1
|
Hosseini Y, Niknejad A, Sabbagh Kashani A, Gholami M, Roustaie M, Mohammadi M, Momtaz S, Atkin SL, Jamialahmadi T, Abdolghaffari AH, Sahebkar A. NLRP3 inflammasomes pathway: a key target for Metformin. Inflammopharmacology 2025; 33:1729-1760. [PMID: 40042723 DOI: 10.1007/s10787-025-01702-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 01/31/2025] [Indexed: 04/13/2025]
Abstract
Nucleotide-binding oligomerization domain, Leucine rich Repeat and Pyrin domain containing 3 (NLRP3) is a signaling pathway that is involved in inflammatory cascades, cell survival and the immune response. NLRP3 is activated by cellular damage, oxidative stress, and other factors that stimulate the immune system. Stimulation of NLRP3 induces inflammatory reactions and the production of inflammatory cytokines. These inflammatory mediators are implicated in several diseases. Metformin (MET) is an anti-hyperglycemia agent that is extensively used in clinical practice worldwide due to its high efficiency, safety profile, and affordable price. MET is the only member of biguanide class that is used in clinical practice and a potent AMP-activated protein kinase (AMPK) agonist with proven anti-inflammatory characteristics. Due to its anti-inflammatory properties, MET is considered to be effective against diseases that have an inflammatory background, and the NLRP3 pathway is involved in the pathophysiology of these disorders. In this review, we have evaluated the evidence if MET can affect this pathway and its utility for future therapeutic approaches.
Collapse
Affiliation(s)
- Yasamin Hosseini
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Niknejad
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Ayeh Sabbagh Kashani
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahsa Gholami
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mahtab Roustaie
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | | | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
| | - Stephen L Atkin
- Royal College of Surgeons in Ireland, PO Box 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Hossein Abdolghaffari
- Faculty of Pharmacy, Department of Toxicology and Pharmacology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Vital KD, Pires LO, Gallotti B, Silva JL, Lima de Jesus LC, Alvarez-Leite JI, Ferreira Ê, de Carvalho Azevedo VA, Santos Martins F, Nascimento Cardoso V, Antunes Fernandes SO. Atorvastatin attenuates intestinal mucositis induced by 5-fluorouracil in mice by modulating the epithelial barrier and inflammatory response. J Chemother 2025; 37:175-192. [PMID: 38711347 DOI: 10.1080/1120009x.2024.2345027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024]
Abstract
Chemotherapy-induced intestinal mucositis is a major side effect of cancer treatment. Statins are 3-hydroxy-3-methyl glutaryl coenzyme reductase inhibitors used to treat hypercholesterolemia and atherosclerotic diseases. Recent studies have demonstrated that atorvastatin (ATV) has antioxidant, anti-inflammatory, and resulting from the regulation of different molecular pathways. In the present study, we investigated the effects of ATV on intestinal homeostasis in 5-fluorouracil (5-FU)-induced mucositis. Our results showed that ATV protected the intestinal mucosa from epithelial damage caused by 5-FU mainly due to inflammatory infiltrate and intestinal permeability reduction, downregulation of inflammatory markers, such as Tlr4, MyD88, NF-κB, Tnf-a, Il1β, and Il6 dose-dependent. ATV also improved epithelial barrier function by upregulating the mRNA transcript levels of mucin 2 (MUC2), and ZO-1 and occludin tight junction proteins. The results suggest that the ATV anti-inflammatory and protective effects on 5-FU-induced mice mucositis involve the inhibition of the TLR4/MYD88/NPRL3/NF-κB, iNos, and caspase 3.
Collapse
Affiliation(s)
- Kátia Duarte Vital
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luiz Octavio Pires
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno Gallotti
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Janayne Luihan Silva
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luís Cláudio Lima de Jesus
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Ênio Ferreira
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vasco Ariston de Carvalho Azevedo
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Flaviano Santos Martins
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Valbert Nascimento Cardoso
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Simone Odília Antunes Fernandes
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
3
|
Aslani S, Eslami MM, Fakourizad G, Faiz AF, Mohammadi K, Dehghan O, Imani D, Abbaspour A, Jamialahmadi T, Razi B, Sahebkar A. Effect of Phytosterols on Serum Levels of C-Reactive Protein: A Time- and Dose-Response Meta-analysis of Randomized Controlled Trial. High Blood Press Cardiovasc Prev 2024; 31:613-630. [PMID: 39476284 DOI: 10.1007/s40292-024-00686-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/06/2024] [Indexed: 11/29/2024] Open
Abstract
INTRODUCTION Phytosterols are recognized for their cholesterol-reducing effects and are commonly used as dietary supplements or added to foods due to their potential cardiovascular benefits. However, evidence regarding the impact of phytosterol supplementation on inflammatory markers remains inconclusive. AIM This systematic review and meta-analysis aim to evaluate the effect of phytosterols in reducing levels of C-reactive protein (CRP) and high-sensitivity CRP (hs-CRP). METHODS A systematic literature search of the primary databases was conducted up to May 2024 to identify eligible studies. The measurement of effect sizes was determined using WMD (weighted mean difference) and 95% CI. RESULTS For the meta-analysis, 14 publications (19 study arms) for hs-CRP and 10 publications (16 study arms) for CRP were included. The pooled analysis showed that the administration of phytosterol did not significantly reduce CRP compared to control with WMD= -0.04 mg/l (95% CI: -0.28 to 0.20, P = 0.74). However, phytosterol supplementation significantly decreased the hs-CRP level compared to the control group with WMD of -0.25 mg/l (95% CI: -0.42 to -0.07, P = 0.006). The WMD for hs-CRP reduction was - 0.36 mg/l (95% CI: -0.53 to -0.18, P < 0.001) for supplementation with a phytosterol dose ≥ 2000 mg/day compared to the control group. CONCLUSIONS Phytosterol supplementation may be effective in reducing hs-CRP levels.
Collapse
Affiliation(s)
- Saeed Aslani
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, 3168, Australia
- Department of Molecular and Translational Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC, 3168, Australia
| | - Mohammad Masoud Eslami
- Department of Hematology and Blood Transfusion, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ghasem Fakourizad
- Department of Hematology and Transfusion Science, School of Allied medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Faisal Faiz
- Department of Para Clinic, School of Medicine, Herat University, Herat, Afghanistan
| | - Kayhan Mohammadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Research Center for Antibiotic Stewardship and Antimicrobial Resistance, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Dehghan
- Tropical and Communicable Diseases Research Centre, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | - Danyal Imani
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Abbaspour
- Department of Biotechnology and Molecular Sciences, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Tannaz Jamialahmadi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahman Razi
- Department of Laboratory Sciences and Hematology, North Khorasan University of Medical Sciences, Bojnurd, Iran.
| | - Amirhossein Sahebkar
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha Medical College and Hospitals, Saveetha University, Chennai, India.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
4
|
Lu Y, Li DH, Xu JM, Zhou S. Role of naringin in the treatment of atherosclerosis. Front Pharmacol 2024; 15:1451445. [PMID: 39309005 PMCID: PMC11412885 DOI: 10.3389/fphar.2024.1451445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Atherosclerosis (AS) is a major pathological basis of coronary heart disease. However, the currently available medications are unable to effectively reduce the incidence of cardiovascular events in the majority of patients with AS. Therefore, naringin has been attracting considerable attention owing to its anti-AS effects. Naringin can inhibit the growth, proliferation, invasion, and migration of vascular smooth muscle cells, ameliorate endothelial cell inflammation and apoptosis, lower blood pressure, halt the cell cycle at the G1 phase, and impede growth via its antioxidant and free radical scavenging effects. These activities suggest the potential anti-AS effects of naringin. In this review article, we comprehensively summarized the latest findings on the anti-AS effects of naringin and their underlying mechanisms, providing a crucial reference for future research on the anti-AS potential of this agent.
Collapse
Affiliation(s)
- Yan Lu
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - De-Hong Li
- Department of Clinical Laboratory, Gansu Provincial Hospital, Lanzhou, China
| | - Ji-Mei Xu
- Department of General Surgery, Gansu Provincial Hospital, Lanzhou, China
| | - Sheng Zhou
- Department of Radiology, Gansu Provincial Hospital, Lanzhou, China
| |
Collapse
|
5
|
Chen Y, Luo X, Xu B, Bao X, Jia H, Yu B. Oxidative Stress-Mediated Programmed Cell Death: a Potential Therapy Target for Atherosclerosis. Cardiovasc Drugs Ther 2024; 38:819-832. [PMID: 36522550 DOI: 10.1007/s10557-022-07414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/04/2022] [Indexed: 12/23/2022]
Abstract
Nowadays, as a type of orderly and active death determined by genes, programmed cell death (PCD), including apoptosis, pyroptosis, ferroptosis, and necroptosis, has attracted much attention owing to its participation in numerous chronic cardiovascular diseases, especially atherosclerosis (AS), a canonical chronic inflammatory disease featured by lipid metabolism disturbance. Abundant researches have reported that PCD under distinct internal conditions fulfills different roles of atherosclerotic pathological processes, including lipid core expansion, leukocyte adhesion, and infiltration. Noteworthy, emerging evidence recently has also suggested that oxidative stress (OS), an imbalance of antioxidants and oxygen free radicals, has the potential to mediate PCD occurrence via multiple ways, including oxidization and deubiquitination. Interestingly, more recently, several studies have proposed that the mediating mechanisms could effect on the atherosclerotic initiation and progression significantly from variable aspects, so it is of great clinical importance to clarify how OS-mediated PCD and AS interact. Herein, with the aim of summarizing potential and sufficient atherosclerotic therapy targets, we seek to provide extensive analysis of the specific regulatory mechanisms of PCD mediated by OS and their multifaceted effects on the entire pathological atherosclerotic progression.
Collapse
Affiliation(s)
- Yuwu Chen
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xing Luo
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Biyi Xu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Xiaoyi Bao
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| | - Haibo Jia
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China.
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China.
| | - Bo Yu
- Department of Cardiology, 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150001, People's Republic of China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, 150001, People's Republic of China
| |
Collapse
|
6
|
Kounatidis D, Tentolouris N, Vallianou NG, Mourouzis I, Karampela I, Stratigou T, Rebelos E, Kouveletsou M, Stamatopoulos V, Tsaroucha E, Dalamaga M. The Pleiotropic Effects of Lipid-Modifying Interventions: Exploring Traditional and Emerging Hypolipidemic Therapies. Metabolites 2024; 14:388. [PMID: 39057711 PMCID: PMC11278853 DOI: 10.3390/metabo14070388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Atherosclerotic cardiovascular disease poses a significant global health issue, with dyslipidemia standing out as a major risk factor. In recent decades, lipid-lowering therapies have evolved significantly, with statins emerging as the cornerstone treatment. These interventions play a crucial role in both primary and secondary prevention by effectively reducing cardiovascular risk through lipid profile enhancements. Beyond their primary lipid-lowering effects, extensive research indicates that these therapies exhibit pleiotropic actions, offering additional health benefits. These include anti-inflammatory properties, improvements in vascular health and glucose metabolism, and potential implications in cancer management. While statins and ezetimibe have been extensively studied, newer lipid-lowering agents also demonstrate similar pleiotropic effects, even in the absence of direct cardiovascular benefits. This narrative review explores the diverse pleiotropic properties of lipid-modifying therapies, emphasizing their non-lipid effects that contribute to reducing cardiovascular burden and exploring emerging benefits for non-cardiovascular conditions. Mechanistic insights into these actions are discussed alongside their potential therapeutic implications.
Collapse
Affiliation(s)
- Dimitris Kounatidis
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Nikolaos Tentolouris
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Natalia G. Vallianou
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Iordanis Mourouzis
- Department of Pharmacology, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Irene Karampela
- Second Department of Critical Care, Attikon General University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Theodora Stratigou
- Department of Endocrinology and Metabolism, Evangelismos General Hospital, 10676 Athens, Greece;
| | - Eleni Rebelos
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | - Marina Kouveletsou
- Diabetes Center, First Department of Propaedeutic Internal Medicine, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (D.K.); (N.T.); (E.R.); (M.K.)
| | | | - Eleni Tsaroucha
- First Department of Internal Medicine, Sismanogleio General Hospital, 15126 Athens, Greece;
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
7
|
Alipour S, Mardi A, Shajari N, Kazemi T, Sadeghi MR, Ahmadian Heris J, Masoumi J, Baradaran B. Unmasking the NLRP3 inflammasome in dendritic cells as a potential therapeutic target for autoimmunity, cancer, and infectious conditions. Life Sci 2024; 348:122686. [PMID: 38710282 DOI: 10.1016/j.lfs.2024.122686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/13/2024] [Accepted: 05/03/2024] [Indexed: 05/08/2024]
Abstract
Proper and functional immune response requires a complex interaction between innate and adaptive immune cells, which dendritic cells (DCs) are the primary actors in this coordination as professional antigen-presenting cells. DCs are armed with numerous pattern recognition receptors (PRRs) such as nucleotide-binding and oligomerization domain-like receptors (NLRs) like NLRP3, which influence the development of their activation state upon sensation of ligands. NLRP3 is a crucial component of the immune system for protection against tumors and infectious agents, because its activation leads to the assembly of inflammasomes that cause the formation of active caspase-1 and stimulate the maturation and release of proinflammatory cytokines. But, when NLRP3 becomes overactivated, it plays a pathogenic role in the progression of several autoimmune disorders. So, NLRP3 activation is strictly regulated by diverse signaling pathways that are mentioned in detail in this review. Furthermore, the role of NLRP3 in all of the diverse immune cells' subsets is briefly mentioned in this study because NLRP3 plays a pivotal role in modulating other immune cells which are accompanied by DCs' responses and subsequently influence differentiation of T cells to diverse T helper subsets and even impact on cytotoxic CD8+ T cells' responses. This review sheds light on the functional and therapeutic role of NLRP3 in DCs and its contribution to the occurrence and progression of autoimmune disorders, prevention of diverse tumors' development, and recognition and annihilation of various infectious agents. Furthermore, we highlight NLRP3 targeting potential for improving DC-based immunotherapeutic approaches, to be used for the benefit of patients suffering from these disorders.
Collapse
Affiliation(s)
- Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amirhossein Mardi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Neda Shajari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
8
|
Lin GL, Keller JJ, Wang LH. Association Between Statin Use and the Incidence of Clinically Diagnosed Osteoarthritis: A Nationwide Retrospective Cohort Study in Taiwan. Cartilage 2024:19476035241247700. [PMID: 38726681 PMCID: PMC11569678 DOI: 10.1177/19476035241247700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 11/19/2024] Open
Abstract
OBJECTIVE To investigate the effect of higher cumulative defined daily dose per year (cDDD/y) compared with lower cDDD/y of statin use in the incidence of any joint osteoarthritis (OA). DESIGN In this population-based retrospective cohort study, patients who were aged ≥40 years were newly initiated on statin therapy between 2002 and 2011, and had a statin prescription for ≥90 days in the first year of treatment were identified from the 2000 Longitudinal Generation Tracking Database. All patients were separated into groups with higher cDDD/y (>120 cDDD/y) and lower cDDD/y (≤120 cDDD/y; as an active comparator) values. Propensity score matching was performed to balance potential confounders. All recruited patients were followed up for 8 years. Marginal Cox proportional hazard models were used to estimate time-to-event outcomes of OA. RESULTS Compared with lower cDDD/y use, higher cDDD/y use did not reduce the risk of any joint OA (adjusted hazard ratio, 1.07; 95% confidence interval, 0.99-1.14). Dose-related analysis did not reveal any dose-dependent association. A series of sensitivity analyses showed similar results. Joint-specific analyses revealed that statin did not reduce the incidence of knee, hand, hip, and weight-bearing (knee or hip) OA. CONCLUSIONS Higher cDDD/y statin use did not reduce the risk of OA in this Taiwanese nationwide cohort study. The complexity of OA pathogenesis might contribute to the ineffectiveness of statin. Repurposing statin with its anti-inflammation properties might be ineffective for OA development, and balancing the catabolism and anabolism of cartilage might be a major strategy for OA prevention.
Collapse
Affiliation(s)
- Guan-Ling Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei
| | - Joseph Jordan Keller
- Department of Psychiatry, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| | - Li-Hsuan Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei
- Department of Pharmacy, Taipei Medical University Hospital, Taipei
| |
Collapse
|
9
|
Pucinelli CM, da Silva RAB, Nelson-Filho P, Lima RB, Lucisano MP, Marchesan JT, da Silva LAB. The effects of NLRP3 inflammasome inhibition or knockout in experimental apical periodontitis induced in mice. Clin Oral Investig 2024; 28:285. [PMID: 38684528 PMCID: PMC11809525 DOI: 10.1007/s00784-024-05691-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
OBJECTIVE To evaluate the effects of NLRP3 inflammasome inhibition or knockout in experimental apical periodontitis (AP) induced in mice. METHODS The experimental AP was induced by pulpal exposure. To evaluate NLRP3-specific inhibitor medication (MCC950), WT mice received intraperitoneal injections, while the control received PBS (n = 10). In addition, to evaluate NLRP3 knockout, 35 wild-type (WT) and 35 NLRP3-/- mice were divided into a control group (without pulpal exposure, n = 5) and three experimental groups: after 2, 14 and 42 days after pulpal exposure (n = 10). Microscopic and molecular analyzes were carried out using a significance level of 5%. RESULTS Exposure to MCC950 did not affect the periapical lesion size after 14 days (P = 0.584). However, exposed mice had a lower expression of IL-1β, IL-18 and caspase-1 (P = 0.010, 0.016 and 0.002, respectively). Moreover, NLRP3-/- mice showed a smaller periapical lesion after 14 and 42 days (P = 0.023 and 0.031, respectively), as well as a lower expression of IL-1β after 42 days (P < 0.001), of IL-18 and caspase-1 after 14 (P < 0.001 and 0.035, respectively) and 42 days (P = 0.002 and 0.002, respectively). NLRP3-/- mice also showed a lower mRNA for Il-1β, Il-18 and Casp1 after 2 (P = 0.002, 0.036 and 0.001, respectively) and 14 days (P = 0.002, 0.002 and 0.001, respectively). CONCLUSIONS NLRP3 inflammasome inhibition or knockout can attenuate the inflammatory events that result in the periapical lesion (AP) formation after pulpal exposure in mice. CLINICAL RELEVANCE The NLRP3 inflammasome may be a therapeutic target for AP, and new approaches may verify the impact of its inhibition (through intracanal medications or filling materials) on the bone repair process and treatment success.
Collapse
Affiliation(s)
- Carolina Maschietto Pucinelli
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Raquel Assed Bezerra da Silva
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
- Graduate Program in Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Paulo Nelson-Filho
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
- Graduate Program in Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Ricardo Barbosa Lima
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil.
- Graduate Program in Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil.
| | - Marília Pacífico Lucisano
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
- Graduate Program in Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Julie Teresa Marchesan
- Department of Periodontology, School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Léa Assed Bezerra da Silva
- Department of Pediatric Dentistry (DCI), School of Dentistry of Ribeirão Preto, University of São Paulo (FORP/USP), Avenida do Café, s/n, Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
- Graduate Program in Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
10
|
Ali I, Zhang H, Zaidi SAA, Zhou G. Understanding the intricacies of cellular senescence in atherosclerosis: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 96:102273. [PMID: 38492810 DOI: 10.1016/j.arr.2024.102273] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/16/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
Cardiovascular disease is currently the largest cause of mortality and disability globally, surpassing communicable diseases, and atherosclerosis is the main contributor to this epidemic. Aging is intimately linked to atherosclerosis development and progression, however, the mechanism of aging in atherosclerosis is not well known. To emphasize the significant research on the involvement of senescent cells in atherosclerosis, we begin by outlining compelling evidence that indicates various types of senescent cells and SASP factors linked to atherosclerotic phenotypes. We subsequently provide a comprehensive summary of the existing knowledge, shedding light on the intricate mechanisms through which cellular senescence contributes to the pathogenesis of atherosclerosis. Further, we cover that senescence can be identified by both structural changes and several senescence-associated biomarkers. Finally, we discuss that preventing accelerated cellular senescence represents an important therapeutic potential, as permanent changes may occur in advanced atherosclerosis. Together, the review summarizes the relationship between cellular senescence and atherosclerosis, and inspects the molecular knowledge, and potential clinical significance of senescent cells in developing senescent-based therapy, thus providing crucial insights into their biology and potential therapeutic exploration.
Collapse
Affiliation(s)
- Ilyas Ali
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China
| | - Hongliang Zhang
- Shenzhen University General Hospital, Shenzhen University, Shenzhen 518060, PR China
| | - Syed Aqib Ali Zaidi
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China
| | - Guangqian Zhou
- Department of Medical Cell Biology and Genetics, Guangdong Key Laboratory of Genomic Stability and Disease Prevention, Shenzhen Key Laboratory of Anti-Aging and Regenerative Medicine, and Shenzhen Engineering Laboratory of Regenerative Technologies for Orthopaedic Diseases, Health Sciences Center, Shenzhen University, Shenzhen 518060, PR China; Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518060, PR China.
| |
Collapse
|
11
|
Alipour S, Kazemi T, Sadeghi MR, Heris JA, Masoumi J, Naseri B, Baghbani E, Sohrabi S, Baradaran B. Glyburide-treated human monocyte-derived dendritic cells loaded with insulin represent tolerogenic features with anti-inflammatory responses and modulate autologous T cell responses in vitro. Int Immunopharmacol 2024; 126:111230. [PMID: 37979448 DOI: 10.1016/j.intimp.2023.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/11/2023] [Indexed: 11/20/2023]
Abstract
Tolerogenic dendritic cells (TolDCs) are attractive therapeutic options for autoimmune disorders because they suppress autologous T-cell responses. Dendritic cells (DCs) are equipped with pattern recognition receptors (PRR), including nucleotide-binding and oligomerization domain-like receptors (NLRs) such as NLRP3. Abnormal NLRP3 activation has been reported to be correlated with the occurrence of autoimmune disorders. Accordingly, we hypothesized that glyburide treatment of DCs by blocking the ATP-sensitive K+ (kATP) channels generates TolDCs by inhibiting NLRP3. Insulin was even loaded on a group of glyburide-treated mature DCs (mDCs) to investigate the antigen (Ag) loading effects on glyburide-treated mDCs' phenotypical and functional features. Consequently, T lymphocytes' mediated responses ensuing co-culture of them with control mDCs, insulin loaded and unloaded glyburide treated mDCs were evaluated to determine generated TolDCs' capacity in inhibition of T cell responses that are inducer of destruction in insulin-producing pancreatic beta cells in Type 1 Diabetes Mellitus (T1DM). Our findings indicated that glyburide generates desirable TolDCs with decreased surface expression of maturation and Ag presentation related markers and diminished level of inflammatory but increased level of anti-inflammatory cytokines, which even insulin loading demonstrated more anti-inflammatory functions. In addition, co-cultured T cells showed regulatory or T helper 2 phenotype instead of T helper 1 features. Our findings suggested that insulin-loaded and unloaded glyburide-treated DCs are promising therapeutic approaches for autoimmune patients, specifically DCs loaded with insulin for T1DM patients. However, further research is required before this technique can be applied in clinical practice.
Collapse
Affiliation(s)
- Shiva Alipour
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tohid Kazemi
- Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Sadeghi
- Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Javad Masoumi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahar Naseri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elham Baghbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Sohrabi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
12
|
Liu X, Luo P, Zhang W, Zhang S, Yang S, Hong F. Roles of pyroptosis in atherosclerosis pathogenesis. Biomed Pharmacother 2023; 166:115369. [PMID: 37643484 DOI: 10.1016/j.biopha.2023.115369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023] Open
Abstract
Pyroptosis is a pro-inflammatory type of regulated cell death (RCD) characterized by gasdermin protein-mediated membrane pore formation, cell swelling, and rapid lysis. Recent studies have suggested that pyroptosis is closely related to atherosclerosis (AS). Previous studies reported that pyroptosis involving endothelial cells (ECs), macrophages, and smooth muscle cells (SMCs) plays an important role in the formation and development of AS. Pyroptosis not only causes local inflammation but also amplifies the inflammatory response and it aggravates plaque instability, leading to plaque rupture and thrombosis, eventually resulting in acute cardiovascular events. In this review, we clarified some novel pathways and mechanics and presented some potential drugs.
Collapse
Affiliation(s)
- Xiaohan Liu
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China
| | - Peiyi Luo
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China; Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Weiyun Zhang
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China; Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Shuxian Zhang
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China; Queen Mary School, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Shulong Yang
- School of basic medical sciences, Fuzhou Medical College of Nanchang University, Fuzhou 344000, China; Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344000, China.
| | - Fenfang Hong
- Pathogen Biology Experimental Center, College of Medicine, Nanchang University, Jiangxi 330000, China.
| |
Collapse
|
13
|
Bai Y, Zhang L, Zheng B, Zhang X, Zhang H, Zhao A, Yu J, Yang Z, Wen J. circACTA2 inhibits NLRP3 inflammasome-mediated inflammation via interacting with NF-κB in vascular smooth muscle cells. Cell Mol Life Sci 2023; 80:229. [PMID: 37498354 PMCID: PMC10374705 DOI: 10.1007/s00018-023-04840-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 07/28/2023]
Abstract
circACTA2 derived from the smooth muscle α-actin gene plays an important role in the regulation of vascular smooth muscle cell (VSMC) phenotype. The activation of NLRP3 inflammasome is involved in VSMC phenotypic switching. However, the mechanistic relationship between circACTA2 and NLRP3 inflammasome during vascular remodeling remains poorly understood. Here, we showed that circACTA2 was down-regulated in human intimal hyperplasia. circACTA2 overexpression in circACTA2 transgenic mice significantly decreased the neointimal hyperplasia induced by vascular injury, which is concomitant with a decrease in IL-18, IL-1β, TNF-α, and IL-6 levels. Gain- and loss-of-function studies revealed that circACTA2 alleviated VSMC inflammation by suppressing the activation of NLRP3 inflammasome. Mechanistically, circACTA2 inhibited the expression of NF-κB p65 and p50 subunits and interacted with p50, which impedes the formation of the p50/p65 heterodimer and nuclear translocation induced by TNF-α, thus resulting in the suppression of NLRP3 gene transcription and inflammasome activation. Furthermore, circACTA2 overexpression mitigated inflammation via repressing NLRP3 inflammasome-mediated VSMC pyroptosis. Importantly, employing a decoy oligonucleotide to compete with circACTA2 for binding to p50 could attenuate the expression of NLRP3, ASC, and caspase-1. These findings provide a novel insight into the functional roles of circACTA2 in VSMCs, and targeting the circACTA2-NF-κB-NLRP3 axis represents a promising therapeutic strategy for vascular remodeling.
Collapse
Affiliation(s)
- Yang Bai
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Long Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Bin Zheng
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Xinhua Zhang
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
- Institution of Chinese Integrative Medicine, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| | - Hong Zhang
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Anning Zhao
- Department of Urology, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Jing Yu
- Department of Respiratory, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Zhan Yang
- Molecular Biology Laboratory, Talent and Academic Exchange Center, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050017 China
| | - Jinkun Wen
- Department of Biochemistry and Molecular Biology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education of China, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017 China
| |
Collapse
|
14
|
Zhang XX, Chen ZM, He ZF, Guan WJ. Advances in pharmacotherapy for bronchiectasis in adults. Expert Opin Pharmacother 2023; 24:1075-1089. [PMID: 37161410 DOI: 10.1080/14656566.2023.2210763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
INTRODUCTION Bronchiectasis has become a growing concern of chronic airway disease because of the enormous socioeconomic burden. Four cardinal interdependent components - impaired airway defense, recurrent airway infections, inflammatory response, and airway damage, in conjunction with the underlying etiology, have collectively played a role in modulating the vicious vortex of the pathogenesis and progression of bronchiectasis. Current pharmacotherapy aims to target at these aspects to break the vicious vortex. AREAS COVERED The authors retrieve and review, in MEDLINE, Web of Science and ClinicalTrials.gov registry, the studies about pharmacotherapy for bronchiectasis from these aspects: antibiotics, mucoactive medications, bronchodilators, anti-inflammatory drug, and etiological treatment. EXPERT OPINION Future drug development and clinical trials of bronchiectasis need to pay more attention to the different phenotypes or endotypes of bronchiectasis. There is a need for the development of novel inhaled antibiotics that could reduce bacterial loads, improve quality-of-life, and decrease exacerbation risks. More efforts are needed to explore the next-generation neutrophil-targeted therapeutic drugs that are expected to ameliorate respiratory symptom burden, reduce exacerbation risks, and hinder airway destruction in bronchiectasis.
Collapse
Affiliation(s)
- Xiao-Xian Zhang
- Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhao-Ming Chen
- Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhen-Feng He
- Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wei-Jie Guan
- Guangzhou Institute of Respiratory Health, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, State Key Laboratory of Respiratory Diseases, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Thoracic Surgery, Guangzhou Institute for Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Respiratory Centre, The Second Affiliated Hospital of Xiamen Medical College, Xiamen, China
| |
Collapse
|
15
|
Tanase DM, Valasciuc E, Gosav EM, Ouatu A, Buliga-Finis ON, Floria M, Maranduca MA, Serban IL. Portrayal of NLRP3 Inflammasome in Atherosclerosis: Current Knowledge and Therapeutic Targets. Int J Mol Sci 2023; 24:ijms24098162. [PMID: 37175869 PMCID: PMC10179095 DOI: 10.3390/ijms24098162] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/26/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
We are witnessing the globalization of a specific type of arteriosclerosis with rising prevalence, incidence and an overall cardiovascular disease burden. Currently, atherosclerosis increasingly affects the younger generation as compared to previous decades. While early preventive medicine has seen improvements, research advances in laboratory and clinical investigation promise to provide us with novel diagnosis tools. Given the physio-pathological complexity and epigenetic patterns of atherosclerosis and the discovery of new molecules involved, the therapeutic field of atherosclerosis has room for substantial growth. Thus, the scientific community is currently investigating the role of nucleotide-binding and oligomerization domain-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a crucial component of the innate immune system in different inflammatory disorders. NLRP3 is activated by distinct factors and numerous cellular and molecular events which trigger NLRP3 inflammasome assembly with subsequent cleavage of pro-interleukin (IL)-1β and pro-IL-18 pathways via caspase-1 activation, eliciting endothelial dysfunction, promotion of oxidative stress and the inflammation process of atherosclerosis. In this review, we introduce the basic cellular and molecular mechanisms of NLRP3 inflammasome activation and its role in atherosclerosis. We also emphasize its promising therapeutic pharmaceutical potential.
Collapse
Affiliation(s)
- Daniela Maria Tanase
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Emilia Valasciuc
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Evelina Maria Gosav
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Anca Ouatu
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Oana Nicoleta Buliga-Finis
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Mariana Floria
- Department of Internal Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
| | - Minela Aida Maranduca
- Internal Medicine Clinic, "St. Spiridon" County Clinical Emergency Hospital Iasi, 700111 Iasi, Romania
- Department of Morpho-Functional Sciences II, Discipline of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Ionela Lacramioara Serban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
| |
Collapse
|
16
|
Liu S, Bi H, Jiang M, Chen Y, Jiang M. An update on the role of TRIM/NLRP3 signaling pathway in atherosclerosis. Biomed Pharmacother 2023; 160:114321. [PMID: 36736278 DOI: 10.1016/j.biopha.2023.114321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease of large and medium arteries that includes lipid metabolism disorder and recruitment of immune cells to the artery wall. An increasing number of studies have confirmed that inflammasome over-activation is associated with the onset and progression of atherosclerosis. The NLRP3 inflammasome, in particular, has been proven to increase the incidence rate of cardiovascular diseases (CVD) by promoting pro-inflammatory cytokine release and reducing plaque stability. The strict control of inflammasome and prevention of excessive inflammatory reactions have been the research focus of inflammatory diseases. Tripartite motif (TRIM) is a protein family with a conservative structure and rapid evolution. Several studies have demonstrated the TRIM family's regulatory role in mediating inflammation. This review aims to clarify the relationship between TRIMs and NLRP3 inflammasome and provide insights for future research and treatment discovery.
Collapse
Affiliation(s)
- Sibo Liu
- The QUEEN MARY school, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China
| | - Hongfeng Bi
- Medical Equipment Department, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Meiling Jiang
- Department of obstetrics, Dongying Shengli Oilfield Central Hospital, Dongying, Shandong 257034, China
| | - Yuanli Chen
- Key Laboratory of Major Metabolic Diseases and Nutritional Regulation of Anhui Department of Education, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, 999 Xuefu Road, Nanchang, Jiangxi 330031, China.
| |
Collapse
|
17
|
Liu S, Liu Y, Liu Z, Hu Y, Jiang M. A review of the signaling pathways of aerobic and anaerobic exercise on atherosclerosis. J Cell Physiol 2023; 238:866-879. [PMID: 36890781 DOI: 10.1002/jcp.30989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/18/2023] [Accepted: 02/22/2023] [Indexed: 03/10/2023]
Abstract
Atherosclerosis (AS), a chronic inflammatory vascular disease with lipid metabolism abnormalities, is one of the major pathological bases of coronary heart disease. As people's lifestyles and diets change, the incidence of AS increases yearly. Physical activity and exercise training have recently been identified as effective strategies for lowering cardiovascular disease (CVD) risk. However, the best exercise mode to ameliorate the risk factors related to AS is not clear. The effect of exercise on AS is affected by the type of exercise, intensity, and duration. In particular, aerobic and anaerobic exercise are the two most widely discussed types of exercise. During exercise, the cardiovascular system undergoes physiological changes via various signaling pathways. The review aims to summarize signaling pathways related to AS in two different exercise types and provide new ideas for the prevention and treatment of AS in clinical practice.
Collapse
Affiliation(s)
- Sibo Liu
- The QUEEN MARY School, Nanchang University, Nanchang, China
| | - Yuhe Liu
- Medical Collage of Hebei University of Engineering, Handan, China
| | - Zhihan Liu
- The QUEEN MARY School, Nanchang University, Nanchang, China
| | - Yansong Hu
- The QUEEN MARY School, Nanchang University, Nanchang, China
| | - Meixiu Jiang
- The Institute of Translational Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
18
|
Alsaidan AA, Al‐Kuraishy HM, Al‐Gareeb AI, Alexiou A, Papadakis M, Alsayed KA, Saad HM, Batiha GE. The potential role of SARS-CoV-2 infection in acute coronary syndrome and type 2 myocardial infarction (T2MI): Intertwining spread. Immun Inflamm Dis 2023; 11:e798. [PMID: 36988260 PMCID: PMC10022425 DOI: 10.1002/iid3.798] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/17/2023] [Accepted: 02/18/2023] [Indexed: 03/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a novel pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has been shown that SARS-CoV-2 infection-induced inflammatory and oxidative stress and associated endothelial dysfunction may lead to the development of acute coronary syndrome (ACS). Therefore, this review aimed to ascertain the link between severe SARS-CoV-2 infection and ACS. ACS is a spectrum of acute myocardial ischemia due to a sudden decrease in coronary blood flow, ranging from unstable angina to myocardial infarction (MI). Primary or type 1 MI (T1MI) is mainly caused by coronary plaque rupture and/or erosion with subsequent occlusive thrombosis. Secondary or type 2 MI (T2MI) is due to cardiac and systemic disorders without acute coronary atherothrombotic disruption. Acute SARS-CoV-2 infection is linked with the development of nonobstructive coronary disorders such as coronary vasospasm, dilated cardiomyopathy, myocardial fibrosis, and myocarditis. Furthermore, SARS-CoV-2 infection is associated with systemic inflammation that might affect coronary atherosclerotic plaque stability through augmentation of cardiac preload and afterload. Nevertheless, major coronary vessels with atherosclerotic plaques develop minor inflammation during COVID-19 since coronary arteries are not initially and primarily targeted by SARS-CoV-2 due to low expression of angiotensin-converting enzyme 2 in coronary vessels. In conclusion, SARS-CoV-2 infection through hypercytokinemia, direct cardiomyocyte injury, and dysregulation of the renin-angiotensin system may aggravate underlying ACS or cause new-onset T2MI. As well, arrhythmias induced by anti-COVID-19 medications could worsen underlying ACS.
Collapse
Affiliation(s)
- Aseel Awad Alsaidan
- Department of Family and Community Medicine, College of MedicineJouf UniversitySakakaSaudi Arabia
| | - Hayder M. Al‐Kuraishy
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Ali I. Al‐Gareeb
- Department of Clinical Pharmacology and Medicine, College of MedicineALmustansiriyia UniversityBaghdadIraq
| | - Athanasios Alexiou
- Department of Science and EngineeringNovel Global Community Educational FoundationHebershamNew South WalesAustralia
- Department of Research and DevelopmentAFNP MedWienAustria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten‐Herdecke, Heusnerstrasse 40University of Witten‐HerdeckeWuppertalGermany
| | - Khalid Adel Alsayed
- Department of Family and Community MedicineSecurity Forces Hospital ProgramRiyadhSaudi Arabia
| | - Hebatallah M. Saad
- Department of Pathology, Faculty of Veterinary MedicineMatrouh UniversityMatrouhEgypt
| | - Gaber El‐Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary MedicineDamanhour UniversityAlBeheiraEgypt
| |
Collapse
|
19
|
Li C, Li S, Yang C, Ding Y, Zhang Y, Wang X, Zhou X, Su Z, Ming W, Zeng L, Ma Y, Shi Y, Kang X. Blood transcriptome reveals immune and metabolic-related genes involved in growth of pasteurized colostrum-fed calves. Front Genet 2023; 14:1075950. [PMID: 36814903 PMCID: PMC9939824 DOI: 10.3389/fgene.2023.1075950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
The quality of colostrum is a key factor contributing to healthy calf growth, and pasteurization of colostrum can effectively reduce the counts of pathogenic microorganisms present in the colostrum. Physiological changes in calves fed with pasteurized colostrum have been well characterized, but little is known about the underlying molecular mechanisms. In this study, key genes and functional pathways through which pasteurized colostrum affects calf growth were identified through whole blood RNA sequencing. Our results showed that calves in the pasteurized group (n = 16) had higher body height and daily weight gain than those in the unpasteurized group (n = 16) in all months tested. Importantly, significant differences in body height were observed at 3 and 4 months of age (p < 0.05), and in daily weight gain at 2, 3, and 6 months of age (p < 0.05) between the two groups. Based on whole blood transcriptome data from 6-months old calves, 630 differentially expressed genes (DEGs), of which 235 were upregulated and 395 downregulated, were identified in the pasteurized compared to the unpasteurized colostrum groups. Most of the DEGs have functions in the immune response (e.g., CCL3, CXCL3, and IL1A) and metabolism (e.g., PTX3 and EXTL1). Protein-protein interaction analyses of DEGs revealed three key subnetworks and fifteen core genes, including UBA52 and RPS28, that have roles in protein synthesis, oxidative phosphorylation, and inflammatory responses. Twelve co-expression modules were identified through weighted gene co-expression network analysis. Among them, 17 genes in the two modules that significantly associated with pasteurization were mainly involved in the tricarboxylic acid cycle, NF-kappa B signaling, and NOD-like receptor signaling pathways. Finally, DEGs that underwent alternative splicing in calves fed pasteurized colostrum have roles in the immune response (SLCO4A1, AKR1C4, and MED13L), indicative of potential roles in immune regulation. Results from multiple analytical methods used suggest that differences in calf growth between the pasteurized and unpasteurized groups may be due to differential immune activity. Our data provide new insights into the impact of pasteurization on calf immune and metabolic-related pathways through its effects on gene expression.
Collapse
|
20
|
Cen Y, Xiong Y, Qin R, Tao H, Yang Q, Pan X. Anti-malarial artesunate ameliorates atherosclerosis by modulating arterial inflammatory responses via inhibiting the NF-κB-NLRP3 inflammasome pathway. Front Pharmacol 2023; 14:1123700. [PMID: 36817159 PMCID: PMC9931906 DOI: 10.3389/fphar.2023.1123700] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023] Open
Abstract
Introduction: Chronic inflammation plays a critical role in the pathogenesis of atherosclerosis (AS), and involves a complex interplay between blood components, macrophages, and arterial wall. Therefore, it is valuable in the development of targeted therapies to treat AS. Methods: AS rat model was induced by atherogenic diet plus with lipopolysaccharide (LPS) and then treated by anti-malarial artesunate (Art), a succinate derivative of artemisinin. The arterial morphology was observed after Oil red O, hematoxylin-eosin, and Masson's staining. The arterial protein level was detected by immunohistochemistry or immunofluorescence. The expression level of mRNA was determined by PCR array or real-time PCR. Results: Herein, we showed that Art possessed a dose-dependently protective effect on AS rats. In detail, Art showed a comparable inhibitory effect on arterial plaque and serum lipids compared to those of rosuvastatin (RS), and further showed a better inhibition on arterial lipid deposition and arterial remodeling comprised of arterial wall thicken and vascular collagen deposition, than those of RS. The improvement of Art on AS rats was related to inhibit arterial macrophage recruitment, and inhibit nuclear factor κB (NF-κB)-related excessive arterial inflammatory responses. Critically, Art showed significant inhibition on the NLRP3 inflammasome activation in both arterial wall and arterial macrophages, by down-regulating the expression of NOD-like receptor thermal protein domain associated protein 3 (NLRP3) and apoptosis associated speckle-like protein containing CARD (ASC), leading to less production of the NLRP3 inflammasome-derived caspase-1, interleukin-1β (IL-1β), IL-18, and subsequent transforming growth factor β1 (TGF-β1) in AS rats. Conclusion: We propose that Art is an anti-AS agent acts through modulating the arterial inflammatory responses via inhibiting the NF-κB - NLRP3 inflammasome pathway.
Collapse
|
21
|
Lin GL, Lin HC, Lin HL, Keller JJ, Wang LH. Association between statin use and the risk of gout in patients with hyperlipidemia: A population-based cohort study. Front Pharmacol 2023; 14:1096999. [PMID: 36873987 PMCID: PMC9975165 DOI: 10.3389/fphar.2023.1096999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/06/2023] [Indexed: 02/17/2023] Open
Abstract
Objective: To investigate the association between statin use and risk of gout in patients with hyperlipidemia. Methods: In this population-based retrospective cohort study, patients ≥20 years and diagnosed as having incident hyperlipidemia between 2001 and 2012 were identified from the 2000 Longitudinal Generation Tracking Database in Taiwan. Regular statin users (incident statin use, having 2 times and ≥90 days of prescription for the first year) and two active comparators [irregular statin use and other lipid-lowering agent (OLLA) use] were compared; the patients were followed up until the end of 2017. Propensity score matching was applied to balance potential confounders. Time-to-event outcomes of gout and dose- and duration-related associations were estimated using marginal Cox proportional hazard models. Results: Regular statin use non-significantly reduced gout risk compared with irregular statin use (aHR, 0.95; 95% CI, 0.90-1.01) and OLLA use (aHR, 0.94; 95% CI, 0.84-1.04). However, a protective effect was noted for a cumulative defined daily dose (cDDD) of >720 (aHR, 0.57; 95% CI, 0.47-0.69 compared with irregular statin use and aHR, 0.48; 95% CI, 0.34-0.67 compared with OLLA use) or a therapy duration of >3 years (aHR, 0.76; 95% CI, 0.64-0.90 compared with irregular statin use and aHR, 0.50; 95% CI, 0.37-0.68 compared with OLLA use). Dose- and duration-dependent associations were consistent in the 5-year sensitivity analyses. Conclusion: Although statin use was not associated with a reduction in gout risk, the protective benefit was observed in those receiving higher cumulative doses or with a longer therapy duration.
Collapse
Affiliation(s)
- Guan-Ling Lin
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan
| | - Hsiu-Chen Lin
- Department of Pediatrics, School of Medicine, Taipei Medical University, Taipei, Taiwan.,Department of Clinical Pathology, Taipei Medical University Hospital, Taipei, Taiwan
| | - Hsiu-Li Lin
- Department of Neurology, General Cathay Hospital, Sijhih Branch, New Taipei City, Taiwan
| | - Joseph Jordan Keller
- Department of Psychiatry, Western Michigan University Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States
| | - Li-Hsuan Wang
- School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.,Department of Pharmacy, Taipei Medical University Hospital, Taipei, Taiwan
| |
Collapse
|
22
|
Martins GL, Ferreira CN, Palotás A, Rocha NP, Reis HJ. Role of Oxysterols in the Activation of the NLRP3 Inflammasome as a Potential Pharmacological Approach in Alzheimer's Disease. Curr Neuropharmacol 2023; 21:202-212. [PMID: 35339182 PMCID: PMC10190144 DOI: 10.2174/1570159x20666220327215245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 02/04/2022] [Accepted: 03/23/2022] [Indexed: 11/22/2022] Open
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia, is a complex clinical condition with multifactorial origin posing a major burden to health care systems across the world. Even though the pathophysiological mechanisms underlying the disease are still unclear, both central and peripheral inflammation has been implicated in the process. Piling evidence shows that the nucleotide-binding domain, leucine-rich repeat and pyrin domain-containing protein 3 (NLRP3) inflammasome is activated in AD. As dyslipidemia is a risk factor for dementia, and cholesterol can also activate the inflammasome, a possible link between lipid levels and the NLRP3 inflammasome has been proposed in Alzheimer's. It is also speculated that not only cholesterol but also its metabolites, the oxysterols, may be involved in AD pathology. In this context, mounting data suggest that NLRP3 inflammasome activity can be modulated by different peripheral nuclear receptors, including liver-X receptors, which present oxysterols as endogenous ligands. In light of this, the current review explores whether the activation of NLRP3 by nuclear receptors, mediated by oxysterols, may also be involved in AD and could serve as a potential pharmacological avenue in dementia.
Collapse
Affiliation(s)
- Gabriela L. Martins
- Laboratório Neurofarmacologia, Departamento de Farmacologia, ICB-UFMG, Belo Horizonte MG, 31270 - 901, Brazil
| | | | - András Palotás
- Kazan Federal University, Kazan, Russia
- Asklepios Med, Szeged, Hungary
| | - Natália P. Rocha
- Department of Neurology, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Helton J. Reis
- Laboratório Neurofarmacologia, Departamento de Farmacologia, ICB-UFMG, Belo Horizonte MG, 31270 - 901, Brazil
| |
Collapse
|
23
|
Batiha GES, Al-Gareeb AI, Rotimi D, Adeyemi OS, Al-kuraishy HM. Common NLRP3 inflammasome inhibitors and Covid-19: Divide and conquer. SCIENTIFIC AFRICAN 2022; 18:e01407. [PMID: 36310607 PMCID: PMC9595499 DOI: 10.1016/j.sciaf.2022.e01407] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022] Open
Abstract
Severe SARS-CoV-2 infection causes systemic inflammation, cytokine storm, and hypercytokinemia due to activation of the release of pro-inflammatory cytokines that have been associated with case-fatality rate. The immune overreaction and cytokine storm in the infection caused by SARS-CoV-2 may be linked to NLRP3 inflammasome activation which has supreme importance in human innate immune response mainly against viral infections. In SARS-CoV-2 infection, NLRP3 inflammasome activation results in the stimulation and synthesis of natural killer cells (NKs), NFκB, and interferon-gamma (INF-γ), while inhibiting IL-33 expression. Various efforts have identified selective inhibitors of NLRP3 inflammasome. To achieve this, studies are exploring the screening of natural compounds and/or repurposing of clinical drugs to identify potential NLRP3 inhibitors. NLRP3 inflammasome inhibitors are expected to suppress exaggerated immune reaction and cytokine storm-induced-organ damage in SARS-CoV-2 infection. Therefore, NLRP3 inflammasome inhibitors could mitigate the immune-overreaction and hypercytokinemia in Covid-19 infection.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour 22511, Egypt,Corresponding authors
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Damilare Rotimi
- Department of Biochemistry, Landmark University, KM 4 Ipetu Road, Omu-Aran, Kwara 251101, Nigeria
| | - Oluyomi Stephen Adeyemi
- Department of Biochemistry, Landmark University, KM 4 Ipetu Road, Omu-Aran, Kwara 251101, Nigeria,Corresponding authors
| | - Hayder M. Al-kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| |
Collapse
|
24
|
Zheng L, Xu H, Zheng F, Lai Y, Li J, Lv W, Hu Z, Wang W. Intervention time decides the status of autophagy, NLRP3 activity and apoptosis in macrophages induced by ox-LDL. Lipids Health Dis 2022; 21:107. [PMID: 36284323 PMCID: PMC9594915 DOI: 10.1186/s12944-022-01714-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
Background It has been determined through extensive studies that autophagy, the Nucleotide-binding oligomerization domain-like receptor containing pyrin domain 3 (NLRP3) inflammasome and apoptotic responses in macrophages jointly contribute to atherogenesis and its development in the presence of lipid abnormalities. Few studies have investigated in full-scale if the intervention time for lipids abnormality or NLRP3 activation have a significant effect on autophagy, NLRP3 or the apoptotic status in macrophages. Methods Human THP-1 monocyte-derived macrophages were established by challenging THP-1 monocytes with 80 µg/ml oxidized low-density lipoprotein (ox-LDL) for specific durations. Foam cell formation was observed by Oil Red O (ORO) staining. Western blots were employed to determine protein expression. Transmission electron microscope (TEM) and immunofluorescence microscopy were applied to observe the autophagic status of cells. Cell apoptosis was evaluated by terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL). Results The cells were treated with ox-LDL for 12 h and 36 h, which were considered to represent early and advanced stages of atherogenesis for this study. The results showed that inhibition of ox-LDL phagocytosis by cytochalasin D in the early stage improved autophagic status, reduced NLRP3 activation and the apoptotic response significantly. In contrast, cytochalasin D had little effect on blocking the detrimental effect of ox-LDL at the advanced stage. Moreover, the changes in autophagy, apoptosis and NLRP3 expression after treatment with small interfering (si) RNA targeting NLRP3 in the early and advanced stages of atherogenesis were consistent with the above data. Conclusions Interventions against lipid disorders or inflammatory reactions in the early or advanced stages of atherogenesis may have different results depending on when they are applied during the process of atherosclerotic pathogenesis. These results may help improve therapeutic strategies for atherosclerosis prevention. Furthermore, a healthy lifestyle should still be recommended as the most important and inexpensive measure to prevent atherogenesis. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-022-01714-x.
Collapse
Affiliation(s)
- Liang Zheng
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.,Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Hongbiao Xu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Fufu Zheng
- Department of Urology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Yuanhui Lai
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Jie Li
- Department of Thyroid and Breast Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, Guangdong, China
| | - Weiming Lv
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Zuojun Hu
- Department of Vascular Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Wenjian Wang
- Laboratory of Department of Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China. .,Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
25
|
Wang K, Rong G, Gao Y, Wang M, Sun J, Sun H, Liao X, Wang Y, Li Q, Gao W, Cheng Y. Fluorous-Tagged Peptide Nanoparticles Ameliorate Acute Lung Injury via Lysosomal Stabilization and Inflammation Inhibition in Pulmonary Macrophages. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203432. [PMID: 36069247 DOI: 10.1002/smll.202203432] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Acute lung injury (ALI)/acute respiratory distress syndrome (ARDS) is a common respiratory critical syndrome that currently has no effective therapeutic interventions. Pulmonary macrophages play a principal role in the initiation and progression of the overwhelming inflammation in ALI/ARDS. Here, a type of fluorous-tagged bioactive peptide nanoparticle termed CFF13F is developed, which can be efficiently internalized by macrophages and suppress the excessive expression of cytokines and the overproduction of reactive oxygen species (ROS) triggered by lipopolysaccharide (LPS). The cytoprotective effect of CFF13F may be attributed to the lysosomal-stabilization property and regulation of the antioxidative system. Moreover, intratracheal pretreatment with CFF13F can effectively reduce local and systematic inflammation, and ameliorate pulmonary damage in an LPS-induced ALI murine model. The therapeutic efficacy of CFF13F is affected by the administration routes, and the local intratracheal injection is found to be the optimal choice for ALI treatment, with preferred biodistribution profiles. The present study provides solid evidence of the potent immunomodulatory bioactivity of the fluorous-tagged peptide nanoparticles CFF13F in vitro and in vivo, and sheds light on the development of novel efficient nanodrugs for ALI/ARDS.
Collapse
Affiliation(s)
- Kun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Guangyu Rong
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
- South China Advanced Institute for Soft Matter Science and Technology, School of Emergent Soft Matter, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yixuan Gao
- Department of Gynecology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Shandong, 250021, P. R. China
| | - Muyun Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Jiaxing Sun
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - He Sun
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Ximing Liao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Yuanyuan Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Qiang Li
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Wei Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, P. R. China
| | - Yiyun Cheng
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, P. R. China
| |
Collapse
|
26
|
Lao US, Law CF, Baptista-Hon DT, Tomlinson B. Systematic Review and Meta-Analysis of Statin Use and Mortality, Intensive Care Unit Admission and Requirement for Mechanical Ventilation in COVID-19 Patients. J Clin Med 2022; 11:5454. [PMID: 36143101 PMCID: PMC9501062 DOI: 10.3390/jcm11185454] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/04/2022] [Accepted: 09/14/2022] [Indexed: 11/26/2022] Open
Abstract
There is mounting evidence that statin use is beneficial for COVID-19 outcomes. We performed a systematic review and meta-analysis to evaluate the association between statin use and mortality, intensive care unit (ICU) admission and mechanical ventilation in COVID-19 patients, on studies which provided covariate adjusted effect estimates, or performed propensity score matching. We searched PubMed, Embase, Web of Science and Scopus for studies and extracted odds or hazard ratios for specified outcome measures. Data synthesis was performed using a random-effects inverse variance method. Risk of bias, heterogeneity and publication bias were analyzed using standard methods. Our results show that statin use was associated with significant reductions in mortality (OR = 0.72, 95% CI: 0.67-0.77; HR = 0.74, 95% CI: 0.69, 0.79), ICU admission (OR = 0.94, 95% CI: 0.89-0.99; HR = 0.76, 95% CI: 0.60-0.96) and mechanical ventilation (OR = 0.84, 95% CI: 0.78-0.92; HR = 0.67, 95% CI: 0.47-0.97). Nevertheless, current retrospective studies are based on the antecedent use of statins prior to infection and/or continued use of statin after hospital admission. The results may not apply to the de novo commencement of statin treatment after developing COVID-19 infection. Prospective studies are lacking and necessary.
Collapse
Affiliation(s)
- Ut-Sam Lao
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University Science and Technology, Taipa, Macau SAR 999078, China
| | - Chak-Fun Law
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University Science and Technology, Taipa, Macau SAR 999078, China
| | - Daniel T. Baptista-Hon
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University Science and Technology, Taipa, Macau SAR 999078, China
- Division of Systems Medicine, School of Medicine, University of Dundee, Dundee DD1 4HN, UK
| | - Brian Tomlinson
- Center for Biomedicine and Innovations, Faculty of Medicine, Macau University Science and Technology, Taipa, Macau SAR 999078, China
| |
Collapse
|
27
|
Li XH, Liu LZ, Chen L, Pan QN, Ouyang ZY, Fan DJ, Pan X, Lu SY, Luo QH, Tao PY, Huang HQ. Aerobic exercise regulates FGF21 and NLRP3 inflammasome-mediated pyroptosis and inhibits atherosclerosis in mice. PLoS One 2022; 17:e0273527. [PMID: 36006939 PMCID: PMC9409497 DOI: 10.1371/journal.pone.0273527] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/09/2022] [Indexed: 01/21/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21), a known risk factor for atherosclerosis, is readily regulated by exercise, and it can inhibit NOD-like receptor protein 3 (NLRP3)-mediated pyroptosis. However, it is not clear whether aerobic exercise inhibits atherosclerosis via these pathways. Eight-week-old apolipoprotein E-deficient (ApoE-/-) mice on a high-fat diet were randomly divided into 1-h post-exercise (EX-1h), 24-h post-exercise (EX-24h), and sedentary (SED) groups. C57BL/6J wild-type mice fed normal chow served as controls (WT group). Mice in the EX-1h and EX-24h groups were subjected to treadmill exercise training for 12 weeks. Aerobic exercise reduced body weight; blood glucose, lipid, and inflammation levels; and aortic plaque area proportion. Aerobic exercise increased the sensitivity of FGF21 by upregulating the expression of the downstream receptor adiponectin (ApN); the serum FGF21 level after exercise increased initially, and then decreased. Aerobic exercise downregulated the expression of NLRP3 inflammasome-mediated pyroptosis-related markers in the aorta, and FGF21 may participate in the above process. Meanwhile, the liver may be the tissue source of serum FGF21 during aerobic exercise. In conclusion, aerobic exercise may inhibit atherogenesis by regulating FGF21 and NLRP3 inflammasome-mediated pyroptosis. Our study provides new information on the atherosclerosis-preventing mechanism of aerobic exercise.
Collapse
Affiliation(s)
- Xiao-Hong Li
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Oncology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Liang-Zhong Liu
- Department of Oncology, Chongqing University Three Gorges Hospital, Wanzhou, Chongqing, China
| | - Lin Chen
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qi-Ni Pan
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Zi-Yao Ouyang
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - De-Jing Fan
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Xiao Pan
- Emergency Department, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Su-Yu Lu
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Qiu-Hu Luo
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Pin-Yue Tao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- * E-mail: (PYT); (HQH)
| | - Hui-Qiao Huang
- Department of Cardiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- * E-mail: (PYT); (HQH)
| |
Collapse
|
28
|
Tian W, Zhang T, Wang X, Zhang J, Ju J, Xu H. Global research trends in atherosclerosis: A bibliometric and visualized study. Front Cardiovasc Med 2022; 9:956482. [PMID: 36082127 PMCID: PMC9445883 DOI: 10.3389/fcvm.2022.956482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIncreasing evidence has spurred a considerable evolution of concepts related to atherosclerosis, prompting the need to provide a comprehensive view of the growing literature. By retrieving publications in the Web of Science Core Collection (WoSCC) of Clarivate Analytics, we conducted a bibliometric analysis of the scientific literature on atherosclerosis to describe the research landscape.MethodsA search was conducted of the WoSCC for articles and reviews serving exclusively as a source of information on atherosclerosis published between 2012 and 2022. Microsoft Excel 2019 was used to chart the annual productivity of research relevant to atherosclerosis. Through CiteSpace and VOSviewer, the most prolific countries or regions, authors, journals, and resource-, intellectual-, and knowledge-sharing in atherosclerosis research, as well as co-citation analysis of references and keywords, were analyzed.ResultsA total of 20,014 publications were retrieved. In terms of publications, the United States remains the most productive country (6,390, 31,93%). The most publications have been contributed by Johns Hopkins Univ (730, 3.65%). ALVARO ALONSO produced the most published works (171, 0.85%). With a betweenness centrality of 0.17, ERIN D MICHOS was the most influential author. The most prolific journal was identified as Atherosclerosis (893, 4.46%). Circulation received the most co-citations (14,939, 2.79%). Keywords with the ongoing strong citation bursts were “nucleotide-binding oligomerization (NOD), Leucine-rich repeat (LRR)-containing protein (NLRP3) inflammasome,” “short-chain fatty acids (SCFAs),” “exosome,” and “homeostasis,” etc.ConclusionThe research on atherosclerosis is driven mostly by North America and Europe. Intensive research has focused on the link between inflammation and atherosclerosis, as well as its complications. Specifically, the NLRP3 inflammasome, interleukin-1β, gut microbiota and SCFAs, exosome, long non-coding RNAs, autophagy, and cellular senescence were described to be hot issues in the field.
Collapse
Affiliation(s)
- Wende Tian
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tai Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
- Department of Gastroenterology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Wang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Graduate School, Beijing University of Chinese Medicine, Beijing, China
| | - Jianqing Ju
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- *Correspondence: Jianqing Ju,
| | - Hao Xu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Hao Xu,
| |
Collapse
|
29
|
Synthesis and pharmacological validation of fluorescent diarylsulfonylurea analogues as NLRP3 inhibitors and imaging probes. Eur J Med Chem 2022; 237:114338. [DOI: 10.1016/j.ejmech.2022.114338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 03/23/2022] [Accepted: 03/30/2022] [Indexed: 11/20/2022]
|
30
|
Liu C, Yan W, Shi J, Wang S, Peng A, Chen Y, Huang K. Biological Actions, Implications, and Cautions of Statins Therapy in COVID-19. Front Nutr 2022; 9:927092. [PMID: 35811982 PMCID: PMC9257176 DOI: 10.3389/fnut.2022.927092] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/30/2022] [Indexed: 11/21/2022] Open
Abstract
The Coronavirus Disease 2019 (COVID-19) showed worse prognosis and higher mortality in individuals with obesity. Dyslipidemia is a major link between obesity and COVID-19 severity. Statins as the most common lipid regulating drugs have shown favorable effects in various pathophysiological states. Importantly, accumulating observational studies have suggested that statin use is associated with reduced risk of progressing to severe illness and in-hospital death in COVID-19 patients. Possible explanations underlie these protective impacts include their abilities of reducing cholesterol, suppressing viral entry and replication, anti-inflammation and immunomodulatory effects, as well as anti-thrombosis and anti-oxidative properties. Despite these benefits, statin therapies have side effects that should be considered, such as elevated creatinine kinase, liver enzyme and serum glucose levels, which are already elevated in severe COVID-19. Concerns are also raised whether statins interfere with the efficacy of COVID-19 vaccines. Randomized controlled trials are being conducted worldwide to confirm the values of statin use for COVID-19 treatment. Generally, the results suggest no necessity to discontinue statin use, and no evidence suggesting interference between statins and COVID-19 vaccines. However, concomitant administration of statins and COVID-19 antiviral drug Paxlovid may increase statin exposure and the risk of adverse effects, because most statins are metabolized mainly through CYP3A4 which is potently inhibited by ritonavir, a major component of Paxlovid. Therefore, more clinical/preclinical studies are still warranted to understand the benefits, harms and mechanisms of statin use in the context of COVID-19.
Collapse
Affiliation(s)
- Chengyu Liu
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wanyao Yan
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, China
| | - Jiajian Shi
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Wang
- Department of Transfusion Medicine, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anlin Peng
- Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Yuchen Chen
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Huang
- Tongji School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
31
|
Zhang XN, Yu ZL, Chen JY, Li XY, Wang ZP, Wu M, Liu LT. The crosstalk between NLRP3 inflammasome and gut microbiome in atherosclerosis. Pharmacol Res 2022; 181:106289. [PMID: 35671922 DOI: 10.1016/j.phrs.2022.106289] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/22/2022] [Accepted: 06/01/2022] [Indexed: 01/29/2023]
Abstract
Atherosclerosis (AS) is chronic pathological process based on the inflammatory reaction associated with factors including vascular endothelial dysfunction, inflammation, and autoimmunity. Inflammasomes are known to be at the core of the inflammatory response. As a pattern recognition receptor of innate immunity, the NLRP3 inflammasome mediates the secretion of inflammatory factors by activating the Caspase-1, which is important for maintaining the immune system and regulating the gut microbiome, and participates in the occurrence and development of AS. The intestinal microecology is composed of a large number of complex structures of gut microbiota and its metabolites, which play an important role in AS. The gut microbiota and its metabolites regulate the activation of the NLRP3 inflammasome. Targeting the NLRP3 inflammasome and regulating intestinal microecology represent a new direction for the treatment of AS. This paper systematically reviews the interaction between the NLRP3 inflammasome and gut microbiome in AS, strategies for targeting the NLRP3 inflammasome and gut microbiome for the treatment of AS, and provides new ideas for the research and development of drugs for the treatment of AS.
Collapse
Affiliation(s)
- Xiao-Nan Zhang
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China
| | - Zong-Liang Yu
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China
| | - Ji-Ye Chen
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China
| | - Xiao-Ya Li
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China; Department of Cardiovascular Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ze-Ping Wang
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China; Department of Cardiovascular Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Min Wu
- Department of comprehensive Internal Medicine, Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China.
| | - Long-Tao Liu
- Department of Cardiovascular Medicine, National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100093, China.
| |
Collapse
|
32
|
Khayatan D, Razavi SM, Arab ZN, Khanahmadi M, Momtaz S, Butler AE, Montecucco F, Markina YV, Abdolghaffari AH, Sahebkar A. Regulatory Effects of Statins on SIRT1 and Other Sirtuins in Cardiovascular Diseases. Life (Basel) 2022; 12:760. [PMID: 35629426 PMCID: PMC9146832 DOI: 10.3390/life12050760] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 05/17/2022] [Accepted: 05/18/2022] [Indexed: 12/22/2022] Open
Abstract
Adverse cardiovascular disease (CVD) outcomes, such as sudden cardiac death, acute myocardial infarction, and stroke, are often catastrophic. Statins are frequently used to attenuate the risk of CVD-associated morbidity and mortality through their impact on lipids and they may also have anti-inflammatory and other plaque-stabilization effects via different signaling pathways. Different statins, including atorvastatin, rosuvastatin, pravastatin, pitavastatin, and simvastatin, are administered to manage circulatory lipid levels. In addition, statins are potent inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMGCoA) reductase via modulating sirtuins (SIRTs). During the last two decades, SIRTs have been investigated in mammals and categorized as a family of nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylases (HDACs) with significant oxidative stress regulatory function in cells-a key factor in extending cell lifespan. Recent work has demonstrated that statins upregulate SIRT1 and SIRT2 and downregulate SIRT6 in both in vitro and in vivo experiments and clinical trials. As statins show modulatory properties, especially in CVDs, future investigations are needed to delineate the role of SIRT family members in disease and to expand knowledge about the effects of statins on SIRTs. Here, we review what is currently known about the impact of statins on SIRTs and how these changes correlate with disease, particularly CVDs.
Collapse
Affiliation(s)
- Danial Khayatan
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; (D.K.); (S.M.R.); (Z.N.A.); (M.K.)
| | - Seyed Mehrad Razavi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; (D.K.); (S.M.R.); (Z.N.A.); (M.K.)
| | - Zahra Najafi Arab
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; (D.K.); (S.M.R.); (Z.N.A.); (M.K.)
| | - Maryam Khanahmadi
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; (D.K.); (S.M.R.); (Z.N.A.); (M.K.)
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran;
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland, Adliya P.O. Box 15503, Bahrain;
| | - Fabrizio Montecucco
- First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino Genova-Italian Cardiovascular Network, 16132 Genoa, Italy
| | - Yuliya V. Markina
- Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology of FSBI “Petrovsky National Research Center of Surgery”, 3 Tsyurupy Str., 117418 Moscow, Russia;
| | - Amir Hossein Abdolghaffari
- Department of Toxicology & Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; (D.K.); (S.M.R.); (Z.N.A.); (M.K.)
- Medicinal Plants Research Center, Institute of Medicinal Plants, ACECR, Karaj, Iran;
- Department of Toxicology and Pharmacology, School of Pharmacy, and Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences, Tehran, Iran
- GI Pharmacology Interest Group (GPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
33
|
Lu N, Cheng W, Liu D, Liu G, Cui C, Feng C, Wang X. NLRP3-Mediated Inflammation in Atherosclerosis and Associated Therapeutics. Front Cell Dev Biol 2022; 10:823387. [PMID: 35493086 PMCID: PMC9045366 DOI: 10.3389/fcell.2022.823387] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/24/2022] [Indexed: 11/15/2022] Open
Abstract
The NLRP3 inflammasome is a crucial constituent of the body’s innate immune system, and a multiprotein platform which is initiated by pattern recognition receptors (PRRs). Its activation leads to caspase-1 maturation and release of inflammatory cytokines, interleukin-1β (IL-1β) and IL-18, and subsequently causes pyroptosis. Recently, the excess activation of NLRP3 inflammasome has been confirmed to mediate inflammatory responses and to participate in genesis and development of atherosclerosis. Therefore, the progress on the discovery of specific inhibitors against the NLRP3 inflammasome and the upstream and downstream inflammatory factors has become potential targets for clinical treatment. Here we review the recently described mechanisms about the NLRP3 inflammasome activation, and discuss emphatically the pharmacological interventions using statins and natural medication for atherosclerosis associated with NLRP3 inflammasome.
Collapse
Affiliation(s)
- Na Lu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Weijia Cheng
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Dongling Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Gang Liu
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Can Cui
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Chaoli Feng
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, China
- Department of Cardiology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- *Correspondence: Xianwei Wang,
| |
Collapse
|
34
|
Saeedi-Boroujeni A, Nashibi R, Ghadiri AA, Nakajima M, Salmanzadeh S, Mahmoudian-Sani MR, Hanafi MG, Sharhani A, Khodadadi A. Tranilast as an Adjunctive Therapy in Hospitalized Patients with Severe COVID- 19: A Randomized Controlled Trial. Arch Med Res 2022; 53:368-377. [PMID: 35339280 PMCID: PMC8919799 DOI: 10.1016/j.arcmed.2022.03.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 01/16/2022] [Accepted: 03/04/2022] [Indexed: 12/12/2022]
Abstract
Background Tranilast is a potential NLRP3 inflammasome inhibitor that may relieve progressive inflammation due to COVID-19. Aim of the study To evaluate the therapeutic effects of Tranilast in combination with antiviral drugs in non-ICU-admitted hospitalized patients with COVID-19. Methods This study was an open-label clinical trial that included 72 hospitals admitted patients with severe COVID-19 at Razi Hospital, Ahvaz, Iran, from July 2020–August 2020. These patients were randomly assigned in a 1:1 ratio to control (30) and intervention groups (30). Patients in the control group received antiviral therapy, while patients in the intervention group received Tranilast (300 mg daily) in addition to the antiviral drugs for Seven days. The collected data, including the expression of inflammatory cytokine, laboratory tests, and clinical findings, was used for intragroup comparisons. Results The intervention group showed significantly lower levels of NLR (p = 0.001), q-CRP (p = 0.002), IL-1 (p = 0.001), TNF (p = 0.001), and LDH (p = 0.046) in comparison with the control group. The effect of intervention was significant in increasing the o2 saturation (F = 7.72, p = 0.007). Long hospitalization (four days or above) was 36.6% in the Tranilast and 66.6% in the control group (RR = 0.58; 95% CI: 0.38–1.06, p = 0.045). In the Tranilst and control groups, one and four deaths or hospitalization in ICU were observed respectively (RR = 0.31; 95% CI: 0.03–2.88, p = 0.20). Conclusions Tranilast might be used as an effective and safe adjuvant therapy and enhance the antiviral therapy's efficacy for managing patients with COVID-19.
Collapse
Affiliation(s)
- Ali Saeedi-Boroujeni
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Roohangiz Nashibi
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Infectious Diseases and Tropical Medicine Ward, Razi Teaching Hospital, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Ata A Ghadiri
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Motowo Nakajima
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, Tokyo, Japan
| | - Shokrollah Salmanzadeh
- Infectious and Tropical Diseases Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Infectious Diseases and Tropical Medicine Ward, Razi Teaching Hospital, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Ghasem Hanafi
- Department of Radiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Asaad Sharhani
- Department of Epidemiology and Biostatistics, School of public health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ali Khodadadi
- Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Cancer, Environmental and Petroleum Pollutants Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
35
|
Mohamed DI, Alaa El-Din Aly El-Waseef D, Nabih ES, El-Kharashi OA, Abd El-Kareem HF, Abo Nahas HH, Abdel-Wahab BA, Helmy YA, Alshawwa SZ, Saied EM. Acetylsalicylic Acid Suppresses Alcoholism-Induced Cognitive Impairment Associated with Atorvastatin Intake by Targeting Cerebral miRNA155 and NLRP3: In Vivo, and In Silico Study. Pharmaceutics 2022; 14:529. [PMID: 35335908 PMCID: PMC8948796 DOI: 10.3390/pharmaceutics14030529] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Alcoholism is one of the most common diseases that can lead to the development of several chronic diseases including steatosis, and cognitive dysfunction. Statins are lipid-lowering drugs that are commonly prescribed for patients with fatty liver diseases; however, the exact effect of statins on cognitive function is still not fully understood. In the present study, we have investigated the molecular and microscopic basis of cognitive impairment induced by alcohol and/or Atorvastatin (ATOR) administration to male Wistar albino rats and explored the possible protective effect of acetylsalicylic acid (ASA). The biochemical analysis indicated that either alcohol or ATOR or together in combination produced a significant increase in the nucleotide-binding domain-like receptor 3 (NLRP3), interleukin-1β (IL-1β) miRNA155 expression levels in the frontal cortex of the brain tissue. The histological and morphometric analysis showed signs of degeneration in the neurons and the glial cells with aggregations of inflammatory cells and a decrease in the mean thickness of the frontal cortex. Immunohistochemical analysis showed a significant increase in the caspase-8 immunoreaction in the neurons and glial cells of the frontal cortex. Interestingly, administration of ASA reversed the deleterious effect of the alcohol and ATOR intake and improved the cognitive function as indicated by biochemical and histological analysis. ASA significantly decreased the expression levels of miRNA155, NLRP3, and IL1B, and produced a significant decrease in caspase-8 immunoreaction in the neurons and glial cells of the frontal cortex with a reduction in the process of neuroinflammation and neuronal damage. To further investigate these findings, we have performed an extensive molecular docking study to investigate the binding affinity of ASA to the binding pockets of the NLRP3 protein. Our results indicated that ASA has high binding scores toward the active sites of the NLRP3 NACHT domain with the ability to bind to the NLRP3 pockets by a set of hydrophilic and hydrophobic interactions. Taken together, the present study highlights the protective pharmacological effect of ASA to attenuate the deleterious effect of alcohol intake and long term ATOR therapy on the cognitive function via targeting miRNA155 and NLRP3 proteins.
Collapse
Affiliation(s)
- Doaa I. Mohamed
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | | | - Enas S. Nabih
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Omnyah A. El-Kharashi
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt;
| | - Hanaa F. Abd El-Kareem
- Zoology Department, Faculty of Science, Ain Shams University, Abbasseya, Cairo 11566, Egypt;
| | | | - Basel A. Abdel-Wahab
- Department of Medical Pharmacology, College of Medicine, Assiut University, Assiut 71111, Egypt;
- Department of Pharmacology, College of Pharmacy, Najran University, Najran 1988, Saudi Arabia
| | - Yosra A. Helmy
- Department of Veterinary Science, College of Agriculture, Food, and Environment, University of Kentucky, Lexington, KY 40503, USA;
- Department of Animal Hygiene, Zoonoses and Animal Ethology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Samar Zuhair Alshawwa
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Essa M. Saied
- Chemistry Department, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
- Institute for Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
36
|
Zou J, Yan C, Wan JB. Red yeast rice ameliorates non-alcoholic fatty liver disease through inhibiting lipid synthesis and NF-κB/NLRP3 inflammasome-mediated hepatic inflammation in mice. Chin Med 2022; 17:17. [PMID: 35078487 PMCID: PMC8788078 DOI: 10.1186/s13020-022-00573-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/12/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Red yeast rice (RYR), a nutraceutical with a profound cholesterol-lowering effect, was found to attenuate non-alcoholic fatty liver disease (NAFLD) in mice. Despite monacolin K in RYR being a specific inhibitor of hydroxymethylglutaryl-coenzyme A reductase (HMCGR), the mechanisms underlying the protective effects of RYR against NAFLD are not fully elucidated. METHODS Using a mouse model of high-fat diet (HFD) feeding and a cellular model of HepG2 cells challenged by lipopolysaccharide (LPS) and palmitic acid (PA), the possible molecular mechanisms were exploited in the aspects of NF-κB/NLRP3 inflammasome and mTORC1-SREBPs signaling pathways by examining the relevant gene/protein expressions. Subsequently, the correlation between these two signals was also verified using cellular experiments. RESULTS RYR ameliorated lipid accumulation and hepatic inflammation in vivo and in vitro. RYR improved lipid metabolism through modulating mTORC1-SREBPs and their target genes related to triglyceride and cholesterol synthesis. Furthermore, RYR suppressed hepatic inflammation by inhibiting the NF-κB/NLRP3 inflammasome signaling. Interestingly, the treatment with RYR or MCC950, a specific NLRP3 inhibitor, resulted in the reduced lipid accumulation in HepG2 cells challenged by LPS plus PA, suggesting that the inhibitory effects of RYR on NLRP3 inflammasome-mediated hepatic inflammation may partially, in turn, contribute to the lipid-lowering effect of RYR. CONCLUSIONS The modulation of NF-κB/NLRP3 inflammasome and lipid synthesis may contribute to the ameliorative effects of RYR against HFD-induced NAFLD.
Collapse
Affiliation(s)
- Jian Zou
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China
| | - Chunyan Yan
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| | - Jian-Bo Wan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, Taipa, China.
| |
Collapse
|
37
|
Bland AR, Payne FM, Ashton JC, Jamialahmadi T, Sahebkar A. The cardioprotective actions of statins in targeting mitochondrial dysfunction associated with myocardial ischaemia-reperfusion injury. Pharmacol Res 2022; 175:105986. [PMID: 34800627 DOI: 10.1016/j.phrs.2021.105986] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/11/2021] [Accepted: 11/11/2021] [Indexed: 12/24/2022]
Abstract
During cardiac reperfusion after myocardial infarction, the heart is subjected to cascading cycles of ischaemia reperfusion injury (IRI). Patients presenting with this injury succumb to myocardial dysfunction resulting in myocardial cell death, which contributes to morbidity and mortality. New targeted therapies are required if the myocardium is to be protected from this injury and improve patient outcomes. Extensive research into the role of mitochondria during ischaemia and reperfusion has unveiled one of the most important sites contributing towards this injury; specifically, the opening of the mitochondrial permeability transition pore. The opening of this pore occurs during reperfusion and results in mitochondria swelling and dysfunction, promoting apoptotic cell death. Activation of mitochondrial ATP-sensitive potassium channels (mitoKATP) channels, uncoupling proteins, and inhibition of glycogen synthase kinase-3β (GSK3β) phosphorylation have been identified to delay mitochondrial permeability transition pore opening and reduce reactive oxygen species formation, thereby decreasing infarct size. Statins have recently been identified to provide a direct cardioprotective effect on these specific mitochondrial components, all of which reduce the severity of myocardial IRI, promoting the ability of statins to be a considerate preconditioning agent. This review will outline what has currently been shown in regard to statins cardioprotective effects on mitochondria during myocardial IRI.
Collapse
Affiliation(s)
- Abigail R Bland
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Fergus M Payne
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - John C Ashton
- Department of Pharmacology and Toxicology, University of Otago, Dunedin, New Zealand
| | - Tannaz Jamialahmadi
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashad, Iran; School of Medicine, The University of Western Australia, Perth, Australia; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
38
|
Batiha GES, Al-Gareeb DAI, Qusti S, Alshammari EM, Rotimi D, Adeyemi OS, Al-Kuraishy HM. Common NLRP3 inflammasome inhibitors and Covid-19: Divide and Conquer. SCIENTIFIC AFRICAN 2021:e01084. [PMID: 34957352 PMCID: PMC8683381 DOI: 10.1016/j.sciaf.2021.e01084] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
This article has been withdrawn at
the request of the author(s) and/or editor. The Publisher apologizes for
any inconvenience this may cause. The full Elsevier Policy on
Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Dr Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Safaa Qusti
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Eida M Alshammari
- Department of Chemistry, College of Sciences, University of Ha'il, Ha'il, Saudi Arabia
| | - Damilare Rotimi
- Department of Biochemistry, Landmark University, KM 4 Ipetu Road, Omu-Aran 251101, Kwara State, Nigeria
| | - Oluyomi Stephen Adeyemi
- Department of Biochemistry, Landmark University, KM 4 Ipetu Road, Omu-Aran 251101, Kwara State, Nigeria
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| |
Collapse
|
39
|
Miao P, Ruiqing T, Yanrong L, Zhuwen S, Huan Y, Qiong W, Yongnian L, Chao S. Pyroptosis: A possible link between obesity-related inflammation and inflammatory diseases. J Cell Physiol 2021; 237:1245-1265. [PMID: 34751453 DOI: 10.1002/jcp.30627] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022]
Abstract
The main manifestation of obesity is persistent low-level inflammation and insulin resistance, which is an important factor inducing or promoting other obesity-related diseases. As a proinflammatory programmed cell death, pyroptosis plays an important role, especially in the activation and regulation of the NLRP3 inflammasome pathway. Pyroptosis is associated with the pathogenesis of many chronic inflammatory diseases and is characterized by the formation of micropores in the plasma membrane and the release of a large number of proinflammatory cytokines. This article mainly introduces the main pathways and key molecules of pyroptosis and focuses on the phenomenon of pyroptosis in obesity. It is suggested that the regulation of pyroptosis-related targets may become a new potential therapy for the prevention and treatment of systemic inflammatory response caused by obesity, and we summarize the potential molecular substances that may be beneficial to obesity-related inflammatory diseases through target pyroptosis.
Collapse
Affiliation(s)
- Pan Miao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Tai Ruiqing
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Liu Yanrong
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Sun Zhuwen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuan Huan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Wu Qiong
- Medical College; Qinghai Health Development and Research Center, Qinghai University, Xining, Qinghai, China
| | - Liu Yongnian
- Medical College; Qinghai Health Development and Research Center, Qinghai University, Xining, Qinghai, China
| | - Sun Chao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
40
|
Momtazi-Borojeni AA, Jaafari MR, Abdollahi E, Banach M, Sahebkar A. Impact of PCSK9 Immunization on Glycemic Indices in Diabetic Rats. J Diabetes Res 2021; 2021:4757170. [PMID: 34504898 PMCID: PMC8423580 DOI: 10.1155/2021/4757170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022] Open
Abstract
METHODS To prepare the anti-PCSK9 vaccine, a peptide construct called Immunogenic Fused PCSK9-Tetanus (IFPT) was linked to the surface of nanoliposome carriers. Healthy rats received four subcutaneous injections of the vaccine at biweekly intervals. Two weeks after the last vaccination, anti-PCSK9 antibody titers, PCSK9 targeting, and inhibition of PCSK9-low-density lipoprotein receptor (LDLR) interaction were evaluated. After verification of antibody generation, the immunized rats were intraperitoneally treated with a single dose (45 mg/kg) of streptozotocin (STZ) to induce diabetes mellitus. The levels of fasting blood glucose (FBG) were measured, and the oral glucose tolerance test (OGTT) as well as the insulin tolerance test (ITT) were carried out to assess glycemic status. At the end of the study, the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride, and high-density lipoprotein cholesterol concentrations were assayed. Histopathology examination of the liver and pancreas was also performed using the hematoxylin-eosin staining method. RESULTS The prepared nanoliposomal vaccine could strongly induce anti-PCSK9 antibodies in the vaccinated rats. Within one week following the STZ injection, the FBG level was lower in the vaccinated group vs. diabetic control group (49% (-171.7 ± 35 mg/dL, p < 0.001)). In the OGTT, the injected rats showed improved glucose tolerance as reflected by the reduction of blood glucose levels over 180 min, compared with the diabetic controls. Moreover, the ITT demonstrated that, after the insulin injection, blood glucose concentration declined by 49.3% in the vaccinated group vs. diabetic control group. Expectedly, the vaccinated rats exhibited lower (-26.65%, p = 0.03) plasma LDL-C levels compared with the diabetic controls. Histopathology examination of pancreas tissue demonstrated that the pancreatic islets of the vaccinated rats had a slight decline in the population of β-cells and few α-cells. Normal liver histology was also observed in the vaccinated rats. CONCLUSION PCSK9 inhibition through the liposomal IFPT vaccine can improve the glucose and insulin tolerance impairments as well as the lipid profile in diabetes.
Collapse
Affiliation(s)
- Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Iran's National Elites Foundation, Tehran, Iran
| | - Mahmoud Reza Jaafari
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Elham Abdollahi
- Department of Gynecology, Woman Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maciej Banach
- Department of Hypertension, Medical University of Lodz (MUL), Poland
- Cardiovascular Research Centre, University of Zielona-Gora, Zielona-Gora, Poland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
41
|
Ji N, Qi Z, Wang Y, Yang X, Yan Z, Li M, Ge Q, Zhang J. Pyroptosis: A New Regulating Mechanism in Cardiovascular Disease. J Inflamm Res 2021; 14:2647-2666. [PMID: 34188515 PMCID: PMC8235951 DOI: 10.2147/jir.s308177] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 06/02/2021] [Indexed: 12/17/2022] Open
Abstract
Pyroptosis is a kind of pro-inflammatory cell death. Compared with autophagy and apoptosis, pyroptosis has unique characteristics in morphology and mechanism. Specifically, pyroptosis is a kind of cell lysis mediated by the Gasdermin family, releases inflammatory cytokines IL-1β and IL-18. There are three different forms of mechanism, which are caspase-1-mediated, caspase-4/5/11-mediated and caspase-3-mediated. A large number of studies have proved that pyroptosis is closely related to cardiovascular disease. This paper reviewed the recent progress in the related research on pyroptosis and myocardial infarction, ischemia-reperfusion, atherosclerosis, diabetic cardiomyopathy, arrhythmia, heart failure hypertension and Kawasaki disease. Therefore, we believe that pyroptosis may be a new therapeutic target in the cardiovascular field.
Collapse
Affiliation(s)
- Nan Ji
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China.,National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, People's Republic of China
| | - Zhongwen Qi
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Yueyao Wang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Xiaoya Yang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Zhipeng Yan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Meng Li
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Qihui Ge
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| | - Junping Zhang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300183, People's Republic of China
| |
Collapse
|
42
|
Intermedin 1-53 attenuates atherosclerotic plaque vulnerability by inhibiting CHOP-mediated apoptosis and inflammasome in macrophages. Cell Death Dis 2021; 12:436. [PMID: 33934111 PMCID: PMC8088440 DOI: 10.1038/s41419-021-03712-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022]
Abstract
Atherosclerotic plaque vulnerability and rupture increase the risk of acute coronary syndromes. Advanced lesion macrophage apoptosis plays important role in the rupture of atherosclerotic plaque, and endoplasmic reticulum stress (ERS) has been proved to be a key mechanism of macrophage apoptosis. Intermedin (IMD) is a regulator of ERS. Here, we investigated whether IMD enhances atherosclerotic plaque stability by inhibiting ERS-CHOP-mediated apoptosis and subsequent inflammasome in macrophages. We studied the effects of IMD on features of plaque vulnerability in hyperlipemia apolipoprotein E-deficient (ApoE−/−) mice. Six-week IMD1-53 infusion significantly reduced atherosclerotic lesion size. Of note, IMD1-53 lowered lesion macrophage content and necrotic core size and increased fibrous cap thickness and vascular smooth muscle cells (VSMCs) content thus reducing overall plaque vulnerability. Immunohistochemical analysis indicated that IMD1-53 administration prevented ERS activation in aortic lesions of ApoE−/− mice, which was further confirmed in oxidized low-density lipoproteins (ox-LDL) induced macrophages. Similar to IMD, taurine (Tau), a non-selective ERS inhibitor significantly reduced atherosclerotic lesion size and plaque vulnerability. Moreover, C/EBP-homologous protein (CHOP), a pro-apoptosis transcription factor involved in ERS, was significantly increased in advanced lesion macrophages, and deficiency of CHOP stabilized atherosclerotic plaques in AopE−/− mice. IMD1-53 decreased CHOP level and apoptosis in vivo and in macrophages treated with ox-LDL. In addition, IMD1-53 infusion ameliorated NLRP3 inflammasome and subsequent proinflammatory cytokines in vivo and in vitro. IMD may attenuate the progression of atherosclerotic lesions and plaque vulnerability by inhibiting ERS-CHOP-mediated macrophage apoptosis, and subsequent NLRP3 triggered inflammation. The inhibitory effect of IMD on ERS-induced macrophages apoptosis was probably mediated by blocking CHOP activation.
Collapse
|
43
|
Gu Y, Zhu Y, Deng G, Liu S, Sun Y, Lv W. Curcumin analogue AI-44 alleviates MSU-induced gouty arthritis in mice via inhibiting cathepsin B-mediated NLRP3 inflammasome activation. Int Immunopharmacol 2021; 93:107375. [PMID: 33517224 DOI: 10.1016/j.intimp.2021.107375] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/21/2022]
Abstract
NOD-like receptors (NLRs), as a part of intracellular pattern recognition receptors (PRR), are important regulators in innate immune system. The NLRP3 inflammasome which is a member of NLRs has been linked to several human inflammatory diseases. Gouty arthritis is triggered when the deposition of monosodium urate (MSU) crystals in joints induces acute inflammation characterized by the recruitment of macrophages and neutrophils. In this study, we explored the curcumin analogue AI-44 alleviated the gouty arthritis in mice via suppressing MSU engaging NLRP3 inflammasome activation. Furthermore, we demonstrated that AI-44 inhibited the interaction of cathepsin B and NLRP3 to prevent the activation of NLRP3 inflammasome. Moreover, we found AI-44 inhibited the enzyme activity of cathepsin B and bound to the key residue E122 in cytoplasm but not in lysosome. Collectively, these data suggest that AI-44 is a novel drug candidate for the treatment of gouty arthritis through targeting cathepsin B and inhibiting NLRP3 inflammasome activation.
Collapse
Affiliation(s)
- Yanpin Gu
- Department of Gynecology, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou 310012, China
| | - Yongcheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Ave, Nanjing 210023, China
| | - Guoliang Deng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Ave, Nanjing 210023, China
| | - Songjun Liu
- Department of Gynecology, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou 310012, China
| | - Yang Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, 163 Xianlin Ave, Nanjing 210023, China.
| | - Wen Lv
- Department of Gynecology, Tongde Hospital of Zhejiang Province, 234 Gucui Road, Hangzhou 310012, China; Center for Uterine Cancer Diagnosis & Therapy Research in Zhejiang Province, Hangzhou 310012, China.
| |
Collapse
|
44
|
Nomani H, Saei S, Johnston TP, Sahebkar A, Mohammadpour AH. The Efficacy of Anti-inflammatory Agents in the Prevention of Atrial Fibrillation Recurrences. Curr Med Chem 2021; 28:137-151. [PMID: 32116184 DOI: 10.2174/1389450121666200302095103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 01/30/2020] [Accepted: 02/17/2020] [Indexed: 11/22/2022]
Abstract
Several studies have indicated an association between inflammation and the recurrence of Atrial Fibrillation (AF), especially after ablation, which is a therapeutic option leading to local inflammation. On the other hand, each AF can lead to another AF, as a general rule. Thus, preventing recurrences of AF is extremely important for patient outcomes. In this paper, we attempted to review the effect of medicinal agents with anti-inflammatory properties on the prevention of AF recurrence. There are several randomized controlled trials (RCTs) and meta-analyses on the prevention of AF recurrence using agents with anti-inflammatory properties, which include steroids, colchicine, statins, and n-3 fatty acids (n-3 FA). Clinical trials evaluating the efficacy of anti-inflammatory drugs in preventing the recurrence of AF led to inconsistent results for corticosteroids, statins and n-3 FAs. These results may be related to the fact that inflammation is not the only factor responsible for triggering recurrences of AF. For example, the presence of structural, mechanical and electrical remodeling could potentially be the most important factors that trigger recurrences of AF but these factors have not been addressed in most of the reported studies. Therefore, future clinical trials are needed to compare the efficacy of anti-inflammatory drugs in AF patients with, or without other factors. For colchicine, a potent anti-inflammatory drug, there are limited studies. However, all the studies investigating colchicine in the context of AF were consistent and promising, especially when colchicine was used on a short-term basis following ablation in patients with paroxysmal AF. Therefore, colchicine could be a promising candidate for further clinical studies involving recurrent AF.
Collapse
Affiliation(s)
- Homa Nomani
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Thomas P Johnston
- Division of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Missouri-Kansas City, Kansas City, Missouri, United States
| | | | - Amir Hooshang Mohammadpour
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Xing SS, Yang J, Li WJ, Li J, Chen L, Yang YT, Lei X, Li J, Wang K, Liu X. Salidroside Decreases Atherosclerosis Plaque Formation via Inhibiting Endothelial Cell Pyroptosis. Inflammation 2021; 43:433-440. [PMID: 32076940 DOI: 10.1007/s10753-019-01106-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pyroptosis, a new pro-inflammatory programmed cell death, is linked to atherosclerosis (AS). Our previous studies suggested that salidroside (SAL) can alleviate AS and exert anti-oxidative and anti-inflammatory properties. However, the effect of SAL on atherosclerosis-related pyroptosis has not been studied. Here, we investigated the effect of SAL on pyroptosis to explain the underlying mechanisms of SAL on atherosclerosis-related inflammation. We established an atherosclerosis mouse model via western diet (HFD) to explore the protective effect of SAL. According to our results, administration of SAL for 12 weeks markedly reduced the atherosclerotic plaque in aorta. Meanwhile, SAL also alleviated the pyroptosis, as evidenced by inhibiting caspase-1 activation, interleukin-1β (IL-1β) release, and TUNEL-positive staining, and decreasing the expression of Gasdermin D (GSDMD). Furthermore, SAL also decreased the activation of caspase-1 and inhibited the release of IL-1β induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP) in human umbilical vein endothelial cell (HUVECs). Our data indicate that SAL inhibit NLRP3-related pyroptosis, which might be the underlying mechanism of SAL anti-inflammatory in atherosclerosis.
Collapse
Affiliation(s)
- Sha-Sha Xing
- Clinical Drug Trial Institution, Affiliated Hospital of Chengdu University, Chengdu, 610081, Sichuan, People's Republic of China
| | - Jin Yang
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, 610081, Sichuan, People's Republic of China.
| | - Wen-Jing Li
- Department of Pharmacy, Zhongnan Hospital of Wuhan University, Wuhan, 430071, People's Republic of China
| | - Jian Li
- Department of Basic Medicine, Chengdu University School of Medicine, Chengdu, 610106, Sichuan, People's Republic of China
| | - Lin Chen
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, 610081, Sichuan, People's Republic of China
| | - Yu-Ting Yang
- Clinical Drug Trial Institution, Affiliated Hospital of Chengdu University, Chengdu, 610081, Sichuan, People's Republic of China
| | - Xia Lei
- Clinical Drug Trial Institution, Affiliated Hospital of Chengdu University, Chengdu, 610081, Sichuan, People's Republic of China
| | - Jun Li
- Department of General Surgery, Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, 610081, Sichuan, People's Republic of China
| | - Kai Wang
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, 610081, Sichuan, People's Republic of China
| | - Xun Liu
- Department of Urology, Affiliated Hospital of Chengdu University, Chengdu, 610081, Sichuan, People's Republic of China
| |
Collapse
|
46
|
He X, Fan X, Bai B, Lu N, Zhang S, Zhang L. Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis. Pharmacol Res 2021; 165:105447. [PMID: 33516832 DOI: 10.1016/j.phrs.2021.105447] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/28/2020] [Accepted: 01/17/2021] [Indexed: 02/07/2023]
Abstract
Pyroptosis is a form of programmed cell death activated by various stimuli and is characterized by inflammasome assembly, membrane pore formation, and the secretion of inflammatory cytokines (IL-1β and IL-18). Atherosclerosis-related risk factors, including oxidized low-density lipoprotein (ox-LDL) and cholesterol crystals, have been shown to promote pyroptosis through several mechanisms that involve ion flux, ROS, endoplasmic reticulum stress, mitochondrial dysfunction, lysosomal rupture, Golgi function, autophagy, noncoding RNAs, post-translational modifications, and the expression of related molecules. Pyroptosis of endothelial cells, macrophages, and smooth muscle cells in the vascular wall can induce plaque instability and accelerate atherosclerosis progression. In this review, we focus on the pathogenesis, influence, and therapy of pyroptosis in atherosclerosis and provide novel ideas for suppressing pyroptosis and the progression of atherosclerosis.
Collapse
Affiliation(s)
- Xiao He
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Xuehui Fan
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Bing Bai
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Nanjuan Lu
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| | - Shuang Zhang
- General Surgery, Harbin Changzheng Hospital, 363 Xuan Hua Street, Harbin 150001, Heilongjiang Province, China.
| | - Liming Zhang
- Department of Neurology, First Affiliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin 150001, Heilongjiang Province, China.
| |
Collapse
|
47
|
Rosuvastatin protects against coronary microembolization-induced cardiac injury via inhibiting NLRP3 inflammasome activation. Cell Death Dis 2021; 12:78. [PMID: 33436548 PMCID: PMC7804109 DOI: 10.1038/s41419-021-03389-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 01/29/2023]
Abstract
Coronary microembolization (CME), a common reason for periprocedural myocardial infarction (PMI), bears very important prognostic implications. However, the molecular mechanisms related to CME remain largely elusive. Statins have been shown to prevent PMI, but the underlying mechanism has not been identified. Here, we examine whether the NLRP3 inflammasome contributes to CME-induced cardiac injury and investigate the effects of statin therapy on CME. In vivo study, mice with CME were treated with 40 mg/kg/d rosuvastatin (RVS) orally or a selective NLRP3 inflammasome inhibitor MCC950 intraperitoneally (20 mg/kg/d). Mice treated with MCC950 and RVS showed improved cardiac contractile function and morphological changes, diminished fibrosis and microinfarct size, and reduced serum lactate dehydrogenase (LDH) level. Mechanistically, RVS decreased the expression of NLRP3, caspase-1, interleukin-1β, and Gasdermin D N-terminal domains. Proteomics analysis revealed that RVS restored the energy metabolism and oxidative phosphorylation in CME. Furthermore, reduced reactive oxygen species (ROS) level and alleviated mitochondrial damage were observed in RVS-treated mice. In vitro study, RVS inhibited the activation of NLRP3 inflammasome induced by tumor necrosis factor α plus hypoxia in H9c2 cells. Meanwhile, the pyroptosis was also suppressed by RVS, indicated by the increased cell viability, decreased LDH and propidium iodide uptake in H9c2 cells. RVS also reduced the level of mitochondrial ROS generation in vitro. Our results indicate the NLRP3 inflammasome-dependent cardiac pyroptosis plays an important role in CME-induced cardiac injury and its inhibitor exerts cardioprotective effect following CME. We also uncover the anti-pyroptosis role of RVS in CME, which is associated with regulating mitochondrial ROS.
Collapse
|
48
|
Montecucco F, Carbone F, Liberale L, Sahebkar A. Challenges in reducing atherosclerotic inflammation in patients with familial hypercholesterolemia. Eur J Prev Cardiol 2020; 27:2099-2101. [PMID: 31288540 DOI: 10.1177/2047487319862907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Italy
- Department of Internal Medicine, and Centre of Excellence for Biomedical Research (CEBR), University of Genoa, Italy
| | - Federico Carbone
- IRCCS Ospedale Policlinico San Martino Genoa, Italian Cardiovascular Network, Italy
- Department of Internal Medicine, University of Genoa, Italy
| | - Luca Liberale
- Department of Internal Medicine, University of Genoa, Italy
- Center for Molecular Cardiology, University of Zürich, Switzerland
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Iran
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Iran
| |
Collapse
|
49
|
Tanshinone IIA attenuates atherosclerosis via inhibiting NLRP3 inflammasome activation. Aging (Albany NY) 2020; 13:910-932. [PMID: 33290264 PMCID: PMC7835056 DOI: 10.18632/aging.202202] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 08/15/2020] [Indexed: 12/12/2022]
Abstract
Tanshinone IIA (Tan IIA) possesses potent anti-atherogenic function, however, the underlying pharmacological mechanism remains incompletely understood. Previous studies suggest that oxidized LDL (oxLDL)-induced NLRP3 (NOD-like receptor (NLR) family, pyrin domain-containing protein 3) inflammasome activation in macrophages plays a vital role in atherogenesis. Whether the anti-atherogenic effect of Tan IIA relies on the inhibition of the NLRP3 inflammasome has not been investigated before. In this study, we found that Tan IIA treatment of high-fat diet fed ApoE-/- mice significantly attenuated NLRP3 inflammasome activation in vivo. Consistently, Tan IIA also potently inhibited oxLDL-induced NLRP3 inflammasome activation in mouse macrophages. Mechanically, Tan IIA inhibited NF-κB activation to downregulate pro-interleukin (IL) -1β and NLRP3 expression, and decreased oxLDL-induced expression of lectin-like oxidized LDL receptor-1 (LOX-1) and cluster of differentiation 36 (CD36), thereby attenuating oxLDL cellular uptake and subsequent induction of mitochondrial and lysosomal damage - events that promote the NLRP3 inflammasome assembly. Through regulating both the inflammasome 'priming' and 'activation' steps, Tan IIA potently inhibited oxLDL-induced NLRP3 inflammasome activation, thereby ameliorating atherogenesis.
Collapse
|
50
|
Lang L, Xu B, Yuan J, Li S, Lian S, Chen Y, Guo J, Yang H. GABA-mediated activated microglia induce neuroinflammation in the hippocampus of mice following cold exposure through the NLRP3 inflammasome and NF-κB signaling pathways. Int Immunopharmacol 2020; 89:106908. [PMID: 33166810 DOI: 10.1016/j.intimp.2020.106908] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 07/25/2020] [Accepted: 08/15/2020] [Indexed: 01/26/2023]
Abstract
Chronic cold stress has long-term dramatic effects on the animal immune and neuroendocrine systems. As one of the important regions of the brain, the hippocampus is the main region involved in response to stressors. Nevertheless, the impact to the hippocampus following cold exposure and the underlying mechanism involved are not clear. To evaluate the response of the hippocampus during chronic cold stress, male C57BL/6 mice were exposed to 4 °C, 3 h per day for 1 week, after which neuroinflammation and the molecular and signaling pathways in the hippocampus response to cold stress were investigated. To confirm the potential mechanism, BV2 cells were treated with γ-aminobutyric acid (GABA) and BAY 11-7082 and MCC950, then the activation of microglia and key proteins involved in the regulation of inflammation were measured. We demonstrated that chronic cold stress induced the activation of microglia, the emergence of neuroinflammation, and the impairment of neurons in the hippocampus, which might be the result of GABA-mediated activation of nod-like receptor protein 3 (NLRP3) inflammasome and the nuclear factor kappa B (NF-κB) signaling pathway.
Collapse
Affiliation(s)
- Limin Lang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Bin Xu
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Jianbin Yuan
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Shize Li
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Shuai Lian
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Yan Chen
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China
| | - Jingru Guo
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China.
| | - Huanmin Yang
- Heilongjiang Provincial Key Laboratory of Prevention and Control of Bovine Diseases, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Sartu District, Daqing 163319, PR China.
| |
Collapse
|