1
|
Viswanathan A, Brahma N, Vimal S. The future of autoimmune disease care: merging genomic insights and imaging for enhanced prognosis in rheumatoid arthritis. Clin Rheumatol 2025; 44:1863-1866. [PMID: 39985657 DOI: 10.1007/s10067-024-07234-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 02/24/2025]
Affiliation(s)
- Akshaya Viswanathan
- Department of Microbiology, Centre for Infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to Be University), Chennai, 600 077, Tamil Nadu, India
| | - Neha Brahma
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - S Vimal
- Department of Biochemistry, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India.
| |
Collapse
|
2
|
Song S, Cheng Y, Li W, Yu H, Li Z, Li J, Li M, Huang Q, Liu Y, Ling S. Irradiated umbilical cord mesenchymal stem cell-coated high oxygen-permeable hydrogel lenses inhibit corneal inflammation and neovascularization after corneal alkali burns. Sci Rep 2025; 15:10401. [PMID: 40140459 PMCID: PMC11947097 DOI: 10.1038/s41598-025-95007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Corneal alkali burns can cause persistent inflammation and corneal neovascularization. In this study, we divided corneal alkali burned rabbits into the untreated group, the blank lens group, the radiation-treated umbilical cord mesenchymal stem cells (UCMSC) lens group, and the UCMSC I.V. group, and then measured corneal inflammation, neovascularization and corneal injury repair via slit lamp microscopy, captured anterior segment optical coherence tomography (AS-OCT), and performed hematoxylin-eosin staining. Compared with those in the other experimental groups, radiation-treated UCMSC lenses significantly decreased inflammatory index (IF) scores, areas of corneal blood vessels and corneal epithelial injury. The expression of interleukin (IL)-17 in corneas treated with radiation-treated UCMSC lenses was lower than that in corneas treated with blank lenses, and radiation-treated UCMSC lenses exhibited greater expression of IL-4 and signal transducer and activator of transcription 1 (STAT1), while the expression of cluster of differentiation-3G (CD3G), a linker for the activation of T cells (LAT), IL-6, IL-1B, CC chemokine receptor 6 (CCR6) and IL-23 exhibited the opposite effects (all P < 0.05). Our findings demonstrated that irradiated UCMSC-coated high oxygen-permeable hydrogel lenses on the ocular surface inhibited corneal angiogenesis and inflammation after corneal alkaline burns. The downregulation of Th17 cell differentiation might be responsible for these effects.
Collapse
Affiliation(s)
- Siqi Song
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yaqi Cheng
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Weihua Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Huan Yu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Zhiquan Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, 510060, China
| | - Jianbing Li
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Meng Li
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Qunai Huang
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Yingjie Liu
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China
| | - Shiqi Ling
- Department of Ophthalmology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, P.R. China.
| |
Collapse
|
3
|
Garcia‐Aponte OF, Kahlenberg S, Kouroupis D, Egger D, Kasper C. Effects of Hydrogels on Mesenchymal Stem/Stromal Cells Paracrine Activity and Extracellular Vesicles Production. J Extracell Vesicles 2025; 14:e70057. [PMID: 40091440 PMCID: PMC11911545 DOI: 10.1002/jev2.70057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/10/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are a valuable source of paracrine factors, as they have a remarkable secretory capacity, and there is a sizeable knowledge base to develop industrial and clinical production protocols. Promising cell-free approaches for tissue regeneration and immunomodulation are driving research towards secretome applications, among which extracellular vesicles (EVs) are steadily gaining attention. However, the manufacturing and application of EVs is limited by insufficient yields, knowledge gaps, and low standardization. Facing these limitations, hydrogels represent a versatile three-dimensional (3D) culture platform that can incorporate extracellular matrix (ECM) components to mimic the natural stem cell environment in vitro; via these niche-mimicking properties, hydrogels can regulate MSCs' morphology, adhesion, proliferation, differentiation and secretion capacities. However, the impact of the hydrogel's architectural, biochemical and biomechanical properties on the production of EVs remains poorly understood, as the field is still in its infancy and the interdependency of culture parameters compromises the comparability of the studies. Therefore, this review summarizes and discusses the reported effects of hydrogel encapsulation and culture on the secretion of MSC-EVs. Considering the effects of cell-material interactions on the overall paracrine activity of MSCs, we identify persistent challenges from low standardization and process control, and outline future paths of research, such as the synergic use of hydrogels and bioreactors to enhance MSC-EV generation.
Collapse
Affiliation(s)
- Oscar Fabian Garcia‐Aponte
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Simon Kahlenberg
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
- Diabetes Research Institute & Cell Transplant Center, Miller School of MedicineUniversity of MiamiMiamiFloridaUSA
| | - Dominik Egger
- Institute of Cell Biology and BiophysicsLeibniz University HannoverHannoverGermany
| | - Cornelia Kasper
- Department of Biotechnology and Food Science, Institute of Cell and Tissue Culture TechnologiesUniversity of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
4
|
Patel AA, Shafie A, Mohamed AH, Ali SAJ, Tayeb FJ, Waggiallah HA, Ahmad I, Sheweita SA, Muzammil K, AlShahrani AM, Al Abdulmonem W. The promise of mesenchymal stromal/stem cells in erectile dysfunction treatment: a review of current insights and future directions. Stem Cell Res Ther 2025; 16:98. [PMID: 40012076 PMCID: PMC11866689 DOI: 10.1186/s13287-025-04221-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/11/2025] [Indexed: 02/28/2025] Open
Abstract
Erectile dysfunction is a common and multifactorial condition that significantly impacts men's quality of life. Traditional treatments, such as phosphodiesterase type 5 inhibitors (PDE5i), often fail to provide lasting benefits, particularly in patients with underlying health conditions. In recent years, regenerative medicine, particularly stem cell therapies, has emerged as a promising alternative for managing erectile dysfunction. This review explores the potential of mesenchymal stromal/stem cells (MSCs) and their paracrine effects, including extracellular vesicles (EVs), in the treatment of erectile dysfunction. MSCs have shown remarkable potential in promoting tissue repair, reducing inflammation, and regenerating smooth muscle cells, offering therapeutic benefits in models of erectile dysfunction. Clinical trials have demonstrated positive outcomes in improving erectile function and other clinical parameters. This review highlights the promise of MSC therapy for erectile dysfunction, discusses existing challenges, and emphasizes the need for continued research to refine these therapies and improve long-term patient outcomes.
Collapse
Affiliation(s)
- Ayyub Ali Patel
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
| | - Alaa Shafie
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, P.O. Box 11099, 21944, Taif, Saudi Arabia
| | - Asma'a H Mohamed
- Department of Optometry Techniques, Technical College Al-Mussaib, Al-Furat Al-Awsat Technical University, Najaf, Iraq.
| | | | - Faris J Tayeb
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, University of Tabuk, Tabuk, Saudi Arabia
| | - Hisham Ali Waggiallah
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam Bin Abdulaziz University, Alkarj, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Salah Ahmed Sheweita
- Department of Clinical Biochemistry, Faculty of Medicine, King Khalid University, Abha, Kingdom of Saudi Arabia
- Department of Biotechnology, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt
| | - Khursheed Muzammil
- Department of Public Health, College of Applied Medical Sciences, Khamis Mushait, King Khalid University, 62561, Abha, Saudi Arabia
| | - Abdullah M AlShahrani
- Department of Basic Medical Science, College of Applied Medical Sciences, Khamis Mushait, King Khalid University (KKU), 62561, Abha, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| |
Collapse
|
5
|
Li L, He Y, Zhao J, Yin H, Feng X, Fan X, Wu W, Lu Q. Mesenchymal Stromal Cell-Based Therapy: A Promising Approach for Autoimmune Diseases. Clin Rev Allergy Immunol 2025; 68:21. [PMID: 39982546 DOI: 10.1007/s12016-025-09030-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2025] [Indexed: 02/22/2025]
Abstract
Autoimmune diseases are characterized by immune dysregulation, resulting in aberrant reactivity of T cells and antibodies to self-antigens, leading to various patterns of inflammation and organ dysfunction. However, current therapeutic agents exhibit broad-spectrum activity and lack disease-specific selectivity, leading to enduring adverse effects, notably severe infections, and malignancies, and patients often fail to achieve the intended clinical goals. Mesenchymal stromal cells (MSCs) are multipotent stromal cells that can be easily derived from various tissues, such as adipose tissue, umbilical cords, Wharton's jelly, placenta, and dental tissues. MSCs offer advantages due to their immunomodulatory and anti-inflammatory abilities, low immunogenicity, and a high capacity for proliferation and multipotent differentiation, making them excellent candidates for cell-based treatment in autoimmune disorders. This review will cover preclinical studies and clinical trials involving MSCs in autoimmune diseases, as well as the primary challenges associated with the clinical application of MSC therapies and strategies for maximizing their therapeutic potential.
Collapse
Affiliation(s)
- Liming Li
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Yong He
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Junpeng Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Department of Clinical Laboratory, Xiangya Hospital, Central South University, Changsha, China
| | - Huiqi Yin
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xiwei Feng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Xinyu Fan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Wei Wu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
| | - Qianjin Lu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
- Key Laboratory of Basic and Translational Research On Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China.
| |
Collapse
|
6
|
Ghiasi M, Kheirandish Zarandi P, Dayani A, Salimi A, Shokri E. Potential therapeutic effects and nano-based delivery systems of mesenchymal stem cells and their isolated exosomes to alleviate acute respiratory distress syndrome caused by COVID-19. Regen Ther 2024; 27:319-328. [PMID: 38650667 PMCID: PMC11035022 DOI: 10.1016/j.reth.2024.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/03/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
The severe respiratory effects of the coronavirus disease 2019 (COVID-19) pandemic have necessitated the immediate development of novel treatments. The majority of COVID-19-related fatalities are due to acute respiratory distress syndrome (ARDS). Consequently, this virus causes massive and aberrant inflammatory conditions, which must be promptly managed. Severe respiratory disorders, notably ARDS and acute lung injury (ALI), may be treated safely and effectively using cell-based treatments, mostly employing mesenchymal stem cells (MSCs). Since the high potential of these cells was identified, a great deal of research has been conducted on their use in regenerative medicine and complementary medicine. Multiple investigations have demonstrated that MSCs and their products, especially exosomes, inhibit inflammation. Exosomes serve a critical function in intercellular communication by transporting molecular cargo from donor cells to receiver cells. MSCs and their derived exosomes (MSCs/MSC-exosomes) may improve lung permeability, microbial and alveolar fluid clearance, and epithelial and endothelial repair, according to recent studies. This review focuses on COVID-19-related ARDS clinical studies involving MSCs/MSC-exosomes. We also investigated the utilization of Nano-delivery strategies for MSCs/MSC-exosomes and anti-inflammatory agents to enhance COVID-19 treatment.
Collapse
Affiliation(s)
- Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | | | - Abdolreza Dayani
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ehsan Shokri
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| |
Collapse
|
7
|
Abebaw D, Akelew Y, Adugna A, Teffera ZH, Tegegne BA, Fenta A, Selabat B, Amare GA, Getinet M, Jemal M, Baylie T, Atnaf A. Extracellular vesicles: immunomodulation, diagnosis, and promising therapeutic roles for rheumatoid arthritis. Front Immunol 2024; 15:1499929. [PMID: 39624102 PMCID: PMC11609219 DOI: 10.3389/fimmu.2024.1499929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 10/30/2024] [Indexed: 01/03/2025] Open
Abstract
Extracellular vesicles (EV) can be produced as part of pathology and physiology with increased amounts in pathological conditions. EVs can carry and transfer cargo such as proteins, nucleic acids, and lipids to target cells and mediate intercellular communication resulting in modulation of gene expression, signaling pathways, and phenotype of recipient cells. EVs greatly influence the extracellular environment and the immune response. Their immunomodulatory properties are crucial in rheumatoid arthritis (RA), a condition marked by dysregulated immune response. EVs can modulate the functions of innate and adaptive immune cells in RA pathogenesis. Differentially expressed EV-associated molecules in RA, such as microRNAs (miRNAs), long-noncoding RNAs (lncRNAs), messenger RNAs (mRNAs) and proteins are promising markers to diagnose the disease. miRNA, lncRNA, and circular RNA (circRNA) cargos in EV regulate inflammation and the pathogenic functions of RA fibroblast-like synoviocytes (RA-FLS). Downregulated molecules in RA tissue and drugs can be encapsulated in EVs for RA therapy. This review provides an updated overview of EVs' immunomodulatory, diagnostic, and therapeutic roles, particularly emphasizing mesenchymal stem cell-derived EVs (MSC-EVs).
Collapse
Affiliation(s)
- Desalegn Abebaw
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Yibeltal Akelew
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
- Department of Medicine, Centre for Inflammatory Diseases, Monash University, Clayton, VIC, Australia
| | - Adane Adugna
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Zigale Hibstu Teffera
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantayehu Addis Tegegne
- Department of Pharmacy, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Abebe Fenta
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Bantegize Selabat
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Gashaw Azanaw Amare
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| | - Mamaru Getinet
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Mohammed Jemal
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Temesgen Baylie
- Department of Biomedical Sciences, School of Medicine, Debre Markos University, Debre Markos, Ethiopia
| | - Aytenew Atnaf
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Debre Markos University, Debre Markos, Ethiopia
| |
Collapse
|
8
|
Jouybari MT, Mojtahedi F, Babaahmadi M, Faeed M, Eslaminejad MB, Taghiyar L. Advancements in extracellular vesicle targeted therapies for rheumatoid arthritis: insights into cellular origins, current perspectives, and emerging challenges. Stem Cell Res Ther 2024; 15:276. [PMID: 39227964 PMCID: PMC11373471 DOI: 10.1186/s13287-024-03887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/16/2024] [Indexed: 09/05/2024] Open
Abstract
Rheumatoid arthritis (RA) remains a challenging chronic autoimmune disorder characterized by persistent joint inflammation and damage. While modern regenerative strategies, encompassing cell/stem cell-based therapies, gene therapy, and tissue engineering, have advanced tissue repair efforts, a definitive cure for RA remains elusive. Consequently, there is growing interest in developing targeted therapies that directly address the underlying mechanisms driving RA pathogenesis, such as extracellular vesicles (EVs). These small membrane-bound particles can modulate immune responses within the inflammatory microenvironment of damaged cartilage. To launch the clinical potential of EVs, they can be isolated from various cell types through several techniques. EVs can carry various bioactive molecules and anti-inflammatory or pro-regenerative drugs, deliver them directly to the affected joints, and affect the behavior of injured cells, making them a compelling choice for targeted therapy and drug delivery in RA patients. However, there are still several challenges and limitations associated with EV-based therapy, including the absence of standardized protocols for EV isolation, characterization, and delivery. This review provides a comprehensive overview of the cellular sources of EVs in RA and delves into their therapeutic potential and the hurdles they must overcome.
Collapse
Affiliation(s)
- Maryam Talebi Jouybari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Square, Banihashem St., Resalat Highway, PO Box: 16635-148, Tehran, 1665659911, Iran
- Department of Developmental Biology, University of Science and Culture, Tehran, Iran
| | - Fatemeh Mojtahedi
- Department of Immunology, Shahid Sadoughi University of Medical Science, Yazd, Iran
| | - Mahnaz Babaahmadi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Square, Banihashem St., Resalat Highway, PO Box: 16635-148, Tehran, 1665659911, Iran
| | - Maryam Faeed
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammadreza Baghaban Eslaminejad
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Square, Banihashem St., Resalat Highway, PO Box: 16635-148, Tehran, 1665659911, Iran.
| | - Leila Taghiyar
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Banihashem Square, Banihashem St., Resalat Highway, PO Box: 16635-148, Tehran, 1665659911, Iran.
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
9
|
Ding Z, Greenberg ZF, Serafim MF, Ali S, Jamieson JC, Traktuev DO, March K, He M. Understanding molecular characteristics of extracellular vesicles derived from different types of mesenchymal stem cells for therapeutic translation. EXTRACELLULAR VESICLE 2024; 3:100034. [PMID: 38957857 PMCID: PMC11218754 DOI: 10.1016/j.vesic.2024.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Mesenchymal stem cells (MSCs) have been studied for decades as candidates for cellular therapy, and their secretome, including secreted extracellular vesicles (EVs), has been identified to contribute significantly to regenerative and reparative functions. Emerging evidence has suggested that MSC-EVs alone, could be used as therapeutics that emulate the biological function of MSCs. However, just as with MSCs, MSC-EVs have been shown to vary in composition, depending on the tissue source of the MSCs as well as the protocols employed in culturing the MSCs and obtaining the EVs. Therefore, the importance of careful choice of cell sources and culture environments is receiving increasing attention. Many factors contribute to the therapeutic potential of MSC-EVs, including the source tissue, isolation technique, and culturing conditions. This review illustrates the molecular landscape of EVs derived from different types of MSC cells along with culture strategies. A thorough analysis of publicly available omic datasets was performed to advance the precision understanding of MSC-EVs with unique tissue source-dependent molecular characteristics. The tissue-specific protein and miRNA-driven Reactome ontology analysis was used to reveal distinct patterns of top Reactome ontology pathways across adipose, bone marrow, and umbilical MSC-EVs. Moreover, a meta-analysis assisted by an AI technique was used to analyze the published literature, providing insights into the therapeutic translation of MSC-EVs based on their source tissues.
Collapse
Affiliation(s)
- Zuo Ding
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Zachary F. Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Maria Fernanda Serafim
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Samantha Ali
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Julia C. Jamieson
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Dmitry O. Traktuev
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Keith March
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
10
|
Théron A, Maumus M, Biron-Andreani C, Sirvent N, Jorgensen C, Noël D. What is the rationale for mesenchymal stromal cells based therapies in the management of hemophilic arthropathies? Osteoarthritis Cartilage 2024; 32:634-642. [PMID: 38160743 DOI: 10.1016/j.joca.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 01/03/2024]
Abstract
Hemophilia A and B are rare X-linked genetic bleeding disorders due to a complete or partial deficiency in the coagulation factors VIII or IX, respectively. The main treatment for hemophilia is prophylactic and based on coagulation factor replacement therapies. These treatments have significantly reduced bleeding and improved the patients' quality of life. Nevertheless, repeated joint bleedings (hemarthroses), even subclinical hemarthroses, can lead to hemophilic arthropathy (HA). This disabling condition is characterized by chronic pain due to synovial inflammation, cartilage and bone destruction requiring ultimately joint replacement. HA resembles to rheumatoid arthritis because of synovitis but HA is considered as having similarities with osteoarthritis as illustrated by the migration of immune cells, production of inflammatory cytokines, synovial hypertrophy and cartilage damage. Various drugs have been evaluated for the management of HA with limited success. The objective of the review is to discuss new therapeutic approaches with a special focus on the studies that have investigated the potential of using mesenchymal stromal cells (MSCs) in the management of HA. A systematic review of the literature has been made. Most of the studies have focused on the interest of MSCs for the delivery of missing factors VIII or IX but in some studies, more insight on the effect of MSC injection on synovial inflammation or cartilage structure were provided and put in perspective for possible clinical applications.
Collapse
Affiliation(s)
- Alexandre Théron
- IRMB, University of Montpellier, INSERM, Montpellier, France; Resources and Competence Center for Hereditary Hemorrhagic Diseases, CHU Montpellier, Montpellier, France; Department of Pediatric Oncology and Hematology, CHU Montpellier, Montpellier, France
| | - Marie Maumus
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Christine Biron-Andreani
- Resources and Competence Center for Hereditary Hemorrhagic Diseases, CHU Montpellier, Montpellier, France
| | - Nicolas Sirvent
- Department of Pediatric Oncology and Hematology, CHU Montpellier, Montpellier, France
| | - Christian Jorgensen
- IRMB, University of Montpellier, INSERM, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France; Clinical Immunology and Osteoarticular Disease Therapeutic Unit, Department of Rheumatology, CHU Montpellier, Montpellier, France.
| |
Collapse
|
11
|
Alshahrani MY, Jasim SA, Altalbawy FMA, Bansal P, Kaur H, Al-Hamdani MM, Deorari M, Abosaoda MK, Hamzah HF, A Mohammed B. A comprehensive insight into the immunomodulatory role of MSCs-derived exosomes (MSC-Exos) through modulating pattern-recognition receptors (PRRs). Cell Biochem Funct 2024; 42:e4029. [PMID: 38773914 DOI: 10.1002/cbf.4029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/24/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSC-Exos) are emerging as remarkable agents in the field of immunomodulation with vast potential for diagnosing and treating various diseases, including cancer and autoimmune disorders. These tiny vesicles are laden with a diverse cargo encompassing proteins, nucleic acids, lipids, and bioactive molecules, offering a wealth of biomarkers and therapeutic options. MSC-Exos exhibit their immunomodulatory prowess by skillfully regulating pattern-recognition receptors (PRRs). They conduct a symphony of immunological responses, modulating B-cell activities, polarizing macrophages toward anti-inflammatory phenotypes, and fine-tuning T-cell activity. These interactions have profound implications for precision medicine, cancer immunotherapy, autoimmune disease management, biomarker discovery, and regulatory approvals. MSC-Exos promises to usher in a new era of tailored therapies, personalized diagnostics, and more effective treatments for various medical conditions. As research advances, their transformative potential in healthcare becomes increasingly evident.
Collapse
Affiliation(s)
- Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | | | - Farag M A Altalbawy
- Department of Chemistry, University College of Duba, University of Tabuk, Tabuk, Saudi Arabia
| | - Pooja Bansal
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bengaluru, Karnataka, India
- Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan, India
| | - Harpreet Kaur
- School of Basic & Applied Sciences, Shobhit University, Gangoh, Uttar Pradesh, India
- Department of Health & Allied Sciences, Arka Jain University, Jamshedpur, Jharkhand, India
| | | | - Mahamedha Deorari
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Munther Kadhim Abosaoda
- College of Pharmacy, The Islamic University, Najaf, Iraq
- College of Pharmacy, The Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- College of Pharmacy, The Islamic University of Babylon, Al Diwaniyah, Iraq
| | - Hamza Fadhel Hamzah
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| | - Bahira A Mohammed
- Department of Medical Laboratories Technology, AL-Nisour University College, Baghdad, Iraq
| |
Collapse
|
12
|
Pignatti E, Maccaferri M, Pisciotta A, Carnevale G, Salvarani C. A comprehensive review on the role of mesenchymal stromal/stem cells in the management of rheumatoid arthritis. Expert Rev Clin Immunol 2024; 20:463-484. [PMID: 38163928 DOI: 10.1080/1744666x.2023.2299729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory disease with systemic manifestations. Although the success of immune modulatory drug therapy is considerable, about 40% of patients do not respond to treatment. Mesenchymal stromal/stem cells (MSCs) have been demonstrated to have therapeutic potential for inflammatory diseases. AREAS COVERED This review provides an update on RA disease and on pre-clinical and clinical studies using MSCs from bone marrow, umbilical cord, adipose tissue, and dental pulp, to regulate the immune response. Moreover, the clinical use, safety, limitations, and future perspective of MSCs in RA are discussed. Using the PubMed database and ClincalTrials.gov, peer-reviewed full-text papers, abstracts and clinical trials were identified from 1985 through to April 2023. EXPERT OPINION MSCs demonstrated a satisfactory safety profile and potential for clinical efficacy. However, it is mandatory to deepen the investigations on how MSCs affect the proinflammatory deregulated RA patients' cells. MSCs are potentially good candidates for severe RA patients not responding to conventional therapies but a long-term follow-up after stem cells treatment and standardized protocols are needed. Future research should focus on well-designed multicenter randomized clinical trials with adequate sample sizes and properly selected patients satisfying RA criteria for a valid efficacy evaluation.
Collapse
Affiliation(s)
- Elisa Pignatti
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Monia Maccaferri
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Gianluca Carnevale
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Salvarani
- Department of Surgery, Medicine Dentistry and Morphological Sciences with Interest in Transplant, Oncological and Regenerative Medicine, University of Modena and Reggio Emilia, Modena, Italy
- Rheumatology Unit, Azienda USL-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
13
|
Kmosh SM, Al-Naely AJ. The Effects of Different Concentrations of Vitamin D3 on Immunological Parameters of Immunosuppressed Rats Induced. WORLD'S VETERINARY JOURNAL 2024:145-150. [DOI: 10.54203/scil.2024.wvj18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Vitamin D3 receptor is expressed in several types of immune cells suggesting that Vitamin D3 could have immune regulatory roles. The current study was conducted to investigate the role of Vitamin D3 in reducing the toxicity of the cisplatin on some Immunological parameters in the rat model. The current experiment was conducted on 80 adult white male rats within the age range of 9-12 weeks. The animals were divided into eight groups (10 animals in each group). The control group was dosed with the physiological solution until the end of experiment (C). Rats in the second treatment were injected with cisplatin (2 mg/kg, T1). Rats in the third (T2), fourth (T3), and fifth (T4) groups were injected with cisplatin at a concentration (2 mg/kg) and received Vitamin D3 at levels of 5000 IU, 10,000 IU, and 15,000 IU, respectively. The rats in the sixth (T5), seventh (T6), and eighth (T7) groups were subjected to Vitamin D3 at concentrations of 5000 IU,10,000 IU, and 15,000 IU, respectively. At the end of the experiment, which lasted 21 days, the animals were anesthetized, their weights were recorded, and blood samples were collected. The findings revealed a significant elevation in the levels of interleukin-12, tumor necrosis factor-alpha, C-reactive protein, lymphocyte percentage, monocyte percentage, and eosinophil percentage within group T1 compared to the control and other treatment groups that received Vitamin D3. The average percentage of white blood cells and neutrophils in group T1 was significantly lesser than other groups. It can be concluded that supplementation of different Vitamin D3 levels (5000-10,000 IU) have positive influences on the immunological parameters of immunosuppressed rats.
Collapse
|
14
|
Rajeev Kumar S, Sakthiswary R, Lokanathan Y. Potential Therapeutic Application and Mechanism of Action of Stem Cell-Derived Extracellular Vesicles (EVs) in Systemic Lupus Erythematosus (SLE). Int J Mol Sci 2024; 25:2444. [PMID: 38397121 PMCID: PMC10889333 DOI: 10.3390/ijms25042444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/09/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a multisystemic autoimmune disease that affects nearly 3.41 million people globally, with 90% of the cases affecting women of childbearing age. SLE is a complex disease due to the interplay of various immunological pathways and mechanisms. This scoping review aims to highlight the latest research findings on the therapeutic mechanisms of action of EVs in SLE. Relevant research articles were identified using the PRISMA framework from databases such as PubMed/MEDLINE (National Library of Medicine), Scopus (Elsevier), and Web of Science: Core Collection (Clarivate Analytics) from July 2023 to October 2023. Eleven studies met the inclusion criteria and thus were included in this scoping review. The findings showed that EVs have therapeutic effects on ameliorating the disease progression of SLE. EVs can reduce the pro-inflammatory cytokines and increase the anti-inflammatory cytokines. Moreover, EVs can increase the levels of regulatory T cells, thus reducing inflammation. EVs also have the potential to regulate B cells to alleviate SLE and reduce its adverse effects. The scoping review has successfully analysed the therapeutic potential in ameliorating the disease progression of SLE. The review also includes prospects to improve the effects of EVs further to increase the therapeutic effects on SLE.
Collapse
Affiliation(s)
- Sushmitha Rajeev Kumar
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaaan Malaysia, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
- Department of Biomedical Engineering, Faculty of Engineering, University of Malaya, Lembah Pantai, Kuala Lumpur 50603, Malaysia
| | - Rajalingham Sakthiswary
- Department of Medicine, Faculty of Medicine, University Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
| | - Yogeswaran Lokanathan
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, University Kebangsaaan Malaysia, Jalan Yaacob Latiff, Cheras, Kuala Lumpur 56000, Malaysia;
| |
Collapse
|
15
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
16
|
Chen K, Zhu P, Chu M, Tao H, Wang Q, Lv S, Huang L, Geng D. What do osteoporosis and osteoarthritis have in common? An integrated study of overlapping differentially expressed genes in bone mesenchymal stem cells of osteoporosis and osteoarthritis. Gene 2024; 893:147914. [PMID: 37865148 DOI: 10.1016/j.gene.2023.147914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
OBJECTIVE For identification of aberrantly expressed genes in mesenchymal stem cells of osteoporosis (OP) and osteoarthritis (OA), Gene Expression Omnibus (GEO) datasets were integrated to investigate the intersection point. METHODS GSE35958 (osteoporosis) and GSE19664 (osteoarthritis) datasets were obtained from GEO database. The abnormally expressed genes were analyzed by GEO2R. Functional enrichment was explored by Metascape database and R software. The String database and Cytoscape software were used to build the protein-protein interaction network and identify hub genes. GSE35957 and GSE116925 were used as verification datasets. Single-cell analysis and pseudotime analysis were undertaken. CTDbase, Network Analyst, HPA database, HERB database and MIRW database were used to research the information, tissue and cell distribution, regulation, interaction and ingredients targeting the hub genes. Additionally, in vitro experiments such as RT-PCR, ALP staining and immunofluorescence were undertaken as verification tests. RESULTS Ten hub genes were identified in this study. All these genes play an important role in bone or cartilage generation. They have diagnostic values and therapeutic potential for OA and OP. Single-cell analysis visualized the cell distribution and pseudotime distribution of these genes. Some potential therapeutic ingredients of these genes were identified, such as curcumin, wogonin and glycerin. In vitro experiments, RT-PCR results showed that COL9A3 and MMP3 were downregulated and PTH1R was upregulated during osteogenic induction of BMSC. Immunohistochemical results showed the expression trend of MMP3 and COL2A1. CONCLUSION Ten abnormal hub genes of osteoporosis and osteoarthritis were identified successfully by this study. They were important regulatory genes for healthy bone and cartilage. These genes could be the common connections between osteoporosis and osteoarthritis as well as treatment targets. Further study of the regulatory mechanism and treatment effects of these genes would be valuable. The results of this study could contribute to further research.
Collapse
Affiliation(s)
- Kai Chen
- Department of Orthopedics, Hai'an People's Hospital, Zhongba Road 17, Hai'an, Jiangsu 226600, China; Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China
| | - Pengfei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China
| | - Miao Chu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China; Department of Orthopedics, Yixing People's Hospital, Tongzhenguan Road 75, Yixing, Jiangsu 214200, China
| | - Huaqiang Tao
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China
| | - Qiufei Wang
- Department of Orthopedics, Changshu First People's Hospital, Shuyuan Road 1, Changshu, Jiangsu 215500, China
| | - Shujun Lv
- Department of Orthopedics, Hai'an People's Hospital, Zhongba Road 17, Hai'an, Jiangsu 226600, China.
| | - Lixin Huang
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China.
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, No. 188 Shizi Street, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
17
|
Hladkykh FV. MESENCHYMAL STEM CELLS: EXOSOMES AND CONDITIONED MEDIA AS INNOVATIVE STRATEGIES IN THE TREATMENT OF PATIENTS WITH AUTOIMMUNE DISEASES. CLINICAL AND PREVENTIVE MEDICINE 2023:121-130. [DOI: 10.31612/2616-4868.6.2023.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Introduction. Autoimmune diseases are a class of immunopathological conditions heterogeneous in clinical manifestations, characterized by immune disorders that cause the loss of the body's autoimmune tolerance and, as a result, abnormal reactivity of B-cells and T-cells, which leads to damage to own tissues. Today, about 10% of the population suffers from diseases of this class, which are clinically manifested in the form of more than 80 forms of autoimmune diseases.
The aim of the study. Summarize current ideas about the therapeutic potential of conditioned media and exosomes of MSCs in the treatment of patients with autoimmune diseases based on data from open sources of information.
Materials and methods. Publications were selected based on PubMed, Clinical Key Elsevier, Cochrane Library, eBook Business Collection and Google Scholar databases, which covered information on the use of conditioned media and MSC exosomes in the treatment of diseases of premature newborns using the
Keywords:
mesenchymal stem cells, conditioned media, secretion, autoimmune diseases.
Results. The technical complexity and high costs associated with the production and regulatory approval procedures of MSC therapy create barriers to their clinical use. Studies have shown that the cell-free secretome of MSCs, which consists of a wide range of growth factors, cytokines, chemokines and extracellular vesicles, exhibits a pluripotent effect. Today, extracellular vesicles are classified according to their diameter into apoptotic bodies (>1000 nm), microvesicles (100–1000 nm) and exosomes (30–150 nm). Exosome activity can be easily manipulated by preconditioning MSCs, by simply adding cytokines or chemicals to the culture medium, by introducing gene modifications, or by using hypoxic culture conditions. A number of studies have demonstrated the comparable effectiveness of conditioned media and MSC exosomes in the treatment of patients with autoimmune diseases.
Conclusions. Exosomes and conditioned media with MSCs have the potential to replace cell therapy or serve as a comparable clinical strategy to biological therapy in neonatology. MSC preconditioning will allow modulating the therapeutic effects of exosomes and will become the basis for establishing recommendations and standards for effective and safe cell-free therapy.
Collapse
|
18
|
Talib Al-Safi M, T. Qasim M. Study of some genetic and molecular markers for some rheumatoid
arthritis patients in Iraq. BIONATURA 2023; 8:1-13. [DOI: 10.21931/rb/css/2023.08.03.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Rheumatoid arthritis is an autoimmune disorder, and genetic factors strongly contribute to a genetic predisposition to developing the disease. This study evaluated
the genetic and molecular indicators of some Iraqi patients with rheumatoid arthritis. The study included (100) patients with rheumatoid arthritis with (100) healthy
individuals who attended Al-Hussain General Teaching Hospital, Department of
Arthritis and Joints Centre, al Blood Bank in Baghdad for the period from the beginning of January 2022 until the end of March 2022. The patients were diagnosed
under the supervision of medical committees specialized in joint diseases. The human leukocyte antigen is one of the essential genetic factors in regulating the immune response, as these antigens contribute to the susceptibility to disease. Human
leukocyte antigen (HLA) class II (Class-II- HLA-DR, -DQ) was genotyped using
lymphocytotoxicity assay and PCR-SSP method. The results showed that there was
a significant increase in the recurrence of human leukocyte antigens (DR4 R53) in
rheumatoid arthritis patients compared to the healthy ones, as well as an increase
in the recurrence of human leukocyte antigens (HLA-DQ3) with a significant difference in rheumatoid arthritis patients compared to the healthy ones. Regarding
HLA-DRB1 and -DQB1 alleles, it was found that there was a significant increase
in the frequency of HLA-DRB1*04 (01-22, not 0415) compared to healthy controls, while the percentage of HLA-DRB1*0701 alleles was less frequent in patients compared to healthy controls. Moreover, the frequency of HLADQB1*03(02,07) alleles was high in the patients compared to the healthy ones,
while HLA-DQB1*0303 showed a highly significant difference in the healthy
group compared to the patients.
Keywords: Rheumatoid arthritis, genetic factors, HLA-DRB1, -DQB1 alleles,
PCR.
Collapse
Affiliation(s)
| | - Maytham T. Qasim
- 2College of Health and Medical Technology, Al-Ayen University, Iraq
| |
Collapse
|
19
|
Ali Abdul Hadi H, Faisal Alhuwaiz A. Treatment of shallow and deep white spot lesions with three different mouthwashes evaluated by laser fluorescence (an in vitro study). BIONATURA 2023; 8:1-11. [DOI: 10.21931/rb/css/2023.08.03.81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
This research aims to find how three different types of mouthwashes affect the
depth of artificial white spot lesions. Teeth with various depths of white spot lesions were immersed in either splat mouthwash, Biorepair mouthwash, Sensodyne
mouthwash, or artificial saliva (control)twice daily for one minute for 4 weeks and
8 weeks at 37°C. After this immersion procedure, lesion depth was measured using
a diagnosed pen score. A one-way analysis of variance, Dunnett T3 and Tukey's
post hoc α = .05 were used to analyze the testing data. Splat mouthwash enhanced
the WSL remineralization and made the lowest ΔF compared with other mouthwashes in shallow and deep enamel after 4 and 8 weeks of treatment. In the repair
groups, after 4 weeks of treatment, significant recovery was observed in shallow
enamel. Further improvement in shallow WSL after 8 weeks of treatment with biorepair mouthwash was observed compared to Sensodyne and the control group.
Splat mouthwash is more effective than other mouthwashes in remineralizing two
depths of WSLs at different time points.
Keywords: DIAGNOdent pen, Shallow enamel, Deep enamel, white spot lesion.
Collapse
Affiliation(s)
- Hussein Ali Abdul Hadi
- 1Master student, Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| | - Akram Faisal Alhuwaiz
- Professor, Department of Orthodontics, College of Dentistry, University of Baghdad, Baghdad, Iraq
| |
Collapse
|
20
|
Niu S, Li B, Gu H, Huang Q, Cheng Y, Wang C, Cao G, Yang Q, Zhang D, Cao J. Knowledge mapping of extracellular vesicles in wound healing: A bibliometric analysis (2002-2022). Int Wound J 2023; 20:3221-3240. [PMID: 37183322 PMCID: PMC10502250 DOI: 10.1111/iwj.14202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Extracellular vesicles in wound healing have become an active research field with substantial value and potential. Nevertheless, there are few bibliometric studies in this field. We aimed to visualise the research hot spots and trends of extracellular vesicles in wound healing using a bibliometric analysis to help understand the future development of basic and clinical research. The articles and reviews regarding extracellular vesicles in the wound healing were selected from the Web of Science Core Collection. VOSviewers, CiteSpace and R package "bibliometric" were used to conduct this bibliometric analysis. A total of 1225 articles from 56 countries led by China and the United States were included. The number of publications related to extracellular vesicles increased year by year. Shanghai Jiaotong University, Huazhong University of Science and Technology, Sun Yat-sen University and Central South University are the main research institutions. International Journal of Molecular Sciences is the most popular journal in this field, while Stem Cell Research & Therapy is the most frequently cited journal. These papers come from 7546 authors, among which Zhang Wei has published the most papers and Zhang Bin has the most cocited papers. The research on the treatment strategy of extracellular vesicles in the process of wound healing is the main topic in this field. "exosomes", "miRNA", "angiogenesis", "regenerative medicine", "inflammation" and "diabetic wound" are the main key words of emerging research hotspots. This is the first bibliometric study, which comprehensively summarises the research trend and development of extracellular vesicles and exocrine bodies in wound healing. These informations determine the latest research frontiers and hot directions, and provide reference for the study of extracellular vesicles and exosomes.
Collapse
Affiliation(s)
- Shao‐hui Niu
- Dongfang HospitalBeijing University of Chinese MedicineBeijingChina
| | - Bei Li
- Shanxi University of Chinese MedicineTaiyuanChina
| | - Han‐cheng Gu
- Dongfang HospitalBeijing University of Chinese MedicineBeijingChina
| | - Qiang Huang
- Dongfang HospitalBeijing University of Chinese MedicineBeijingChina
| | - Ya‐qing Cheng
- Dongfang HospitalBeijing University of Chinese MedicineBeijingChina
| | - Chang Wang
- Dongfang HospitalBeijing University of Chinese MedicineBeijingChina
| | - Gang Cao
- Dongfang HospitalBeijing University of Chinese MedicineBeijingChina
| | - Qiaoli Yang
- Dongfang HospitalBeijing University of Chinese MedicineBeijingChina
| | - Dong‐ping Zhang
- Dongzhimen HospitalBeijing University of Chinese MedicineBeijingChina
| | - Jian‐chun Cao
- Dongfang HospitalBeijing University of Chinese MedicineBeijingChina
| |
Collapse
|
21
|
Ortiz GGR, Zaidi NH, Saini RS, Ramirez Coronel AA, Alsandook T, Hadi Lafta M, Arias-Gonzáles JL, Amin AH, Maaliw Iii RR. The developing role of extracellular vesicles in autoimmune diseases: special attention to mesenchymal stem cell-derived extracellular vesicles. Int Immunopharmacol 2023; 122:110531. [PMID: 37437434 DOI: 10.1016/j.intimp.2023.110531] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/10/2023] [Accepted: 06/16/2023] [Indexed: 07/14/2023]
Abstract
Autoimmune diseases are complex, chronic inflammatory conditions initiated by the loss of immunological tolerance to self-antigens. Nowadays, there is no effective and useful therapy for autoimmune diseases, and the existing medications have some limitations due to their nonspecific targets and side effects. During the last few decades, it has been established that mesenchymal stem cells (MSCs) have immunomodulatory functions. It is proposed that MSCs can exert an important therapeutic effect on autoimmune disorders. In parallel with these findings, several investigations have shown that MSCs alleviate autoimmune diseases. Intriguingly, the results of studies have demonstrated that the effective roles of MSCs in autoimmune diseases do not depend on direct intercellular communication but on their ability to release a wide spectrum of paracrine mediators such as growth factors, cytokines and extracellular vehicles (EVs). EVs that range from 50 to 5,000 nm were produced by almost any cell type, and these nanoparticles participate in homeostasis and intercellular communication via the transfer of a broad range of biomolecules such as modulatory proteins, nucleic acids (DNA and RNA), lipids, cytokines, and metabolites. EVs derived from MSCs display the exact properties of MSCs and can be safer and more beneficial than their parent cells. In this review, we will discuss the features of MSCs and their EVs, EVs biogenesis, and their cargos, and then we will highlight the existing discoveries on the impacts of EVs from MSCs on autoimmune diseases such as multiple sclerosis, arthritis rheumatic, inflammatory bowel disease, Type 1 diabetes mellitus, systemic lupus erythematosus, autoimmune liver diseases, Sjögren syndrome, and osteoarthritis, suggesting a potential alternative for autoimmune conditions therapy.
Collapse
Affiliation(s)
- Geovanny Genaro Reivan Ortiz
- Laboratory of Basic Psychology, Behavioral Analysis and Programmatic Development (PAD-LAB), Catholic University of Cuenca, Cuenca, Ecuador
| | - Neelam Hazoor Zaidi
- Umanand Prasad School of Medicine and Health Science, The University of Fiji, Saweni Campus, Lautoka, Fiji
| | | | | | - Tahani Alsandook
- Dentistry Department, Al-Turath University College, Baghdad, Iraq
| | | | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | - Renato R Maaliw Iii
- College of Engineering, Southern Luzon State University, Lucban, Quezon, Philippines.
| |
Collapse
|
22
|
Nouralishahi A, Fazlinejad N, Pecho RDC, Zaidan HK, Kheradjoo H, Amin AH, Mohammadzadehsaliani S. Pathological role of inflammation in ocular disease progress and its targeting by mesenchymal stem cells (MSCs) and their exosome; current status and prospect. Pathol Res Pract 2023; 248:154619. [PMID: 37406377 DOI: 10.1016/j.prp.2023.154619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/07/2023]
Abstract
Because of their unique capacity for differentiation to a diversity of cell lineages and immunosuppressive properties, mesenchymal stem cells (MSC) are being looked at as a potential new treatment option in ophthalmology. The MSCs derived from all tissue sources possess immunomodulatory attributes through cell-to-cell contact and releasing a myriad of immunomodulatory factors (IL-10, TGF-β, growth-related oncogene (GRO), indoleamine 2,3 dioxygenase (IDO), nitric oxide (NO), interleukin 1 receptor antagonist (IL-1Ra), prostaglandin E2 (PGE2)). Such mediators, in turn, alter both the phenotype and action of all immune cells that serve a pathogenic role in the progression of inflammation in eye diseases. Exosomes from MSCs, as natural nano-particles, contain the majority of the bioactive components of parental MSCs and can easily by-pass all biological barriers to reach the target epithelial and immune cells in the eye without interfering with nearby parenchymal cells, thus having no serious side effects. We outlined the most recent research on the molecular mechanisms underlying the therapeutic benefits of MSC and MSC-exosome in the treatment of inflammatory eye diseases in the current article.
Collapse
Affiliation(s)
- Alireza Nouralishahi
- Isfahan Eye Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; KIMS Hospital, Oman
| | | | | | - Haider Kamil Zaidan
- Department of Medical Laboratories Techniques, Al-Mustaqbal University College, Hillah, Babylon, Iraq
| | | | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura 35516, Egypt
| | | |
Collapse
|
23
|
Zhang Y, Yang M, Xie H, Hong F, Yang S. Role of miRNAs in Rheumatoid Arthritis Therapy. Cells 2023; 12:1749. [PMID: 37443783 PMCID: PMC10340706 DOI: 10.3390/cells12131749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/09/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterized by autoimmunity, synovial inflammation and joint destruction. Pannus formation in the synovial cavity can cause irreversible damage to the joint and cartilage and eventually permanent disability. Current conventional treatments for RA have limitations regarding efficacy, safety and cost. microRNA (miRNA) is a type of non-coding RNA (ncRNA) that regulates gene expression at the post-transcriptional level. The dysregulation of miRNA has been observed in RA patients and implicated in the pathogenesis of RA. miRNAs have emerged as potential biomarkers or therapeutic agents. In this review, we explore the role of miRNAs in various aspects of RA pathophysiology, including immune cell imbalance, the proliferation and invasion of fibroblast-like synovial (FLS) cell, the dysregulation of inflammatory signaling and disturbance in angiogenesis. We delve into the regulatory effects of miRNAs on Treg/Th17 and M1/M2 polarization, the activation of the NF-κB/NLRP3 signaling pathway, neovascular formation, energy metabolism induced by FLS-cell-induced energy metabolism, apoptosis, osteogenesis and mobility. These findings shed light on the potential applications of miRNAs as diagnostic or therapeutic biomarkers for RA management. Furthermore, there are some strategies to regulate miRNA expression levels by utilizing miRNA mimics or exosomes and to hinder miRNA activity via competitive endogenous RNA (ceRNA) network-based antagonists. We conclude that miRNAs offer a promising avenue for RA therapy with unlimited potential.
Collapse
Affiliation(s)
- Yiping Zhang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Queen Mary School, Nanchang University, Nanchang 330006, China
| | - Meiwen Yang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Department of Physiology, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344100, China
| | - Hongyan Xie
- Department of Foreign Language, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China;
| | - Fenfang Hong
- Experimental Centre of Pathogen Biology, Nanchang University, Nanchang 330031, China
| | - Shulong Yang
- Key Laboratory of Chronic Diseases, Fuzhou Medical University, Fuzhou 344000, China; (Y.Z.); (M.Y.)
- Department of Physiology, Fuzhou Medical College of Nanchang University, Fuzhou 344100, China
- Technology Innovation Center of Chronic Disease Research in Fuzhou City, Fuzhou Science and Technology Bureau, Fuzhou 344100, China
| |
Collapse
|
24
|
Gerami MH, Khorram R, Rasoolzadegan S, Mardpour S, Nakhaei P, Hashemi S, Al-Naqeeb BZT, Aminian A, Samimi S. Emerging role of mesenchymal stem/stromal cells (MSCs) and MSCs-derived exosomes in bone- and joint-associated musculoskeletal disorders: a new frontier. Eur J Med Res 2023; 28:86. [PMID: 36803566 PMCID: PMC9939872 DOI: 10.1186/s40001-023-01034-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023] Open
Abstract
Exosomes are membranous vesicles with a 30 to 150 nm diameter secreted by mesenchymal stem/stromal cells (MSCs) and other cells, such as immune cells and cancer cells. Exosomes convey proteins, bioactive lipids, and genetic components to recipient cells, such as microRNAs (miRNAs). Consequently, they have been implicated in regulating intercellular communication mediators under physiological and pathological circumstances. Exosomes therapy as a cell-free approach bypasses many concerns regarding the therapeutic application of stem/stromal cells, including undesirable proliferation, heterogeneity, and immunogenic effects. Indeed, exosomes have become a promising strategy to treat human diseases, particularly bone- and joint-associated musculoskeletal disorders, because of their characteristics, such as potentiated stability in circulation, biocompatibility, low immunogenicity, and toxicity. In this light, a diversity of studies have indicated that inhibiting inflammation, inducing angiogenesis, provoking osteoblast and chondrocyte proliferation and migration, and negative regulation of matrix-degrading enzymes result in bone and cartilage recovery upon administration of MSCs-derived exosomes. Notwithstanding, insufficient quantity of isolated exosomes, lack of reliable potency test, and exosomes heterogeneity hurdle their application in clinics. Herein, we will deliver an outline respecting the advantages of MSCs-derived exosomes-based therapy in common bone- and joint-associated musculoskeletal disorders. Moreover, we will have a glimpse the underlying mechanism behind the MSCs-elicited therapeutic merits in these conditions.
Collapse
Affiliation(s)
- Mohammad Hadi Gerami
- grid.412571.40000 0000 8819 4698Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roya Khorram
- grid.412571.40000 0000 8819 4698Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheil Rasoolzadegan
- grid.411600.2Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Mardpour
- grid.411705.60000 0001 0166 0922Department of Radiology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooria Nakhaei
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheyla Hashemi
- grid.411036.10000 0001 1498 685XObstetrician, Gynaecology & Infertility Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Aminian
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Sahar Samimi
- Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Huang H, Ma S, Xing X, Su X, Xu X, Tang Q, Gao X, Yang J, Li M, Liang C, Wu Y, Liao L, Tian W. Muscle-derived extracellular vesicles improve disuse-induced osteoporosis by rebalancing bone formation and bone resorption. Acta Biomater 2023; 157:609-624. [PMID: 36526242 DOI: 10.1016/j.actbio.2022.12.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Osteoporosis is a highly prevalent skeletal bone disorder worldwide with characteristics of reduced bone mass and increased risk of osteoporotic fractures. It has been predicted to become a global challenge with the aging of the world population. However, the current therapy based on antiresorptive drugs and anabolic drugs has unwanted side effects. Although cell-based treatments have shown therapeutic effects for osteoporosis, there are still some limitations inhibiting the process of clinical application. In the present study, we developed EVs derived from skeletal muscle tissues (Mu-EVs) as a cell-free therapy to treat disuse-induced osteoporosis. Our results showed that Mu-EVs could be prepared easily and abundantly from skeletal muscle tissues, and that these Mu-EVs had typical features of extracellular vesicles. In vitro studies demonstrated that Mu-EVs from normal skeletal muscles could be phagocytized by bone marrow stromal/stem cells (BMSCs) and osteoclasts (OCs), and promoted osteogenic differentiation of BMSCs while inhibited OCs formation. Correspondingly, Mu-EVs from atrophic skeletal muscles attenuated the osteogenesis of BMSCs and strengthened the osteoclastogenesis of monocytes. In vivo experiments revealed that Mu-EVs could efficiently reverse disuse-induced osteoporosis by enhancing bone formation and suppressing bone resorption. Collectively, our results suggest that Mu-EVs may be a potential cell-free therapy for osteoporosis treatment. STATEMENT OF SIGNIFICANCE: Osteoporosis is a highly prevalent skeletal bone disorder worldwide and has become a global health concern with the aging of the world population. The current treatment for osteoporosis has unwanted side effects. Extracellular veiscles (EVs) from various cell sources are a promising candidate for osteoporosis treatment. In the present study, our team established protocols to isolate EVs from culture supernatant of skeletal muscles (Mu-EVs). Uptake of Mu-EVs by BMSCs and osteoclasts influences the balance of bone remodeling via promoting the osteogenic differentiation of BMSCs and inhibiting the osteoclasts formation of monocytes. In addition, exogenous Mu-EVs from normal skeletal muscles are proved to reverse the disuse-induced osteoporosis. We provide experimental evidence that Mu-EVs therapy is a potential cell-free platform for osteoporosis treatment towards clinical application.
Collapse
Affiliation(s)
- Haisen Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, China
| | - Shixing Ma
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, China
| | - Xiaotao Xing
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, China
| | - Xiaoxia Su
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, China..
| | - Xun Xu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, China
| | - Qi Tang
- West China School of Public Health & West China Fourth Hospital, No.21, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, China
| | - Xin Gao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, China
| | - Jian Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, China
| | - Maojiao Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, China
| | - Cheng Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, China
| | - Yutao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, China
| | - Li Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Engineering Research Center of Oral Translational Medicine, Ministry of Education & National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, No.14, 3Rd Section of Ren Min Nan Rd. Chengdu, Sichuan 610041, China..
| |
Collapse
|
26
|
Cheung KCP, Jiao M, Xingxuan C, Wei J. Extracellular vesicles derived from host and gut microbiota as promising nanocarriers for targeted therapy in osteoporosis and osteoarthritis. Front Pharmacol 2023; 13:1051134. [PMID: 36686680 PMCID: PMC9859449 DOI: 10.3389/fphar.2022.1051134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/21/2022] [Indexed: 01/08/2023] Open
Abstract
Osteoporosis (OP), a systemic bone disease that causes structural bone loss and bone mass loss, is often associated with fragility fractures. Extracellular vesicles (EVs) generated by mammalian and gut bacteria have recently been identified as important mediators in the intercellular signaling pathway that may play a crucial role in microbiota-host communication. EVs are tiny membrane-bound vesicles, which range in size from 20 to 400 nm. They carry a variety of biologically active substances across intra- and intercellular space. These EVs have developed as a promising research area for the treatment of OP because of their nanosized architecture, enhanced biocompatibility, reduced toxicity, drug loading capacity, ease of customization, and industrialization. This review describes the latest development of EVs derived from mammals and bacteria, including their internalization, isolation, biogenesis, classifications, topologies, and compositions. Additionally, breakthroughs in chemical sciences and the distinctive biological features of bacterial extracellular vesicles (BEVs) allow for the customization of modified BEVs for the therapy of OP. In conclusion, we give a thorough and in-depth summary of the main difficulties and potential future of EVs in the treatment of OP, as well as highlight innovative uses and choices for the treatment of osteoarthritis (OA).
Collapse
Affiliation(s)
- Kenneth Chat Pan Cheung
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Ma Jiao
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Chen Xingxuan
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
| | - Jia Wei
- Hong Kong Traditional Chinese Medicine Phenome Research Center, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China
- Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, China
| |
Collapse
|
27
|
Xu W, Wan S, Xie B, Song X. Novel potential therapeutic targets of alopecia areata. Front Immunol 2023; 14:1148359. [PMID: 37153617 PMCID: PMC10154608 DOI: 10.3389/fimmu.2023.1148359] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/05/2023] [Indexed: 05/10/2023] Open
Abstract
Alopecia areata (AA) is a non-scarring hair loss disorder caused by autoimmunity. The immune collapse of the hair follicle, where interferon-gamma (IFN-γ) and CD8+ T cells accumulate, is a key factor in AA. However, the exact functional mechanism remains unclear. Therefore, AA treatment has poor efficacy maintenance and high relapse rate after drug withdrawal. Recent studies show that immune-related cells and molecules affect AA. These cells communicate through autocrine and paracrine signals. Various cytokines, chemokines and growth factors mediate this crosstalk. In addition, adipose-derived stem cells (ADSCs), gut microbiota, hair follicle melanocytes, non-coding RNAs and specific regulatory factors have crucial roles in intercellular communication without a clear cause, suggesting potential new targets for AA therapy. This review discusses the latest research on the possible pathogenesis and therapeutic targets of AA.
Collapse
Affiliation(s)
- Wen Xu
- School of Medicine, Zhejiang University, Hangzhou, China
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Sheng Wan
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo Xie
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiuzu Song
- Department of Dermatology, Hangzhou Third People’s Hospital, Affiliated Hangzhou Dermatology Hospital, Zhejiang University School of Medicine, Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Xiuzu Song,
| |
Collapse
|
28
|
Xue E, Minniti A, Alexander T, Del Papa N, Greco R, on behalf of The Autoimmune Diseases Working Party (ADWP) of the European Society for Blood and Marrow Transplantation (EBMT). Cellular-Based Therapies in Systemic Sclerosis: From Hematopoietic Stem Cell Transplant to Innovative Approaches. Cells 2022; 11:3346. [PMID: 36359742 PMCID: PMC9658618 DOI: 10.3390/cells11213346] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 08/28/2023] Open
Abstract
Systemic sclerosis (SSc) is a systemic disease characterized by autoimmune responses, vasculopathy and tissue fibrosis. The pathogenic mechanisms involve a wide range of cells and soluble factors. The complexity of interactions leads to heterogeneous clinical features in terms of the extent, severity, and rate of progression of skin fibrosis and internal organ involvement. Available disease-modifying drugs have only modest effects on halting disease progression and may be associated with significant side effects. Therefore, cellular therapies have been developed aiming at the restoration of immunologic self-tolerance in order to provide durable remissions or to foster tissue regeneration. Currently, SSc is recommended as the 'standard indication' for autologous hematopoietic stem cell transplantation by the European Society for Blood and Marrow Transplantation. This review provides an overview on cellular therapies in SSc, from pre-clinical models to clinical applications, opening towards more advanced cellular therapies, such as mesenchymal stem cells, regulatory T cells and potentially CAR-T-cell therapies.
Collapse
Affiliation(s)
- Elisabetta Xue
- Hematopoietic and Bone Marrow Transplant Unit, San Raffaele Hospital, 20132 Milan, Italy
| | - Antonina Minniti
- Department of Rheumatology, ASST G. Pini-CTO, 20122 Milan, Italy
| | - Tobias Alexander
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Rheumatology and Clinical Immunology, 10117 Berlin, Germany
- Deutsches Rheuma-Forschungszentrum (DRFZ), an Institute of the Leibniz Association, 10117 Berlin, Germany
| | | | - Raffaella Greco
- Hematopoietic and Bone Marrow Transplant Unit, San Raffaele Hospital, 20132 Milan, Italy
| | | |
Collapse
|
29
|
Alwaily ER, Abood MS, Flaih MH. Identification of Candida Krusei by 18S rRNA Gene and Investigation of SAP1 Gene in Samples Isolated from Female Genital Tract Infection. 2022 INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT) 2022:315-319. [DOI: 10.1109/ismsit56059.2022.9932855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
| | - Meethaq S. Abood
- College of Education for Pure Science, Thi-Qar University,Department of Biology,Thi-Qar,Iraq
| | - Mohammed H. Flaih
- Nasiriyah Technical Institute, Southern Technical University,Department of Nursing Techniques,Nasiriyah,Iraq
| |
Collapse
|
30
|
Hussein AR, Salim AR, Aziz MY, Abaas HAHQ, AL-Erjan AM, Alhachami FR. Genetic Diagnosis of Entamoeba Histolytica in Patients with Acute Diarrhea in AL-Rifai City/Thi-Qar province. 2022 INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT) 2022:320-324. [DOI: 10.1109/ismsit56059.2022.9932861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
| | | | | | | | - Amran M. AL-Erjan
- College of Health and Medical Technologies, Al-Ayen University,Department of Anesthesiology,Thi-Qar,Iraq
| | | |
Collapse
|
31
|
Abdulali AA, Murad SK, Shahid RA. Clinical Study of Serum Gamma- Glutamyl Levels in Cigarette Smokers with Nonalcoholic Fatty Liver Disease, Governorate – Iraq. 2022 INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT) 2022:176-181. [DOI: 10.1109/ismsit56059.2022.9932771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
| | - Sarah Kadhim Murad
- College of Health and Medical Technology, Al-Ayen University,Thi-Qar,Iraq
| | - Rola Ali Shahid
- College of Health and Medical Technology, Al-Ayen University,Thi-Qar,Iraq
| |
Collapse
|
32
|
Kadham MJ, Abdullah RN, AL-Erjan AM. Relationship between Gene Polymorphism of Vitamin D Receptor with Coronary Heart Disease (CHD) in Baghdad Province /Iraq. 2022 INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT) 2022:340-344. [DOI: 10.1109/ismsit56059.2022.9932825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
| | - Rawaa najim Abdullah
- College of Health & Medical Technology, Middle technology university,Baghdad,Iraq
| | - Amran M. AL-Erjan
- College of Health & Medical Technology, AL- Ayen University,Thi-Qar,Iraq
| |
Collapse
|
33
|
Al-Hchaimi HA, Alhamaidah MF, Alkhfaji H, Qasim MT, Al-Nussairi AH, Abd-Alzahra HS. Intraoperative Fluid Management for Major Neurosurgery: Narrative study. 2022 INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT) 2022. [DOI: 10.1109/ismsit56059.2022.9932659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Affiliation(s)
- Hussein Ali Al-Hchaimi
- College of Health and Medical Technology, Al-Ayen University Nasiriya heart center,Department of Anesthesia,Thi-Qar,Iraq
| | - Majid Fakhir Alhamaidah
- College of Health and Medical Technology, Al-Ayen University AL-Rifaei General Hospital,Department of Anesthesia,Thi-Qar,Iraq
| | - Hussein Alkhfaji
- College of Health and Medical Technology, Al-Ayen University Bent AL Huda hospital,Department of Anesthesia,Thi-Qar,Iraq
| | - Maytham T. Qasim
- College of Health and Medical Technology, Al-Ayen University,Department of Anesthesia,Thi-Qar,Iraq
| | | | | |
Collapse
|
34
|
Sahibsharrif H, Almohsen MAK, Al-Husseini Y, AL-Erjan AM. Correlation of Polyomaviruses (PyV) Infection with The Incidence of Breast Cancer in Iraqi Women. 2022 INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT) 2022:165-170. [DOI: 10.1109/ismsit56059.2022.9932818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Harithabdual Sahibsharrif
- College of Health and Medical Technology, Al-Ayen University,Department of Medical Laboratory,Thi-Qar,Iraq
| | - Mustafa Ali Kayem Almohsen
- College of Health and Medical Technology, Al-Ayen University,Department of Medical Laboratory,Thi-Qar,Iraq
| | - Yaqeen Al-Husseini
- College of Health and Medical Technology, Al-Ayen University,Department of Anesthesia,Thi-Qar,Iraq
| | - Amran M. AL-Erjan
- College of Health and Medical Technology, Al-Ayen University,Department of Anesthesia,Thi-Qar,Iraq
| |
Collapse
|
35
|
Abed MH, Hassan MK. Detection of Diarrhoeagenic Escherichia Coli Among Other Bacterial Species Isolated from Children Patients by Automated Methods and Culture based Techniques. 2022 INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT) 2022:189-193. [DOI: 10.1109/ismsit56059.2022.9932826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Murtada Hasan Abed
- College of Health and Medical Technology, Alayen university,Thi-Qar,Iraq
| | - Mustafa. K. Hassan
- College of Health and Medical Technology, Alayen university,Thi-Qar,Iraq
| |
Collapse
|
36
|
Hassan ZF, Kassim al-Rekaby H, Hussein HS, Hassan MR, Hussain AKA, Alhachami FR. Interleukin_4 gene polymorphisms and connect with asthma patients province of Thi-Qar /Iraq. 2022 INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT) 2022:308-310. [DOI: 10.1109/ismsit56059.2022.9932715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Zahraa F. Hassan
- Al-Ayen University,Department of Radiology collage of health and medical technology,Thi-Qar,Iraq
| | - Heba Kassim al-Rekaby
- Al-Ayen University,Department of Radiology collage of health and medical technology,Thi-Qar,Iraq
| | - Hiba Sh. Hussein
- Al-Ayen University,Department of Radiology collage of health and medical technology,Thi-Qar,Iraq
| | - Murtadah R. Hassan
- Al-Ayen University,Department of Radiology collage of health and medical technology,Thi-Qar,Iraq
| | - Ahmed K. Abdul Hussain
- Al-Ayen University,Department of Radiology collage of health and medical technology,Thi-Qar,Iraq
| | - Firas Rahi Alhachami
- Al-Ayen University,Department of Radiology collage of health and medical technology,Thi-Qar,Iraq
| |
Collapse
|
37
|
Atiyah KK. Application of The Evans Blue Dye for The Study of Permeability of The Blood Brain Barrier in Rodents. 2022 INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT) 2022:171-175. [DOI: 10.1109/ismsit56059.2022.9932704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
38
|
Albattat ARA. Burnout Among Nursing Workers Who Provide Nursing Care for People Infected with COVID-19. 2022 INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT) 2022:159-164. [DOI: 10.1109/ismsit56059.2022.9932791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Abdul Rahman A. Albattat
- Treaning &|Human Development Center, Dhi-Qar Health Director College of Health and Medical Technology, Al-Ayen University,Thi-Qar,Iraq
| |
Collapse
|
39
|
Hussein KA, H.Theieel S, Al-Sawad AR. Role of Nitric Oxide and some Antioxidants in Women with Pregnancy-induced Hypertension. 2022 INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT) 2022:337-339. [DOI: 10.1109/ismsit56059.2022.9932713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Khansaa A. Hussein
- dentistry College, National University of science and Technology,Thi-Qar,Iraq
| | - Sara H.Theieel
- Pharmacy College, National University of science and Technology,Thi-Qar,Iraq
| | | |
Collapse
|
40
|
Abdulhasan MJ, Abdulaali HS, Al-Doori QL, Dakheel HS, Al-Abdan RH, Alhachami FR, Hameed AJ, Shoia SJ, Mansour MM. Physicochemical and Heavy Metal Properties of Soil Samples in Waste Disposal Site, Suq Al-Shyokh, Iraq. 2022 INTERNATIONAL SYMPOSIUM ON MULTIDISCIPLINARY STUDIES AND INNOVATIVE TECHNOLOGIES (ISMSIT) 2022:345-350. [DOI: 10.1109/ismsit56059.2022.9932750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
| | - Hayder Saadoon Abdulaali
- Universiti Kebangsaan Malaysia Bangi,Faculty of Engineering and Built Environment,Department of Architecture,Selangor,Malaysia
| | - Qusay Luay Al-Doori
- Northern Technical Uinversity,Engineering Faculty,Environment Department,Mosul,Iraq
| | - Heba Sahib Dakheel
- College of Arts, Thi-Qar University,Department of Geography,Thi-Qar,Iraq
| | | | | | | | - Sarah Jawad Shoia
- College of Health & Medical Technology, Al-Ayen University,Th-Qar,Iraq
| | - Mustafa M. Mansour
- College of Engineering, Thi-Qar University,Department of Mechanical Engineering,Thi-Qar,Iraq
| |
Collapse
|
41
|
Matsuzaka Y, Yashiro R. Regulation of Extracellular Vesicle-Mediated Immune Responses against Antigen-Specific Presentation. Vaccines (Basel) 2022; 10:1691. [PMID: 36298556 PMCID: PMC9607341 DOI: 10.3390/vaccines10101691] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 11/24/2022] Open
Abstract
Extracellular vesicles (EVs) produced by various immune cells, including B and T cells, macrophages, dendritic cells (DCs), natural killer (NK) cells, and mast cells, mediate intercellular communication and have attracted much attention owing to the novel delivery system of molecules in vivo. DCs are among the most active exosome-secreting cells of the immune system. EVs produced by cancer cells contain cancer antigens; therefore, the development of vaccine therapy that does not require the identification of cancer antigens using cancer-cell-derived EVs may have significant clinical implications. In this review, we summarise the molecular mechanisms underlying EV-based immune responses and their therapeutic effects on tumour vaccination.
Collapse
Affiliation(s)
- Yasunari Matsuzaka
- Division of Molecular and Medical Genetics, Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo 108-8639, Japan
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
| | - Ryu Yashiro
- Administrative Section of Radiation Protection, National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira 187-8551, Tokyo, Japan
- Department of Infectious Diseases, Kyorin University School of Medicine, 6-20-2 Shinkawa, Mitaka-shi 181-8611, Tokyo, Japan
| |
Collapse
|
42
|
Wu F, Gao J, Kang J, Wang X, Niu Q, Liu J, Zhang L. Knowledge Mapping of Exosomes in Autoimmune Diseases: A Bibliometric Analysis (2002–2021). Front Immunol 2022; 13:939433. [PMID: 35935932 PMCID: PMC9353180 DOI: 10.3389/fimmu.2022.939433] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/24/2022] [Indexed: 12/14/2022] Open
Abstract
Background Autoimmune diseases (AIDs) are a class of chronic disabling diseases characterized by inflammation and damage to muscles, joints, bones, and internal organs. Recent studies have shown that much progress has been made in the research of exosomes in AIDs. However, there is no bibliometric analysis in this research field. This study aims to provide a comprehensive overview of the knowledge structure and research hotspots of exosomes in AIDs through bibliometrics. Method Publications related to exosomes in AIDs from 2002 to 2021 were searched on the web of science core collection (WoSCC) database. VOSviewers, CiteSpace and R package “bibliometrix” were used to conduct this bibliometric analysis. Results 312 articles from 48 countries led by China and the United States were included. The number of publications related to exosomes in AIDs is increasing year by year. Central South University, Sun Yat Sen University, Tianjin Medical University and University of Pennsylvania are the main research institutions. Frontiers in immunology is the most popular journal in this field, and Journal of Immunology is the most co-cited journal. These publications come from 473 authors among which Ilias Alevizos, Qianjin Lu, Wei Wei, Jim Xiang and Ming Zhao had published the most papers and Clotilde Théry was co-cited most often. Studying the mechanism of endogenous exosomes in the occurrence and development of AIDs and the therapeutic strategy of exogenous exosomes in AIDs are the main topics in this research field. “Mesenchymal stem cells”, “microRNA”, “biomarkers”, “immunomodulation”, and “therapy” are the primary keywords of emerging research hotspots. Conclusion This is the first bibliometric study that comprehensively summarizes the research trends and developments of exosomes in AIDs. This information identifies recent research frontiers and hot directions, which will provide a reference for scholars studying exosomes.
Collapse
Affiliation(s)
- Fengping Wu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinfang Gao
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
| | - Jie Kang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xuexue Wang
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Qing Niu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jiaxi Liu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Liyun Zhang
- Department of Rheumatology, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Liyun Zhang,
| |
Collapse
|
43
|
Dakhil HA, Easa AM, Hussein AY, Bustan RA, Najm HS. Diagnostic role of dynamic contrast-enhanced magnetic resonance imaging in differentiating breast lesions. JOURNAL OF POPULATION THERAPEUTICS AND CLINICAL PHARMACOLOGY = JOURNAL DE LA THERAPEUTIQUE DES POPULATIONS ET DE LA PHARMACOLOGIE CLINIQUE 2022; 29:e88-e94. [PMID: 35848201 DOI: 10.47750/jptcp.2022.912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/03/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVE This study aimed to assess the diagnostic role of perfusion weighted image (DCE-PWI) to differentiate benign from malignant breast lesions. PATIENTS AND METHODS The study comprised 32 women who had mammography and/or breast ultrasonography findings that were clinically questionable. All patients were fasting during the magnetic resonance imaging (MRI) test to avoid nausea or dynamic contrast-enhanced vomiting from the contrast medium. RESULT In this study, we observed the form of the dynamic curve (time and signal intensity curve) type I (persistent curve) was noted in 12 lesions (37.5%): 10 lesions were benign and two lesions were malignant; type II (plateau curve) was noted in eight lesions (25%): three lesions were benign and five lesions were malignant, and type III (washout curve) noted in 12 lesions (37.5%): one lesion was benign and 11 lesions were malignant. CONCLUSIONS The dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) perfusion technique plays an important role in differentiating benign and malignant tumors in breast cancer.
Collapse
Affiliation(s)
- Hussein Abed Dakhil
- Department of Technology of Radiology and Radiotherapy, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Department of Radiological, Collage of Health & Medical Technology, Al-Ayen University, Thi-Qar, Iraq;
| | - Ahmed Mohamedbaqer Easa
- Department of Technology of Radiology and Radiotherapy, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Department of Radiological, Collage of Health & Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Ammar Yaser Hussein
- Medical Imaging Department, Al-Haboubi Teaching Hospital, Dhi Qar Health Department, Ministry of Health
| | - Raad Ajeel Bustan
- Department of Technology of Radiology and Radiotherapy, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Department of Radiological, Collage of Health & Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| | - Hayder Suhail Najm
- Department of Technology of Radiology and Radiotherapy, Tehran University of Medical Sciences, International Campus, Tehran, Iran
- Department of Radiological, Collage of Health & Medical Technology, Al-Ayen University, Thi-Qar, Iraq
| |
Collapse
|
44
|
Abdullah AH, Dehiol RK. Traditional cauterization among children in Bint Al-Huda Hospital in Al-Nasiriya City, Iraq. JOURNAL OF POPULATION THERAPEUTICS AND CLINICAL PHARMACOLOGY = JOURNAL DE LA THERAPEUTIQUE DES POPULATIONS ET DE LA PHARMACOLOGIE CLINIQUE 2022; 29:e40-e51. [PMID: 35848196 DOI: 10.47750/jptcp.2022.930] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/14/2022] [Indexed: 01/03/2025]
Abstract
Cutaneous cautery is a form of traditional medicine practiced in many countries. It was mentioned in the books of many ancient, pre-, and post-Islamic scholars. Patients may resort to traditional medicine (cauterization in particular) for many reasons. This study aims is to acquire more knowledge about the cautery practices and the reasons for practicing cautery in children together with other implications from adverse events of the cautery. This is a cross-sectional study in which 133 children were enrolled (77 males and 56 females with age ranged from 0.5 to 108 months) who had been admitted to Bint Al-Huda Maternity and Childhood Teaching Hospital in Nasiriya city, Thi-Qar Governorate, Southern Iraq, from December 1, 2019 to end of July 2020). The study found that >80% of cauterized children were below 1 year, (53.4%) of rural residency. Parents of the cauterized children were mainly of illiterate and primary education constituting the highest percentage (91.6%) of cauterized children were of low per capita monthly income. The grandmothers were advisors in more than half of the cauterized children, a vast majority of the advisors were either illiterate or had primary education, The person performing the cautery was a traditional healer (95.5%). Cauterization was done mostly in the head and abdomen, and a vast majority of it was done by a lighted cotton-tipped application (97%). The number of cauterization points ranged from 2 to 25 with a mean of 8.8 cautery marks. Approximately 59% of patients did not improve or worsened, whereas 30% showed partial improvement, and 11% improved. Complications were seen in 9% of the cases. There is a necessity to spread awareness regarding the dangers and complications of traditional cauterization in health care centers by health care providers. Improving the delivery of medical services to areas far from the city centers as well as spreading health awareness by use of multimedia together with eradicating illiteracy is needed.
Collapse
Affiliation(s)
| | - Raid Kareem Dehiol
- Assistant Professor F.I.B.M.S, Department of Pediatrics, College of Medicine, University of Thi-Qar, Nasiriyah, Iraq;
| |
Collapse
|
45
|
Alasady MS, Kanj A, Kanj AEH. Evaluation of the outcomes of using iliac bone graft for reconstruction of traumatic orbital floor fractures. JOURNAL OF POPULATION THERAPEUTICS AND CLINICAL PHARMACOLOGY = JOURNAL DE LA THERAPEUTIQUE DES POPULATIONS ET DE LA PHARMACOLOGIE CLINIQUE 2022; 29:e71-e78. [PMID: 35848199 DOI: 10.47750/jptcp.2022.933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Orbital floor fracture is common in facial trauma patients. Although treated through surgical repair, the orbital floor fractures are associated with risk of persisting sensibility disorders, enophthalmos, and permanent diplopia due to complex anatomy of the orbit, time of surgery, and the reconstructive material used for such repairing.Failure of early recognition and treatment of these traumatic injuries may result in functional and cosmetic problems. Autogenous bone grafts are the gold standard for reconstruction of maxillofacial defects. The iliac crest is also considered the most ideal donor site for bone grafting when a large amount of bone is needed. OBJECTIVE To assess the outcome of early repair of orbital floor fractures regarding enophthalmos, double vision, extrusion, and gait disturbance. PATIENTS AND METHODS A total of 15 patients, all with orbital floor fracture, were enrolled, of which 12 of them were having pure blow-out fractures and 3 patients had impure blow-out fractures. All had undergone primary surgical reconstruction of the orbital floor by autogenous anterior iliac crest within 5-14 days of the injury. RESULTS The results were as follows: Postoperative complications at recipient site included diplopia (13.3%), enophthalmos (6.7%), and extrusion (6.7%). At the donor site, one patient had pain and the other had gait disturbances, both relieved within 1 month after treatment. CONCLUSIONS Less complications were reported postoperatively with the use of nonvascularized autogenous iliac bone graft.
Collapse
Affiliation(s)
- Mukhalled Salim Alasady
- Department of Oral and Maxillofacial Surgery, College of dentistry, Al-Ayen university, Thi-Qar, Iraq;
| | - Amer Kanj
- Department of Oral and Maxillofacial Surgery, College of dentistry, Al-Ayen university, Thi-Qar, Iraq
| | - Abd El Hadi Kanj
- Department of Orthodontics, College of Dentistry, Al-Ayen University, Thi-Qar, Iraq
| |
Collapse
|
46
|
Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23126480. [PMID: 35742923 PMCID: PMC9224400 DOI: 10.3390/ijms23126480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer membrane particles that play critical roles in intracellular communication through EV-encapsulated informative content, including proteins, lipids, and nucleic acids. Mesenchymal stem cells (MSCs) are pluripotent stem cells with self-renewal ability derived from bone marrow, fat, umbilical cord, menstruation blood, pulp, etc., which they use to induce tissue regeneration by their direct recruitment into injured tissues, including the heart, liver, lung, kidney, etc., or secreting factors, such as vascular endothelial growth factor or insulin-like growth factor. Recently, MSC-derived EVs have been shown to have regenerative effects against various diseases, partially due to the post-transcriptional regulation of target genes by miRNAs. Furthermore, EVs have garnered attention as novel drug delivery systems, because they can specially encapsulate various target molecules. In this review, we summarize the regenerative effects and molecular mechanisms of MSC-derived EVs.
Collapse
|
47
|
Xu W, Liu X, Qu W, Wang X, Su H, Li W, Cheng Y. Exosomes derived from fibrinogen-like protein 1-overexpressing bone marrow-derived mesenchymal stem cells ameliorates rheumatoid arthritis. Bioengineered 2022; 13:14545-14561. [PMID: 36694465 PMCID: PMC9995129 DOI: 10.1080/21655979.2022.2090379] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a most common chronic joint disease belonging to inflammatory autoimmune disease. The aim of this study was to determine the role and mechanism of bone marrow mesenchymal stem cells (BMSCs)-derived exosomes and fibrinogen-like protein 1 (FGL1) overexpression exosomes shuttled by BMSCs (FGL1-Exos) on RA. All of the exosomes were visualized by transmission electron microscope (TEM) and the characteristic proteins were detected by western blot. To investigate the therapeutic effect of FGL1-Exos, RA-FLSs were activated by TNF-α and RA rat model was established by collagen incomplete Freund's adjuvant. Cell viability, apoptosis, inflammation factors, and protein levels were detected by CCK-8, flow cytometry, enzyme-linked immunosorbent assay and western blot, respectively. Hematoxylin and eosin and safranin O staining were used to detect the histopathology changes. Cell apoptosis and FGL1 expression in knee joint were detected by immunofluorescence. The results showed that FGL1-Exos could inhibit the cell viability meanwhile increase the cell apoptosis in RA-FLSs. Meanwhile, FGL1-Exos could effectively suppress the inflammation score, joint destruction, and inflammatory response in RA rat model. FGL1-Exos directly inhibited cell apoptosis of RA-FLSs and RA rat model by suppressing the inflammatory cytokines, specific rheumatoid markers, immunological markers meanwhile meditating the NF-κB pathway. Our results indicate that FGL1 was a therapeutic potential target in RA therapy.
Collapse
Affiliation(s)
- Wenqiang Xu
- Department of Orthopaedics, the Affiliated Laishan Branch of Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Xiaofeng Liu
- Department of Traumatic Orthopaedics, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Wenqing Qu
- Department of Orthopaedics, YanTaiShan Hospital, Yantai, Shandong, China
| | - Xin Wang
- Department of Traumatic Orthopaedics, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Hao Su
- Department of Traumatic Orthopaedics, the Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Wenliang Li
- Department of Orthopaedics, YanTaiShan Hospital, Yantai, Shandong, China
| | - Yiheng Cheng
- Department of Orthopaedics, YanTaiShan Hospital, Yantai, Shandong, China
| |
Collapse
|
48
|
Tan Q, Wu C, Li L, Liang Y, Bai X, Shao W. Stem Cells as a Novel Biomedicine for the Repair of Articular Meniscus: Pharmacology and Applications. Front Pharmacol 2022; 13:897635. [PMID: 35559234 PMCID: PMC9086353 DOI: 10.3389/fphar.2022.897635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qiaoyin Tan
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Cuicui Wu
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Lei Li
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Yijie Liang
- Nova Doctors Group, Hunan Carnation Biotechnology Co., Ltd., Carnation Hospital, Changsha, China
| | - Xiaoyong Bai
- Nova Doctors Group, Hunan Carnation Biotechnology Co., Ltd., Carnation Hospital, Changsha, China
| | - Weide Shao
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|