (type 1) and insulin resistant (type 2) diabetes along with the slowing of progression of neuropathy by improved glycemic control in type 1 diabetes has caused the majority of preclinical and clinical investigations to focus on hyperglycemia as the initiating pathogenic lesion. Studies in animal models of diabetes have identified multiple plausible mechanisms of glucotoxicity to the nervous system including post-translational modification of proteins by glucose and increased glucose metabolism by aldose reductase, glycolysis and other catabolic pathways. However, it is becoming increasingly apparent that factors not necessarily downstream of hyperglycemia can also contribute to the incidence, progression and severity of neuropathy and neuropathic pain. For example, peripheral nerve contains insulin receptors that transduce the neurotrophic and neurosupportive properties of insulin, independent of systemic glucose regulation, while the detection of neuropathy and neuropathic pain in patients with metabolic syndrome and failure of improved glycemic control to protect against neuropathy in cohorts of type 2 diabetic patients has placed a focus on the pathogenic role of dyslipidemia. This review provides an overview of current understanding of potential initiating lesions for diabetic neuropathy and the multiple downstream mechanisms identified in cell and animal models of diabetes that may contribute to the pathogenesis of diabetic neuropathy and neuropathic pain.
Collapse
|
23
|
Mesquida-Veny F, Del Río JA, Hervera A. Macrophagic and microglial complexity after neuronal injury. Prog Neurobiol 2020; 200:101970. [PMID: 33358752 DOI: 10.1016/j.pneurobio.2020.101970] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/12/2020] [Accepted: 12/06/2020] [Indexed: 12/14/2022]
Abstract
Central nervous system (CNS) injuries do not heal properly in contrast to normal tissue repair, in which functional recovery typically occurs. The reason for this dichotomy in wound repair is explained in part by macrophage and microglial malfunction, affecting both the extrinsic and intrinsic barriers to appropriate axonal regeneration. In normal healing tissue, macrophages promote the repair of injured tissue by regulating transitions through different phases of the healing response. In contrast, inflammation dominates the outcome of CNS injury, often leading to secondary damage. Therefore, an understanding of the molecular mechanisms underlying this dichotomy is critical to advance in neuronal repair therapies. Recent studies highlight the plasticity and complexity of macrophages and microglia beyond the classical view of the M1/M2 polarization paradigm. This plasticity represents an in vivo continuous spectrum of phenotypes with overlapping functions and markers. Moreover, macrophage and microglial plasticity affect many events essential for neuronal regeneration after injury, such as myelin and cell debris clearance, inflammation, release of cytokines, and trophic factors, affecting both intrinsic neuronal properties and extracellular matrix deposition. Until recently, this complexity was overlooked in the translation of therapies modulating these responses for the treatment of neuronal injuries. However, recent studies have shed important light on the underlying molecular mechanisms of this complexity and its transitions and effects on regenerative events. Here we review the complexity of macrophages and microglia after neuronal injury and their roles in regeneration, as well as the underlying molecular mechanisms, and we discuss current challenges and future opportunities for treatment.
Collapse
Affiliation(s)
- Francina Mesquida-Veny
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - José Antonio Del Río
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Arnau Hervera
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain; Department of Cell Biology, Physiology and Immunology, Faculty of Biology, Universitat de Barcelona, 08028 Barcelona, Spain; Institute of Neuroscience, University of Barcelona, 08028 Barcelona, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain.
| |
Collapse
|
24
|
Bogacka J, Ciapała K, Pawlik K, Dobrogowski J, Przeklasa-Muszynska A, Mika J. Blockade of CCR4 Diminishes Hypersensitivity and Enhances Opioid Analgesia - Evidence from a Mouse Model of Diabetic Neuropathy. Neuroscience 2020; 441:77-92. [PMID: 32592824 DOI: 10.1016/j.neuroscience.2020.06.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/28/2023]
Abstract
Chemokine signaling has been implicated in the pathogenesis of diabetic neuropathy; however, the role of chemokine CC motif receptor 4 (CCR4) remains unknown. The goal was to examine the function of CCR4 in hypersensitivity development and opioid effectiveness in diabetic neuropathy. Streptozotocin (STZ; 200 mg/kg, intraperitoneally administered)-induced mouse model of diabetic neuropathy were used. An analysis of the mRNA/protein expression of CCR4 and its ligands was performed by qRT-PCR, microarray and/or Western blot methods. C021 (CCR4 antagonist), morphine and buprenorphine were injected intrathecally or intraperitoneally, and pain-related behavior was evaluated by the von Frey, cold plate and rotarod tests. We observed that on day 7 after STZ administration, the blood glucose level was increased, and as a consequence, hypersensitivity to tactile and thermal stimuli developed. In addition, we observed an increase in the mRNA level of CCL2 but not CCL17/CCL22. The microarray technique showed that the CCL2 protein level was also upregulated. In naive mice, the pronociceptive effect of intrathecally injected CCL2 was blocked by C021, suggesting that this chemokine acts through CCR4. Importantly, our results provide the first evidence that in a mouse model of diabetic neuropathy, single intrathecal and intraperitoneal injections of C021 diminished neuropathic pain-related behavior in a dose-dependent manner and improved motor functions. Moreover, both single intrathecal and intraperitoneal injections of C021 enhanced morphine and buprenorphine effectiveness. These results reveal that pharmacological modulation of CCR4 may be a good potential therapeutic target for the treatment of diabetic neuropathy and may enhance the effectiveness of opioids.
Collapse
Affiliation(s)
- Joanna Bogacka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343 Krakow, Poland
| | - Katarzyna Ciapała
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343 Krakow, Poland
| | - Katarzyna Pawlik
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343 Krakow, Poland
| | - Jan Dobrogowski
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Anna Przeklasa-Muszynska
- Department of Pain Research and Treatment, Chair of Anesthesiology and Intensive Therapy, Jagiellonian University Medical College, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, 12 Smetna Street, 31-343 Krakow, Poland.
| |
Collapse
|
25
|
Jiang BC, Liu T, Gao YJ. Chemokines in chronic pain: cellular and molecular mechanisms and therapeutic potential. Pharmacol Ther 2020; 212:107581. [DOI: 10.1016/j.pharmthera.2020.107581] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 05/15/2020] [Indexed: 02/08/2023]
|
26
|
Metamizole relieves pain by influencing cytokine levels in dorsal root ganglia in a rat model of neuropathic pain. Pharmacol Rep 2020; 72:1310-1322. [PMID: 32691345 PMCID: PMC7550285 DOI: 10.1007/s43440-020-00137-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 01/03/2023]
Abstract
Background Treatment of neuropathic pain is still challenging. Recent studies have suggested that dorsal root ganglia (DRG), which carry sensory neural signals from the peripheral nervous system to the central nervous system, are important for pathological nociception. A proper understanding of the significance and function of DRG and their role in pharmacotherapy can help to improve the treatment of neuropathic pain. Metamizole, also known as sulpyrine or dipyrone, is a non-opioid analgesic commonly used in clinical practice, but it is not used for neuropathic pain treatment. Methods Chronic constriction injury (CCI) of the sciatic nerve was induced in Wistar rats. Metamizole was administered intraperitoneally (ip) preemptively at 16 and 1 h before CCI and then twice a day for 7 days. To evaluate tactile and thermal hypersensitivity, von Frey and cold plate tests were conducted, respectively. Results Our behavioral results provide evidence that repeated intraperitoneal administration of metamizole diminishes the development of neuropathic pain symptoms in rats. Simultaneously, our findings provide evidence that metamizole diminishes the expression of pronociceptive interleukins (IL-1beta, IL-6, and IL-18) and chemokines (CCL2, CCL4, and CCL7) in DRG measured 7 days after sciatic nerve injury. These assays indicate, for the first time, that metamizole exerts antinociceptive effects on nerve injury-induced neuropathic pain at the DRG level. Conclusions Finally, we indicate that metamizole-induced analgesia in neuropathy is associated with silencing of a broad spectrum of cytokines in DRG. Our results also suggest that metamizole is likely to be an effective medication for neuropathic pain. Graphic abstract ![]()
Collapse
|
27
|
Wang C, Xu R, Wang X, Li Q, Li Y, Jiao Y, Zhao Q, Guo S, Su L, Yu Y, Yu Y. Spinal CCL1/CCR8 regulates phosphorylation of GluA1-containing AMPA receptor in postoperative pain after tibial fracture and orthopedic surgery in mice. Neurosci Res 2020; 154:20-26. [DOI: 10.1016/j.neures.2019.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 02/06/2023]
|
28
|
Abstract
This paper is the fortieth consecutive installment of the annual anthological review of research concerning the endogenous opioid system, summarizing articles published during 2017 that studied the behavioral effects of molecular, pharmacological and genetic manipulation of opioid peptides and receptors as well as effects of opioid/opiate agonists and antagonists. The review is subdivided into the following specific topics: molecular-biochemical effects and neurochemical localization studies of endogenous opioids and their receptors (1), the roles of these opioid peptides and receptors in pain and analgesia in animals (2) and humans (3), opioid-sensitive and opioid-insensitive effects of nonopioid analgesics (4), opioid peptide and receptor involvement in tolerance and dependence (5), stress and social status (6), learning and memory (7), eating and drinking (8), drug abuse and alcohol (9), sexual activity and hormones, pregnancy, development and endocrinology (10), mental illness and mood (11), seizures and neurologic disorders (12), electrical-related activity and neurophysiology (13), general activity and locomotion (14), gastrointestinal, renal and hepatic functions (15), cardiovascular responses (16), respiration and thermoregulation (17), and immunological responses (18).
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology and Neuropsychology Doctoral Sub-Program, Queens College, City University of New York, CUNY, 65-30 Kissena Blvd., Flushing, NY, 11367, United States.
| |
Collapse
|
29
|
García-Domínguez M, Aguirre A, Lastra A, Hidalgo A, Baamonde A, Menéndez L. The Systemic Administration of the Chemokine CCL1 Evokes Thermal Analgesia in Mice Through the Activation of the Endocannabinoid System. Cell Mol Neurobiol 2019; 39:1115-1124. [PMID: 31203533 PMCID: PMC11452215 DOI: 10.1007/s10571-019-00706-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
Apart from its involvement in immune functions, the chemokine CCL1 can participate in the modulation of nociceptive processing. Previous studies have demonstrated the hypernociceptive effect produced by CCL1 in the spinal cord, but its possible action on peripheral nociception has not yet been characterized. We describe here that the subcutaneous administration of CCL1 (1-10 µg/kg) produces dose-dependent and long-lasting increases in thermal withdrawal latencies measured by the unilateral hot plate test in mice. The antinociceptive nature of this effect is further supported by the reduction of spinal neurons expressing Fos protein in response to a noxious thermal stimulus observed after the administration of 10 µg/kg of CCL1. CCL1-induced antinociception was inhibited after systemic, but not spinal administration of the selective antagonist R243 (0.1-1 mg/kg), demonstrating the participation of peripheral CCR8 receptors. The absence of this analgesic effect in mice treated with a dose of cyclophosphamide that produces a drastic depletion of leukocytes suggests its dependency on white blood cells. Furthermore, whereas the antinociceptive effect of CCL1 was unaffected after the treatment with either the antagonist of opioid receptors naloxone or the cannabinoid type 1 receptor blocker AM251, it was dose-dependently inhibited after the administration of the CB2 receptor antagonist SR144528 (0.1-1 mg/kg). The detection by ELISA of an increased presence of the endocannabinoid 2-arachidonoylglycerol after the administration of an analgesic dose of CCL1 supports the notion that CCL1 can evoke thermal analgesia through the release of this endocannabinoid from circulating leukocytes.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Alina Aguirre
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Ana Lastra
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Agustín Hidalgo
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Ana Baamonde
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain
| | - Luis Menéndez
- Laboratorio de Farmacología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo, C/Julián Clavería 6, 33006, Oviedo, Asturias, Spain.
| |
Collapse
|
30
|
Liu S, Liu X, Xiong H, Wang W, Liu Y, Yin L, Tu C, Wang H, Xiang X, Xu J, Duan B, Tao A, Zhao Z, Mei Z. CXCL13/CXCR5 signaling contributes to diabetes-induced tactile allodynia via activating pERK, pSTAT3, pAKT pathways and pro-inflammatory cytokines production in the spinal cord of male mice. Brain Behav Immun 2019; 80:711-724. [PMID: 31100371 DOI: 10.1016/j.bbi.2019.05.020] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 05/05/2019] [Accepted: 05/13/2019] [Indexed: 02/06/2023] Open
Abstract
Painful diabetic neuropathy (PDN) is a severely debilitating chronic pain syndrome. Spinal chemokine CXCL13 and its receptor CXCR5 were recently demonstrated to play a pivotal role in the pathogenesis of chronic pain induced by peripheral tissue inflammation or nerve injury. In this study we investigated whether CXCL13/CXCR5 mediates PDN and the underlying spinal mechanisms. We used the db/db type 2 diabetes mice, which showed obvious hyperglycemia and obese, long-term mechanical allodynia, and increased expression of CXCL13, CXCR5 as well as pro-inflammatory cytokines TNF-α and IL-6 in the spinal cord. Furthermore, in the spinal cord of db/db mice there is significantly increased gliosis and upregulated phosphorylation of cell signaling kinases, including pERK, pAKT and pSTAT3. Mechanical allodynia and upregulated pERK, pAKT and pSTAT3 as well as production of TNF-α and IL-6 were all attenuated by the noncompetitive NMDA receptor antagonist MK-801. If spinal giving U0126 (a selective MEK inhibitor) or AG490 (a Janus kinase (JAK)-STAT inhibitor) to db/db mice, both of them can decrease the mechanical allodynia, but only inhibit pERK (by U0126) or pSTAT3 (by AG490) respectively. Acute administration of CXCL13 in C57BL/6J mice resulted in exacerbated thermal hyperalgesia and mechanical allodynia, activation of the pERK, pAKT and pSTAT3 pathways and increased production of pro-inflammatory cytokines (IL-1β, TNF-α and IL-6), which were all attenuated by knocking out of Cxcr5. In all, our work showed that chemokine CXCL13 and its receptor CXCR5 in spinal cord contribute to the pathogenesis of PDN and may help develop potential novel therapeutic approaches for patients afflicted with PDN.
Collapse
Affiliation(s)
- Sisi Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Xueting Liu
- The Second Afliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Hui Xiong
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Wen Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Yutong Liu
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Liang Yin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Chuyue Tu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Hua Wang
- College of Life Science, South-Central University for Nationalities, Wuhan, China
| | - Xuechuan Xiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Jinhong Xu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Bailu Duan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China
| | - Ailin Tao
- The Second Afliated Hospital, The State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Allergy & Clinical Immunology, Guangzhou Medical University, Guangzhou 510260, China
| | - Zhongqiu Zhao
- Center for the Study of Itch, Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, United States; Barnes-Jewish Hospital, St. Louis, MO, USA
| | - Zhinan Mei
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, China.
| |
Collapse
|
31
|
Chemokines CCL2 and CCL7, but not CCL12, play a significant role in the development of pain-related behavior and opioid-induced analgesia. Cytokine 2019; 119:202-213. [DOI: 10.1016/j.cyto.2019.03.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 03/04/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022]
|
32
|
Rojewska E, Ciapała K, Mika J. Kynurenic acid and zaprinast diminished CXCL17-evoked pain-related behaviour and enhanced morphine analgesia in a mouse neuropathic pain model. Pharmacol Rep 2019; 71:139-148. [DOI: 10.1016/j.pharep.2018.10.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/03/2018] [Accepted: 10/02/2018] [Indexed: 12/23/2022]
|
33
|
Jorda A, Cauli O, Santonja JM, Aldasoro M, Aldasoro C, Obrador E, Vila JM, Mauricio MD, Iradi A, Guerra-Ojeda S, Marchio P, Valles SL. Changes in Chemokines and Chemokine Receptors Expression in a Mouse Model of Alzheimer's Disease. Int J Biol Sci 2019; 15:453-463. [PMID: 30745834 PMCID: PMC6367555 DOI: 10.7150/ijbs.26703] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/21/2018] [Indexed: 11/18/2022] Open
Abstract
The amyloid precursor protein plus presenilin-1 (APP/PS1) mice are a frequently-used model for Alzheimer's disease studies (AD). However, the data relevant to which proteins are involved in inflammatory mechanism are not sufficiently well-studied using the AD mouse model. Using behavioral studies, quantitative RT-PCR and Western-blot techniques, significant findings were determined by the expression of proteins involved in inflammation comparing APP/PS1 and Wild type mice. Increased GFAP expression could be associated with the elevation in number of reactive astrocytes. IL-3 is involved in inflammation and ABDF1 intervenes normally in the transport across cell membranes and both were found up-regulated in APP/PS1 mice compared to Wild type mice. Furthermore, CCR5 expression was decreased and both CCL3 and CCL4 chemokines were highly expressed indicating a possible gliosis and probably an increase in chemotaxis from lymphocytes and T cell generation. We also noted for the first time, a CCR8 increase expression with diminution of its CCL1 chemokine, both normally involved in protection from bacterial infection and demyelination. Control of inflammatory proteins will be the next step in understanding the progression of AD and also in determining the mechanisms that can develop in this disease.
Collapse
Affiliation(s)
- Adrián Jorda
- Department of Physiology, School of Medicine, University of Valencia. Spain
| | - Omar Cauli
- Faculty of Surgery and Chiropody, University of Valencia. Spain
| | | | - Martin Aldasoro
- Department of Physiology, School of Medicine, University of Valencia. Spain
| | - Constanza Aldasoro
- Department of Physiology, School of Medicine, University of Valencia. Spain
| | - Elena Obrador
- Department of Physiology, School of Medicine, University of Valencia. Spain
| | - Jose Ma Vila
- Department of Physiology, School of Medicine, University of Valencia. Spain
| | | | - Antonio Iradi
- Department of Physiology, School of Medicine, University of Valencia. Spain
| | - Sol Guerra-Ojeda
- Department of Physiology, School of Medicine, University of Valencia. Spain
| | - Patricia Marchio
- Department of Physiology, School of Medicine, University of Valencia. Spain
| | - Soraya L Valles
- Department of Physiology, School of Medicine, University of Valencia. Spain
| |
Collapse
|
34
|
Rojewska E, Zychowska M, Piotrowska A, Kreiner G, Nalepa I, Mika J. Involvement of Macrophage Inflammatory Protein-1 Family Members in the Development of Diabetic Neuropathy and Their Contribution to Effectiveness of Morphine. Front Immunol 2018; 9:494. [PMID: 29593735 PMCID: PMC5857572 DOI: 10.3389/fimmu.2018.00494] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 02/26/2018] [Indexed: 01/05/2023] Open
Abstract
Current investigations underline the important roles of C–C motif ligands in the development of neuropathic pain; however, their participation in diabetic neuropathy is still undefined. Therefore, the goal of our study was to evaluate the participation of macrophage inflammatory protein-1 (MIP-1) family members (CCL3, CCL4, CCL9) in a streptozotocin (STZ)-induced mouse model of diabetic neuropathic pain. Single intrathecal administration of each MIP-1 member (10, 100, or 500 ng/5 μl) in naïve mice evoked hypersensitivity to mechanical (von Frey test) and thermal (cold plate test) stimuli. Concomitantly, protein analysis has shown that, 7 days following STZ injection, the levels of CCL3 and CCL9 (but not CCL4) are increased in the lumbar spinal cord. Performed additionally, immunofluorescence staining undoubtedly revealed that CCL3, CCL9, and their receptors (CCR1 and CCR5) are expressed predominantly by neurons. In vitro studies provided evidence that the observed expression of CCL3 and CCL9 may be partially of glial origin; however, this observation was only partially possible to confirm by immunohistochemical study. Single intrathecal administration of CCL3 or CCL9 neutralizing antibody (2 and 4 μg/5 μl) delayed neuropathic pain symptoms as measured at day 7 following STZ administration. Single intrathecal injection of a CCR1 antagonist (J113863; 15 and 20 μg/5 μl) also attenuated pain-related behavior as evaluated at day 7 after STZ. Both neutralizing antibodies, as well as the CCR1 antagonist, enhanced the effectiveness of morphine in STZ-induced diabetic neuropathy. These findings highlight the important roles of CCL3 and CCL9 in the pathology of diabetic neuropathic pain and suggest that they play pivotal roles in opioid analgesia.
Collapse
Affiliation(s)
- Ewelina Rojewska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Magdalena Zychowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Anna Piotrowska
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Grzegorz Kreiner
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Irena Nalepa
- Department of Brain Biochemistry, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Joanna Mika
- Department of Pain Pharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
35
|
Kwiatkowski K, Mika J. The importance of chemokines in neuropathic pain development and opioid analgesic potency. Pharmacol Rep 2018; 70:821-830. [PMID: 30122168 DOI: 10.1016/j.pharep.2018.01.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 01/22/2018] [Indexed: 12/30/2022]
Abstract
The treatment of neuropathic pain resulting from nervous system malfunction remains a challenging problem for doctors and scientists. The lower effectiveness of conventionally used analgesics in neuropathic pain is associated with complex and not fully understood mechanisms of its development. Undoubtedly, interactions between immune and nervous system are crucial for maintenance of painful neuropathy. Nerve injury induces glial cell activation and thus enhances the production of numerous pronociceptive factors by these cells, including interleukins and chemokines. Increased release of those factors reduces the analgesic efficacy of opioids, which is significantly lower in neuropathic pain than in other painful conditions. This review discusses the role of chemokines from all four subfamilies as essential mediators of neuron-glia interactions occurring under neuropathic pain conditions. Based on available data, we analyse the influence of chemokines on opioid properties. Finally, we identify new direct and indirect pharmacological targets whose modulation may result in effective therapy of neuropathic pain, possibly in combination with opioids.
Collapse
Affiliation(s)
- Klaudia Kwiatkowski
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Kraków, Poland.
| | - Joanna Mika
- Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Kraków, Poland.
| |
Collapse
|
36
|
Sałat K, Gryzło B, Kulig K. Experimental Drugs for Neuropathic Pain. Curr Neuropharmacol 2018; 16:1193-1209. [PMID: 29745335 PMCID: PMC6187752 DOI: 10.2174/1570159x16666180510151241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 02/02/2018] [Accepted: 05/07/2018] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Neuropathic pain (NP) is an important public health problem and despite recent progress in the understanding, diagnosis, pathophysiological mechanisms and the treatment of NP, many patients remain refractory to pharmacotherapy. OBJECTIVE Currently used drugs have limited efficacy and dose-limiting adverse effects, and thus there is a substantial need for further development of novel medications for its treatment. Alternatively, drugs approved for use in diseases other than NP can be applied as experimental for NP conditions. This paper covers advances in the field of NP treatment. RESULTS The prime focus of this paper is on drugs with well-established pharmacological activity whose current therapeutic applications are distinct from NP. These drugs could be a potential novel treatment of NP. Data from preclinical studies and clinical trials on these experimental drugs are presented. The development of advanced methods of genomics enabled to propose new targets for drugs which could be effective in the NP treatment. CONCLUSION Experimental drugs for NP can be a treatment option which should be tailor-made for each individual on the basis of pain features, previous therapies, associated clinical conditions, recurrence of pain, adverse effects, contraindications and patients' preferences. At present, there are only some agents which may have potential as novel treatments. Increasing knowledge about mechanisms underlying NP, mechanisms of drug action, as well as available data from preclinical and clinical studies make botulinum toxin A, minocycline, ambroxol, statins and PPAR agonists (ATx086001) promising potential future treatment options.
Collapse
Affiliation(s)
- Kinga Sałat
- Address correspondence to this author at the Faculty of Pharmacy,
Jagiellonian University, 9 Medyczna St., 30-688 Kraków, Poland; Tel: + 48 12 6205 555; Fax: + 48 12 6205 554; E-mail:
| | | | | |
Collapse
|