1
|
Lee YR, Lee HW, Park KM, Lee NK, Paik HD. Anti-inflammatory effects of Lactiplantibacillus plantarum strains through MAPK, NF-κB, and AP-1 signaling pathways and its application in soy milk. Food Res Int 2025; 208:116216. [PMID: 40263848 DOI: 10.1016/j.foodres.2025.116216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/07/2025] [Accepted: 03/11/2025] [Indexed: 04/24/2025]
Abstract
This study investigated the anti-inflammatory effects of probiotic Lactiplantibacillus plantarum strains isolated from kimchi and its application in soy milk. L. plantarum WB3801 and L. plantarum WB3802 exhibited probiotic properties. Moreover, L. plantarum strains inhibited inducible nitric oxide synthase and cyclooxygenase-2 expression in RAW 264.7 murine macrophages without inducing cytotoxicity. This resulted in decreased nitric oxide and prostaglandin E2 levels. Additionally, tumor necrosis factor-α, interleukin (IL)-1β, and IL-6 mRNA levels were downregulated, and the activation of mitogen-activated protein kinase, nuclear factor-κB, and activator protein-1 was suppressed. Furthermore, fermented soy milk with fructooligosaccharides by L. plantarum strains exhibited stable physicochemical characteristics over the 28-day storage period, and its anti-inflammatory effects were consistent with those of the L. plantarum strains. Therefore, L. plantarum WB3801 and L. plantarum WB3802 can be utilized as functional components in foods with anti-inflammatory effects.
Collapse
Affiliation(s)
- Yu-Rim Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hye-Won Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Kyung-Min Park
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
2
|
Lu Y, Mi L, Zhang P, Chen Y, Bai X, Li K, Zhang Y, Li J. Induction of Cuproptosis by Dichloromethane Extract From Patrinia scabiosaefolia Fisch on K562 Cells. ENVIRONMENTAL TOXICOLOGY 2025. [PMID: 40177825 DOI: 10.1002/tox.24516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 03/06/2025] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
Cuproptosis is a newly identified form of cell death that relies on copper (Cu) ionophores to transport Cu into cancer cells. As a perennial herb, Patrinia scabiosaefolia Fisch (PS) has garnered significant attention owing to its analgesic, anti-inflammatory, antibacterial, and antitumor properties. Previous research has shown that the extract from PS (DEPS) can inhibit the growth of leukemia cell lines. However, the specific mechanism of its anti-leukemic effect has not been fully clarified. Therefore, this study was conducted to investigate the molecular mechanism of cuproptosis in the treatment of leukemia with DEPS. Our results demonstrated that DEPS up-regulated SLC31A1 and down-regulated ATP7B expression, which increased intracellular copper concentration, down-regulated FDX1, influenced the lipoylation of DLAT and DLD, and subsequently increased the expression of the stress protein HSP70 and the expression of PDHA1, inducing copper death in K562 cells. In addition, we investigated the toxicity of DEPS in vivo and demonstrated its low in vivo toxicity and adequate in vivo safety. In conclusion, our results suggest that DEPS may induce cuproptosis in cells, offering valuable insights for the future application of PS in leukemia treatment.
Collapse
Affiliation(s)
- Yuan Lu
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Leyuan Mi
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
- Clinical Laboratory Center, Gansu Provincial Maternity and Child-Care Hospital/Central Hospital of Gansu Province, Lanzhou, China
| | - Peipei Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Yang Chen
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Xinyi Bai
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Kejing Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, China
| | - Ying Zhang
- Clinical Laboratory Division II, the First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| | - Juan Li
- Clinical Laboratory Division II, the First Hospital of Lanzhou University, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Agarwal G, Moes K, Schmidt CE. Development and in vitro evaluation of biomimetic injectable hydrogels from decellularized human nerves for central nervous system regeneration. Mater Today Bio 2025; 31:101483. [PMID: 39896276 PMCID: PMC11787433 DOI: 10.1016/j.mtbio.2025.101483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/08/2025] [Accepted: 01/10/2025] [Indexed: 02/04/2025] Open
Abstract
Injuries to the central nervous system (CNS) often lead to persistent inflammation and limited regeneration. This study developed a clinically relevant injectable hydrogel derived from decellularized human peripheral nerves, with mechanical properties biomimicking native CNS tissue. Using a modified Hudson method, human sciatic nerves were decellularized, effectively removing immunogenic cellular debris while retaining the extracellular matrix. Two delipidation solvents, dichloromethane: ethanol (2:1 v/v) and n-hexane: isopropanol (3:1 v/v), were evaluated, with the former achieving optimal lipid removal and better digestion. The resulting solution was crosslinked with genipin, forming an injectable hydrogel (iHPN) that gelled within 12 min at 37 °C and exhibited mechanical stiffness of approximately 400 Pa. Human astrocytes, human microglial cell clone 3 (HMC3), and mouse RAW 264.7 macrophages were cultured individually within iHPN, with lipopolysaccharide (LPS) added to mimic CNS inflammation following injury. Compared to LPS-activated cells on tissue culture plates (TCP), astrocytes within iHPN maintained a quiescent state, as evidenced by reduced GFAP expression and IL-1β secretion. RAW 264.7 and HMC3 cells in iHPN displayed an anti-inflammatory phenotype, as shown by increased CD206 and decreased CD86/CD68 expression, along with higher IL-4 and lower TNF-α/IL-1β secretion. Human SH-SY5Y neuroblastoma cells exhibited higher viability and improved neuronal differentiation in iHPN compared to TCP. Human brain neurons had higher neuronal differentiation within iHPN compared to TCP or collagen hydrogels. Overall, iHPN is a novel injectable hydrogel that has potential for minimally invasive CNS applications, such as a carrier for cell or drug delivery and/or a biomaterial to support axonal growth.
Collapse
Affiliation(s)
- Gopal Agarwal
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Kennedy Moes
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Christine E. Schmidt
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
4
|
Yoo HS, Yoon YS, Shin JW, Choi SI, Son SH, Jang YH, Yang YS, Kim SY, Kim YR, Chung KS, Lee KT, Kim NJ. In vitro and in vivo anti-inflammatory and antinociceptive activities of a synthetic hydrangenol derivative: 5-hydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one. Int Immunopharmacol 2025; 148:114175. [PMID: 39889413 DOI: 10.1016/j.intimp.2025.114175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/03/2025]
Abstract
In the present study, we developed and synthesized novel hydrangenol derivatives and featured their anti-inflammatory activities. Especially, a synthetic derivative 11 (compound 11), which possesses the 4H-1-benzopyran-4-one moiety, 5-hydroxyl group in A-ring, and 4'-hydroxyl group in B-ring, most dominantly downregulated nitric oxide (NO) and prostaglandin E2 (PGE2) production in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. In addition, compound 11 suppressed the inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α), and interleukin 6 (IL-6) expression by inhibiting nuclear factor kappa-B (NF-κB), activator protein 1 (AP-1), and signal transducer and activator of transcription protein (STAT) pathways in LPS-provoked RAW264.7 macrophages. Additionally, we confirmed that compound 11 had better plasma stability than hydrangenol with a plasma-labile δ-valerolactone moiety. In carrageenan-induced rats, compound 11 potently reduced paw inflammation (as measured by paw volume, width, and thickness) by inhibiting the iNOS and COX-2 expression in paw tissue, thereby reducing inflammatory pain. All things considered, as compound 11 shows anti-inflammatory and antinociceptive properties, converting metabolically unstable hydrangenol into a stable compound 11 could be a promising strategy for developing new drugs.
Collapse
Affiliation(s)
- Hyung-Seok Yoo
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Young-Seo Yoon
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Jeong-Won Shin
- Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Se-In Choi
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Seung Hwan Son
- College of Pharmacy, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon 24341 Kangwon-do, Republic of Korea
| | - Yoon Hu Jang
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Yo-Sep Yang
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Soo-Yeon Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Ye-Rin Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Kyung-Sook Chung
- Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447 Republic of Korea
| | - Kyung-Tae Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea; Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447 Republic of Korea.
| | - Nam-Jung Kim
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, Seoul 02447 Republic of Korea; Department of Pharmacy, College of Pharmacy, Kyung Hee University, Seoul 02447 Republic of Korea.
| |
Collapse
|
5
|
Hasan R, Bhuia MS, Chowdhury R, Khan MA, Mazumder M, Yana NT, Alencar MVOBD, Ansari SA, Ansari IA, Islam MT. Piperine exerts anti-inflammatory effects and antagonises the properties of celecoxib and ketoprofen: in vivo and molecular docking studies. Nat Prod Res 2024:1-16. [PMID: 39390887 DOI: 10.1080/14786419.2024.2413039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/06/2024] [Accepted: 10/01/2024] [Indexed: 10/12/2024]
Abstract
This study evaluates the anti-inflammatory effects of a natural product, piperine (PPN), using in vivo and in silico methodologies. In the in vivo segment, inflammation was induced in the right hind paw of young chicks via a formalin (50 μL) injection. PPN was orally administered at doses of 25 and 50 mg/kg with or without celecoxib (CXB) and/or ketoprofen (KPN) (42 mg/kg). The vehicle acted as the negative control group (NC). The in silico analysis predicted the drug-likeness, pharmacokinetics, and toxicity profile of PPN, along with evaluating its binding affinity and ligand-receptor interactions. Results indicate that PPN significantly (p < 0.05) reduced licking frequency and paw edoema in a dose-dependent manner. However, in combination therapy, PPN diminished the effects of both CXB and KPN. PPN showed high affinity (-8.6 kcal/mol) towards the COX-2 enzyme. Therefore, PPN exerts anti-inflammatory effects in chicks through COX-2 inhibition pathways and antagonises CXB and KPN activities.
Collapse
Affiliation(s)
- Rubel Hasan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd, Gopalganj, Bangladesh
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Bioinformatics and Drug Innovation Laboratory, BioLuster Research Center Ltd, Gopalganj, Bangladesh
| | - Raihan Chowdhury
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Muhammad Ali Khan
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Modhurima Mazumder
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | - Noshin Tasnim Yana
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
| | | | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Irfan Aamer Ansari
- Department of Drug Science and Technology, University of Turin, Turin, Italy
| | - Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj, Bangladesh
- Pharmacy Discipline, Khulna University, Khulna, Bangladesh
| |
Collapse
|
6
|
Li Z, Xu Y, Sun X, Fan Z, Zhou Z, Ren F, Li N, Di L. Novel Iridoid Derivatives Isolated from the Roots of Patrinia scabra with Potential Anti-Renal Fibrosis Activity In Vitro. Molecules 2024; 29:4419. [PMID: 39339414 PMCID: PMC11433686 DOI: 10.3390/molecules29184419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/10/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Scabrol B and Scabrol C, two newly identified iridoid derivatives (1 and 2) and six known compounds (3-8), were extracted from the roots of Patrinia scabra. The structures of these derivatives, including their absolute configurations, were elucidated via comprehensive NMR analysis, chemical derivatization, and quantum chemical ECD calculations. All isolated compounds were evaluated for their anti-renal fibrosis activity. The results demonstrate that compounds 1 and 2 showed dose-dependent protective effects against renal fibrosis in vitro by reducing the expression of fibronectin, collagen I, and alpha-smooth muscle actin (α-SMA) in NRK-49f cells mediated by TGF-β1.
Collapse
Affiliation(s)
- Ziran Li
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Xu
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xu Sun
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Zhangrui Fan
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ziling Zhou
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Fucai Ren
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ning Li
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Lei Di
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| |
Collapse
|
7
|
Peng J, Chen G, Guo S, Lin Z, Li J, Yang W, Xiao G, Wang Q. The Galloyl Group Enhances the Inhibitory Activity of Catechins against LPS-Triggered Inflammation in RAW264.7 Cells. Foods 2024; 13:2616. [PMID: 39200543 PMCID: PMC11353959 DOI: 10.3390/foods13162616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/04/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
The galloyl group in catechins was confirmed to be crucial for their health benefits. However, whether the catechins' galloyl group had a contribution to their anti-inflammation remains unclear. This study investigated the anti-inflammation properties and mechanisms of catechins in RAW264.7 cells by using ELISA, fluorometry, flow cytometer, Western blot, and molecular docking. Results showed that the galloyl group enhanced the inhibitory abilities of catechins on inflammatory cytokines (NO, PGE2, IL-1β, and TNF-α) and ROS release in LPS-induced cells. This suppression was likely mediated by delaying cells from the G0/G1 to the S phase, blocking COX-2 and iNOS via the TLR4/MAPK/NF-κB pathway with PU.1 as an upstream target. The research proved that the existence of galloyl groups in catechins was indispensable for their anti-inflammatory capacities and offered a theoretical basis for the anti-inflammatory mechanism of galloylated catechins. Future research is needed to verify the anti-inflammatory effects of catechins in various sources of macrophages or the Caco-2/RAW264.7 cell co-culture system.
Collapse
Affiliation(s)
- Jinming Peng
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.P.); (Z.L.); (G.X.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Guangwei Chen
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.P.); (Z.L.); (G.X.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shaoxin Guo
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.P.); (Z.L.); (G.X.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Ziyuan Lin
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.P.); (Z.L.); (G.X.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jun Li
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.P.); (Z.L.); (G.X.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenhua Yang
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.P.); (Z.L.); (G.X.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Gengsheng Xiao
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.P.); (Z.L.); (G.X.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Qin Wang
- Guangdong Key Laboratory of Science and Technology of Lingnan Specialty Food, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China; (J.P.); (Z.L.); (G.X.)
- Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
8
|
Kwak JE, Lee JY, Baek JY, Kim SW, Ahn MR. The Antioxidant and Anti-Inflammatory Properties of Bee Pollen from Acorn ( Quercus acutissima Carr.) and Darae ( Actinidia arguta). Antioxidants (Basel) 2024; 13:981. [PMID: 39199227 PMCID: PMC11352170 DOI: 10.3390/antiox13080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Aging is a complex biological process characterized by a progressive decline in physical function and an increased risk of age-related chronic diseases. Additionally, oxidative stress is known to cause severe tissue damage and inflammation. Pollens from acorn and darae are extensively produced in Korea. However, the underlying molecular mechanisms of these components under the conditions of inflammation and oxidative stress remain largely unknown. This study aimed to investigate the effect of bee pollen components on lipopolysaccharide (LPS)-induced RAW 264.7 mouse macrophages. This study demonstrates that acorn and darae significantly inhibit the LPS-induced production of inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), in RAW 264.7 cells. Specifically, bee pollen from acorn reduces NO production by 69.23 ± 0.04% and PGE2 production by 44.16 ± 0.08%, while bee pollen from darae decreases NO production by 78.21 ± 0.06% and PGE2 production by 66.23 ± 0.1%. Furthermore, bee pollen from acorn and darae reduced active oxygen species (ROS) production by 47.01 ± 0.5% and 60 ± 0.9%, respectively. It increased the nuclear potential of nuclear factor erythroid 2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 cells. Moreover, treatment with acorn and darae abolished the nuclear potential of nuclear factor κB (NF-κB) and reduced the expression of extracellular signal-associated kinase (ERK) and c-Jun N-terminal kinase (JNK) phosphorylation in LPS-stimulated RAW 264.7 cells. Specifically, acorn decreased NF-κB nuclear potential by 90.01 ± 0.3%, ERK phosphorylation by 76.19 ± 1.1%, and JNK phosphorylation by 57.14 ± 1.2%. Similarly, darae reduced NF-κB nuclear potential by 92.21 ± 0.5%, ERK phosphorylation by 61.11 ± 0.8%, and JNK phosphorylation by 59.72 ± 1.12%. These results suggest that acorn and darae could be potential antioxidants and anti-inflammatory agents.
Collapse
Affiliation(s)
- Jeong-Eun Kwak
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
| | - Joo-Yeon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
| | - Ji-Yoon Baek
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
| | - Sun Wook Kim
- Research and Business Planning Team, Panolos Bioscience Inc., Hwaseong 18471, Republic of Korea;
| | - Mok-Ryeon Ahn
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
9
|
Al-Rawi SS, Ibrahim AH, Ahmed HJ, Khudhur ZO. Therapeutic, and pharmacological prospects of nutmeg seed: A comprehensive review for novel drug potential insights. Saudi Pharm J 2024; 32:102067. [PMID: 38690209 PMCID: PMC11059288 DOI: 10.1016/j.jsps.2024.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Background and objectives For centuries, plant seed extracts have been widely used and valued for their benefits. They have been used in food, perfumes, aromatherapy, and traditional medicine. These natural products are renowned for their therapeutic properties and are commonly used in medicinal treatments. Their significant pharmacological profiles provide an excellent hallmark for the prevention or treatment of various diseases. In this study, we comprehensively evaluated the biological and pharmacological properties of nutmeg seeds and explored their efficacy in treating various illnesses. Method Published articles in databases including Google Scholar, PubMed, Elsevier, Scopus, ScienceDirect, and Wiley, were analyzed using keywords related to nutmeg seed. The searched keywords were chemical compounds, antioxidants, anti-inflammatory, antibacterial, antifungal, antiviral, antidiabetic, anticancer properties, and their protective mechanisms in cardiovascular and Alzheimer's diseases. Results & discussion Nutmeg seeds have been reported to have potent antimicrobial properties against a wide range of various bacteria and fungi, thus showing potential for combating microbial infections and promoting overall health. Furthermore, nutmeg extract effectively reduces oxidative stress and inflammation by improving the body's natural antioxidant defense mechanism. Nutmeg affected lipid peroxidation, reduced lipid oxidation, reduced low-density lipoprotein (LDL), and increased phospholipid and cholesterol excretion. In addition, nutmeg extract improves the modulation of cardiac metabolism, accelerates cardiac conductivity and ventricular contractility, and prevents cell apoptosis. This study elucidated the psychotropic, narcotic, antidepressant, and anxiogenic effects of nutmeg seeds and their potential as a pharmaceutical medicine. Notably, despite its sedative and toxic properties, nutmeg ingestion alone did not cause death or life-threatening effects within the dosage range of 20-80 g powder. However, chemical analysis of nutmeg extracts identified over 50 compounds, including flavonoids, alkaloids, and polyphenolic compounds, which exhibit antioxidant properties and can be used as phytomedicines. Moreover, the exceptional pharmacokinetics and bioavailability of nutmeg have been found different for different administration routes, yet, more clinical trials are still needed. Conclusion Understanding the chemical composition and pharmacological properties of nutmeg holds promise for novel drug discovery and therapeutic advancements. Nutmeg seed offers therapeutic and novel drug prospects that can revolutionize medicine. By delving into their pharmacological properties, we can uncover the vast potential possibilities of this natural wonder.
Collapse
Affiliation(s)
- Sawsan S. Al-Rawi
- Department of Biology Education, Faculty of Education, Tishk International University, Erbil, KRG, Iraq
| | - Ahmad Hamdy Ibrahim
- Department of Pharmacy, Faculty of Pharmacy, Tishk International University, Erbil, KRG, Iraq
| | - Heshu Jalal Ahmed
- Department of Biology Education, Faculty of Education, Tishk International University, Erbil, KRG, Iraq
| | - Zhikal Omar Khudhur
- Department of Biology Education, Faculty of Education, Tishk International University, Erbil, KRG, Iraq
| |
Collapse
|
10
|
Yang Q, Li J, Zhang L, Zhao N, Sun X, Wang Z. Type I Cystatin Derived from Cysticercus pisiformis-Stefins, Suppresses LPS-Mediated Inflammatory Response in RAW264.7 Cells. Microorganisms 2024; 12:850. [PMID: 38792680 PMCID: PMC11123757 DOI: 10.3390/microorganisms12050850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Cysticercus pisiformis is a kind of tapeworm larvae of Taenia pisiformis, which parasitizes the liver envelope, omentum, mesentery, and rectum of rodents such as rabbits. Cysteine protease inhibitors derived from helminth were immunoregulatory molecules of intermediate hosts and had an immunomodulatory function that regulates the production of inflammatory factors. Thus, in the present research, the recombinant Stefin of C. pisiformis was confirmed to have the potential to fight inflammation in LPS-Mediated RAW264.7 murine macrophages. CCK8 test showed that rCpStefin below 50 μg/mL concentration did not affect cellular viability. Moreover, the NO production level determined by the Griess test was decreased. In addition, the secretion levels of IL-1β, IL-6, and TNF-α as measured by ELISA were decreased. Furthermore, it exerted anti-inflammatory activity by decreasing the production of proinflammatory cytokines and proinflammatory mediators, including IL-1β, IL-6, TNF-α, iNOS, and COX-2 at the gene transcription level, as measured by qRT-PCR. Therefore, Type I cystatin derived from C. pisiformis suppresses the LPS-Mediated inflammatory response of the intermediate host and is a potential candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
| | | | | | | | - Xiaolin Sun
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Q.Y.); (J.L.); (L.Z.); (N.Z.)
| | - Zexiang Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (Q.Y.); (J.L.); (L.Z.); (N.Z.)
| |
Collapse
|
11
|
Wang J, Tian F, Cao L, Du R, Tong J, Ding X, Yuan Y, Wang C. Macrophage polarization in spinal cord injury repair and the possible role of microRNAs: A review. Heliyon 2023; 9:e22914. [PMID: 38125535 PMCID: PMC10731087 DOI: 10.1016/j.heliyon.2023.e22914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
The prevention, treatment, and rehabilitation of spinal cord injury (SCI) have always posed significant medical challenges. After mechanical injury, disturbances in microcirculation, edema formation, and the generation of free radicals lead to additional damage, impeding effective repair processes and potentially exacerbating further dysfunction. In this context, inflammatory responses, especially the activation of macrophages, play a pivotal role. Different phenotypes of macrophages have distinct effects on inflammation. Activation of classical macrophage cells (M1) promotes inflammation, while activation of alternative macrophage cells (M2) inhibits inflammation. The polarization of macrophages is crucial for disease healing. A non-coding RNA, known as microRNA (miRNA), governs the polarization of macrophages, thereby reducing inflammation following SCI and facilitating functional recovery. This study elucidates the inflammatory response to SCI, focusing on the infiltration of immune cells, specifically macrophages. It examines their phenotype and provides an explanation of their polarization mechanisms. Finally, this paper introduces several well-known miRNAs that contribute to macrophage polarization following SCI, including miR-155, miR-130a, and miR-27 for M1 polarization, as well as miR-22, miR-146a, miR-21, miR-124, miR-223, miR-93, miR-132, and miR-34a for M2 polarization. The emphasis is placed on their potential therapeutic role in SCI by modulating macrophage polarization, as well as the present developments and obstacles of miRNA clinical therapy.
Collapse
Affiliation(s)
- Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Feng Tian
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Ruochen Du
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Jiahui Tong
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| | - Xueting Ding
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Yitong Yuan
- Experimental Animal Center, Shanxi Medical University, Shanxi Taiyuan, China
| | - Chunfang Wang
- School and Hospital of Stomatology, Shanxi Medical University, Shanxi Taiyuan, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Shanxi Taiyuan, China
| |
Collapse
|
12
|
Ruan H, Wu J, Zhang F, Jin Z, Tian J, Xia J, Luo J, Yang M. Zearalenone Exposure Disrupts STAT-ISG15 in Rat Colon: A Potential Linkage between Zearalenone and Inflammatory Bowel Disease. Toxins (Basel) 2023; 15:392. [PMID: 37368693 DOI: 10.3390/toxins15060392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Zearalenone (ZEN), a prevalent mycotoxin contaminating food and known for its intestinal toxicity, has been suggested as a potential risk factor for inflammatory bowel disease (IBD), although the exact relationship between ZEN exposure and IBD remains unclear. In this study, we established a rat model of colon toxicity induced by ZEN exposure to investigate the key targets of ZEN-induced colon toxicity and explore the underlying connection between ZEN exposure and IBD. Histological staining of the rat colon revealed significant pathological changes resulting from ZEN exposure (p < 0.01). Furthermore, the proteomic analysis demonstrated a notable upregulation of protein expression levels, specifically STAT2 (0.12 ± 0.0186), STAT6 (0.36 ± 0.0475) and ISG15 (0.43 ± 0.0226) in the rat colon (p < 0.05). Utilizing bioinformatics analysis, we combined ZEN exposure and IBD clinical sample databases to reveal that ZEN exposure may increase the risk of IBD through activation of the STAT-ISG15 pathway. This study identified novel targets for ZEN-induced intestinal toxicity, providing the basis for further study of ZEN exposure to IBD.
Collapse
Affiliation(s)
- Haonan Ruan
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiashuo Wu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China
| | - Fangqing Zhang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100091, China
| | - Ziyue Jin
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jiao Tian
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Jing Xia
- School of Basic Medical Science, Peking University, Beijing 100191, China
| | - Jiaoyang Luo
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| | - Meihua Yang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, China
| |
Collapse
|
13
|
Zhang K, Li C, Sun J, Tian X. PRMT5 inhibition ameliorates inflammation and promotes the osteogenic differentiation of LPS‑induced periodontal stem cells via STAT3/NF‑κB signaling. Exp Ther Med 2023; 25:264. [PMID: 37206565 PMCID: PMC10189754 DOI: 10.3892/etm.2023.11963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/06/2022] [Indexed: 05/21/2023] Open
Abstract
It has been reported that protein arginine methyltransferase 5 (PRMT5) serves a significant role in osteogenic differentiation and inflammatory response. Nevertheless, its role in periodontitis as well as its underlying mechanism remain to be elucidated. The aim of the present study was to explore the role of PRMT5 in periodontitis and whether PRMT5 could reduce liposaccharide (LPS)-induced inflammation of human periodontal ligament stem cells (hPDLSCs) and promote osteogenic differentiation through STAT3/NF-κB signaling. In the current study, the expression levels of PRMT5 were determined in LPS-induced hPDLSCs by reverse transcription-quantitative PCR and western blot analysis. ELISA and western blot analysis were employed to assess the secretion and expression levels of inflammatory factors, respectively. The osteogenic differentiation and mineralization potential of hPDLSCs were evaluated using alkaline phosphatase (ALP) activity assay, Alizarin red staining and western blot analysis. Additionally, western blot analysis was applied to determine the expression levels of the STAT3/NF-κB signaling pathway-related proteins. The results showed that the expression levels of PRMT5 were significantly enhanced in LPS-induced hPDLSCs. Additionally, PRMT5 knockdown reduced the contents of IL-1β, IL-6, TNF-α, inducible nitric oxide synthase and cyclooxygenase-2. PRMT5 depletion also enhanced ALP activity, improved the mineralization ability and upregulated bone morphogenetic protein 2, osteocalcin and runt-related transcription factor 2 in LPS-induced hPDLSCs. Furthermore, PRMT5 knockdown inhibited inflammation and promoted the osteogenic differentiation of hPDLSCs via blocking the activation of the STAT3/NF-κB signaling pathway. In conclusion, PRMT5 inhibition suppressed LPS-induced inflammation and accelerated osteogenic differentiation in hPDLSCs via regulating STAT3/NF-κB signaling, thus providing a potential targeted therapy for the improvement of periodontitis.
Collapse
Affiliation(s)
- Kun Zhang
- Department of Cariology and Endodontics, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Changshun Li
- Department of Cariology and Endodontics, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Jian Sun
- Department of Cariology and Endodontics, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
| | - Xiaobei Tian
- Department of Cariology and Endodontics, The Affiliated Stomatological Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
- School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P.R. China
- Correspondence to: Professor Xiaobei Tian, Department of Cariology and Endodontics, The Affiliated Stomatological Hospital of Xuzhou Medical University, 130 Huaihai West Road, Xuzhou, Jiangsu 221004, P.R. China
| |
Collapse
|
14
|
Dai Y, Lv Z, You M, Sun L, Li C. PPARα alleviates inflammation via inhibiting NF-κB/Rel pathway in Vibrio splendidus challenged Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108701. [PMID: 36948368 DOI: 10.1016/j.fsi.2023.108701] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Organisms trigger pro-inflammatory responses to resist the invasion of foreign pathogens in the early infection stage. However, excessive or chronic inflammation can also cause several diseases. We previously validated IL-17 from sea cucumbers mediated inflammatory response by the IL-17R-TRAF6 axis. But the anti-inflammatory effect was largely unknown in the species. In this study, the conserved PPARα gene was obtained from Apostichopus japonicus by RNA-seq and RACE approaches. The expression of AjPPARα was found to be significantly induced at the late stage of infection not only in Vibrio splendidus-challenged sea cucumbers, but also in LPS-exposed coelomocytes, which was negative correlation to that of AjIL-17 and AjNLRP3. Both silencing AjPPARα by specific siRNA and treatment with AjPAPRα inhibitor MK-886 could significantly upregulate the transcriptional levels of pro-inflammatory factors the AjIL-17 and AjNLRP3. The infiltration of inflammatory cells and tissues damage were also detected in the body walls in the same condition. In contrast, AjPAPRα agonist of WY14643 treatment could alleviate the V. splendidus-induced tissue injury. To further explore the molecular mechanism of AjPPARα-mediated anti-inflammatory in A. japonicus, the expression of the transcriptional factors of AjStat5 and AjRel (subunit of NF-κB) were investigated under AjPPARα aberrant expression conditions and found that AjRel exhibited a negative regulatory relationship to AjPPARα. Furthermore, silencing AjRel was led to down-regulation of AjIL-17 and AjNLRP3. Taken together, our results supported that AjPPARα exerted anti-inflammatory effects through inhibiting AjRel in response to V. splendidus infection.
Collapse
Affiliation(s)
- Yingfen Dai
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China
| | - Zhimeng Lv
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China
| | - Meixiang You
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China
| | - Lianlian Sun
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China.
| | - Chenghua Li
- Key Laboratory of Applied Marine Biotechnology, Ministry of Education, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
15
|
Chantree P, Tarasuk M, Prathaphan P, Ruangtong J, Jamklang M, Chumkiew S, Martviset P. Type I Cystatin Derived from Fasciola gigantica Suppresses Macrophage-Mediated Inflammatory Responses. Pathogens 2023; 12:pathogens12030395. [PMID: 36986318 PMCID: PMC10051455 DOI: 10.3390/pathogens12030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/23/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
There is an inverse relationship between the high incidence of helminth infection and the low incidence of inflammatory disease. Hence, it may be that helminth molecules have anti-inflammatory effects. Helminth cystatins are being extensively studied for anti-inflammatory potential. Therefore, in this study, the recombinant type I cystatin (stefin-1) of Fasciola gigantica (rFgCyst) was verified to have LPS-activated anti-inflammatory potential, including in human THP-1-derived macrophages and RAW 264.7 murine macrophages. The results from the MTT assay suggest that rFgCyst did not alter cell viability; moreover, it exerted anti-inflammatory activity by decreasing the production of proinflammatory cytokines and mediators, including IL-1β, IL-6, IL-8, TNF-α, iNOS, and COX-2 at the gene transcription and protein expression levels, as determined by qRT-PCR and Western blot analysis, respectively. Further, the secretion levels of IL-1β, IL-6, and TNF-α determined by ELISA and the NO production level determined by the Griess test were decreased. Furthermore, in Western blot analysis, the anti-inflammatory effects involved the downregulation of pIKKα/β, pIκBα, and pNF-κB in the NF-κB signaling pathway, hence reducing the translocation from the cytosol into the nucleus of pNF-κB, which subsequently turned on the gene of proinflammatory molecules. Therefore, cystatin type 1 of F. gigantica is a potential candidate for inflammatory disease treatment.
Collapse
Affiliation(s)
- Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Mayuri Tarasuk
- Graduate Program in Bioclinical Sciences, Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Parisa Prathaphan
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Jittiporn Ruangtong
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Mantana Jamklang
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Sirilak Chumkiew
- Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Correspondence: ; Tel.: +66-863590511
| |
Collapse
|
16
|
Alam A, Ali M, Rehman NU, Latif A, Shah AJ, Wazir NU, Lodhi MA, Kamal M, Ayaz M, Al-Harrasi A, Ahmad M. Synthesis and characterization of biologically active flurbiprofen amide derivatives as selective prostaglandin-endoperoxide synthase II inhibitors: In vivo anti-inflammatory activity and molecular docking. Int J Biol Macromol 2023; 228:659-670. [PMID: 36584776 DOI: 10.1016/j.ijbiomac.2022.12.259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
A novel series of twenty two flurbiprofen amides (1-22) were designed and synthesized in good to excellent yields by reacting flurbiprofen acid with various aromatic/aliphatic primary amines in the presence of 1,1‑carbonyldiimidazole (CDI) in basic medium using acetonitrile as solvent. Structures of the synthesized derivatives were elucidated with the help of HR-ESI-MS, 1H-, and 13C NMR spectroscopy and finally screened them for their in-vivo anti-inflammatory potential using carrageenan induced mice paw oedema assay. Among the series, four compounds (8, 14, 15, and 20) displayed excellent activity ranging from 59.0 to 77.7 % decrease, while eight compounds (1, 3, 7, 10, 12, 13, 17, and 18) exhibited good activity in the decrease range of 37.0-50.0 %. Additionally, four compounds (2, 6, 16, and 22) attributed less activity, while the remaining six compounds (4, 5, 9, 11, 19, and 21) were found to be inactive. Furthermore, the In-silico studies were executed on the synthesized derivatives in order to explain the binding interface of compounds with the active sites of prostaglandin endoperoxide-synthase II enzyme.
Collapse
Affiliation(s)
- Aftab Alam
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Mumtaz Ali
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan.
| | - Najeeb Ur Rehman
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, PC 616, Birkat Al Mauz, Nizwa, Oman
| | - Abdul Latif
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Abdul Jabbar Shah
- Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus-22060, Khyber Pakhtunkhwa, Pakistan
| | - Nadeem Ullah Wazir
- Cardiovascular Research Group, Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus-22060, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Arif Lodhi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Masroor Kamal
- Department of Biochemistry, Abdul Wali Khan University Mardan, Khyber Pakhtunkhwa 23200, Pakistan
| | - Muhammad Ayaz
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, PC 616, Birkat Al Mauz, Nizwa, Oman.
| | - Manzoor Ahmad
- Department of Chemistry, University of Malakand, P.O. Box 18800, Dir Lower, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
17
|
Chantree P, Martviset P, Thongsepee N, Sangpairoj K, Sornchuer P. Anti-Inflammatory Effect of Garcinol Extracted from Garcinia dulcis via Modulating NF-κB Signaling Pathway. Nutrients 2023; 15:nu15030575. [PMID: 36771283 PMCID: PMC9918937 DOI: 10.3390/nu15030575] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/14/2023] [Accepted: 01/20/2023] [Indexed: 01/24/2023] Open
Abstract
Garcinia is a significant medicinal plant with many beneficial phytoconstituents, including garcinol. This study investigated the anti-inflammatory effect of garcinol isolated from Garcinia dulcis fruit in LPS-activated THP-1 and Raw 264.7 macrophages. The results demonstrated that the low concentration of garcinol did not alter cell viability. Furthermore, co-incubation of garcinol with LPS inhibited the production of pro-inflammatory cytokines, including TNF-α, IL-8, IL-6, IL-1β, and pro-inflammatory mediators, including iNOS and COX-2 at the mRNA and protein expression levels. Garcinol also decreased the secretion of TNF-α, IL-6, IL-1β, PGE2, and NO. Moreover, the anti-inflammatory effects involved an alteration in the NF-κB signaling pathway. Downregulation of pIKKα/β, pIκBα, and pNF-κB was observed, hence reducing the translocation of pNF-κB from the cytosol into the nucleus, which subsequently decreased the production of pro-inflammatory molecules. Therefore, garcinol isolated from Garcinia dulcis is a potential candidate as an anti-inflammatory agent for inflammation-related disease treatment.
Collapse
Affiliation(s)
- Pathanin Chantree
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Correspondence: ; Tel.: +66-846-171-817
| | - Pongsakorn Martviset
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
- Research Group in Medical Biomolecules, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
| | - Nattaya Thongsepee
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Kant Sangpairoj
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| | - Phornphan Sornchuer
- Department of Preclinical Science, Faculty of Medicine, Thammasat University, Pathumthani 12120, Thailand
- Thammasat University Research Unit in Nutraceuticals and Food Safety, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
18
|
Zuo J, Zhang TH, Xiong L, Huang L, Peng C, Zhou QM, Dai O. Two Pairs of 7,7'-Cyclolignan Enantiomers with Anti-Inflammatory Activities from Perilla frutescens. Molecules 2022; 27:molecules27186102. [PMID: 36144834 PMCID: PMC9506341 DOI: 10.3390/molecules27186102] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Perilla frutescens (L.) Britt. (Labiatae), a medicinal plant, has been widely used for the therapy of multiple diseases since about 1800 years ago. It has been demonstrated that the extracts of P. frutescens exert significant anti-inflammatory effects. In this research, two pairs of 7,7′-cyclolignan enantiomers, possessing a cyclobutane moiety, (+)/(−)-perfrancin [(+)/(−)-1] and (+)/(−)-magnosalin [(+)/(−)-2], were separated from P. frutescens leaves. The present study achieved the chiral separation and determined the absolute configuration of (±)-1 and (±)-2. Compounds (+)-1 and (−)-1 have notable anti-inflammatory effects by reducing the secretion of pro-inflammatory factors (NO, TNF-α and IL-6) and the expression of pro-inflammatory mediators (iNOS and COX-2). These findings indicate that cyclolignans are effective substances of P. frutescens with anti-inflammatory activity. The present study partially elucidates the mechanisms underlying the effects of P. frutescens.
Collapse
Affiliation(s)
- Jing Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tian-Hao Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Liang Xiong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lu Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qin-Mei Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (Q.-M.Z.); (O.D.)
| | - Ou Dai
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Institute of Innovative Medicine Ingredients of Southwest Specialty Medicinal Materials, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- Correspondence: (Q.-M.Z.); (O.D.)
| |
Collapse
|
19
|
Concerted regulation of OPG/RANKL/ NF‑κB/MMP-13 trajectories contribute to ameliorative capability of prodigiosin and/or low dose γ-radiation against adjuvant- induced arthritis in rats. Int Immunopharmacol 2022; 111:109068. [PMID: 35944459 DOI: 10.1016/j.intimp.2022.109068] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/08/2022] [Accepted: 07/14/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Prodigiosin (PDG) is a microbial red dye with antioxidant and anti-inflammatory properties, although its effect on rheumatoid arthritis (RA) remains uncertain. Also, multiple doses of low dose γ- radiation (LDR) have been observed to be as a successful intervention for RA. Thus, the purpose of this study was to investigate the ameliorative potential of PDG and/or LDR on adjuvant-induced arthritis (AIA) in rats. METHODS The anti-inflammatory and anti-arthritic effects of PDG and/or LDR were examined in vitro and in vivo, respectively. In the AIA model, the arthritic indexes, paw swelling degrees, body weight gain, and histopathological assessment in AIA rats were assayed. The impact of PDG (200 µg/kg; p.o) and/or LDR (0.5 Gy) on the levels of pro- and anti-inflammatory cytokines (IL-1β, TNF-α, IL-6, IL-18, IL-17A, and IL-10) as well as the regulation of osteoprotegrin (OPG)/ receptor activator of nuclear factor κB ligand (RANKL)/ nuclear factor-κB (NF-κB)/MMP-13 pathways was determined. Methotrexate (MTX; 0.05 mg/kg; twice/week, i.p) was administered concurrently as a standard anti-arthritic drug. RESULTS PDG and/or LDR markedly diminished the arthritic indexes, paw edema, weigh loss in AIA rats, alleviated the pathological alterations in joints, reduced the levels of pro-inflammatory cytokines IL-1β, TNF-α, IL-6, IL-18, IL-17A, and RANKL in serum and synovial tissues, while increasing anti-inflammatory cytokines IL-10 and OPG levels. Moreover, PDG and/or LDR down-regulated the expression of RANKL, NF-κBp65, MMP13, caspase-3, and decreased the RANKL/OPG ratio, whereas OPG and collagen II were enhanced in synovial tissues. CONCLUSION PDG and/or LDR exhibited obvious anti-RA activity on AIA.
Collapse
|
20
|
Kaempferol 3-O-(2 G-glucosylrutinoside)-7-O-glucoside isolated from the flowers of Hosta plantaginea exerts anti-inflammatory activity via suppression of NF-κB, MAPKs and Akt pathways in RAW 264.7 cells. Biomed Pharmacother 2022; 153:113295. [PMID: 35724507 DOI: 10.1016/j.biopha.2022.113295] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/25/2022] [Accepted: 06/10/2022] [Indexed: 11/23/2022] Open
Abstract
Kaempferol 3-O-(2G-glucosylrutinoside)-7-O-glucoside (KGG) has isolated from Hosta plantaginea flowers and possessed an inhibitory effect on cyclooxygenase 2 (COX-2), could be effective in inhibiting inflammation. However, the anti-inflammatory activity and mechanism of KGG remain unknown. In this study, for the first time, the anti-inflammatory effect of KGG and its potential molecular mechanisms were explored in cells. KGG had no cytotoxicity at concentrations of 1.25, 2.5, 5, 10, 20, and 40 μM by Cell Counting kit-8 assay in RAW 264.7 cells. Besides, KGG concentration-dependently (1.25, 2.5, and 5 μM) inhibited secretions of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β), and IL-6 in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. Western blot showed that the phosphorylation of nuclear factor kappa-B (NF-κB) p65, inhibitor of NF-κB (IκB), p38 MAPK, c-Jun N-terminal kinases (JNK), extracellular signal-regulated kinase (Erk), and protein kinase B (Akt), together with inducible nitric oxide synthase (iNOS) and COX-2 were significantly attenuated by KGG (1.25, 2.5, and 5 μM) in a concentration-dependent relationship. Meanwhile, KGG remarkably enhanced the protein expression of IκB. Taken together, KGG may be one of bioactive phytochemicals from H. plantaginea flowers, and be an anti-inflammatory agent via inhibiting NF-κB, mitogen-activated protein kinases (MAPKs), and Akt signaling pathways.
Collapse
|
21
|
Ashokbhai JK, Basaiawmoit B, Das S, Sakure A, Maurya R, Bishnoi M, Kondepudi KK, Padhi S, Rai AK, Liu Z, Hatia S. Antioxidative, antimicrobial and anti-inflammatory activities and release of ultra-filtered antioxidative and antimicrobial peptides during fermentation of sheep milk: In-vitro, in-silico and molecular interaction studies. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101666] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
22
|
Yang L, He J. Anti-inflammatory effects of flavonoids and phenylethanoid glycosides from Hosta plantaginea flowers in LPS-stimulated RAW 264.7 macrophages through inhibition of the NF-κB signaling pathway. BMC Complement Med Ther 2022; 22:55. [PMID: 35241056 PMCID: PMC8895762 DOI: 10.1186/s12906-022-03540-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 02/23/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND The flower of Hosta plantaginea (Lam.) Aschers has traditionally been used in China as an important Mongolian medicine for the treatment of inflammatory diseases with limited scientific evidence. In previous studies, 16 flavonoids and 3 phenylethanoid glycosides (1-19) were isolated from the ethanolic extract of H. plantaginea flowers. Nevertheless, the anti-inflammatory effects of these constituents remain unclear. In the present study, the anti-inflammatory effects of these 19 constituents and their underlying mechanisms were assessed in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. METHODS The viability of RAW 264.7 macrophages was detected by Cell Counting Kit-8 (CCK-8) assay. Meanwhile, nitric oxide (NO) production was measured by Griess assay, while the secretion of tumor necrosis factor α (TNF-α), prostaglandin E2 (PGE2), interleukin 1β (IL-1β) and IL-6 in LPS-induced macrophages was determined by enzyme-linked immunosorbent assay (ELISA). Furthermore, the protein expression of nuclear factor kappa B (NF-κB) p65 and phosphorylated NF-κB p65 was evaluated by Western blot analysis. RESULTS All constituents effectively suppressed excessive NO production at a concentration of 40 μM with no toxicity to LPS-induced RAW 264.7 macrophages. Among them, five flavonoids (1, 4-6 and 15) and one phenylethanoid glycoside (17) remarkably prevented the overproduction of NO with median inhibitory concentration (IC50) values in the range of 12.20-19.91 μM. Moreover, compounds 1, 4-6, 15 and 17 potently inhibited the secretion of TNF-α, PGE2, IL-1β and IL-6, and had a prominent inhibitory effect on the down-regulation of the phosphorylated protein level of NF-κB p65. CONCLUSION Taken together, compounds 1, 4-6, 15 and 17 may be useful in managing inflammatory diseases by blocking the NF-κB signaling pathway and suppressing the overproduction of inflammatory mediators.
Collapse
Affiliation(s)
- Li Yang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004 China
| | - Junwei He
- Research Center of Natural Resources of Chinese Medicinal Materials and Ethnic Medicine, Jiangxi University of Chinese Medicine, No. 1688, Meiling Road, Nanchang, 330004 China
| |
Collapse
|
23
|
Kordulewska N, Topa J, Cieślińska A, Jarmołowska B. Osthole Regulates Secretion of Pro-Inflammatory Cytokines and Expression of TLR2 and NF-κB in Normal Human Keratinocytes and Fibroblasts. J Inflamm Res 2022; 15:1501-1519. [PMID: 35261546 PMCID: PMC8898189 DOI: 10.2147/jir.s349216] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/20/2022] [Indexed: 12/13/2022] Open
Affiliation(s)
- Natalia Kordulewska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
- Correspondence: Natalia Kordulewska, Tel + 48 89 523 37 63, Fax + 48 89 535 20 15, Email
| | - Justyna Topa
- Laboratory of Translational Oncology, Intercollegiate Faculty of Biotechnology, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Cieślińska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| | - Beata Jarmołowska
- Department of Biochemistry, Faculty of Biology and Biotechnology, University of Warmia and Mazury, Olsztyn, Poland
| |
Collapse
|
24
|
Li D, Luo F, Guo T, Han S, Wang H, Lin Q. Targeting NF-κB pathway by dietary lignans in inflammation: expanding roles of gut microbiota and metabolites. Crit Rev Food Sci Nutr 2022; 63:5967-5983. [PMID: 35068283 DOI: 10.1080/10408398.2022.2026871] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inflammation is a major factor affecting human health. Nuclear factor-kappa B (NF-κB) plays a vital role in the development of inflammation, and the promoters of most inflammatory cytokine genes have NF-κB-binding sites. Targeting NF-κB could be an exciting route for the prevention and treatment of inflammatory diseases. As important constituents of natural plants, lignans are proved to have numerous biological functions. There are growing pieces of evidence demonstrate that lignans have the potential anti-inflammatory activities. In this work, the type, structure and source of lignans and the influence on mitigating the inflammation are systematically summarized. This review focuses on the targeting NF-κB signaling pathway in the inflammatory response by different lignans and their molecular mechanisms. Lignans also regulate gut microflora and change gut microbial metabolites, which exert novel pathway to prevent NF-κB activation. Taken together, lignans target NF-κB with various mechanisms to inhibit inflammatory cytokine expressions in the inflammatory response. It will provide a scientific theoretical basis for further research on the anti-inflammatory effects of lignans and the development of functional foods.
Collapse
Affiliation(s)
- Dan Li
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Feijun Luo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Tianyi Guo
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Shuai Han
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Hanqing Wang
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| | - Qinlu Lin
- Hunan Key Laboratory of Grain-oil Deep Process and Quality Control, Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, National Engineering Laboratory for Deep Process of Rice and Byproducts, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
25
|
Yang L, Cao L, Li C, Li X, Wang J, Chen H, He J. Hostaflavone A from Hosta plantaginea (Lam.) Asch. blocked NF-κB/iNOS/COX-2/MAPKs/Akt signaling pathways in LPS-induced RAW 264.7 macrophages. JOURNAL OF ETHNOPHARMACOLOGY 2022; 282:114605. [PMID: 34506938 DOI: 10.1016/j.jep.2021.114605] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/29/2021] [Accepted: 09/04/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hostaflavone A (HA) is a new flavonoid component isolated from the flower of Hosta plantaginea (Lam.) Asch., which is commonly used as a folk herbal to treat inflammatory diseases in China. Nevertheless, the anti-inflammatory effect of HA remains unknown. AIM OF THE STUDY This work aimed to evaluate the HA with anti-inflammatory activity and mechanism in RAW 264.7 macrophages activated by lipopolysaccharide (LPS). MATERIALS AND METHODS Anti-inflammatory effect of HA was evaluated by measuring of cell viability, nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and IL-6 levels in RAW 264.7 cells. In parallel, the HA action mechanism of nuclear factor kappa B (NF-κB) p65, inhibitor of NF-κB (IκB), inducible nitric oxide synthase (iNOS), cyclooxygenase 2 (COX-2), c-Jun N-terminal kinases (JNK), extracellular signal-regulated kinase (Erk), p38, and protein kinase B (Akt) were detected by Western blot analysis. RESULTS HA has no cytotoxicity at concentrations as high as 40 μM. Besides, HA concentration-dependently clearly suppressed the overproduction of NO, PGE2, TNF-α, IL-1β and IL-6 in RAW 264.7 cells induced by LPS. In addition, HA remarkably reduced the upregulation of phosphorylated NF-κB p65, phosphorylated IκB, phosphorylated JNK, phosphorylated Erk and phosphorylated p38, together with iNOS and COX-2 protein expressions in a concentration-dependent manner. CONCLUSION HA blocked the LPS activated inflammation via suppressing NF-κB, iNOS, COX-2, mitogen-activated protein kinases (MAPKs) and Akt pathways in RAW 264.7 cells, and might be a new anti-inflammatory agent.
Collapse
Affiliation(s)
- Li Yang
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Lan Cao
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Chunlong Li
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250103, China.
| | - Jiashui Wang
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Hongping Chen
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| | - Junwei He
- Jiangxi University of Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
26
|
Ma Q, Lu Y, Deng Y, Hu X, Li W, Jia H, Guo Y, Shi X. Optimization for ultrasonic-microwave synergetic extraction of total iridoid glycosides and screening of analgesic and anti-inflammatory active fractions from patrinia scabra Bunge (Valerianaceae). BMC Complement Med Ther 2022; 22:7. [PMID: 34983472 PMCID: PMC8728952 DOI: 10.1186/s12906-021-03489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
Background Patrinia scabra Bunge is a well-known herbal medicine for its favorable treatment on inflammatory diseases owing to its effective ingredients, in which iridoid glycoside plays an extremely significant role. This article aimed to improve the content of total iridoid glycosides in crude extract through a series optimization of extraction procedure. Moreover, considering that both pain and inflammation are two correlated responses triggered in response to injury, irritants or pathogen, the article investigated the anti-inflammatory and analgesic activities of P. scabra to screen out the active fraction. Method P. scabra was extracted by ultrasonic-microwave synergistic extraction (UMSE) to obtain total iridoid glycosides (PSI), during which a series of conditions were investigated based on single-factor experiments. The extraction process was further optimized by a reliable statistical method of response surface methodology (RSM). The elution fractions of P. scabra extract were prepared by macroporous resin column chromatography. Through the various animal experiment including acetic acid-induced writhing test, formalin induced licking and flinching, carrageenan-induced mice paw oedema test and xylene-induced ear edema in mice, the active fractions with favorable analgesic and anti-inflammatory effect were reasonably screen out. Results The content of PSI could reach up to 81.42 ± 0.31 mg/g under the optimum conditions as follows: ethanol concentration of 52%, material-to-liquid ratio of 1:18 g/mL, microwave power at 610 W and extraction time of 45 min. After gradient elution by the macroporous resin, the content of PSI increased significantly. Compared with other concentrations of elution liquid, the content of PSI in 30 and 50% ethanol eluate was increased to reach 497.65 and 506.90 mg/g, respectively. Owing to the pharmacology experiment, it was reasonably revealed that 30 and 50% ethanol elution fractions of P. scabra could relieve pain centrally and peripherally, exhibiting good analgesic and anti-inflammatory activities. Conclusion Patrinia scabra possessed rich iridoids and exhibited significant analgesic and anti-inflammatory activities.
Collapse
Affiliation(s)
- Quhuan Ma
- School of Pharmaceutical Science, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, Gansu, China.,Gansu Provincial Academy of Medical Sciences, Lanzhou, 730000, Gansu, China
| | - Yanmei Lu
- School of Pharmaceutical Science, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, Gansu, China.,Gansu Provincial Academy of Medical Sciences, Lanzhou, 730000, Gansu, China
| | - Yi Deng
- School of Pharmaceutical Science, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, Gansu, China.
| | - Xiaodong Hu
- Laboratory of Pharmacology, Lanzhou University, Lanzhou, 730000, Gansu, China
| | - Wanyu Li
- School of Pharmaceutical Science, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, Gansu, China.,Gansu Provincial Academy of Medical Sciences, Lanzhou, 730000, Gansu, China
| | - Hongzhen Jia
- Gansu Light Industry Science Research Institute Co., Ltd, Lanzhou, 730000, Gansu, China
| | - Yuer Guo
- Gansu Provincial Academy of Medical Sciences, Lanzhou, 730000, Gansu, China
| | - Xiaofeng Shi
- Gansu Provincial Academy of Medical Sciences, Lanzhou, 730000, Gansu, China.
| |
Collapse
|
27
|
Su D, Liao L, Zeng Q, Liao Z, Liu Y, Jin C, Zhu G, Chen C, Yang M, Ai Z, Song Y. Study on the new anti-atherosclerosis activity of different Herba patriniae through down-regulating lysophosphatidylcholine of the glycerophospholipid metabolism pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 94:153833. [PMID: 34798520 DOI: 10.1016/j.phymed.2021.153833] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/14/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Atherosclerosis (AS) is a multifactor cardiovascular disease characterized by chronic inflammation. The safety of long-term medication is the focus of clinical treatment selection and application. It is urgent to develop more high-efficiency and low side effects drugs to treat AS. Therefore, the screening of anti-AS drugs with high efficiency and low toxicity from phytomedicine has attracted more and more attention. PURPOSE The aim of this study was to explore the new pharmacological effect of Herba patriniae against AS, to find the best origin and extraction part of Herba patriniae, furthermore, to reveal its potential action mechanism. METHODS Apolipoprotein E gene-knockout (ApoE-/-) mice were orally administered with different extracts of Patrinia villosa Juss (PVJ) and Patrinia scabiosaefolia Fisch (PSF). Their anti-AS effect was comprehensively evaluated by small animal ultrasound, HE staining, Oil-Red O staining, platelet aggregation rate and blood lipid level. Lipid metabolomics and network pharmacology were used to study the mechanism of drug action. Finally, the expression of related proteins were detected by western blots and immunofluorescence. RESULTS PVJ EtOAc extract and PSF EtOAc extract could significantly reduce vascular plaque, liver inflammation, platelet aggregation and blood lipid levels in AS model. By comparison, the effect of PVJEE was better than that of PSFEE. Furthermore, the results of differential metabolites indicated that PVJEE may inhibit the apoptosis of vascular endothelial cells, proliferation and migration of smooth muscle cells by reversing lysophosphatidylcholine (LPC) in the glycerophospholipid metabolic pathway, so as to play an anti-AS role. This result was double verified by KEGG based metabolic pathway enrichment analysis and related protein expression study. CONCLUSION By changing glycerophospholipid metabolism pathway, Herba patriniae can significantly regulate lipid metabolism and inflammatory level, showing the development potential of anti-AS, which provides new candidate drugs and good prospects for the safe treatment of AS. In addition, through comparison, this study also confirmed that PVJEE was the best origin and extraction part of anti-AS.
Collapse
Affiliation(s)
- Dan Su
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Liangliang Liao
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Qiang Zeng
- College of Pharmacy,Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, PR China
| | - Zhou Liao
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Yali Liu
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Chen Jin
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Genhua Zhu
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Changlian Chen
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Ming Yang
- Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China
| | - Zhifu Ai
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China..
| | - Yonggui Song
- Key Laboratory of depression animal model based on TCM syndrome, Jiangxi Administration of traditional Chinese Medicine, Key Laboratory of TCM for prevention and treatment of brain diseases with cognitive impairment, Jiangxi Province, Jiangxi University of Chinese Medicine, 1688 Meiling Road, Nanchang 330006, China..
| |
Collapse
|
28
|
Fang Y, Yang L, He J. Plantanone C attenuates LPS-stimulated inflammation by inhibiting NF-κB/iNOS/COX-2/MAPKs/Akt pathways in RAW 264.7 macrophages. Biomed Pharmacother 2021; 143:112104. [PMID: 34474343 DOI: 10.1016/j.biopha.2021.112104] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/20/2021] [Accepted: 08/23/2021] [Indexed: 12/31/2022] Open
Abstract
The flowers of Hosta plantaginea (Lam.) Aschers are commonly used for the treatment of inflammatory diseases in traditional Chinese medicine with limited scientific evidence. Plantanone C (PC) is a new phytochemical isolated from H. plantaginea flowers; nevertheless, the anti-inflammatory effect remains unknown. Herein, we aimed to study the anti-inflammatory effects of PC and its underlying molecular mechanisms in lipopolysaccharide (LPS)-activated RAW 264.7 macrophages. The cell viability of PC-treated RAW 264.7 macrophage was measured by the Cell Counting kit-8 (CCK-8) assay. The anti-inflammatory effect of PC was investigated by measuring the levels of inflammatory mediators and pro-inflammatory cytokines using the Griess reaction and enzyme-linked immunosorbent assay (ELISA). Furthermore, the mechanism of action of PC was evaluated by Western blot analysis. The results showed that PC was not cytotoxic at concentrations as high as 40 μM. Furthermore, PC potently suppressed LPS-stimulated overproduction of nitric oxide (NO), prostaglandin E2 (PGE2), tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and IL-6 in RAW 264.7 macrophages. Western blot demonstrated that PC remarkably suppressed the phosphorylation of nuclear factor kappa-B (NF-κB) p65, inhibitor of NF-κB (IκB), c-Jun N-terminal kinases (JNK), extracellular signal-regulated kinase (Erk), p38, and protein kinase B (Akt), as well as inducible nitric oxide synthase (iNOS) and cyclooxygenase 2 (COX-2) in a concentration-dependent manner. Taken together, these findings suggest that PC exhibits anti-inflammatory effects by inhibiting NF-κB, iNOS, COX-2, mitogen-activated protein kinases (MAPKs), and Akt signaling pathways in RAW 264.7 macrophages.
Collapse
Affiliation(s)
- Yiwei Fang
- The First Affiliated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Li Yang
- Jiangxi University of Chinese Medicine, Nanchang 330004, China
| | - Junwei He
- Jiangxi University of Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
29
|
Mersal KI, Abdel-Maksoud MS, Ali EMH, Ammar UM, Zaraei SO, Kim JM, Kim SY, Lee KT, Lee KH, Kim SW, Park HM, Ji MJ, Oh CH. Design, synthesis, in vitro determination and molecular docking studies of 4-(1-(tert-butyl)-3-phenyl-1H-pyrazol-4-yl) pyridine derivatives with terminal sulfonamide derivatives in LPS-induced RAW264.7 macrophage cells. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02784-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
Chung KS, Shin JS, Lee JH, Park SE, Han HS, Rhee YK, Cho CW, Hong HD, Lee KT. Protective effect of exopolysaccharide fraction from Bacillus subtilis against dextran sulfate sodium-induced colitis through maintenance of intestinal barrier and suppression of inflammatory responses. Int J Biol Macromol 2021; 178:363-372. [PMID: 33652052 DOI: 10.1016/j.ijbiomac.2021.02.186] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
We previously reported that an exopolysaccharide-enriched fraction from Bacillus subtilis J92 (B-EPS) could improve immune functions by regulating the immunological parameters of IFN-γ-primed macrophages, CD3/CD28-stimulated splenocytes, and in cyclophosphamide-induced immunosuppressed mice. In the present study, we investigated whether B-EPS contributes to the maintenance of intestinal barrier integrity in a dextran sodium sulfate (DSS)-induced colitis mouse model that mimics human inflammatory bowel disease (IBD). B-EPS treatment improved histological characteristics and common features including a high disease activity index (DAI), an increased spleen weight, and colon shortening in DSS-induced colitis. B-EPS also effectively restored intestinal barrier function by modulating tight junction-related proteins (claudin-1, claudin-2, and occludin) and epithelial-mesenchymal transition (EMT) marker proteins (E-cadherin, N-cadherin, and vimentin). Moreover, B-EPS downregulated immune cell infiltration and inflammatory responses including the production of inflammatory cytokines, such as IL-6 and IL-1β, and activation of nuclear factor-kappa B (NF-κB) and signal transducer and activator of transcription 3 (STAT3). Taken together, these results suggest that B-EPS could serve as a functional food ingredient for improving intestinal barrier function and alleviating colonic inflammation in IBD.
Collapse
Affiliation(s)
- Kyung-Sook Chung
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Ji-Sun Shin
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Jung-Hun Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Sang-Eun Park
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Hee-Soo Han
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Young Kyoung Rhee
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Chang-Won Cho
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Hee-Do Hong
- Korea Food Research Institute, Wanju-gun, Jeollabuk-do 55365, Republic of Korea
| | - Kyung-Tae Lee
- Department of Pharmaceutical Biochemistry, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea; Department of Life and Nanopharmaceutical Science, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea.
| |
Collapse
|
31
|
Yang L, Liu R, Fang Y, He J. Anti-inflammatory effect of phenylpropanoids from Dendropanax dentiger in TNF-α-induced MH7A cells via inhibition of NF-κB, Akt and JNK signaling pathways. Int Immunopharmacol 2021; 94:107463. [PMID: 33618295 DOI: 10.1016/j.intimp.2021.107463] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 02/07/2023]
Abstract
The root of Dendropanax dentiger (Harms) Merr. has been used for centuries as an empirical treatment for rheumatoid arthritis (RA) in China without scientific validation. In our recent study, nineteen phenylpropanoids (1-19) with cyclooxygenase-2 inhibitory activities from the ethanol extract of D. dentiger roots, indicated to have a potential anti-RA effect. This study, evaluated the anti-RA effect of 19 phenylpropanoids on tumor necrosis factor (TNF)-α induced inflammation in MH7A cells and clarified their underlying mechanisms. As a result, 16 compounds remarkably suppressed nitric oxide (NO) production at a concentration of 40 μM in TNF-α-induced MH7A cells. Among them, pinoresinol (12) and dendrocoumarin A (1) were the most effective substances, which showed significant inhibitory effect on NO production, with IC50 values of 6.25 ± 0.42 and 7.87 ± 0.67 μM, respectively. Furthermore, pinoresinol and dendrocoumarin A remarkably decreased the levels of interleukin (IL)-2, 6, 8, and interferon-gamma (IFN-γ), as well as prominently reduced the phosphorylation protein levels of nuclear factor kappa B (NF-κB) p65, I-kappa-B-alpha (IkBα), protein kinase B (Akt), and c-Jun N-terminal kinase (JNK) by Western blot analysis. Taken together, our findings suggest that pinoresinol and dendrocoumarin A may offer new and safe anti-RA candidates by inhibiting NF-kB, Akt and JNK signaling pathways.
Collapse
Affiliation(s)
- Li Yang
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Ronghua Liu
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yiwei Fang
- First Affilated Hospital of Gannan Medical University, Ganzhou 341000, China
| | - Junwei He
- Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China.
| |
Collapse
|
32
|
Gan DL, Yao Y, Su HW, Huang YY, Shi JF, Liu XB, Xiang MX. Volatile Oil of Platycladus Orientalis (L.) Franco Leaves Exerts Strong Anti-inflammatory Effects via Inhibiting the IκB/NF-κB Pathway. Curr Med Sci 2021; 41:180-186. [PMID: 33582924 DOI: 10.1007/s11596-020-2301-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/20/2020] [Indexed: 01/16/2023]
Abstract
This study was designed to investigate the anti-inflammatory effects of volatile oil of Platycladus orientalis (L.) Franco leaves (VOPF) and the underlying molecular mechanisms by using the non-infectious inflammation rat models and infectious inflammation mouse models. Ear swelling and intraperitoneal capillary permeability in mice, and carrageenan-induced toe swelling and cotton ball-induced granuloma in rats were used to reveal anti-inflammatory effects of VOPF. Moreover, the lipopolysaccharide (LPS)-induced mouse model of acute lung injury was used to explore the anti-inflammatory mechanism of VOPF. The results showed that VOPF could significantly inhibit auricular swelling, intraperitoneal capillary permeability in mice, and reduce granuloma swelling and paw swelling in rats. Furthermore, it significantly alleviated the pathological damage of the lung tissue. In addition, VOPF could reduce the contents of IL-1β and TNF-α and increase the content of IL-10 in the serum. It had little effect on the expression of p65 but reduced the phosphorylation level of p65 and IκB in NF-κB pathway. In conclusion, VOPF has anti-inflammatory effects and the mechanisms involve the down-regulation of the phosphorylation levels of p65 and IκB and blockage of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Da-Li Gan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Yan Yao
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Han-Wen Su
- Department of Laboratory Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu-Ying Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jun-Feng Shi
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xiong-Biao Liu
- Department of Dermatology, Tianmen First People's Hospital, Tianmen, 431700, China.
| | - Mei-Xian Xiang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|