1
|
Sang W, Zhang X, Hu Q, Jiang B, Guan J, Huang Z, Sun L, Sun D. Inhibition of Dectin-1 alleviates inflammation in early diabetic retinopathy by regulating microglia phenotype. Gene 2025:149572. [PMID: 40381970 DOI: 10.1016/j.gene.2025.149572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/25/2025] [Accepted: 05/12/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a major factor in vision loss in diabetic patients, triggering a series of pathological changes. At present, the treatment methods for diabetic retinopathy are limited. There is an urgent need to further explore its mechanism to bring more treatment options to patients.There is increasing evidence that microglia activation plays a crucial role in inflammatory DR. The C type lectin receptor Dectin-1 is known to play an important role in the inflammatory regulation of microglia, however, its role and mechanism in DR remains unclear. This study aims to elucidate the possible mechanisms through which Dectin-1 influences the inflammatory response in high glucose(HG) stimulated microglia and its impact on retinal inflammation during the early stages of DR. METHODS Human microglial cells (HMC3) were stimulated with HG (25 mmol/L), and a streptozotocin (STZ)induced C57BL/6J mouse model was established to simulate DR. To investigate the role of Dectin-1 in HMC3 cells and its underlying molecular mechanisms, we employed western blotting, quantitative realtime PCR (qRT-PCR), hematoxylineosin (H&E) staining, and immunofluorescence analysis. RESULTS Our findings revealed that Dectin-1 levels were elevated in microglia stimulated by HG, playing a pivotal role in cell polarization and the induction of inflammatory factors in vitro. In vivo experiments conducted on STZ induced diabetic mice demonstrated an increased expression of Dectin-1 in retinal tissues. This elevation further promoted the expression of pro inflammatory factors, such as TNF-α, IL-1β, and iNOS, triggering an inflammatory response and causing damage to the retina. Notably, inhibiting Dectin-1 reversed these detrimental effects, ultimately contributing to the delay in the progression of DR. Our investigation also uncovered a significant interaction between Dectin-1 and the downstream pro-inflammatory pathway NF-κB. This interaction occurred through the activation of spleen tyrosine kinase (Syk), both in vitro and in vivo. CONCLUSIONS In summary, our research strongly suggests that Dectin-1 plays a crucial pro-inflammatory role in early DR. This mechanismis, at least in part, mediated through the Syk/NF-κB pathway. Consequently, inhibition of Dectin-1 is expected to become a potential therapeutic target for delaying DR.
Collapse
Affiliation(s)
- Wei Sang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Future Medical Labotary, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Department of Ophthalmology, Qiqihar Eye & ENT Hospital, Qiqihaer 161000, China
| | - Xue Zhang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Future Medical Labotary, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Qiang Hu
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Future Medical Labotary, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Bo Jiang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Jitian Guan
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Future Medical Labotary, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Zhangxin Huang
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Future Medical Labotary, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Lijun Sun
- Department of Ophthalmology, Qiqihar Eye & ENT Hospital, Qiqihaer 161000, China
| | - Dawei Sun
- Department of Ophthalmology, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China; Future Medical Labotary, The Second Affiliated Hospital of Harbin Medical University, Harbin 150086, China.
| |
Collapse
|
2
|
Liu C, Chen H, Ma Y, Zhang L, Chen L, Huang J, Zhao Z, Jiang H, Kong J. Clinical metabolomics in type 2 diabetes mellitus: from pathogenesis to biomarkers. Front Endocrinol (Lausanne) 2025; 16:1501305. [PMID: 40070584 PMCID: PMC11893406 DOI: 10.3389/fendo.2025.1501305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/21/2025] [Indexed: 03/14/2025] Open
Abstract
As a multidimensional metabolic disorder, the disability and death rate of type 2 diabetes mellitus (T2DM) has increased over time. T2DM covers a wide range of pathological manifestations ranging from hyperglycemia to multi-organ failure, and it has the potential to evolve into acute complications, including ketosis and chronic complications such as peripheral neuropathy, retinopathy, and nephropathy. T2DM mainly occurs in microvascular and large vessels and thus it is restricted for the clinician to diagnose and prescribe. However, the pathological mechanism and clinical diagnosis are inadequate. High-throughput metabolomics, characterized by non-invasive diagnostic techniques to identify potential biomarkers and distinct stages of T2DM, has been increasingly recognized as a vigorous tool with latent capacity for clinical translation. The pathological stratification of T2DM can significantly reduce disability and mortality rates. By tracing the metabolome and associated pathways from impaired fasting blood glucose or impaired glucose tolerance to severe organ failure, the chief contributions of large, independent population-based cohorts are summarized herein. These results facilitate understanding the pathophysiology and mechanism and supports research in accurate diagnosis, risk prediction, curative effect, distinct stages, and prognosis judgment of T2DM.
Collapse
Affiliation(s)
- Chuanxin Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Hetao Chen
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Yujin Ma
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Lei Zhang
- Department of Integrative Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Lulu Chen
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
- Department of Clinical Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jiarui Huang
- Department of Critical Care Medicine, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Zizhe Zhao
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Hongwei Jiang
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China
| | - Jiao Kong
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Sun WJ, An XD, Zhang YH, Zhao XF, Sun YT, Yang CQ, Kang XM, Jiang LL, Ji HY, Lian FM. The ideal treatment timing for diabetic retinopathy: the molecular pathological mechanisms underlying early-stage diabetic retinopathy are a matter of concern. Front Endocrinol (Lausanne) 2023; 14:1270145. [PMID: 38027131 PMCID: PMC10680169 DOI: 10.3389/fendo.2023.1270145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Diabetic retinopathy (DR) is a prevalent complication of diabetes, significantly impacting patients' quality of life due to vision loss. No pharmacological therapies are currently approved for DR, excepted the drugs to treat diabetic macular edema such as the anti-VEGF agents or steroids administered by intraocular route. Advancements in research have highlighted the crucial role of early intervention in DR for halting or delaying disease progression. This holds immense significance in enhancing patients' quality of life and alleviating the societal burden associated with medical care costs. The non-proliferative stage represents the early phase of DR. In comparison to the proliferative stage, pathological changes primarily manifest as microangiomas and hemorrhages, while at the cellular level, there is a loss of pericytes, neuronal cell death, and disruption of components and functionality within the retinal neuronal vascular unit encompassing pericytes and neurons. Both neurodegenerative and microvascular abnormalities manifest in the early stages of DR. Therefore, our focus lies on the non-proliferative stage of DR and we have initially summarized the mechanisms involved in its development, including pathways such as polyols, that revolve around the pathological changes occurring during this early stage. We also integrate cutting-edge mechanisms, including leukocyte adhesion, neutrophil extracellular traps, multiple RNA regulation, microorganisms, cell death (ferroptosis and pyroptosis), and other related mechanisms. The current status of drug therapy for early-stage DR is also discussed to provide insights for the development of pharmaceutical interventions targeting the early treatment of DR.
Collapse
Affiliation(s)
- Wen-Jie Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Dong An
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue-Hong Zhang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xue-Fei Zhao
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Yu-Ting Sun
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Cun-Qing Yang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiao-Min Kang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Lin-Lin Jiang
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Beijing University of Chinese Medicine, Beijing, China
| | - Hang-Yu Ji
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feng-Mei Lian
- Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Xue L, Hu M, Zhu Q, Li Y, Zhou G, Zhang X, Zhou Y, Zhang J, Ding P. GRg1 inhibits the TLR4/NF-kB signaling pathway by upregulating miR-216a-5p to reduce growth factors and inflammatory cytokines in DR. Mol Biol Rep 2023; 50:9379-9394. [PMID: 37819496 PMCID: PMC10635910 DOI: 10.1007/s11033-023-08895-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Diabetic retinopathy (DR) is a common diabetic neurodegenerative disease that affects vision in severe cases. Current therapeutic drugs are ineffective for some patients with severe side effects, and ginsenoside-Rg1 (GRg1) has been shown to protect against DR and may serve as a new potential drug for DR. This study aimed to confirm the protective effect of GRg1 against DR and its molecular mechanism. METHODS Human retinal microvascular endothelial cells (hRMECs) and rats were used to construct DR models in vitro and in vivo. Cell proliferation was detected by BrdU assays, the cell cycle was detected by flow cytometry, and TNF-α, IL-6 and IL-1β levels were detected by ELISA. qRT‒PCR, Western blotting and immunohistochemistry were used to detect the expression of related genes and proteins, and angiogenesis assays were used to assess angiogenesis. RIP and RNA pull down assays were used to determine the relationship between miR-216a-5p and TLR4; retinal structure and changes were observed by HE staining and retinal digestive spread assays. RESULTS GRg1 effectively inhibited HG-induced hRMEC proliferation, cell cycle progression and angiogenesis and reduced the levels of intracellular inflammatory cytokines and growth factors. HG downregulated the expression of miR-216a-5p and upregulated the expression of TLR4/NF-kB signaling pathway-related proteins. Importantly, GRg1 inhibited TLR4/NF-kB signaling pathway activation by upregulating miR-216a-5p, thereby inhibiting HG-induced cell proliferation, cell cycle progression, angiogenesis, and the production of inflammatory cytokines and growth factors. In addition, animal experiments confirmed the results of the cell experiments. CONCLUSIONS GRg1 inhibits TLR4/NF-kB signaling by upregulating miR-216a-5p to reduce growth factors and inflammatory cytokines in DR, providing a potential therapeutic strategy for DR.
Collapse
Affiliation(s)
- Liping Xue
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University; The Second People's Hospital of Yunnan; The Affiliated Ophthalmology Hospital of Yunnan University, Kunming, 650021, Yunnan, China
| | - Min Hu
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University; The Second People's Hospital of Yunnan; The Affiliated Ophthalmology Hospital of Yunnan University, Kunming, 650021, Yunnan, China
| | - Qin Zhu
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University; The Second People's Hospital of Yunnan; The Affiliated Ophthalmology Hospital of Yunnan University, Kunming, 650021, Yunnan, China
| | - Yadi Li
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University; The Second People's Hospital of Yunnan; The Affiliated Ophthalmology Hospital of Yunnan University, Kunming, 650021, Yunnan, China
| | - Guanglong Zhou
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University; The Second People's Hospital of Yunnan; The Affiliated Ophthalmology Hospital of Yunnan University, Kunming, 650021, Yunnan, China
| | - Xiaofan Zhang
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University; The Second People's Hospital of Yunnan; The Affiliated Ophthalmology Hospital of Yunnan University, Kunming, 650021, Yunnan, China
| | - Yuan Zhou
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University; The Second People's Hospital of Yunnan; The Affiliated Ophthalmology Hospital of Yunnan University, Kunming, 650021, Yunnan, China
| | - Jieying Zhang
- Department of Pediatric Ophthalmology, The Affiliated Hospital of Yunnan University; The Second People's Hospital of Yunnan; The Affiliated Ophthalmology Hospital of Yunnan University, Kunming, 650021, Yunnan, China
| | - Peng Ding
- Department of Neurosurgery, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
5
|
Park YJ, Gil TY, Jin BR, Cha YY, An HJ. Apocynin alleviates weight gain and obesity-induced adipose tissue inflammation in high-fat diet-fed C57BL/6 mice. Phytother Res 2023; 37:3481-3494. [PMID: 37194916 DOI: 10.1002/ptr.7823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/18/2023]
Abstract
Obesity involves chronic low-grade inflammation within adipose tissue. Apocynin (APO) is a therapeutic agent for the treatment of inflammatory diseases. Therefore, the present study aimed to investigate whether APO can reduce weight gain and obesity-induced adipose tissue inflammation. C57BL/6 mice were administered APO or orlistat (Orli) as a positive control with a high-fat diet (HFD) for 12 weeks. Lipopolysaccharide-stimulated 3T3-L1 adipocytes were used for the in vitro study. Our results showed a significantly lower white adipose tissue (WAT) mass index in 10 mg/kg APO-treated mice than in 20 mg/kg Orli-treated mice. Moreover, the protein expression of adipose triglyceride lipase, fatty acid synthase, sterol regulatory element-binding transcription factor 1, and peroxisome proliferator-activated receptor γ was reversed in the WAT of 10 mg/kg APO-treated mice. Furthermore, APO reduced the expression of the macrophage marker F4/80, decreased the mRNA levels of tumor necrosis factor-α and monocyte chemoattractant protein-1, and increased the mRNA levels of interleukin-10 in WAT. APO decreased the phosphorylation of c-Jun N-terminal kinase, extracellular signal-regulated kinase, and p65 in vivo and in vitro. Notably, APO had a stronger effect on the amelioration of adipose tissue inflammation than Orli did. Our findings lay the foundation for research on the use of APO as an agent to ameliorate weight gain and obesity-induced inflammatory diseases.
Collapse
Affiliation(s)
- Yea-Jin Park
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Tae-Young Gil
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Bo-Ram Jin
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
| | - Yun-Yeop Cha
- Department of Rehabilitative Medicine of Korean Medicine and Neuropsychiatry, College of Korean Medicine, Sangji University, Wonju, Gangwon-do, Republic of Korea
| | - Hyo-Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul, Republic of Korea
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
6
|
Vofo BN, Chowers I. Suppressing Inflammation for the Treatment of Diabetic Retinopathy and Age-Related Macular Degeneration: Dazdotuftide as a Potential New Multitarget Therapeutic Candidate. Biomedicines 2023; 11:1562. [PMID: 37371657 PMCID: PMC10295757 DOI: 10.3390/biomedicines11061562] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetic retinopathy (DR) and age-related macular degeneration (AMD) are major causes of blindness globally. The primary treatment option for DME and neovascular AMD (nAMD) is anti-vascular endothelial growth factor (VEGF) compounds, but this treatment modality often yields insufficient results, and monthly injections can place a burden on the health system and patients. Although various inflammatory pathways and mediators have been recognized as key players in the development of DR and AMD, there are limited treatment options targeting these pathways. Molecular pathways that are interlinked, or triggers of multiple inflammatory pathways, could be promising targets for drug development. This review focuses on the role of inflammation in the pathogenesis of DME and AMD and presents current anti-inflammatory compounds, as well as a potential multitarget anti-inflammatory compound (dazdotuftide) that could be a candidate treatment option for the management of DME and AMD.
Collapse
Affiliation(s)
| | - Itay Chowers
- Department of Ophthalmology, Hadassah—Hebrew University Medical Center, Jerusalem 91120, Israel;
| |
Collapse
|
7
|
Abstract
BACKGROUND Diabetic retinopathy is a common and specific microvascular complication of diabetes, which is also the leading cause of preventable blindness. Therefore, we aimed to find a promising therapeutic strategy for diabetic retinopathy. METHODS To investigate the role of toll-like receptor 4 (TLR4) in the diabetic retinopathy, we injected streptozotocin (STZ) into wild-type (wt) and TLR4 knock-out mice to induce diabetes. RESULTS While STZ induced diabetes both in wt and TLR4-/- mice, deletion of TLR4 in diabetic mice significantly improved diabetic retinopathy compared to diabetic wt mice, as judged by the enhanced thickness of retinal tissue. Furthermore, TLR4-dependent NF-κB pathway, inflammatory cytokine release and the expressions of vascular endothelial growth factor (VEGF) and glial fibrillary acidic protein (GFAP), which were all remarkably stimulated in STZ-injected wt mice, were inhibited in STZ-injected TLR4-/- mice. CONCLUSION TLR4 could serve as an independent target for treating diabetic retinopathy.
Collapse
Affiliation(s)
- Hongyu Fu
- Department of Endocrinology, Daqing Oilfield General Hospital, Daqing, China
| | - Huiqiang Liu
- Department of Endocrinology, Daqing Oilfield General Hospital, Daqing, China
| |
Collapse
|
8
|
Hikisz P, Jacenik D. Diet as a Source of Acrolein: Molecular Basis of Aldehyde Biological Activity in Diabetes and Digestive System Diseases. Int J Mol Sci 2023; 24:6579. [PMID: 37047550 PMCID: PMC10095194 DOI: 10.3390/ijms24076579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 03/25/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Acrolein, a highly reactive α,β-unsaturated aldehyde, is a compound involved in the pathogenesis of many diseases, including neurodegenerative diseases, cardiovascular and respiratory diseases, diabetes mellitus, and the development of cancers of various origins. In addition to environmental pollution (e.g., from car exhaust fumes) and tobacco smoke, a serious source of acrolein is our daily diet and improper thermal processing of animal and vegetable fats, carbohydrates, and amino acids. Dietary intake is one of the main routes of human exposure to acrolein, which is a major public health concern. This review focuses on the molecular mechanisms of acrolein activity in the context of its involvement in the pathogenesis of diseases related to the digestive system, including diabetes, alcoholic liver disease, and intestinal cancer.
Collapse
Affiliation(s)
- Pawel Hikisz
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| | - Damian Jacenik
- Department of Cytobiochemistry, Faculty of Biology and Environmental Protection, University of Lodz, ul. Pomorska 141/143, 90-236 Lodz, Poland
| |
Collapse
|
9
|
Che S, Wu S, Yu P. Downregulated HDAC3 or up-regulated microRNA-296-5p alleviates diabetic retinopathy in a mouse model. Regen Ther 2022; 21:1-8. [PMID: 35619945 PMCID: PMC9121075 DOI: 10.1016/j.reth.2022.04.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/02/2022] [Accepted: 04/14/2022] [Indexed: 11/28/2022] Open
Abstract
Objective It has been demonstrated the efficacy of histone deacetylase 3 (HDAC3) in diabetes. Nevertheless, the function of HDAC3 in diabetic retinopathy (DR) remained largely obscure. Here, we investigated the HDAC3 effects in DR mice through the microRNA (miR)-296-5p/G protein subunit alpha i2 (GNAI2) axis. Methods The mice diabetes model was established. HDAC3, GNAI2 and miR-296-5p levels in retina tissues of DR mice were evaluated. The weight, blood glucose, Evans blue leakage in DR mice, apoptosis of retinal ganglion cells, vascular endothelial growth factor (VEGF) and malondialdehyde (MDA) contents and superoxide dismutase (SOD) activity in DR mice were detected after miR-296-5p elevation or HDAC3 depletion. The relations among HDAC3, miR-296-5p and GNAI2 were validated. Results HDAC3 and GNAI2 expressed at a high level while miR-296-5p expressed at a low level in retina tissues of DR mice. Restoring miR-296-5p or depleting HDAC3 reduced Evans blue leakage in DR mice, attenuated apoptosis of retinal ganglion cells, reduced VEGF and MDA, and enhanced SOD activity in serum and retinal tissues of DR mice. HDAC3 repressed miR-296-5p expression by binding to its promoter region, thereby enhancing GNAI2 expression. Conclusion Depleting HDAC3 or restoring miR-296-5p suppresses apoptosis of retinal ganglion cells of DR mice via down-regulating GNAI2.
Collapse
Affiliation(s)
- Songtian Che
- Department of Ocular Fundus Disease, the Second Hospital of Jilin University, No. 4026, Yatai Street, Changchun 130041, Jilin, People's Republic of China
| | - Shuai Wu
- Department Orbital Diseases & Ocular Plastic Surgery, the Second Hospital of Jilin University, No. 4026, Yatai Street, Changchun 130041, Jilin, People's Republic of China
| | - Peng Yu
- Department of Ocular Fundus Disease, the Second Hospital of Jilin University, No. 4026, Yatai Street, Changchun 130041, Jilin, People's Republic of China
- Corresponding author. Peng Yu Department of Ocular Fundus Disease, the Second Hospital of Jilin University, No. 4026, Yatai Street, Changchun 130041, Jilin, People's Republic of China. Tel: +0431-81136535
| |
Collapse
|
10
|
Wang M, Sheng KJ, Fang JC, Zhao H, Lu SM, Liu ZY, Chen BT. Redox signaling in diabetic retinopathy and opportunity for therapeutic intervention through natural products. Eur J Med Chem 2022; 244:114829. [DOI: 10.1016/j.ejmech.2022.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/14/2022] [Accepted: 10/01/2022] [Indexed: 11/28/2022]
|
11
|
Xu Z, Li S, Li K, Wang X, Li X, An M, Yu X, Long X, Zhong R, Liu Q, Wang X, Yang Y, Tian N. Urolithin A ameliorates diabetic retinopathy via activation of the Nrf2/HO-1 pathway. Endocr J 2022; 69:971-982. [PMID: 35321989 DOI: 10.1507/endocrj.ej21-0490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a progressive microvascular complication of diabetes mellitus and is characterised by excessive inflammation and oxidative stress. Urolithin A (UA), a major metabolite of ellagic acid, exerts anti-inflammatory and antioxidant functions in various human diseases. This study, for the first time, uncovered the role of UA in DR pathogenesis. Streptozotocin-induced diabetic rats were used to determine the effects of UA on blood glucose levels, retinal structures, inflammation, and oxidative stress. High glucose (HG)-induced human retinal endothelial cells (HRECs) were used to elucidate the anti-inflammatory and antioxidant mechanisms of UA in DR in vitro. The in vivo experiments demonstrated that UA injection reduced blood glucose levels, decreased albumin and vascular endothelial growth factor concentrations, and ameliorated the injured retinal structures caused by DR. UA administration also inhibited inflammation and oxidative damage in the retinal tissues of diabetic rats. Similar anti-inflammatory and antioxidant effects of UA were observed in HRECs induced by HG. Furthermore, we found that UA elevated the levels of nuclear Nrf2 and HO-1 both in vivo and in vitro. Nrf2 silencing reversed the inhibitory effects of UA on inflammation and oxidative stress during DR progression. Together, our findings indicate that UA can ameliorate DR by repressing inflammation and oxidative stress via the Nrf2/HO-1 pathway, which suggests that UA could be an effective drug for clinical DR treatment.
Collapse
Affiliation(s)
- Zepeng Xu
- Department of Ophthalmology, Wuyi Hospital of Traditional Chinese Medicine, Guangdong Province, 529000, China
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Songtao Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Kunmeng Li
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xiaoyu Wang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xiaojie Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Meixia An
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, Guangdong Province, 510630, China
| | - Xiaoyi Yu
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xinguang Long
- Department of Ophthalmology, Wuyi Hospital of Traditional Chinese Medicine, Guangdong Province, 529000, China
| | - Ruiying Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Qiuhong Liu
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xiaochuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Yan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Ni Tian
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| |
Collapse
|
12
|
Titi-Lartey O, Mohammed I, Amoaku WM. Toll-Like Receptor Signalling Pathways and the Pathogenesis of Retinal Diseases. FRONTIERS IN OPHTHALMOLOGY 2022; 2:850394. [PMID: 38983565 PMCID: PMC11182157 DOI: 10.3389/fopht.2022.850394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 03/08/2022] [Indexed: 07/11/2024]
Abstract
There is growing evidence that the pathogenesis of retinal diseases such as diabetic retinopathy (DR) and age-related macular degeneration (AMD) have a significant chronic inflammatory component. A vital part of the inflammatory cascade is through the activation of pattern recognition receptors (PRR) such as toll-like receptors (TLR). Here, we reviewed the past and current literature to ascertain the cumulative knowledge regarding the effect of TLRs on the development and progression of retinal diseases. There is burgeoning research demonstrating the relationship between TLRs and risk of developing retinal diseases, utilising a range of relevant disease models and a few large clinical investigations. The literature confirms that TLRs are involved in the development and progression of retinal diseases such as DR, AMD, and ischaemic retinopathy. Genetic polymorphisms in TLRs appear to contribute to the risk of developing AMD and DR. However, there are some inconsistencies in the published reports which require further elucidation. The evidence regarding TLR associations in retinal dystrophies including retinitis pigmentosa is limited. Based on the current evidence relating to the role of TLRs, combining anti-VEGF therapies with TLR inhibition may provide a longer-lasting treatment in some retinal vascular diseases.
Collapse
Affiliation(s)
| | | | - Winfried M. Amoaku
- Academic Ophthalmology, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
13
|
Carpi-Santos R, de Melo Reis RA, Gomes FCA, Calaza KC. Contribution of Müller Cells in the Diabetic Retinopathy Development: Focus on Oxidative Stress and Inflammation. Antioxidants (Basel) 2022; 11:617. [PMID: 35453302 PMCID: PMC9027671 DOI: 10.3390/antiox11040617] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/01/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
Diabetic retinopathy is a neurovascular complication of diabetes and the main cause of vision loss in adults. Glial cells have a key role in maintenance of central nervous system homeostasis. In the retina, the predominant element is the Müller cell, a specialized cell with radial morphology that spans all retinal layers and influences the function of the entire retinal circuitry. Müller cells provide metabolic support, regulation of extracellular composition, synaptic activity control, structural organization of the blood-retina barrier, antioxidant activity, and trophic support, among other roles. Therefore, impairments of Müller actions lead to retinal malfunctions. Accordingly, increasing evidence indicates that Müller cells are affected in diabetic retinopathy and may contribute to the severity of the disease. Here, we will survey recently described alterations in Müller cell functions and cellular events that contribute to diabetic retinopathy, especially related to oxidative stress and inflammation. This review sheds light on Müller cells as potential therapeutic targets of this disease.
Collapse
Affiliation(s)
- Raul Carpi-Santos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Ricardo A. de Melo Reis
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil;
| | - Flávia Carvalho Alcantara Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, RJ, Brazil; (R.C.-S.); (F.C.A.G.)
| | - Karin C. Calaza
- Instituto de Biologia, Departamento de Neurobiologia, Universidade Federal Fluminense, Niteroi 24210-201, RJ, Brazil
| |
Collapse
|
14
|
Li Y, Zhou L, Zhang M, Li R, Di G, Liu H, Wu X. Micelles based on polyvinylpyrrolidone VA64: A potential nanoplatform for the ocular delivery of apocynin. Int J Pharm 2022; 615:121451. [PMID: 35051535 DOI: 10.1016/j.ijpharm.2022.121451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/27/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022]
Abstract
Purpose of this work was to determine the feasibility of a nano-ophthalmic solution consisting of the nanocarrier polyvinylpyrrolidone VA64 (VA64) and encapsulated apocynin (APO) as treatment for ocular inflammatory diseases. Results showed the solution, termed APO-VA64 ophthalmic solution, could be fabricated via a simple process. This solution was clear, colorless, and possessed valuable characteristics, such as small micelle size (14.12 ± 1.24 nm), narrow micelle size distribution, and high APO encapsulation efficiency. Encapsulated APO was also found to have high aqueous solubility and in vitro release and antioxidant activities. APO-VA64 ophthalmic solution showed good ocular tolerance and demonstrated improved corneal permeation ability in mouse eyes. In an in vivo mice model, topically administered APO-VA64 ophthalmic solution was found to be significantly more effective against benzalkonium chloride-induced ocular damage than APO, VA64, and a mix of APO and VA64. Blockage of high mobility group box 1 signaling and its related proinflammatory cytokines were involved in this therapeutic effect. In conclusion, these in vitro and in vivo findings demonstrate that VA64 micelles are a potential nanoplatform for ocular drug delivery, and that the nanoformulation APO-VA64 ophthalmic solution may be a promising candidate for the efficacious treatment of ocular inflammatory diseases.
Collapse
Affiliation(s)
- Yaru Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Lei Zhou
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China
| | - Mengmeng Zhang
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China
| | - Runzhi Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Guohu Di
- 3Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hongyun Liu
- Department of Pathology, Qingdao Municipal Hospital, Qingdao, China.
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
15
|
Ozdemir R, Gokce IK, Tekin S, Cetin Taslidere A, Turgut H, Tanbek K, Gul CC, Deveci MF, Aslan M. The protective effects of apocynin in hyperoxic lung injury in neonatal rats. Pediatr Pulmonol 2022; 57:109-121. [PMID: 34581514 DOI: 10.1002/ppul.25707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 11/08/2022]
Abstract
AIM Inflammation and oxidate stress are significant factors in the pathogenesis of bronchopulmonary dysplasia (BPD). The aim of this study is to investigate the efficacy of apocynin (APO), an anti-inflammatory, antioxidant, and antiapoptotic drug, in the prophylaxis of neonatal hyperoxic lung injury. METHOD This experimental study included 40 neonatal rats divided into the control, APO, BPD, and BPD + APO groups. The control and APO groups were kept in a normal room environment, while the BPD and BPD + APO groups were kept in a hyperoxic environment. The rats in the APO and BPD + APO groups were administered intraperitoneal APO, while the control and BPD rats were administered ordinary saline. At the end of the trial, lung tissue was evaluated with respect to the degree of histopathological injury, apoptosis, oxidant and antioxidant capacity, and severity of inflammation. RESULT The BPD and BPD + APO groups exhibited higher mean histopathological injury and alveolar macrophage scores compared to the control and APO groups. Both scores were lower in the BPD + APO group in comparison to the BPD group. The BPD + APO group had a significantly lower average of TUNEL positive cells than the BPD group. The lung tissue examination indicated significantly higher levels of mean malondialdehyde (MDA), total oxidant status (TOS), tumor necrosis factor-α (TNF-α), and interleukin-1β (IL-1β) in the BPD group compared to the control and APO groups. While the TNF-α and IL-1β levels of the BPD + APO group were similar to that of the control group, the MDA and TOS levels were higher compared to the controls and lower compared to the BPD group. The BPD group demonstrated significantly lower levels/activities of mean total antioxidant status, glutathione reductase, superoxide dismutase, glutathione peroxidase in comparison to the control and APO groups. While the mean antioxidant enzyme activity of the BPD + APO group was lower than the control group, it was significantly higher compared to the BPD group. CONCLUSION This is the first study in the literature to reveal through an experimental neonatal hyperoxic lung injury that APO, an anti-inflammatory, antioxidant, and antiapoptotic drug, exhibits protective properties against the development of BPD.
Collapse
Affiliation(s)
- Ramazan Ozdemir
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Ismail Kursat Gokce
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Suat Tekin
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Asli Cetin Taslidere
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Hatice Turgut
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Kevser Tanbek
- Department of Physiology, Inonu University School of Medicine, Malatya, Turkey
| | - Cemile Ceren Gul
- Department of Histology and Embryology, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Fatih Deveci
- Division of Neonatology, Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Aslan
- Department of Pediatrics, Inonu University School of Medicine, Malatya, Turkey
| |
Collapse
|
16
|
Yu M, Zhang L, Sun S, Zhang Z. Gliquidone improves retinal injury to relieve diabetic retinopathy via regulation of SIRT1/Notch1 pathway. BMC Ophthalmol 2021; 21:451. [PMID: 34961513 PMCID: PMC8711144 DOI: 10.1186/s12886-021-02215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/07/2021] [Indexed: 11/10/2022] Open
Abstract
Background Diabetic retinopathy (DR) is a common and potentially devastating microvascular complication of diabetes mellitus (DM). The main features of DR are inflammation and oxidative damage. Gliquidone (GLI) is confirmed to be a hypoglycemic drug by oral administration. The current study is aimed to investigate the role and mechanism of GLI on the pathogenesis of DR. Methods High glucose (HG)-induced human retinal endothelial cells (HRECs) were used to explore the anti-inflammatory and anti-oxidant effects of GLI on DR in vitro. Streptozotocin (STZ)-induced DM rats were used to investigate the effects of GLI on retinal structures, inflammation, and oxidative stress. The levels of SIRT1/Notch1 pathway-related proteins were determined by western blotting. Results GLI treatment promoted the viability and inhibited the apoptosis of HG-induced HRECs. Meanwhile, the levels of interleukin (IL)-6, IL-1β, tumour necrosis factor alpha and reactive oxygen species were suppressed, while both catalase and superoxide dismutase were elevated after GLI treatment in HG-induced HRECs. Furthermore, we found that Silencing information regulator 2 related enzyme 1 (SIRT1) silencing reversed the inhibiting effects of GLI on the levels of protein Notch1 and effector genes Hes1 and Hey2. Similar anti-inflammatory and anti-oxidant effects of GLI in STZ-induced DM rats were observed. Additionally, GLI administration also repressed vascular hyperpermeability in vivo. Conclusion GLI may be an effective agent to improve DR through repression of inflammation and oxidative stress via SIRT1/Notch1 pathway.
Collapse
Affiliation(s)
- Mengdan Yu
- Department of Ophthalmology, Affiliated Qingdao Central Hospital, Qingdao University, No. 127, Siliu South Road, Qingdao City, 266042, Shandong Province, China
| | - Lijun Zhang
- Department of Ophthalmology, Affiliated Qingdao Central Hospital, Qingdao University, No. 127, Siliu South Road, Qingdao City, 266042, Shandong Province, China
| | - Shasha Sun
- Department of Ophthalmology, Affiliated Qingdao Central Hospital, Qingdao University, No. 127, Siliu South Road, Qingdao City, 266042, Shandong Province, China
| | - Zhenhua Zhang
- Department of Ophthalmology, Affiliated Qingdao Central Hospital, Qingdao University, No. 127, Siliu South Road, Qingdao City, 266042, Shandong Province, China.
| |
Collapse
|
17
|
Sayed AM, Hassanein EHM, Ali FEM, Omar ZMM, Rashwan EK, Mohammedsaleh ZM, Abd El-Ghafar OAM. Regulation of Keap-1/Nrf2/AKT and iNOS/NF-κB/TLR4 signals by apocynin abrogated methotrexate-induced testicular toxicity: Mechanistic insights and computational pharmacological analysis. Life Sci 2021; 284:119911. [PMID: 34450167 DOI: 10.1016/j.lfs.2021.119911] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
AIM Male reproductive toxicity is becoming of growing significance due to clinical chemotherapy usage. Methotrexate (MTX) is an anti-folate used on a large scale for different tumors and autoimmune conditions. Despite its wide clinical use, MTX is associated with severe testicular intoxication. The exact underlying mechanism is unclear. METHODS Our study was conducted to explore the pathogenesis mechanism of MTX-induced testicular damage and the potential testicular protective effects of apocynin (APO) on testicular injury induced by single i.p. MTX (20 mg/kg). APO was administered orally (100 mg/kg) for ten days. RESULTS As compared to rats given MTX alone, co-administration of MTX with APO demonstrated multiple beneficial effects evidenced by a marked increase in testosterone, FSH, and LH and significantly restored testes histopathological alterations. Mechanistically, APO restored antioxidant status through up-regulation of Nrf2, cytoglobin, PPAR-γ, SIRT1, AKT, and p-AKT, while effectively lowering Keap-1. Moreover, APO significantly attenuated inflammation by down-regulating NF-κB-p65, iNOS, and TLR4 expressions confirmed by in-silico evidence. Additionally, network pharmacology analysis, a bioinformatics approach, was used to decipher various cellular processes' molecular mechanisms. SIGNIFICANCE The current investigation proves the beneficial effects of APO in MTX-associated testicular damage through activation of cytoglobin, Keap-1/Nrf2/AKT, PPAR-γ, SIRT1, and suppressing of TLR4/NF-κB-p65 signal. Our data collectively encourage extending the investigation to the clinical setting to explore APO effects in MTX-treated patients.
Collapse
Affiliation(s)
- Ahmed M Sayed
- Biochemistry Laboratory, Chemistry Department, Faculty of Science, Assiut University, Egypt
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Fares E M Ali
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| | - Zainab M M Omar
- Department of Pharmacology, College of Medicine, Al-Azhar University, Assiut 71524, Egypt
| | - Eman K Rashwan
- Department of Physiology, College of Medicine, Jouf University, Sakaka 42421, Saudi Arabia; Department of Physiology, College of Medicine, Al-Azhar University, Assuit 71524, Egypt
| | - Zuhair M Mohammedsaleh
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk 71491, Saudi Arabia
| | - Omnia A M Abd El-Ghafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt
| |
Collapse
|
18
|
Bayan N, Yazdanpanah N, Rezaei N. Role of Toll-Like Receptor 4 in Diabetic Retinopathy. Pharmacol Res 2021; 175:105960. [PMID: 34718133 DOI: 10.1016/j.phrs.2021.105960] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 12/11/2022]
Abstract
Diabetic retinopathy (DR) is the most frequent microvascular complication of diabetes mellitus (DM) and a leading cause of blindness worldwide. Evidence has shown that DR is an inflammatory disease with hyperglycemia playing a causative role in the development of its main features, including inflammation, cellular apoptosis, neurodegeneration, oxidative stress, and neovascularization. Toll-like receptors (TLRs) are a well-known family of pattern recognition receptors (PRRs) responsible for the initiation of inflammatory and immune responses. TLR4 identifies both endogenous and exogenous ligands and is associated with various physiological and pathological pathways in the body. While the detailed pathophysiology of DR is still unclear, increasing data suggests a crucial role for TLR4 in the development of DR. Due to hyperglycemia, TLR4 expression increases in diabetic retina, which activates various pathways leading to DR. Considering the role of TLR4 in DR, several studies have focused on the association of TLR4 polymorphisms and risk of DR development. Moreover, evidence concerning the effect of microRNAs in the pathogenesis of DR, through their interaction with TLR4, indicates the determinant role of TLR4 in this disease. Of note, several agents have proven as effective in alleviating DR through the inhibition of the TLR4 pathway, suggesting new avenues in DR treatment. In this review, we provided a brief overview of the TLR4 structure and biological function and a more comprehensive discussion about the mechanisms of TLR4 activation in DR. Furthermore, we summarized the relationship between TLR4 polymorphisms and risk of DR and the relationship between microRNAs and TLR4 in DR. Finally, we discussed the current progress in designing TLR4 inhibitors, which could be helpful in DR clinical management.
Collapse
Affiliation(s)
- Nikoo Bayan
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Niloufar Yazdanpanah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Salles BCC, Leme KC, da Silva MA, da Rocha CQ, Tangerina MMP, Vilegas W, Figueiredo SA, Duarte SMDS, Rodrigues MR, de Araújo Paula FB. Protective effect of flavonoids from Passiflora edulis Sims on diabetic complications in rats. J Pharm Pharmacol 2021; 73:1361-1368. [PMID: 33772554 DOI: 10.1093/jpp/rgab046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 02/27/2021] [Indexed: 12/23/2022]
Abstract
OBJECTIVES This study was carried out to evaluate the effects of flavonoids present in leaves of Passiflora edulis fruit on complications induced by diabetes in rats. METHODS The extract of P. edulis leaf was obtained by 70% ethanol maceration. From the dry extract, the fractions were obtained by consecutive liquid-liquid partition with hexane, ethyl acetate and n-butanol. The content of isoorientin of ethyl acetate and n-butanol fractions was determined by ultra-performance liquid chromatography coupled with electrospray and triple quadrupole ionization (TQD) analysis in tandem mass spectrometry (UPLC-ESI-Tq-MS). Only Fr-BuOH was used to treat diabetic or not Wistar rats. Biochemical parameters, platelet aggregation and production of reactive species were evaluated. KEY FINDINGS The UPLC-ESI-Tq-MS analysis revealed the presence of several flavonoids, among which we identified five possible flavonoids c-heterosides (luteolin-7-O-pyranosyl-3-O-glucoside, apigenin-6-8-di-C-glycoside, apigenin-6-C-arabinoside-8-C-glycoside, isoorientin, isovitexin). The diabetic rats (treated intraperitoneally with alloxan, 150 mg/kg) treated with Fr-BuOH (20 mg/kg/day for 90 days) presented improvement in blood glucose, serum levels of fructosamine, lipid profile and urea. Furthermore, the Fr-BuOH reduced both platelet aggregation and the production of oxidant species in diabetic animals. CONCLUSIONS These results suggested that flavonoid C-glycosides present in the Fr-BuOH may be beneficial for the diabetic state, preventing complications induced by diabetes.
Collapse
Affiliation(s)
- Bruno César Correa Salles
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Krissia Caroline Leme
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Marcelo Aparecido da Silva
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | | | - Marcelo M P Tangerina
- Institute of Biosciences, Coastal Campus of São Vicente, Universidade Estadual Paulista, São Vicente, Brazil
- Department of Botany, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Wagner Vilegas
- Institute of Biosciences, Coastal Campus of São Vicente, Universidade Estadual Paulista, São Vicente, Brazil
| | - Sônia A Figueiredo
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Stella Maris da Silveira Duarte
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Maria Rita Rodrigues
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| | - Fernanda Borges de Araújo Paula
- Department of Clinical and Toxicological Analysis, Faculty of Pharmaceutical Sciences, Federal University of Alfenas, Alfenas, Brazil
| |
Collapse
|
20
|
Shu X, Hu Y, Huang C, Wei N. Nimbolide ameliorates the streptozotocin-induced diabetic retinopathy in rats through the inhibition of TLR4/NF-κB signaling pathway. Saudi J Biol Sci 2021; 28:4255-4262. [PMID: 34354407 PMCID: PMC8324995 DOI: 10.1016/j.sjbs.2021.06.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/01/2021] [Accepted: 06/13/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a common problem in the diabetic patients due to the high blood glucose level. DR affects more number of diabetic patients worldwide with irreversible vision loss. OBJECTIVE The current investigation was focused to reveal the therapeutic actions of nimbolide against the streptozotocin (STZ)-provoked DR in rats through inhibition of TLR4/NF-κB pathway. METHODOLOGY DR was provoked to the rats through administering a single dose of STZ (60 mg/kg) intraperitoneally. The DR rats were then supplemented with the 50 mg/kg of nimbolide for 60 days. The bodyweight and blood glucose level was measured using standard methods. The lipid profiles (cholesterol, TG, LDL, and HDL), inflammatory markers, and antioxidants level was detected using respective kits. The level of MCP-1, VEGF, and MMP-9 was quantified using kits. The morphometric analysis of retinal tissues were done. The mRNA expressions of target genes were studied using RT-PCR assay. RESULTS Nimbolide treatment effective decreased the food intake and blood glucose, and improved the bodyweight of STZ-provoked animals. The levels of pro-inflammatory mediators, cholesterol, TG, LDL, and HDL, MCP-1, VEGF, and MMP-9 was remarkably suppressed by the nimbolide treatment. Nimbolide also improved the antioxidants, retinal thickness and cell numbers. The TLR4/NF-κB pathway was appreciably inhibited by the nimbolide. CONCLUSION Overall, our findings demonstrated that the nimbolide attenuated the STZ-provoked DR in rats through inhibiting the TLR4/NF-κB pathway.
Collapse
Affiliation(s)
- Xiangwen Shu
- Second Department of Ophthalmology, Second People's Hospital of Jinan, Jinan 250001, China
| | - Yali Hu
- Department of Ophthalmology, Binzhou Hospital of Traditional Chinese Medicine, Binzhou 256600, China
| | - Chao Huang
- Department of Ophthalmology, The Second People’s Hospital of Jinan, Jinan 250000, China
| | - Ning Wei
- Department of Ophthalmology, The Second People’s Hospital of Jinan, Jinan 250000, China
| |
Collapse
|
21
|
Li W, Jin L, Cui Y, Nie A, Xie N, Liang G. Bone marrow mesenchymal stem cells-induced exosomal microRNA-486-3p protects against diabetic retinopathy through TLR4/NF-κB axis repression. J Endocrinol Invest 2021; 44:1193-1207. [PMID: 32979189 DOI: 10.1007/s40618-020-01405-3] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 08/23/2020] [Indexed: 02/08/2023]
Abstract
AIM Diabetic retinopathy (DR) is a chronic disease causing health and economic burdens on individuals and society. Thus, this study is conducted to figure out the mechanisms of bone marrow mesenchymal stem cells (BMSCs)-induced exosomal microRNA-486-3p (miR-486-3p) in DR. METHODS The putative miR-486-3p binding sites to 3'untranslated region of Toll-like receptor 4 (TLR4) was verified by luciferase reporter assay. High glucose (HG)-treated Muller cells were transfected with miR-486-3p or TLR4-related oligonucleotides and plasmids to explore theirs functions in DR. Additionally, HG-treated Muller cells were co-cultured with BMSC-derived exosomes, exosomes collected from BMSCs that had been transfected with miR-486-3p or TLR4-related oligonucleotides and plasmids to explore their functions in DR. MiR-486-3p, TLR4 and nuclear factor-kappaB (NF-κB) expression, angiogenesis-related factors, oxidative stress factors, viability and apoptosis in HG-treated Muller cells were detected by RT-qPCR, western blot analysis, ELISA, MTT assay and flow cytometry, respectively. RESULTS MiR-486-3p was poorly expressed while TLR4 and NF-κB were highly expressed in HG-treated Muller cells. TLR4 was a target of miR-486-3p. Upregulating miR-486-3p or down-regulating TLR4 inhibited oxidative stress, inflammation and apoptosis, and promoted proliferation of HG-treated Muller cells. Meanwhile, BMSC-derived exosomes inhibited oxidative stress, inflammation and apoptosis, and promoted proliferation of HG-treated Muller cells. Restoring miR-486-3p further enhanced, while up-regulating TLR4 reversed, the improvement of exosomes treatment. CONCLUSION Our study highlights that up-regulation of miR-486-3p induced by BMSC-derived exosomes played a protective role in DR mice via TLR4/NF-κB axis repression.
Collapse
Affiliation(s)
- W Li
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - L Jin
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - Y Cui
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - A Nie
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China
| | - N Xie
- Department of Ophthalmology, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, 1017 Dongmen North Road, Luohu District, Shenzhen, 518000, Guangdong, China.
| | - G Liang
- Department of Ophthalmology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, 53300, Guangxi, China.
| |
Collapse
|
22
|
Synergistic cardioptotection by tilianin and syringin in diabetic cardiomyopathy involves interaction of TLR4/NF-κB/NLRP3 and PGC1a/SIRT3 pathways. Int Immunopharmacol 2021; 96:107728. [PMID: 33971494 DOI: 10.1016/j.intimp.2021.107728] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 04/13/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023]
Abstract
Diabetic cardiomyopathy (DCM) is a chronic multifactorial complication of type-2 diabetes mellitus, leading to heart failure. A combination of multifaceted therapeutics for the management of DCM is needed. Here, we investigated the combined effect of syringin and tilianin on DCM by evaluating cardiac function, inflammation, oxidative stress, apoptosis and mitochondrial function, and explored the contribution of TLR4/NF-κB/NLRP3 and PGC1α/SIRT3 pathways in diabetic rats and hyperglycemic-H9c2 cells. Syringin and tilianin (50 and 60 mg/kg, i.p, respectively) were administered for eight weeks, individually or in combination, to healthy and type-2 diabetic Sprague-Dawley rats. Myocardial function was recorded using a carotid catheter, mitochondrial and histopathological changes were evaluated by fluorometric and staining methods, cardiac markers and signaling pathways' proteins expression were measured through ELISA and immunoblotting. In comparison to individual treatments, combination of syringin and tilianin effectively exerted antidiabetic effects and improved cardiac function and DCM markers, reduced NLRP3/IL-6/IL-1β/TNF-α expression, and suppressed diabetes/hyperglycemia‑induced oxidative stress in rats' heart and H9c2 cells, as demonstrated by decreased 8-isoprostane, and increased superoxide dismutase-2 levels. Mitochondrial membrane depolarization and ROS production were inhibited, and caspase-3 and Bax/Bcl2 expression downregulated by combination therapy. Combined treatment markedly inhibited up-regulation of TLR4, MyD88 and NF-κB in diabetic rats. Finally, inhibition of PGC1α/SIRT3 pathway by 3-TYP in hyperglycemic H9c2-cells reversed the beneficial effects of combination therapy on cardiomyocytes injury and NF-κB/NLRP3/IL-1β expression, without affecting TLR4/MyD88 expression. Syringin plus tilianin synergistically inhibited the diabetes-induced cardiac functional, biochemical and histopathological changes in DCM. Crosstalk between TLR4/NF-κB/NLRP3 and PGC1α/SIRT3/mitochondrial pathways contributed to this protection.
Collapse
|
23
|
Zhang M, Yang J, Zhao X, Zhao Y, Zhu S. Network pharmacology and molecular docking study on the active ingredients of qidengmingmu capsule for the treatment of diabetic retinopathy. Sci Rep 2021; 11:7382. [PMID: 33795817 PMCID: PMC8016862 DOI: 10.1038/s41598-021-86914-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is a leading cause of irreversible blindness globally. Qidengmingmu Capsule (QC) is a Chinese patent medicine used to treat DR, but the molecular mechanism of the treatment remains unknown. In this study, we identified and validated potential molecular mechanisms involved in the treatment of DR with QC via network pharmacology and molecular docking methods. The results of Ingredient-DR Target Network showed that 134 common targets and 20 active ingredients of QC were involved. According to the results of enrichment analysis, 2307 biological processes and 40 pathways were related to the treatment effects. Most of these processes and pathways were important for cell survival and were associated with many key factors in DR, such as vascular endothelial growth factor-A (VEGFA), hypoxia-inducible factor-1A (HIF-1Α), and tumor necrosis factor-α (TNFα). Based on the results of the PPI network and KEGG enrichment analyses, we selected AKT1, HIF-1α, VEGFA, TNFα and their corresponding active ingredients for molecular docking. According to the molecular docking results, several key targets of DR (including AKT1, HIF-1α, VEGFA, and TNFα) can form stable bonds with the corresponding active ingredients of QC. In conclusion, through network pharmacology methods, we found that potential biological mechanisms involved in the alleviation of DR by QC are related to multiple biological processes and signaling pathways. The molecular docking results also provide us with sound directions for further experiments.
Collapse
Affiliation(s)
- Mingxu Zhang
- Eye School, Chengdu University of Traditional Chinese Medicine, 37 Shi Er Qiao Road, Jinniu District, Chengdu, 610036, China
| | - Jiawei Yang
- Eye School, Chengdu University of Traditional Chinese Medicine, 37 Shi Er Qiao Road, Jinniu District, Chengdu, 610036, China.,National Key Laboratory of Human Factors Engineering, China Astronaut Research and Training Center, Lvyuan Road, Haidin District, Beijing, 100089, China
| | - Xiulan Zhao
- Eye School, Chengdu University of Traditional Chinese Medicine, 37 Shi Er Qiao Road, Jinniu District, Chengdu, 610036, China
| | - Ying Zhao
- Eye School, Chengdu University of Traditional Chinese Medicine, 37 Shi Er Qiao Road, Jinniu District, Chengdu, 610036, China
| | - Siquan Zhu
- Eye School, Chengdu University of Traditional Chinese Medicine, 37 Shi Er Qiao Road, Jinniu District, Chengdu, 610036, China. .,Department of Ophthalmology, Beijing Anzhen Hospital of Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
24
|
Han J, Zhong Y, Jin C, Luo R, Xia M, He Y, Liu J, Peng X. Apocynin attenuates patulin-induced cytotoxicity through reduction of oxidation stress and apoptosis in HEK293cells. WORLD MYCOTOXIN J 2021. [DOI: 10.3920/wmj2020.2605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Patulin (PAT) is a natural mycotoxin that commonly contaminates fruits and their derivative products and has been proven to induce cytotoxicity and oxidative damage in renal cells. In the present study, we aimed to evaluate the effect of apocynin, a potent phenolic antioxidant isolated from plants, on PAT-induced cell injury in human embryonic kidney (HEK293) cells. Compared with 7.5 μM PAT treatment alone, 10 μM apocynin co-treatment elevated cell viability, alleviated lactate dehydrogenase release and reduced caspase activities. Furthermore, apocynin inhibited reactive oxygen species overproduction, re-established mitochondria membrane potential and elevated intracellular ATP content. In addition, the results showed that apocynin aggrandized reduced glutathione (GSH) content, reduced oxidized glutathione (GSSG) content, raised the GSH/GSSG ratio and elevated superoxide dismutase, catalase, glutathione reductase, and glutathione peroxidase activities. Collectively, results of the study clearly show that apocynin supplement may serve as an alternative intervention to protect HEK293 cells against cytotoxicity induced by PAT through reduction of oxidation stress and apoptosis.
Collapse
Affiliation(s)
- J.H. Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China P.R
| | - Y.J. Zhong
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China P.R
| | - C.N. Jin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China P.R
| | - R.L. Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China P.R
| | - M.Y. Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China P.R
| | - Y.S. He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China P.R
| | - J.Y. Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China P.R
| | - X.L. Peng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China P.R
| |
Collapse
|
25
|
Ahmad A, Nawaz MI, Siddiquei MM, Abu El-Asrar AM. Apocynin ameliorates NADPH oxidase 4 (NOX4) induced oxidative damage in the hypoxic human retinal Müller cells and diabetic rat retina. Mol Cell Biochem 2021; 476:2099-2109. [PMID: 33515385 DOI: 10.1007/s11010-021-04071-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022]
Abstract
NADPH oxidase (NOX) is a main producers of reactive oxygen species (ROS) that may contribute to the early pathogenesis of diabetic retinopathy (DR). ROS has harmful effects on endogenous neuro-survival factors brain-derived neurotrophic factor (BDNF) and sirtuin 1 (SIRT1) are necessary for the growth and survival of the retina. The role of NOX isoforms NOX4 in triggering ROS in DR is not clear. Here we determine the protective effects of a plant-derived NOX inhibitor apocynin (APO) on NOX4-induced ROS production which may contribute to the depletion of survival factors BDNF/SIRT1 or cell death in the diabetic retinas. Human retinal Müller glial cells (MGCs) were treated with hypoxia mimetic agent cobalt chloride (CoCl2) in the absence or presence of APO. Molecular analysis demonstrates that NOX4 is upregulated in CoCl2-treated MGCs and in the diabetic retinas. Increased NOX4 was accompanied by the downregulation of BDNF/SIRT1 expression or in the activation of apoptotic marker caspase-3. Whereas, APO treatment downregulates NOX4 and subsequently upregulates BDNF/SIRT1 or alleviate caspase-3 expression. Accordingly, in the diabetic retina we found a positive correlation in NOX4 vs ROS (p = 0.025; R2 = 0.488) and caspase-3 vs ROS (p = 0.04; R2 = 0.428); whereas a negative correlation in BDNF vs ROS (p = 0.009; R2 = 0.596) and SIRT1 vs ROS (p = 0.0003; R2 = 0.817) respectively. Taken together, NOX4-derived ROS could be a main contributor in downregulating BDNF/SIRT1 expression or in the activation of caspase-3. Whereas, APO treatment may minimize the deleterious effects occurring due to hyperglycemia and/or diabetic mimic hypoxic condition in early pathogenesis of DR.
Collapse
Affiliation(s)
- Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.
| | - Mohd Imtiaz Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | - Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
26
|
Acrolein: A Potential Mediator of Oxidative Damage in Diabetic Retinopathy. Biomolecules 2020; 10:biom10111579. [PMID: 33233661 PMCID: PMC7699716 DOI: 10.3390/biom10111579] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 11/05/2020] [Accepted: 11/17/2020] [Indexed: 02/06/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss among working-age adults. Extensive evidences have documented that oxidative stress mediates a critical role in the pathogenesis of DR. Acrolein, a product of polyamines oxidation and lipid peroxidation, has been demonstrated to be involved in the pathogenesis of various human diseases. Acrolein’s harmful effects are mediated through multiple mechanisms, including DNA damage, inflammation, ROS formation, protein adduction, membrane disruption, endoplasmic reticulum stress, and mitochondrial dysfunction. Recent investigations have reported the involvement of acrolein in the pathogenesis of DR. These studies have shown a detrimental effect of acrolein on the retinal neurovascular unit under diabetic conditions. The current review summarizes the existing literature on the sources of acrolein, the impact of acrolein in the generation of oxidative damage in the diabetic retina, and the mechanisms of acrolein action in the pathogenesis of DR. The possible therapeutic interventions such as the use of polyamine oxidase inhibitors, agents with antioxidant properties, and acrolein scavengers to reduce acrolein toxicity are also discussed.
Collapse
|
27
|
Update on the Effects of Antioxidants on Diabetic Retinopathy: In Vitro Experiments, Animal Studies and Clinical Trials. Antioxidants (Basel) 2020; 9:antiox9060561. [PMID: 32604941 PMCID: PMC7346101 DOI: 10.3390/antiox9060561] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Current therapies for diabetic retinopathy (DR) incorporate blood glucose and blood pressure control, vitrectomy, photocoagulation, and intravitreal injections of anti-vascular endothelial growth factors or corticosteroids. Nonetheless, these techniques have not been demonstrated to completely stop the evolution of this disorder. The pathophysiology of DR is not fully known, but there is more and more evidence indicating that oxidative stress is an important mechanism in the progression of DR. In this sense, antioxidants have been suggested as a possible therapy to reduce the complications of DR. In this review we aim to assemble updated information in relation to in vitro experiments, animal studies and clinical trials dealing with the effect of the antioxidants on DR.
Collapse
|
28
|
Zhang BY, Zhang YL, Sun Q, Zhang PA, Wang XX, Xu GY, Hu J, Zhang HH. Alpha-lipoic acid downregulates TRPV1 receptor via NF-κB and attenuates neuropathic pain in rats with diabetes. CNS Neurosci Ther 2020; 26:762-772. [PMID: 32175676 PMCID: PMC7298987 DOI: 10.1111/cns.13303] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 02/17/2020] [Accepted: 03/01/2020] [Indexed: 12/14/2022] Open
Abstract
Aims Painful diabetic neuropathy (PDN) is a refractory complication of diabetes. The study aimed to investigate the role of α‐lipoic acid (ALA) on the regulation of transient receptor potential vanilloid‐1 (TRPV1) in dorsal root ganglion (DRG) neurons of rats with diabetes. Methods Whole‐cell patch‐clamp recordings were employed to measure neuronal excitability in DiI‐labeled DRG neurons of control and streptozotocin (STZ)‐induced diabetic rats. Western blotting and immunofluorescence assays were used to determine the expression and location of NF‐κBp65 and TRPV1. Results STZ‐induced hindpaw pain hypersensitivity and neuronal excitability in L4‐6 DRG neurons were attenuated by intraperitoneal injection with ALA once a day lasted for one week. TRPV1 expression was enhanced in L4‐6 DRGs of diabetic rats compared with age‐matched control rats, which was also suppressed by ALA treatment. In addition, TRPV1 and p65 colocated in the same DRG neurons. The expression of p65 was upregulated in L4‐6 DRGs of diabetic rats. Inhibition of p65 signaling using recombinant lentiviral vectors designated as LV‐NF‐κBp65 siRNA remarkably suppressed TRPV1 expression. Finally, p65 expression was downregulated by ALA treatment. Conclusion Our findings demonstrated that ALA may alleviate neuropathic pain in diabetes by regulating TRPV1 expression via affecting NF‐κB.
Collapse
Affiliation(s)
- Bing-Yu Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Yi-Lian Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Qian Sun
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ping-An Zhang
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xi-Xi Wang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Guang-Yin Xu
- Center for Translational Pain Medicine, Institute of Neuroscience, Soochow University, Suzhou, China
| | - Ji Hu
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| | - Hong-Hong Zhang
- Department of Endocrinology, The Second Affiliated Hospital, Soochow University, Suzhou, China
| |
Collapse
|
29
|
Liu X, Zhang Y, Liang H, Zhang Y, Xu Y. microRNA-499-3p inhibits proliferation and promotes apoptosis of retinal cells in diabetic retinopathy through activation of the TLR4 signaling pathway by targeting IFNA2. Gene 2020; 741:144539. [PMID: 32160960 DOI: 10.1016/j.gene.2020.144539] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/06/2020] [Indexed: 12/21/2022]
Abstract
microRNAs (miRNAs) are involved in the physiological and pathophysiological processes of diabetes and its microvascular and macrovascular complications. Hence, the aim of the study was to investigate whether miR-499-3p played an important role in diabetic retinopathy. Diabetic retinopathy was developed in rats by intraperitoneal injection of streptozocin (STZ), followed by collection of retinal tissues and preparation of retinal cells. Immunohistochemical staining was used to detect expression of interferon alpha 2 (IFNA2). RT-qPCR was used to determine the expression of miR-499-3p. Bioinformatics website and dual luciferase reporter gene assay were used to validate the targeting relationship between miR-499-3p and IFNA2. Gain- and loss-of-function assays were performed to explore the functional roles of aberrantly expressed miR-499-3p and IFNA2 in retinal cell proliferation by MTT, and apoptosis by flow cytometry. In retinal tissues and cells of diabetic rats, IFNA2 expression was reduced, and miR-499-3p expression increased to activate the toll-like receptor 4 (TLR4) signaling pathway. IFNA2 was a target gene of miR-499-3p and negatively regulated by miR-499-3p. Further, downregulated miR-499-3p promoted retinal cell proliferation while suppressing apoptosis to alleviate diabetic retinopathy. All in all, miR-499-3p promoted retinopathy by enhancing activation of the TLR4 signaling pathway, which provides a new therapeutic target for diabetic retinopathy.
Collapse
Affiliation(s)
- Xiaomeng Liu
- Department of Endocrinology (2(nd) Ward), Linyi People's Hospital, Linyi 276000, PR China
| | - Yuanyuan Zhang
- Department of Endocrinology (2(nd) Ward), Linyi People's Hospital, Linyi 276000, PR China
| | - Hongwei Liang
- Department of Healthcare, Linyi People's Hospital, Linyi 276000, PR China
| | - Yusong Zhang
- Department of Image, Linyi People's Hospital, Linyi 276000, PR China
| | - Yanchao Xu
- Department of Endocrinology (2(nd) Ward), Linyi People's Hospital, Linyi 276000, PR China.
| |
Collapse
|
30
|
Liu F, Lin C, Hong J, Cai C, Zhang W, Zhang J, Guo L. Apocynin protects retina cells from ultraviolet radiation damage via inducing sirtuin 1. J Drug Target 2019; 28:330-338. [PMID: 31479288 DOI: 10.1080/1061186x.2019.1663527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Direct exposure to Ultraviolet (UV) radiation causes progressive damages in retinal cells, which is one of the hypothetical mechanisms underlying age-related retinopathy or macular degeneration. The protective effects of Apocynin against UV damages were firstly tested in retinal pigment epithelium cells (RPEs) and retinal ganglion cells (RGCs). Subsequently the beneficial effect of Apocynin on mouse retinas against light damage were examined. Next, microarray profiling was used to identify the genes regulated by Apocynin in both RPEs and RGCs. A candidate gene was isolated for functional characterisation by knock-down study. Apocynin was shown to inhibit cell death, reduce oxidative stress and deoxyribonucleic acid damages in both RPEs and RGCs challenged with UV. Intravitreal application of Apocynin also improved retinal dysfunction caused by light damage. Sirtuin 1 (SIRT1) was identified as induced by Apocynin by microarray study. The induction was confirmed by realtime-PCR and western blotting. Knocking down SIRT1 antagonised the protective effect of Apocynin against UV damages in both RPEs and RGCs. Apocynin is a novel agent that shows both in vitro and in vivo efficacies against UV radiation induced retina damages. SIRT1 pathway is implicated in UV radiation protection of Apocynin in retinal cells.
Collapse
Affiliation(s)
- Feng Liu
- Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Chen Lin
- Department of Ophthalmology, Shenzhen Aier Eye Hospital, Shenzhen, China
| | - Jinsheng Hong
- Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Chuanshu Cai
- Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Weijian Zhang
- Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Jianrong Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| | - Lihong Guo
- Department of Radiation Oncology, The First Affiliated Hospital of Fujian Medical University, Fujian, China
| |
Collapse
|