1
|
Shen H, Zhao P, Cao J. IL-38 as a Novel Biomarker in Multiple Myeloma Patients: A Prospective Clinical Evaluation. Cancer Manag Res 2025; 17:955-964. [PMID: 40370815 PMCID: PMC12077411 DOI: 10.2147/cmar.s520722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 05/02/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction Multiple myeloma (MM) is a refractory haematological malignancy. Interleukin 38 (IL-38) is a novel cytokine that has attracted significant research in recently years. However, no study has investigated IL-38 expression in MM. This study aims to investigate the expression of IL-38 in MM and to provide valuable insights for clinical treatment and efficacy evaluation. Methods A total of 241 patients with MM (146 males, 95 females; R-ISS stage I: 111 cases, stage II: 74 cases, stage III: 56 cases) and 50 healthy individuals were included in this study. Medical records were reviewed for staging. Interleukin-1 (IL-1), interleukin-2 receptor (IL-2R), interleukin-8 (IL-8), and tumor necrosis factor-alpha (TNF-α) were detected by chemiluminescence method, IL-38 was detected by enzyme-linked immunosorbent assay (ELISA). Immunoglobulins, free light chains (FLC) and β2-microglobulin (β2-MG) were detected by immune nephelometry, and multiple biochemical indicators were detected by automatic biochemical analyzers. Results Compared with healthy control group, IL-1, IL-2R, IL-8, and TNF-α were elevated in all three stages of MM. In contrast, compared with normal control group, IL-38 was significantly decreased in patients with MM. When the cut-off value of IL-38 was 18.61 pg/mL, the diagnostic efficacy for MM had a sensitivity of 0.8176 and a specificity of 0.9000. Discussion IL-38 exhibited decrease in MM patients (p<0.0001). It also showed a gradual increase with disease improvement after effective treatment, IL-38 may be a potential biomarker for the diagnosis and prognostic assessment of MM.
Collapse
Affiliation(s)
- Hailan Shen
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ping Zhao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, People’s Republic of China
| |
Collapse
|
2
|
Feng T, Guo X, Chen W, Zhang Y, Dai R, Zhang Y, Liu Y, Liu Y, Song P, Fan J. The protective role of muscone in the development of COPD. Front Immunol 2025; 16:1508879. [PMID: 40034710 PMCID: PMC11872711 DOI: 10.3389/fimmu.2025.1508879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Background Muscone, a key component of musk, exhibits anti-inflammatory properties. However, its therapeutic potential in inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD), remains largely unexplored. This study aimed to investigate whether Muscone could exert a protective effect in a mouse model of COPD in vivo. Methods A COPD animal model was established by exposing mice to cigarette smoke (CS) and administering lipopolysaccharide (LPS) intranasally. After 4 weeks, mice were treated daily with dexamethasone (DEX) or different doses of Muscone for 3 weeks. Mouse body weight, lung function, and histopathology were determined. Serum levels of cytokines (IL-38, IL-1β, IL-17, TGF-β, IFN-γ) were measured using ELISA and qRT-PCR. Lung expression of CXCR3, IFN-γ, IL-17A, and RORγt was assessed by immunofluorescence. Results The body weight of COPD mice was significantly lower than that of Muscone-treated COPD mice, consistent with decreased lung function, accompanied by reduced circulating and lung IL-38 levels. After Muscone administration, lung function was significantly improved, accompanied by upregulation of circulating and lung anti-inflammatory cytokines, including IL-38, in a dose-dependent manner, while the expression of pro-inflammatory cytokines was significantly reduced. Additionally, Muscone significantly inhibited the protein expression of CXCR3, IFN-γ, IL-17A, and RORγt in lung tissues of COPD mice. Conclusion This study demonstrates that Muscone improves lung function in mice with COPD, potentially through a mechanism that may involve the modulation of cytokine expression, including the potential upregulation of anti-inflammatory cytokines such as IL-38. The precise underlying mechanisms of Muscone's therapeutic effects in COPD remain to be fully elucidated. Further research is needed to investigate the correlation between COPD lung pathophysiology and the specific effects of Muscone treatment, including a more detailed analysis of the balance between pro- and anti-inflammatory mediators in COPD animal models, particularly utilizing IL-38 GKO mice to further investigate the role of IL-38 in mediating the therapeutic effects of Muscone.
Collapse
Affiliation(s)
- Tiantian Feng
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaolong Guo
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Wei Chen
- Quality Assurance Department, Lanzhou Institute of Biological Products Co., Ltd, Lanzhou, Gansu, China
| | - Yanying Zhang
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Runjing Dai
- Hospital Infection‐Control Department, Xi’an Aerospace General Hospital, Xi’an, Shanxi, China
| | - Yinfang Zhang
- Experiment and Achievement Transformation Center, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yongqi Liu
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yiya Liu
- School of Public Health, Gansu Medical College, Pingliang, Gansu, China
| | - Peng Song
- Experiment and Achievement Transformation Center, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jingchun Fan
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
3
|
Park SS, Cho W, Lim DS, Gwon HJ, Choi SW, Abd El-Aty AM, Aydemir HA, Jeong JH, Jung TW. AMPK/autophagy-mediated alleviation of tendinopathy by IL-38: A novel strategy for the treatment of obesity-related tendinopathy. Tissue Cell 2024; 88:102392. [PMID: 38643674 DOI: 10.1016/j.tice.2024.102392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/14/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
The effect of interleukin-38 (IL-38), a recently identified member of the IL-1 family with potential applications in various inflammation-related conditions, on ER stress has not been explored. Furthermore, its role in obesity-associated tendinopathy has not been investigated. In this study, human primary tenocytes were treated with palmitate (200 or 400 μM) and palmitate plus IL-38 (0-50 ng/mL) for 24 h. Western blotting was used to assess ER stress and tendinopathogenic markers in tenocytes. Monodansylcadaverine (MDC) staining was used to evaluate autophagosomes. Apoptosis was determined by cell viability assays, caspase 3 activity assays and TUNEL assays. Cell migration was evaluated by a cell scratch assay. Small interfering (si) RNA transfection was used for target gene silencing. Treatment of tenocytes with IL-38 attenuated apoptosis, restored the balance between MMPs and TIMP-1, and alleviated ER stress under palmitate conditions. IL-38 treatment enhanced AMPK phosphorylation and promoted the expression of autophagy markers related to LC3 conversion, p62 degradation, and autophagosome formation in cultured tenocytes. The effects of IL-38 on ER stress, apoptosis, and MMP-9, MMP-13, and TIMP-1 expression in palmitate-treated tenocytes were abrogated by AMPK siRNA or 3-methyladenine (3MA). These results suggest that IL-38 alleviates ER stress through the AMPK/autophagy pathway, thereby reducing apoptosis and preventing extracellular matrix (ECM) degradation in tenocytes under hyperlipidemic conditions. This study provides a promising therapeutic avenue for treating obesity-related tendinopathy using an endogenous compound such as IL-38.
Collapse
Affiliation(s)
- Sung Su Park
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea
| | - Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea
| | - Do Su Lim
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea
| | - Hyeon Ji Gwon
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea
| | - Sung Woo Choi
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey.
| | - Hacı Ahmet Aydemir
- Dr. Filiz Dolunay Family Health Center, Unit Number:59, Yakutiye, Erzurum, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, the Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, the Republic of Korea.
| |
Collapse
|
4
|
Bani-Wais DFN, Ad'hiah AH. The 5' untranslated region variant rs3811050 C/T of the interleukin-38 encoding gene is associated with susceptibility to rheumatoid arthritis in Iraqi women. Mol Biol Rep 2024; 51:589. [PMID: 38683405 DOI: 10.1007/s11033-024-09529-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/05/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Interleukin (IL)-38, the latest member of the IL-1 cytokine family, is proposed to have a pathogenic role in rheumatoid arthritis (RA). It is encoded by the IL1F10 gene, which harbors single nucleotide polymorphisms (SNPs) that may predict the risk of autoimmune diseases. Among them are 5' untranslated region (UTR) SNPs, which play a key role in post-transcriptional control, but have not been studied in Iraqi RA patients. METHODS Two novel IL1F10 5'UTR SNPs (rs3811050 C/T and rs3811051 T/G) were explored in RA and control women (n = 120 and 110, respectively). SNPs were genotyped using TaqMan assay. An ELISA kit was used to measure serum IL-38 concentrations. RESULTS A reduced risk of RA was associated with rs3811050 T allele and CT genotype (corrected probability [pc] = 0.01 and < 0.001, respectively), while there was no significant association with rs3811051. Haplotype analysis demonstrated that C-T haplotype was associated with a 1.65-fold greater risk of RA, whereas a reduced risk was linked to T-G haplotype. IL-38 concentrations were higher in patients than in controls (p < 0.001). In addition, IL-38 showed acceptable performance in distinguishing between RA and control women (p < 0.001). When IL-38 concentrations were stratified according to SNP genotypes, no significant differences were found. CONCLUSIONS The rs3811050 variant was more likely to affect RA susceptibility in Iraqi women, and the T allele may play a role in reducing disease risk. IL-38 concentrations were elevated in RA patients, but were not affected by the rs3811050 and rs3811051 genotypes.
Collapse
Affiliation(s)
- Dhuha F N Bani-Wais
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Ali H Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Al-Jadriya, Al-Karrada, Baghdad, 10070, Iraq.
| |
Collapse
|
5
|
Cho W, Oh H, Abd El-Aty AM, Mobarak EH, Jeong JH, Jung TW. IL-38 alleviates atherogenic responses via SIRT6/HO-1 signaling: A promising strategy against obesity-related atherosclerosis. Biochem Biophys Res Commun 2024; 694:149407. [PMID: 38154209 DOI: 10.1016/j.bbrc.2023.149407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/18/2023] [Indexed: 12/30/2023]
Abstract
Interleukin-38 (IL-38), a member of the IL-1 family, is known for its anti-inflammatory properties mediated through ligand signaling in various disease models. It plays a significant role in atherosclerosis development, forming a theoretical basis for therapeutic strategies. However, the direct effects of IL-38 on atherogenic responses in the vascular endothelium and monocytes remain unclear. In this investigation, IL-38 treatment reduced THP-1 monocyte adhesion to HUVECs, decreased the expression of vascular adhesion molecules, and mitigated inflammation in the presence of palmitate. IL-38 treatment upregulated SIRT6 expression and enhanced autophagy markers such as LC3 conversion and p62 degradation. The effects of IL-38 were nullified by siRNA-mediated suppression of SIRT6 or heme oxygenase-1 (HO-1) in HUVECs and palmitate-treated THP-1 cells. These findings reveal that IL-38 mitigates inflammation through the SIRT6/HO-1 pathway, offering a potential therapeutic approach for addressing obesity-related atherosclerosis.
Collapse
Affiliation(s)
- Wonjun Cho
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - Heeseung Oh
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211, Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, 25240, Turkey.
| | - Enas H Mobarak
- Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ji Hoon Jeong
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea; Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, College of Medicine, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Chen W, Xi S, Ke Y, Lei Y. The emerging role of IL-38 in diseases: A comprehensive review. Immun Inflamm Dis 2023; 11:e991. [PMID: 37647430 PMCID: PMC10461426 DOI: 10.1002/iid3.991] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/30/2023] [Accepted: 08/07/2023] [Indexed: 09/01/2023] Open
Abstract
INTRODUCTION Interleukin-38 (IL-38) is a new type of anti-inflammatory cytokine, which is mainly expressed in the immunity-related organs and is involved in various diseases including cardiovascular and cerebrovascular diseases, lung diseases, viral infectious diseases and autoimmune diseases. AIM This review aims to detail the biological function, receptors and signaling of IL-38, which highlights its therapeutic potential in related diseases. CONCLUSION This article provides a comprehensive review of the association between interleukin-38 and related diseases, using interleukin-38 as a keyword and searching the relevant literature through Pubmed and Web of science up to July 2023.
Collapse
Affiliation(s)
- Weijun Chen
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- School of Forensic MedcineZunyi Medical UniversityZunyiGuizhouChina
| | - Shuangyun Xi
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- School of Forensic MedcineZunyi Medical UniversityZunyiGuizhouChina
| | - Yong Ke
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- School of Forensic MedcineZunyi Medical UniversityZunyiGuizhouChina
| | - Yinlei Lei
- Center of Forensic ExpertiseAffiliated Hospital of Zunyi Medical UniversityZunyiGuizhouChina
- School of Forensic MedcineZunyi Medical UniversityZunyiGuizhouChina
| |
Collapse
|
7
|
Jaber AS, Ad'hiah AH. A novel signature of interleukins 36α, 37, 38, 39 and 40 in ankylosing spondylitis. Cytokine 2023; 162:156117. [PMID: 36586188 DOI: 10.1016/j.cyto.2022.156117] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 10/29/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022]
Abstract
The current study examined five cytokines, three belong to interleukin (IL)-1 family (IL-36α, IL-37 and IL-38), one belongs to IL-12 family (IL-39) and one has not been assigned to a family (IL-40), in the serum of 110 male patients with ankylosing spondylitis (AS) and 103 male controls. Studies regarding these cytokines in AS are very limited. Therefore, the significance of IL-36α, IL-37, IL-38, IL-39 and IL-40 as biomarkers of AS was evaluated. Cytokine levels were measured using enzyme-linked immunosorbent assay kits. Results revealed that serum levels (median and interquartile range) of IL-36α (90.7; 53.7-166.2 vs 39.7; 31.3-59.2 pg/mL; probability [p] < 0.001), IL-37 (161.3; 62.8-236.6 vs 58.4; 46.8-80.7 ng/mL; p < 0.001), IL-38 (135.8; 78.2-213.5 vs 65.8; 51.1-87.1 pg/mL; p < 0.001), IL-39 (57.7; 34.1-92.3 vs 29.1; 19.3-58.6 ng/L; p < 0.001) and IL-40 (3.89; 2.99-6.19 vs 2.10; 1.75-2.68 ng/L; p < 0.001) were significantly higher in AS patients than in controls. Besides, they were of value in distinguishing between AS patients and controls as evidenced by the receiver operating characteristic curve analysis: area under the curve = 0.797 (IL-36α), 0.75 (IL-37), 0.797 (IL-38), 0.728 (IL-39) and 0.886 (IL-40). Some of these cytokines were significantly correlated, but no correlation with AS activity was found. In conclusion, the levels of IL-36α, IL-37, IL-38, IL-39 and IL-40 were up-regulated in the serum of AS patients regardless of age, age at disease onset, disease duration, disease activity or HLA-B27.
Collapse
Affiliation(s)
- Adhraa S Jaber
- Biotechnology Department, College of Science, University of Baghdad, Baghdad, Iraq
| | - Ali H Ad'hiah
- Tropical-Biological Research Unit, College of Science, University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
8
|
Al-Karaawi IA, Al-bassam WW, Ismaeel HM, Ad'hiah AH. Interleukin-38 promoter variants and risk of COVID-19 among Iraqis. Immunobiology 2022; 227:152301. [PMID: 36375233 PMCID: PMC9651960 DOI: 10.1016/j.imbio.2022.152301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/13/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022]
Abstract
Coronavirus disease-19 (COVID-19) has recently emerged as a respiratory infection with a significant impact on health and society. The pathogenesis is primarily attributed to a dysregulation of cytokines, especially those with pro-inflammatory and anti-inflammatory effects. Interleukin-38 (IL-38) is a recently identified anti-inflammatory cytokine with a proposed involvement in mediating COVID-19 pathogenesis, while the association between IL38 gene variants and disease susceptibility has not been explored. Therefore, a pilot study was designed to evaluate the association of three gene variants in the promoter region of IL38 gene (rs7599662 T/A/C/G, rs28992497 T/C and rs28992498 C/A/T) with COVID-19 risk. DNA sequencing was performed to identify these variants. The study included 148 Iraqi patients with COVID-19 and 113 healthy controls (HC). Only rs7599662 showed a significant negative association with susceptibility to COVID-19. The mutant T allele was presented at a significantly lower frequency in patients compared to HC. Analysis of recessive, dominant and codominant models demonstrated that rs7599662 TT genotype frequency was significantly lower in patients than in HC. In terms of haplotypes (in order: rs7599662, rs28992497 and rs28992498), frequency of CTC haplotype was significantly increased in patients compared to HC, while TTC haplotype showed significantly lower frequency in patients. The three SNPs influenced serum IL-38 levels and homozygous genotypes of mutant alleles were associated with elevated levels. In conclusion, this study indicated that IL38 gene in terms of promoter variants and haplotypes may have important implications for COVID-19 risk.
Collapse
|
9
|
Mermoud L, Shutova M, Diaz‐Barreiro A, Talabot‐Ayer D, Drukala J, Wolnicki M, Kaya G, Boehncke W, Palmer G, Borowczyk J. IL-38 orchestrates proliferation and differentiation in human keratinocytes. Exp Dermatol 2022; 31:1699-1711. [PMID: 35833307 PMCID: PMC9796879 DOI: 10.1111/exd.14644] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/25/2022] [Accepted: 07/11/2022] [Indexed: 01/07/2023]
Abstract
Interleukin (IL)-38 is a member of the IL-1 cytokine family with reported anti-inflammatory activity. The highest constitutive IL-38 expression is detected in the skin, where it is mainly produced by differentiating keratinocytes. However, little data are available regarding its biological functions. In this study, we investigated the role of IL-38 in skin physiology. We demonstrate here that dermal fibroblasts and epithelial cells of skin appendages, such as eccrine sweat glands and sebaceous glands, also express IL-38. Next, using two- and three-dimensional cell cultures, we show that endogenous expression of IL-38 correlates with keratinocyte differentiation and its ectopic overexpression inhibits keratinocyte proliferation and enhances differentiation. Accordingly, immunohistochemical analysis revealed downregulation of IL-38 in skin pathologies characterized by keratinocyte hyperproliferation, such as psoriasis and basal or squamous cell carcinoma. Finally, intracellular IL-38 can shuttle between the nucleus and the cytoplasm and its overexpression modulates the activity of the transcription regulators YAP and ID1. Our results indicate that IL-38 can act independently from immune system activation and suggest that it may affect the epidermis directly by decreasing proliferation and promoting differentiation of keratinocytes. These data suggest an important role of keratinocyte-derived IL-38 in skin homeostasis and pathologies characterized by epidermal alterations.
Collapse
Affiliation(s)
- Loïc Mermoud
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Maria Shutova
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Alejandro Diaz‐Barreiro
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Dominique Talabot‐Ayer
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Justyna Drukala
- Department of Cell Biology, Faculty of Biochemistry, Biophysics and BiotechnologyJagiellonian UniversityCracowPoland
| | - Michal Wolnicki
- Department of Pediatric UrologyJagiellonian University Medical CollegeCracowPoland
| | - Gürkan Kaya
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Clinical PathologyUniversity Hospital of GenevaGenevaSwitzerland
| | - Wolf‐Henning Boehncke
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Dermatology and VenereologyUniversity HospitalsGenevaSwitzerland
| | - Gaby Palmer
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland,Division of Rheumatology, Department of Medicine, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Julia Borowczyk
- Department of Pathology and Immunology, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
10
|
Zhang XH, Li Y, Zhou L, Tian GP. Interleukin-38 in atherosclerosis. Clin Chim Acta 2022; 536:86-93. [PMID: 36150521 DOI: 10.1016/j.cca.2022.09.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/25/2022]
Abstract
Chronic inflammation caused by immune cells and their mediators is a characteristic of atherosclerosis. Interleukin-38 (IL-38), a member of the IL-1 family, exerts multiple anti-inflammatory effects via specific ligand-receptor interactions. Upon recognizing a specific receptor, IL-38 restrains mitogen-activated protein kinase (MAPK), nuclear factor kappa B (NK-κB), or other inflammation-related signaling pathways in inflammatory disease. Further research has shown that IL-38 also displays anti-atherosclerotic effects and reduces the occurrence and risk of cardiovascular events. On the one hand, IL-38 can regulate innate and adaptive immunity to inhibit inflammation, reduce pathological neovascularization, and inhibit apoptosis. On the other hand, it can curb obesity, reduce hyperlipidemia, and restrain insulin resistance to reduce cardiovascular disease risk. Therefore, this article expounds on the vital function of IL-38 in the development of atherosclerosis to provide a theoretical basis for further in-depth studies of IL-38 and insights on the prophylaxis and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Xiao-Hong Zhang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yu Li
- Department of Orthopaedics, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430016, China
| | - Li Zhou
- Department of Pathology, Chongqing Public Health Medical Center, Southwest University Public Health Hospital, Chongqing 400036, China.
| | - Guo-Ping Tian
- Department of Cardiovascular Medicine, The Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China.
| |
Collapse
|
11
|
Zhou H, Zhao Q, Yue C, Yu J, Zheng H, Hu J, Hu Z, Zhang H, Teng X, Liu X, Wei X, Zhou Y, Zeng F, Hao Y, Hu Y, Wang X, Zhang C, Gu L, Wu W, Zhou Y, Cui K, Huang N, Li W, Wang Z, Li J. Interleukin-38 promotes skin tumorigenesis in an IL-1Rrp2-dependent manner. EMBO Rep 2022; 23:e53791. [PMID: 35578812 DOI: 10.15252/embr.202153791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 03/16/2022] [Accepted: 03/30/2022] [Indexed: 02/05/2023] Open
Abstract
Interleukin-38 (IL-38) is strongly associated with chronic inflammatory diseases; however, its role in tumorigenesis is poorly understood. We demonstrated that expression of IL-38, which exhibits high expression in the skin, is downregulated in human cutaneous squamous cell carcinoma and 7,12-dimethylbenzanthracene/12-O-tetradecanoyl phorbol-13-acetate-induced mouse skin tumorigenesis. IL-38 keratinocyte-specific knockout mice displayed suppressed skin tumor formation and malignant progression. Keratinocyte-specific deletion of IL-38 was associated with reduced expression of inflammatory cytokines, leading to reduced myeloid cell infiltration into the local tumor microenvironment. IL-38 is dispensable for epidermal mutagenesis, but IL-38 keratinocyte-specific deletion reduces proliferative gene expression along with epidermal cell proliferation and hyperplasia. Mechanistically, we first demonstrated that IL-38 activates the c-Jun N-terminal kinase (JNK)/activator protein 1 signal transduction pathway to promote the expression of cancer-related inflammatory cytokines and proliferation and migration of tumor cells in an IL-1 receptor-related protein 2 (IL-1Rrp2)-dependent manner. Our findings highlight the role of IL-38 in the regulation of epidermal cell hyperplasia and pro-tumorigenic microenvironment through IL-1Rrp2/JNK and suggest IL-38/IL-1Rrp2 as a preventive and potential therapeutic target in skin cancer.
Collapse
Affiliation(s)
- Hong Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Qixiang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chengcheng Yue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jiadong Yu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Huaping Zheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Jing Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zhonglan Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Haozhou Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiu Teng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiao Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaoqiong Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yuxi Zhou
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
| | - Fanlian Zeng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yan Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yawen Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiaoyan Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Chen Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Linna Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wenling Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yifan Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Kaijun Cui
- Department of Cardiology, West China Hospital, Sichuan University, Chengdu, China
| | - Nongyu Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Wei Li
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, China
| | - Zhen Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China.,Department of Liver Surgery & Liver Transplantation, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jiong Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
12
|
An overview of the biological and multifunctional roles of IL-38 in different infectious diseases and COVID-19. Immunol Res 2022; 70:316-324. [PMID: 35260945 PMCID: PMC8902906 DOI: 10.1007/s12026-022-09275-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 03/01/2022] [Indexed: 01/05/2023]
Abstract
Undoubtfully, the normal immune system can make a potential response to variable pathogens and neutralize or kill them depending on the type of infection through innate and acquired immunity. Cytokines have poly-peptide nature and are considered as signaling molecules that could amplify or alleviate immune responses besides their other biological functions. Interleukin 38 (IL-38) is a member of the IL-1 family cytokine that, however, its anti-inflammatory role has been observed in different autoimmune diseases like systemic lupus erythematosus (SLE), psoriasis, and Sjogren’s syndrome; there is a controversy about the cytokine pro-inflammatory function. In the current review, we skimmed IL-38 structure, signaling mechanism, and its immunological functions, IL-38-producing immune cells. Also, we argued about the role of this cytokine in viral infections including hepatitis B (HBV), hepatitis C (HCV), influenza (Flu), and COVID-19. Also, it illustrated the IL-38 protective effects on sepsis. Moreover, we explained the modulatory role of IL-38 in the COVID-19 cytokine storm.
Collapse
|
13
|
Aravindhan V, Bobhate A, Sathishkumar K, Viswanathan V. Serum levels of novel anti-inflammatory cytokine Interleukin-38 in diabetes patients infected with latent tuberculosis (DM-LTB-3). J Diabetes Complications 2022; 36:108133. [PMID: 35090823 DOI: 10.1016/j.jdiacomp.2022.108133] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 10/19/2022]
Abstract
IL-38 is a recently discovered, novel anti-inflammatory cytokine, which belongs to the IL-1β family. The role played by this cytokine in diabetes-tuberculosis nexus is not known. Serum levels of IL-38, TNF-α, IL-6, and IL-1β in Normal Glucose Tolerance (NGT) and chronic Diabetes (DM) subjects, both with and without latent tuberculosis (LTB) (n = 256) were quantified by ELISA. While, serum levels of IL-38 were significantly reduced, the levels of TNF-α, IL-6, and IL-1β were not altered, in LTB infected diabetes patients. While no significant secretion of IL-38 was detected in the quantiferon supernatant, secretion of TNF-α, IL-6, and IL-1β was significantly reduced in LTB infected diabetes patients. The decreased systemic levels of IL-38 and reduced in vitro secretion of other pro-inflammatory cytokines might represent a crucial pathway associated with diabetes-tuberculosis nexus.
Collapse
Affiliation(s)
| | - Anup Bobhate
- Prof. M. Viswanathan Diabetes Research Centre, Chennai, India
| | - Kuppan Sathishkumar
- Dept of Genetics, Dr ALM PG IBMS, University of Madras, Taramani, Chennai, India
| | | |
Collapse
|
14
|
Huang G, Li M, Tian X, Jin Q, Mao Y, Li Y. The emerging roles of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications. Endocr Metab Immune Disord Drug Targets 2022; 22:997-1008. [PMID: 35049442 DOI: 10.2174/1871530322666220113142533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/15/2021] [Accepted: 12/30/2021] [Indexed: 11/22/2022]
Abstract
Diabetes mellitus is a metabolic disease caused by a combination of genetics and environmental factors. The importance of the inflammatory response occurring in the pancreas and adipose tissue in the occurrence and progression of diabetes has been gradually accepted. Excess blood glucose and free fatty acids produce large amounts of inflammatory cytokines and chemokines through oxidative stress and endoplasmic reticulum stress. There is sufficient evidence that proinflammatory mediators, such as interleukin (IL)-1β, IL-6, macrophage chemotactic protein-1, and tumor necrosis factor-α, are engaged in the insulin resistance in peripheral adipose tissue and the apoptosis of pancreatic β-cells. IL-36, IL-37, and IL-38, as new members of the IL-1 family, play an indispensable effect in the regulation of immune system homeostasis and are involved in the pathogenesis of inflammatory and autoimmune diseases. Recently, the abnormal expression of IL-36, IL-37, and IL-38 in diabetes has been reported. In this review, we discuss the emerging functions, potential mechanisms, and future research directions on the role of IL-36, IL-37, and IL-38 in diabetes mellitus and its complications.
Collapse
Affiliation(s)
- Guoqing Huang
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Mingcai Li
- School of Medicine, Ningbo University, Ningbo 315211, China
| | - Xiaoqing Tian
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Qiankai Jin
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yushan Mao
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| | - Yan Li
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo 315020, China
| |
Collapse
|
15
|
Mertowska P, Mertowski S, Smarz-Widelska I, Grywalska E. Biological Role, Mechanism of Action and the Importance of Interleukins in Kidney Diseases. Int J Mol Sci 2022; 23:ijms23020647. [PMID: 35054831 PMCID: PMC8775480 DOI: 10.3390/ijms23020647] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022] Open
Abstract
Each year, the number of patients who are diagnosed with kidney disease too late is increasing, which leads to permanent renal failure. This growing problem affects people of every age, sex and origin, and its full etiopathogenesis is not fully understood, although the involvement of genetic susceptibility, infections, immune disorders or high blood pressure is suggested. Difficulties in making a correct and quick diagnosis are caused by the lack of research on early molecular markers, as well as educational and preventive activities among the public, which leads to the late detection of kidney diseases. An important role in the homeostasis and disease progression, including kidney diseases, is attributed to interleukins, which perform several biological functions and interact with other cells and tissues of the body. The aim of this article was to systematize the knowledge about the biological functions performed by interleukins in humans and their involvement in kidney diseases development. In our work, we took into account the role of interleukins in acute and chronic kidney disease and kidney transplantation.
Collapse
Affiliation(s)
- Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
- Correspondence:
| | - Iwona Smarz-Widelska
- Department of Nephrology, Cardinal Stefan Wyszynski Provincial Hospital in Lublin, Al. Kraśnicka Street, 20-718 Lublin, Poland;
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 4A Chodzki Street, 20-093 Lublin, Poland; (P.M.); (E.G.)
| |
Collapse
|
16
|
Esmaeilzadeh A, Bahmaie N, Nouri E, Hajkazemi MJ, Zareh Rafie M. Immunobiological Properties and Clinical Applications of Interleukin-38 for Immune-Mediated Disorders: A Systematic Review Study. Int J Mol Sci 2021; 22:12552. [PMID: 34830435 PMCID: PMC8625918 DOI: 10.3390/ijms222212552] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Exponential growth in the usage of "cytokines" (as seroimmunobiomarkers) has facilitated more accurate prognosis, early diagnosis, novel, and efficient immunotherapeutics. Numerous studies have reported immunopathophysiological and immunopathological processes of interleukin-38 (IL-38). Therefore, in this systematic review article, the authors aimed to present an updated comprehensive overview on the immunobiological mechanisms, diagnostic, and immune gene-based therapeutic potentials of IL-38. According to our inclusion and exclusion criteria, a total of 216 articles were collected from several search engines and databases from the January 2012 to July 2021 time interval by using six main keywords. Physiologic or pathologic microenvironments, optimal dosage, and involved receptors affect the functionalities of IL-38. Alterations in serum levels of IL-38 play a major role in the immunopathogenesis of a wide array of immune-mediated disorders. IL-38 shows anti-inflammatory activities by reduction or inhibition of pro-inflammatory cytokines, supporting the therapeutic aspects of IL-38 in inflammatory autoimmune diseases. According to the importance of pre-clinical studies, it seems that manipulation of the immune system by immunomodulatory properties of IL-38 can increase the accuracy of diagnosis, and decipher optimal clinical outcomes. To promote our knowledge, more collaboration is highly recommended among laboratory scientists, internal/infectious diseases specialists, oncologists, immunologists, diseases-specific biomarkers scientists, and basic medical researchers.
Collapse
Affiliation(s)
- Abdolreza Esmaeilzadeh
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
- Cancer Gene Therapy Research Center (CGRC), Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
- Immunotherapy Research & Technology Group, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
| | - Nazila Bahmaie
- Department of Allergy and Immunology, Faculty of Medicine, Graduate School of Health Science, Near East University (NEU), Nicosia 99138, Cyprus;
- Pediatric Ward, Department of Allergy and Immunology, Near East University affiliated Hospital, Nicosia 99138, Cyprus
- Serology and Immunology Ward, Clinical Diagnosis Laboratory, Private Baskent Hospital, Nicosia 99138, Cyprus
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran 1419733151, Iran
| | - Elham Nouri
- School of Paramedicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran;
- Shahid Beheshti University Affiliated Hospital, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
| | - Mohammad Javad Hajkazemi
- School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran; (M.J.H.); (M.Z.R.)
| | - Maryam Zareh Rafie
- School of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran; (M.J.H.); (M.Z.R.)
| |
Collapse
|