1
|
Yang W, Lu B, Chen Q, Wang J, Zhou J, Li R, Lin Y, Zhang J. CRYAA activates the SIRT1-pi3K/AKT signaling pathway by suppressing mir-155-5p to protect the RPE. Arch Biochem Biophys 2025; 770:110435. [PMID: 40350053 DOI: 10.1016/j.abb.2025.110435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/20/2025] [Accepted: 04/22/2025] [Indexed: 05/14/2025]
Abstract
BACKGROUND Retinal degenerative diseases are important causes of blindness, and their pathogenesis is related to degenerative changes in the retinal pigment epithelium (RPE). αA-Crystallin (CRYAA) plays a role in maintaining cellular protein homeostasis and has been shown to protect the retina from stress; however, the detailed mechanisms involved in this protection are not known. METHODS In vitro, ARPE-19 cells stably overexpressing CRYAA were generated from CRYAA-RPE cells. The effects of CRYAA overexpression on H2O2-induced RPE cell apoptosis were assessed via CCK-8 assays, flow cytometry, and reactive oxygen species (ROS) quantification. Differences in miR-155-5p levels between RPE and CRYAA-RPE cells were determined via RT‒qPCR. SIRT1 was predicted as a downstream target gene of miR-155-5p, and the relative luciferase activities of NC, miR-155-5p mimic with SIRT1 WT 3'-UTR and SIRT1 MT 3'-UTR reporter plasmids were determined using dual luciferase gene reporter assays. The expression of PI3K/AKT signaling pathway-related proteins was assessed by Western blotting. For in vivo experiments, a mouse model of retinal degeneration was constructed with sodium iodate, and the extent of retinal damage was assessed via histopathological analysis. RESULTS In vitro experiments revealed that CRYAA overexpression significantly reduced apoptosis and decreased ROS levels as well as miR-155-5p expression. Additionally, the specific binding site of miR-155-5p to the SIRT1 3'-UTR was confirmed by bioinformatics prediction and a dual luciferase reporter assay. CRYAA overexpression increased SIRT1 expression, which further activated the PI3K/AKT signaling pathway, exerting a protective function. After the SIRT1 gene silencing or miR-155-5p overexpression, the PI3K/AKT signaling pathway was inhibited correspondingly. In vivo experiments revealed that vitreous Cryaa-AAV injection alleviated sodium iodate-induced retinal degeneration in mice, significantly improving retinal function. CONCLUSIONS CRYAA activates the PI3K/AKT signaling pathway by decreasing miR-155-5p expression and increasing SIRT1 level, which protects RPE cells from apoptosis. These findings provide a new approach for the treatment of retinal degenerative diseases.
Collapse
Affiliation(s)
- Weizhou Yang
- The First Clinical Medical College, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, Guangdong, PR China; Aier Eye Hospital, Jinan University, No. 191, Huanshi Middle Road, Guangzhou, 510071, Guangdong, PR China
| | - Bingxing Lu
- The First Clinical Medical College, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, Guangdong, PR China; Aier Eye Hospital, Jinan University, No. 191, Huanshi Middle Road, Guangzhou, 510071, Guangdong, PR China
| | - Qianyin Chen
- Aier Eye Hospital, Jinan University, No. 191, Huanshi Middle Road, Guangzhou, 510071, Guangdong, PR China
| | - Jiajia Wang
- Aier Eye Hospital, Jinan University, No. 191, Huanshi Middle Road, Guangzhou, 510071, Guangdong, PR China
| | - Jie Zhou
- Aier Eye Hospital, Jinan University, No. 191, Huanshi Middle Road, Guangzhou, 510071, Guangdong, PR China
| | - Rong Li
- The First Clinical Medical College, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, Guangdong, PR China; Aier Eye Hospital, Jinan University, No. 191, Huanshi Middle Road, Guangzhou, 510071, Guangdong, PR China
| | - Yanjun Lin
- The First Clinical Medical College, Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, Guangdong, PR China; Aier Eye Hospital, Jinan University, No. 191, Huanshi Middle Road, Guangzhou, 510071, Guangdong, PR China
| | - Jinglin Zhang
- The First Affiliated Hospital of Jinan University, 601 Huangpu Avenue West, Guangzhou, 510632, Guangdong, PR China; Aier Eye Hospital, Jinan University, No. 191, Huanshi Middle Road, Guangzhou, 510071, Guangdong, PR China.
| |
Collapse
|
2
|
Hansman DS, Lim K, Thomas D, Casson RJ, Peet DJ. Distinct metabolome and flux responses in the retinal pigment epithelium to cytokines associated with age-related macular degeneration: comparison of ARPE-19 cells and eyecups. Sci Rep 2025; 15:13012. [PMID: 40234500 PMCID: PMC12000464 DOI: 10.1038/s41598-025-93882-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/10/2025] [Indexed: 04/17/2025] Open
Abstract
Age-related macular degeneration (AMD) is associated with chronic inflammation of the retinal pigment epithelium (RPE) and elevated cytokines including TNFα, TGF-β, IL-6, and IL-1β. As a metabolic intermediary supporting aerobic glycolysis in the adjacent photoreceptors, the RPE's metabolic responses to inflammation and the optimal methods to study cytokine-driven metabolic programming remain unclear. We performed a rigorous comparison of ARPE-19 cells and rat eyecup metabolomes, revealing key distinctions. Rat eyecups exhibit higher levels of lactate and palmitate but depleted glutathione and high-energy nucleotides. Conversely, ARPE-19 cells are enriched with high-energy currency metabolites and the membrane phospholipid precursors phosphocholine and inositol. Both models showed contrasting responses to individual cytokines: ARPE-19 cells were more sensitive to TNFα, while eyecups responded more strongly to TGF-β2. Notably, a combined cytokine cocktail elicited stronger metabolic effects on ARPE-19 cells, more potently impacting both metabolite abundance (41 vs. 29) and glucose carbon flux (29 vs. 5), and influencing key RPE metabolites such as alanine, glycine, aspartate, proline, citrate, α-ketoglutarate, and palmitate. Overall, these findings position ARPE-19 cells as a more responsive platform for studying inflammatory cytokine effects on RPE metabolism and reveal critical RPE metabolites which may be linked with AMD pathogenesis.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Kelly Lim
- South Australian Health and Medical Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel Thomas
- South Australian Health and Medical Research Institute, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|
3
|
Narasimhan A, Min SH, Johnson LL, Roehrich H, Cho W, Her TK, Windschitl C, O'Kelly RD, Angelini L, Yousefzadeh MJ, McLoon LK, Hauswirth WW, Robbins PD, Skowronska‐Krawczyk D, Niedernhofer LJ. The Ercc1 -/Δ mouse model of XFE progeroid syndrome undergoes accelerated retinal degeneration. Aging Cell 2025; 24:e14419. [PMID: 39604117 PMCID: PMC11896507 DOI: 10.1111/acel.14419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/05/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Age-related macular degeneration (AMD) is a major cause of vision loss in older adults. AMD is caused by degeneration in the macula of the retina. The retina is the highest oxygen consuming tissue in our body and is prone to oxidative damage. DNA damage is one hallmark of aging implicated in loss of organ function. Genome instability has been associated with several disorders that result in premature vision loss. We hypothesized that endogenous DNA damage plays a causal role in age-related retinal changes. To address this, we used a genetic model of systemic depletion of expression of the DNA repair enzyme ERCC1-XPF. The neural retina and retinal pigment epithelium (RPE) from Ercc1-/Δ mice, which models a human progeroid syndrome, were compared to age-matched wild-type (WT) and old WT mice. By 3-months-of age, Ercc1-/Δ mice presented abnormal optokinetic and electroretinogram responses consistent with photoreceptor dysfunction and visual impairment. Ercc1-/Δ mice shared many ocular characteristics with old WT mice including morphological changes, elevated DNA damage markers (γ-H2AX and 53BP1), and increased cellular senescence in the neural retinal and RPE, as well as pathological angiogenesis. The RPE is essential for the metabolic health of photoreceptors. The RPE from Ercc1-/Δ mice displayed mitochondrial dysfunction causing a compensatory glycolytic shift, a characteristic feature of aging RPE. Hence, our study suggests spontaneous endogenous DNA damage promotes the hallmarks of age-related retinal degeneration.
Collapse
Affiliation(s)
- Akilavalli Narasimhan
- Institute on the Biology of Aging and MetabolismUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Seok Hong Min
- Department of OphthalmologyUniversity of FloridaGainesvilleFloridaUSA
| | - Laura L. Johnson
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Heidi Roehrich
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - William Cho
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision ResearchUniversity of California Irvine, School of MedicineIrvineCaliforniaUSA
| | - Tracy K. Her
- Department of Integrative Biology and PhysiologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Caeden Windschitl
- Institute on the Biology of Aging and MetabolismUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Ryan D. O'Kelly
- Institute on the Biology of Aging and MetabolismUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Luise Angelini
- Institute on the Biology of Aging and MetabolismUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Matthew J. Yousefzadeh
- Institute on the Biology of Aging and MetabolismUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
- Present address:
Department of MedicineColumbia University Medical CenterNew YorkNew YorkUSA
| | - Linda K. McLoon
- Department of Ophthalmology and Visual NeurosciencesUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Paul D. Robbins
- Institute on the Biology of Aging and MetabolismUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Dorota Skowronska‐Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision ResearchUniversity of California Irvine, School of MedicineIrvineCaliforniaUSA
| | - Laura J. Niedernhofer
- Institute on the Biology of Aging and MetabolismUniversity of Minnesota Medical SchoolMinneapolisMinnesotaUSA
- Department of Biochemistry, Molecular Biology and BiophysicsUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
4
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
5
|
Spitz MP, Anderson DR, Vrabec TR. An unusual pAIR: Anti-PKM2 antibody and occult pancreatic adenocarcinoma. Am J Ophthalmol Case Rep 2024; 36:102166. [PMID: 39351584 PMCID: PMC11440255 DOI: 10.1016/j.ajoc.2024.102166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/10/2024] [Accepted: 09/01/2024] [Indexed: 10/04/2024] Open
Abstract
Purpose To describe the clinical, laboratory and multimodal imaging findings in paraneoplastic autoimmune retinopathy (p-AIR) associated with anti-pyruvate kinase M2 antibody (anti-PKM2) and occult pancreatic adenocarcinoma. Observations A 70 year old male with blurred vision, nyctalopia and concurrent difficulty with glucose control had retinal vascular attenuation and diffuse punctate pigment clumping in both eyes. Multimodal imaging demonstrated corresponding stippled hypofluorescence on fluorescein angiography, stippled hyperautofluorescence and a hyperautoflourescent macular ring with fundus autofluorescence, and focal hyperreflectivity at the level of the RPE-Bruch's membrane complex with diffuse loss of outer retinal layers on ocular coherence tomography. In addition, diffuse ganglion cell loss and severe visual field constriction were present. Genetic testing for retinitis pigmentosa was normal. Screening for anti-retinal antibodies was positive for only anti-PKM2. Systemic evaluation revealed previously undiagnosed adenocarcinoma of the pancreas. Conclusions and importance Anti-PKM2 in the setting of autoimmune retinopathy may be associated with occult pancreatic cancer. The diagnosis of pAIR should be considered and systemic investigation for occult malignancy initiated even in the absence of more commonly associated anti-retinal antibodies.
Collapse
|
6
|
Gulette GA, Hass DT, Pandey K, Zhang Q, Han JYS, Engel A, Chao JR, Philp NJ, Hurley JB, Miller JML. Reassessing retinal pigment epithelial ketogenesis: Enzymatic assays for ketone body levels provide inaccurate results. Exp Eye Res 2024; 245:109966. [PMID: 38857822 DOI: 10.1016/j.exer.2024.109966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024]
Abstract
The retinal pigment epithelium (RPE) is omnivorous and can utilize a wide range of substrates for oxidative phosphorylation. Certain tissues with high mitochondrial metabolic load are capable of ketogenesis, a biochemical pathway that consolidates acetyl-CoA into ketone bodies. Earlier work demonstrated that the RPE expresses the rate-limiting enzyme for ketogenesis, 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2), and that the RPE indeed produces ketone bodies, including beta-hydroxybutyrate (β-HB). Prior work, based on detecting β-HB via enzymatic assays, suggested that differentiated cultures of primary RPE preferentially export β-HB across the apical membrane. Here, we compare the accuracy of measuring β-HB by enzymatic assay kits to mass spectrometry analysis. We found that commercial kits lack the sensitivity to accurately measure the levels of β-HB in RPE cultures and are prone to artifact. Using mass spectrometry, we found that while RPE cultures secrete β-HB, they do so equally to both apical and basal sides. We also find RPE is capable of consuming β-HB as levels rise. Using isotopically labeled glucose, amino acid, and fatty acid tracers, we found that carbons from both fatty acids and ketogenic amino acids, but not from glucose, produce β-HB. Altogether, we substantiate β-HB secretion in RPE but find that the secretion is equal apically and basally, RPE β-HB can derive from ketogenic amino acids or fatty acids, and accurate β-HB assessment requires mass spectrometric analysis.
Collapse
Affiliation(s)
| | - Daniel T Hass
- Department of Biochemistry, University of Washington, United States
| | - Kriti Pandey
- Department of Biochemistry, University of Washington, United States
| | - Qitao Zhang
- Kellogg Eye Center, University of Michigan, United States
| | - John Y S Han
- Kellogg Eye Center, University of Michigan, United States
| | - Abbi Engel
- Center of Developmental Biology and Regenerative Medicine, Seattle Children's Research Hospital, United States
| | - Jennifer R Chao
- Department of Ophthalmology, University of Washington, United States
| | - Nancy J Philp
- Department of Pathology, Anatomy & Cell Biology, Thomas Jefferson University, United States
| | - James B Hurley
- Department of Biochemistry, University of Washington, United States
| | - Jason M L Miller
- Kellogg Eye Center, University of Michigan, United States; Cellular and Molecular Biology Program, University of Michigan, United States.
| |
Collapse
|
7
|
Babcock SJ, Curtis AG, Gaston G, Elizondo G, Gillingham MB, Ryals RC. The LCHADD Mouse Model Recapitulates Early-Stage Chorioretinopathy in LCHADD Patients. Invest Ophthalmol Vis Sci 2024; 65:33. [PMID: 38904639 PMCID: PMC11193142 DOI: 10.1167/iovs.65.6.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/27/2024] [Indexed: 06/22/2024] Open
Abstract
Purpose Recent studies have shown that the retinal pigment epithelium (RPE) relies on fatty acid oxidation (FAO) for energy, however, its role in overall retinal health is unknown. The only FAO disorder that presents with chorioretinopathy is long-chain 3-hydroxyacyl-CoA dehydrogenase deficiency (LCHADD). Studying the molecular mechanisms can lead to new treatments for patients and elucidate the role of FAO in the RPE. This paper characterizes the chorioretinopathy progression in a recently reported LCHADD mouse model. Methods Visual assessments, such as optokinetic tracking and fundus imaging, were performed in wildtype (WT) and LCHADD mice at 3, 6, 10, and 12 months of age. Retinal morphology was analyzed in 12-month retinal cross-sections using hematoxylin and eosin (H&E), RPE65, CD68, and TUNEL staining, whereas RPE structure was assessed using transmission electron microscopy (TEM). Acylcarnitine profiles were measured in isolated RPE/sclera samples to determine if FAO was blocked. Bulk RNA-sequencing of 12 month old male WT mice and LCHADD RPE/sclera samples assessed gene expression changes. Results LCHADD RPE/sclera samples had a 5- to 7-fold increase in long-chain hydroxyacylcarnitines compared to WT, suggesting an impaired LCHAD step in long-chain FAO. LCHADD mice have progressively decreased visual performance and increased RPE degeneration starting at 6 months. LCHADD RPE have an altered structure and a two-fold increase in macrophages in the subretinal space. Finally, LCHADD RPE/sclera have differentially expressed genes compared to WT, including downregulation of genes important for RPE function and angiogenesis. Conclusions Overall, this LCHADD mouse model recapitulates early-stage chorioretinopathy seen in patients with LCHADD and is a useful model for studying LCHADD chorioretinopathy.
Collapse
Affiliation(s)
- Shannon J. Babcock
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States
| | - Allison G. Curtis
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| | - Garen Gaston
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States
| | - Gabriela Elizondo
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States
| | - Melanie B. Gillingham
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States
| | - Renee C. Ryals
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, Oregon, United States
- Casey Eye Institute, Oregon Health & Science University, Portland, Oregon, United States
| |
Collapse
|
8
|
Motipally SI, Kolson DR, Guan T, Kolandaivelu S. Aberrant lipid accumulation and retinal pigmental epithelium dysfunction in PRCD-deficient mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.08.584131. [PMID: 38558979 PMCID: PMC10979840 DOI: 10.1101/2024.03.08.584131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Progressive Rod-Cone Degeneration (PRCD) is an integral membrane protein found in photoreceptor outer segment (OS) disc membranes and its function remains unknown. Mutations in Prcd are implicated in Retinitis pigmentosa (RP) in humans and multiple dog breeds. PRCD-deficient models exhibit decreased levels of cholesterol in the plasma. However, potential changes in the retinal cholesterol remain unexplored. In addition, impaired phagocytosis observed in these animal models points to potential deficits in the retinal pigment epithelium (RPE). Here, using a Prcd -/- murine model we investigated the alterations in the retinal cholesterol levels and impairments in the structural and functional integrity of the RPE. Lipidomic and immunohistochemical analyses show a 5-fold increase in the levels of cholesteryl esters (C.Es) and accumulation of neutral lipids in the PRCD-deficient retina, respectively, indicating alterations in total retinal cholesterol. Longitudinal fundus and spectral domain optical coherence tomography (SD-OCT) examinations showed focal lesions and RPE hyperreflectivity. Strikingly, the RPE of Prcd -/- mice exhibited age-related pathological features such as neutral lipid deposits, lipofuscin accumulation, Bruch's membrane (BrM) thickening and drusenoid focal deposits, mirroring an Age-related Macular Degeneration (AMD)-like phenotype. We propose that the extensive lipofuscin accumulation likely impairs lysosomal function, leading to the defective phagocytosis observed in Prcd -/- mice. Our findings support the dysregulation of retinal cholesterol homeostasis in the absence of PRCD. Further, we demonstrate that progressive photoreceptor degeneration in Prcd -/- mice is accompanied by progressive structural and functional deficits in the RPE, which likely exacerbates vision loss over time.
Collapse
|
9
|
Wu S, Xiao R, Wu Y, Xu L. Advances in tissue engineering of gellan gum-based hydrogels. Carbohydr Polym 2024; 324:121484. [PMID: 37985043 DOI: 10.1016/j.carbpol.2023.121484] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 11/22/2023]
Abstract
Gellan Gum (GG) is a large, naturally occurring, linear polysaccharide with a similar structure and biological properties to the extracellular matrix. It's appropriate as a matrix material for the development of different composite materials due to its biocompatibility, biodegradability, and injectability. Hydrogels made from GG have found various applications in the field of Tissue Engineering (TE) in recent years after being mixed with a variety of other organic and inorganic components. These composites are considered multifunctional developing biomaterials because of their impressive mechanical capabilities, biocompatibility, low cytotoxicity, etc. This review focuses on the emerging advances of GG-based hydrogels in TE, providing an overview of the applications of different types of GG-based composite materials in bone TE, cartilage TE, nervous TE, retina TE, and other fields. Moreover, the investigations of GG-based hydrogels as bioink components for 3D bioprinting in TE will be elucidated. This review offers general guidance for the development of biomaterials related to GG, as well as ideas for future clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Shanyi Wu
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Disease and Oral Health, Department of Operative Dentistry and Endodontics, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Rongjun Xiao
- Hunan Key Laboratory of Oral Health Research, Hunan 3D Printing Engineering Research Center of Oral Care, Hunan Clinical Research Center of Oral Major Disease and Oral Health, Department of Operative Dentistry and Endodontics, Xiangya Stomatological Hospital, Central South University, Changsha, Hunan, China
| | - Yong Wu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Key Laboratory of Kidney Disease and Blood Purification, Changsha, Hunan, China
| | - Laijun Xu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
10
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
11
|
Farnoodian M, Bose D, Barone F, Nelson LM, Boyle M, Jun B, Do K, Gordon W, Guerin MAK, Perera R, Ji JX, Cogliati T, Sharma R, Brooks BP, Bazan NG, Bharti K. Retina and RPE lipid profile changes linked with ABCA4 associated Stargardt's maculopathy. Pharmacol Ther 2023; 249:108482. [PMID: 37385300 PMCID: PMC10530239 DOI: 10.1016/j.pharmthera.2023.108482] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/01/2023]
Abstract
Stargardt maculopathy, caused predominantly by mutations in the ABCA4 gene, is characterized by an accumulation of non-degradable visual pigment derivative, lipofuscin, in the retinal pigment epithelium (RPE) - resulting in RPE atrophy. RPE is a monolayer tissue located adjacent to retinal photoreceptors and regulates their health and functioning; RPE atrophy triggers photoreceptor cell death and vision loss in Stargardt patients. Previously, ABCA4 mutations in photoreceptors were thought to be the major contributor to lipid homeostasis defects in the eye. Recently, we demonstrated that ABCA4 loss of function in the RPE leads to cell-autonomous lipid homeostasis defects. Our work underscores that an incomplete understanding of lipid metabolism and lipid-mediated signaling in the retina and RPE are potential causes for lacking treatments for this disease. Here we report altered lipidomic in mouse and human Stargardt models. This work provides the basis for therapeutics that aim to restore lipid homeostasis in the retina and the RPE.
Collapse
Affiliation(s)
- Mitra Farnoodian
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Devika Bose
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Francesca Barone
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Luke Mathew Nelson
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Marisa Boyle
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Bokkyoo Jun
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Khanh Do
- Faculty of Medicine, Phenikaa University, Hanoi, Viet Nam
| | - William Gordon
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Marie-Audrey Kautzmann Guerin
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Rasangi Perera
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Jeff X Ji
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Tiziana Cogliati
- Division of Aging Biology, National Institute on Aging, National Institute of Health, Bethesda, MD, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Brian P Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institute of Health, Bethesda, MD, USA
| | - Nicolas G Bazan
- Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health New Orleans, New Orleans, USA
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, National Institute of Health, Bethesda, MD, USA.
| |
Collapse
|
12
|
Markitantova Y, Simirskii V. Endogenous and Exogenous Regulation of Redox Homeostasis in Retinal Pigment Epithelium Cells: An Updated Antioxidant Perspective. Int J Mol Sci 2023; 24:10776. [PMID: 37445953 DOI: 10.3390/ijms241310776] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
The retinal pigment epithelium (RPE) performs a range of necessary functions within the neural layers of the retina and helps ensure vision. The regulation of pro-oxidative and antioxidant processes is the basis for maintaining RPE homeostasis and preventing retinal degenerative processes. Long-term stable changes in the redox balance under the influence of endogenous or exogenous factors can lead to oxidative stress (OS) and the development of a number of retinal pathologies associated with RPE dysfunction, and can eventually lead to vision loss. Reparative autophagy, ubiquitin-proteasome utilization, the repair of damaged proteins, and the maintenance of their conformational structure are important interrelated mechanisms of the endogenous defense system that protects against oxidative damage. Antioxidant protection of RPE cells is realized as a result of the activity of specific transcription factors, a large group of enzymes, chaperone proteins, etc., which form many signaling pathways in the RPE and the retina. Here, we discuss the role of the key components of the antioxidant defense system (ADS) in the cellular response of the RPE against OS. Understanding the role and interactions of OS mediators and the components of the ADS contributes to the formation of ideas about the subtle mechanisms in the regulation of RPE cellular functions and prospects for experimental approaches to restore RPE functions.
Collapse
Affiliation(s)
- Yuliya Markitantova
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Vladimir Simirskii
- Koltsov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
13
|
Ramírez-Pardo I, Villarejo-Zori B, Jiménez-Loygorri JI, Sierra-Filardi E, Alonso-Gil S, Mariño G, de la Villa P, Fitze PS, Fuentes JM, García-Escudero R, Ferrington DA, Gomez-Sintes R, Boya P. Ambra1 haploinsufficiency in CD1 mice results in metabolic alterations and exacerbates age-associated retinal degeneration. Autophagy 2023; 19:784-804. [PMID: 35875981 PMCID: PMC9980615 DOI: 10.1080/15548627.2022.2103307] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Macroautophagy/autophagy is a key process in the maintenance of cellular homeostasis. The age-dependent decline in retinal autophagy has been associated with photoreceptor degeneration. Retinal dysfunction can also result from damage to the retinal pigment epithelium (RPE), as the RPE-retina constitutes an important metabolic ecosystem that must be finely tuned to preserve visual function. While studies of mice lacking essential autophagy genes have revealed a predisposition to retinal degeneration, the consequences of a moderate reduction in autophagy, similar to that which occurs during physiological aging, remain unclear. Here, we described a retinal phenotype consistent with accelerated aging in mice carrying a haploinsufficiency for Ambra1, a pro-autophagic gene. These mice showed protein aggregation in the retina and RPE, metabolic underperformance, and premature vision loss. Moreover, Ambra1+/gt mice were more prone to retinal degeneration after RPE stress. These findings indicate that autophagy provides crucial support to RPE-retinal metabolism and protects the retina against stress and physiological aging.Abbreviations : 4-HNE: 4-hydroxynonenal; AMBRA1: autophagy and beclin 1 regulator 1, AMD: age-related macular degeneration;; GCL: ganglion cell layer; GFAP: glial fibrillary acidic protein; GLUL: glutamine synthetase/glutamate-ammonia ligase; HCL: hierarchical clustering; INL: inner nuclear layer; IPL: inner plexiform layer; LC/GC-MS: liquid chromatography/gas chromatography-mass spectrometry; MA: middle-aged; MTDR: MitoTracker Deep Red; MFI: mean fluorescence intensity; NL: NH4Cl and leupeptin; Nqo: NAD(P)H quinone dehydrogenase; ONL: outer nuclear layer; OPL: outer plexiform layer; OP: oscillatory potentials; OXPHOS: oxidative phosphorylation; PCR: polymerase chain reaction; PRKC/PKCα: protein kinase C; POS: photoreceptor outer segment; RGC: retinal ganglion cells; RPE: retinal pigment epithelium; SI: sodium iodate; TCA: tricarboxylic acid.
Collapse
Affiliation(s)
- Ignacio Ramírez-Pardo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Beatriz Villarejo-Zori
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Juan Ignacio Jiménez-Loygorri
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Elena Sierra-Filardi
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Sandra Alonso-Gil
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | | | - Pedro de la Villa
- Department of Systems Biology, University of Alcalá, Alcalá de Henares, Madrid, Spain.,Vision neurophisiology group, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Patrick S Fitze
- Departament of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC, Madrid, Spain
| | - José Manuel Fuentes
- Department of Biochemistry, Molecular Biology and Genetics, Faculty of Nursing and Occupational Therapy, University of Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.,Nerodegenerative Diseases unit, Instituto Universitario de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Ramón García-Escudero
- Molecular Oncology Unit, CIEMAT, Madrid, Spain.,Biomedical Research Institute I+12, University Hospital 12 de Octubre, Madrid, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Deborah A Ferrington
- Department of Ophthalmology and Visual Neurosciences, University of Minnesota, Minneapolis, MN, USA
| | - Raquel Gomez-Sintes
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Patricia Boya
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| |
Collapse
|
14
|
Hazim RA, Paniagua AE, Tang L, Yang K, Kim KKO, Stiles L, Divakaruni AS, Williams DS. Vitamin B3, nicotinamide, enhances mitochondrial metabolism to promote differentiation of the retinal pigment epithelium. J Biol Chem 2022; 298:102286. [PMID: 35868562 PMCID: PMC9396405 DOI: 10.1016/j.jbc.2022.102286] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 01/04/2023] Open
Abstract
In the mammalian retina, a metabolic ecosystem exists in which photoreceptors acquire glucose from the choriocapillaris with the help of the retinal pigment epithelium (RPE). While the photoreceptor cells are primarily glycolytic, exhibiting Warburg-like metabolism, the RPE is reliant on mitochondrial respiration. However, the ways in which mitochondrial metabolism affect RPE cellular functions are not clear. We first used the human RPE cell line, ARPE-19, to examine mitochondrial metabolism in the context of cellular differentiation. We show that nicotinamide induced rapid differentiation of ARPE-19 cells, which was reversed by removal of supplemental nicotinamide. During the nicotinamide-induced differentiation, we observed using quantitative PCR, Western blotting, electron microscopy, and metabolic respiration and tracing assays that (1) mitochondrial gene and protein expression increased, (2) mitochondria became larger with more tightly folded cristae, and (3) mitochondrial metabolism was enhanced. In addition, we show that primary cultures of human fetal RPE cells responded similarly in the presence of nicotinamide. Furthermore, disruption of mitochondrial oxidation of pyruvate attenuated the nicotinamide-induced differentiation of the RPE cells. Together, our results demonstrate a remarkable effect of nicotinamide on RPE metabolism. We also identify mitochondrial respiration as a key contributor to the differentiated state of the RPE and thus to many of the RPE functions that are essential for retinal health and photoreception.
Collapse
Affiliation(s)
- Roni A Hazim
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, California, USA
| | - Antonio E Paniagua
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, California, USA
| | - Lisa Tang
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, California, USA
| | - Krista Yang
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Kristen K O Kim
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Linsey Stiles
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA; Division of Endocrinology, Department of Medicine, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California, USA
| | - David S Williams
- Department of Ophthalmology and Stein Eye Institute, University of California, Los Angeles, California, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, California, USA; Molecular Biology Institute, University of California, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA.
| |
Collapse
|
15
|
Lewandowski D, Sander CL, Tworak A, Gao F, Xu Q, Skowronska-Krawczyk D. Dynamic lipid turnover in photoreceptors and retinal pigment epithelium throughout life. Prog Retin Eye Res 2022; 89:101037. [PMID: 34971765 PMCID: PMC10361839 DOI: 10.1016/j.preteyeres.2021.101037] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 12/13/2022]
Abstract
The retinal pigment epithelium-photoreceptor interphase is renewed each day in a stunning display of cellular interdependence. While photoreceptors use photosensitive pigments to convert light into electrical signals, the RPE supports photoreceptors in their function by phagocytizing shed photoreceptor tips, regulating the blood retina barrier, and modulating inflammatory responses, as well as regenerating the 11-cis-retinal chromophore via the classical visual cycle. These processes involve multiple protein complexes, tightly regulated ligand-receptors interactions, and a plethora of lipids and protein-lipids interactions. The role of lipids in maintaining a healthy interplay between the RPE and photoreceptors has not been fully delineated. In recent years, novel technologies have resulted in major advancements in understanding several facets of this interplay, including the involvement of lipids in phagocytosis and phagolysosome function, nutrient recycling, and the metabolic dependence between the two cell types. In this review, we aim to integrate the complex role of lipids in photoreceptor and RPE function, emphasizing the dynamic exchange between the cells as well as discuss how these processes are affected in aging and retinal diseases.
Collapse
Affiliation(s)
- Dominik Lewandowski
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Christopher L Sander
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Aleksander Tworak
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Fangyuan Gao
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Qianlan Xu
- Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA; Department of Physiology and Biophysics, Center for Translational Vision Research, School of Medicine, UC Irvine, Irvine, CA, USA.
| |
Collapse
|
16
|
Sinha T, Ikelle L, Makia MS, Crane R, Zhao X, Kakakhel M, Al-Ubaidi MR, Naash MI. Riboflavin deficiency leads to irreversible cellular changes in the RPE and disrupts retinal function through alterations in cellular metabolic homeostasis. Redox Biol 2022; 54:102375. [PMID: 35738087 PMCID: PMC9233280 DOI: 10.1016/j.redox.2022.102375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 10/25/2022] Open
Abstract
Ariboflavinosis is a pathological condition occurring as a result of riboflavin deficiency. This condition is treatable if detected early enough, but it lacks timely diagnosis. Critical symptoms of ariboflavinosis include neurological and visual manifestations, yet the effects of flavin deficiency on the retina are not well investigated. Here, using a diet induced mouse model of riboflavin deficiency, we provide the first evidence of how retinal function and metabolism are closely intertwined with riboflavin homeostasis. We find that diet induced riboflavin deficiency causes severe decreases in retinal function accompanied by structural changes in the neural retina and retinal pigment epithelium (RPE). This is preceded by increased signs of cellular oxidative stress and metabolic disorder, in particular dysregulation in lipid metabolism, which is essential for both photoreceptors and the RPE. Though many of these deleterious phenotypes can be ameliorated by riboflavin supplementation, our data suggests that some patients may continue to suffer from multiple pathologies at later ages. These studies provide an essential cellular and mechanistic foundation linking defects in cellular flavin levels with the manifestation of functional deficiencies in the visual system and paves the way for a more in-depth understanding of the cellular consequences of ariboflavinosis.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Larissa Ikelle
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mustafa S Makia
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Ryan Crane
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Xue Zhao
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Mashal Kakakhel
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
17
|
Napoli D, Strettoi E. Structural abnormalities of retinal pigment epithelial cells in a light‐inducible, rhodopsin mutant mouse. J Anat 2022. [DOI: 10.1111/joa.13667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Debora Napoli
- Neuroscience Institute, Italian National Research Council, CNR Pisa Italy
- Regional Doctorate School of Neuroscience University of Florence Florence Italy
| | - Enrica Strettoi
- Neuroscience Institute, Italian National Research Council, CNR Pisa Italy
| |
Collapse
|
18
|
Markitantova YV, Simirskii VN. The Role of the Purinergic Signaling System in the Control of Histogenesis, Homeostasis, and Pathogenesis of the Vertebrate Retina. Russ J Dev Biol 2021. [DOI: 10.1134/s1062360421060084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Merle DA, Provenzano F, Jarboui MA, Kilger E, Clark SJ, Deleidi M, Armento A, Ueffing M. mTOR Inhibition via Rapamycin Treatment Partially Reverts the Deficit in Energy Metabolism Caused by FH Loss in RPE Cells. Antioxidants (Basel) 2021; 10:1944. [PMID: 34943047 PMCID: PMC8750186 DOI: 10.3390/antiox10121944] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/30/2022] Open
Abstract
Age-related macular degeneration (AMD) is a complex degenerative disease of the retina with multiple risk-modifying factors, including aging, genetics, and lifestyle choices. The combination of these factors leads to oxidative stress, inflammation, and metabolic failure in the retinal pigment epithelium (RPE) with subsequent degeneration of photoreceptors in the retina. The alternative complement pathway is tightly linked to AMD. In particular, the genetic variant in the complement factor H gene (CFH), which leads to the Y402H polymorphism in the factor H protein (FH), confers the second highest risk for the development and progression of AMD. Although the association between the FH Y402H variant and increased complement system activation is known, recent studies have uncovered novel FH functions not tied to this activity and highlighted functional relevance for intracellular FH. In our previous studies, we show that loss of CFH expression in RPE cells causes profound disturbances in cellular metabolism, increases the vulnerability towards oxidative stress, and modulates the activation of pro-inflammatory signaling pathways, most importantly the NF-kB pathway. Here, we silenced CFH in hTERT-RPE1 cells to investigate the mechanism by which intracellular FH regulates RPE cell homeostasis. We found that silencing of CFH results in hyperactivation of mTOR signaling along with decreased mitochondrial respiration and that mTOR inhibition via rapamycin can partially rescue these metabolic defects. To obtain mechanistic insight into the function of intracellular FH in hTERT-RPE1 cells, we analyzed the interactome of FH via immunoprecipitation followed by mass spectrometry-based analysis. We found that FH interacts with essential components of the ubiquitin-proteasomal pathway (UPS) as well as with factors associated with RB1/E2F signalling in a complement-pathway independent manner. Moreover, we found that FH silencing affects mRNA levels of the E3 Ubiquitin-Protein Ligase Parkin and PTEN induced putative kinase (Pink1), both of which are associated with UPS. As inhibition of mTORC1 was previously shown to result in increased overall protein degradation via UPS and as FH mRNA and protein levels were shown to be affected by inhibition of UPS, our data stress a potential regulatory link between endogenous FH activity and the UPS.
Collapse
Affiliation(s)
- David A. Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department of Ophthalmology, Medical University of Graz, 8036 Graz, Austria
| | - Francesca Provenzano
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany; (F.P.); (M.D.)
| | - Mohamed Ali Jarboui
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Core Facility for Medical Bioanalytics, Institute for Ophthalmic Research, Eberhard-Karls University of Tuebingen, 72076 Tübingen, Germany
| | - Ellen Kilger
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Simon J. Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Michela Deleidi
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany; (F.P.); (M.D.)
| | - Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany; (D.A.M.); (M.A.J.); (E.K.); (S.J.C.)
- German Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany; (F.P.); (M.D.)
| |
Collapse
|
20
|
Kaplan HJ, Wang W, Piri N, Dean DC. Metabolic rescue of cone photoreceptors in retinitis pigmentosa. Taiwan J Ophthalmol 2021; 11:331-335. [PMID: 35070660 PMCID: PMC8757513 DOI: 10.4103/tjo.tjo_46_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 10/05/2021] [Indexed: 12/27/2022] Open
Abstract
Retinitis pigmentosa (RP) encompasses a group of inherited retinal dystrophies characterized by the primary degeneration of rod and cone photoreceptors. It is a leading cause of visual disability, with an incidence of ~1 in 7000 persons. Although most RP is nonsyndromic, 20%-30% of patients with RP also have an associated nonocular condition. The gene mutations responsible for RP occur overwhelmingly in rod photoreceptors. Visual loss frequently begins with night blindness in adolescence, followed by concentric visual field loss, reflecting the principal dysfunction of rod photoreceptors. Although the visual disability from rod dysfunction is significant, it is the subsequent loss of central vision later in life due to cone degeneration that is catastrophic. Until recently, the reason for cone dysfunction in RP was unknown. However, it is now recognized that cones degenerate, losing outer segment (OS) synthesis and inner segment (IS) disassembly because of glucose starvation following rod demise. Rod OS phagocytosis by the apical microvilli of retinal pigment epithelium is necessary to transport glucose from the choriocapillaris to the subretinal space. Although cones lose OS with the onset of rod degeneration in RP, regardless of the gene mutation in rods, cone nuclei remain viable for years (i.e. enter cone dormancy) so that therapies aimed at reversing glucose starvation can prevent and/or recover cone function and central vision.
Collapse
Affiliation(s)
- Henry J Kaplan
- Department of Ophthalmology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Wei Wang
- Department of Ophthalmology and Visual Sciences, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| | - Niloofar Piri
- Department of Ophthalmology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Douglas C Dean
- Department of Medicine, University of Louisville Health Sciences Center, Louisville, Kentucky, USA
| |
Collapse
|
21
|
Rowe AA, Patel PD, Gordillo R, Wert KJ. Replenishment of TCA cycle intermediates provides photoreceptor resilience against neurodegeneration during progression of retinitis pigmentosa. JCI Insight 2021; 6:e150898. [PMID: 34292885 PMCID: PMC8492344 DOI: 10.1172/jci.insight.150898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/16/2021] [Indexed: 11/24/2022] Open
Abstract
The metabolic environment is important for neuronal cells, such as photoreceptors. When photoreceptors undergo degeneration, as occurs during retinitis pigmentosa (RP), patients have progressive loss of vision that proceeds to full blindness. Currently, there are no available treatments for the majority of RP diseases. We performed metabolic profiling of the neural retina in a preclinical model of RP and found that TCA cycle intermediates were reduced during disease. We then determined that (a) promoting citrate production within the TCA cycle in retinal neurons during disease progression protected the photoreceptors from cell death and prolonged visual function, (b) supplementation with single metabolites within the TCA cycle provided this therapeutic effect in vivo over time, and (c) this therapeutic effect was not specific to a particular genetic mutation but had broad applicability for patients with RP and other retinal degenerative diseases. Overall, targeting TCA cycle activity in the neural retina promoted photoreceptor survival and visual function during neurodegenerative disease.
Collapse
Affiliation(s)
- Ashley A Rowe
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, United States of America
| | - Pinkal D Patel
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, United States of America
| | - Ruth Gordillo
- Department of Internal Medicine, UT Southwestern Medical Center, Dallas, United States of America
| | - Katherine J Wert
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, United States of America
| |
Collapse
|
22
|
Absence of retbindin blocks glycolytic flux, disrupts metabolic homeostasis, and leads to photoreceptor degeneration. Proc Natl Acad Sci U S A 2021; 118:2018956118. [PMID: 33526685 DOI: 10.1073/pnas.2018956118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
We previously reported a model of progressive retinal degeneration resulting from the knockout of the retina-specific riboflavin binding protein, retbindin (Rtbdn -/- ). We also demonstrated a reduction in neural retinal flavins as a result of the elimination of RTBDN. Given the role of flavins in metabolism, herein we investigated the underlying mechanism of this retinal degeneration by performing metabolomic analyses on predegeneration at postnatal day (P) 45 and at the onset of functional degeneration in the P120 retinas. Metabolomics of hydrophilic metabolites revealed that individual glycolytic products accumulated in the P45 Rtbdn -/- neural retinas along with the elevation of pentose phosphate pathway, while TCA cycle intermediates remained unchanged. This was confirmed by using 13C-labeled flux measurements and immunoblotting, revealing that the key regulatory step of phosphoenolpyruvate to pyruvate was inhibited via down-regulation of the tetrameric pyruvate kinase M2 (PKM2). Separate metabolite assessments revealed that almost all intermediates of acylcarnitine fatty acid oxidation, ceramides, sphingomyelins, and multiple toxic metabolites were significantly elevated in the predegeneration Rtbdn -/- neural retina. Our data show that lack of RTBDN, and hence reduction in flavins, forced the neural retina into repurposing glucose for free-radical mitigation over ATP production. However, such sustained metabolic reprogramming resulted in an eventual metabolic collapse leading to neurodegeneration.
Collapse
|
23
|
Abstract
The outer retina is nourished from the choroid, a capillary bed just inside the sclera. O2, glucose, and other nutrients diffuse out of the choroid and then filter through a monolayer of retinal pigment epithelium (RPE) cells to fuel the retina. Recent studies of energy metabolism have revealed striking differences between retinas and RPE cells in the ways that they extract energy from fuels. The purpose of this review is to suggest and evaluate the hypothesis that the retina and RPE have complementary metabolic roles that make them depend on each other for survival and for their abilities to perform essential and specialized functions. Expected final online publication date for the Annual Review of Vision Science, Volume 7 is September 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- James B Hurley
- Departments of Biochemistry and Ophthalmology, University of Washington, Seattle, Washington 98115, USA;
| |
Collapse
|
24
|
Bonelli R, Jackson VE, Prasad A, Munro JE, Farashi S, Heeren TFC, Pontikos N, Scheppke L, Friedlander M, Egan CA, Allikmets R, Ansell BRE, Bahlo M. Identification of genetic factors influencing metabolic dysregulation and retinal support for MacTel, a retinal disorder. Commun Biol 2021; 4:274. [PMID: 33654266 PMCID: PMC7925591 DOI: 10.1038/s42003-021-01788-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
Macular Telangiectasia Type 2 (MacTel) is a rare degenerative retinal disease with complex genetic architecture. We performed a genome-wide association study on 1,067 MacTel patients and 3,799 controls, which identified eight novel genome-wide significant loci (p < 5 × 10-8), and confirmed all three previously reported loci. Using MAGMA, eQTL and transcriptome-wide association analysis, we prioritised 48 genes implicated in serine-glycine biosynthesis, metabolite transport, and retinal vasculature and thickness. Mendelian randomization indicated a likely causative role of serine (FDR = 3.9 × 10-47) and glycine depletion (FDR = 0.006) as well as alanine abundance (FDR = 0.009). Polygenic risk scoring achieved an accuracy of 0.74 and was associated in UKBiobank with retinal damage (p = 0.009). This represents the largest genetic study on MacTel to date and further highlights genetically-induced systemic and tissue-specific metabolic dysregulation in MacTel patients, which impinges on retinal health.
Collapse
Affiliation(s)
- Roberto Bonelli
- grid.1042.7Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Victoria E. Jackson
- grid.1042.7Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Aravind Prasad
- grid.1042.7Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Jacob E. Munro
- grid.1042.7Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Samaneh Farashi
- grid.1042.7Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Tjebo F. C. Heeren
- grid.436474.60000 0000 9168 0080Moorfields Eye Hospital NHS Foundation Trust, London, UK ,grid.83440.3b0000000121901201University College London Institute of Ophthalmology, London, UK
| | - Nikolas Pontikos
- grid.436474.60000 0000 9168 0080Moorfields Eye Hospital NHS Foundation Trust, London, UK ,grid.83440.3b0000000121901201University College London Institute of Ophthalmology, London, UK
| | - Lea Scheppke
- grid.489357.4The Lowy Medical Research Institute, La Jolla, CA USA
| | - Martin Friedlander
- grid.489357.4The Lowy Medical Research Institute, La Jolla, CA USA ,grid.214007.00000000122199231Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA USA
| | | | - Catherine A. Egan
- grid.436474.60000 0000 9168 0080Moorfields Eye Hospital NHS Foundation Trust, London, UK
| | - Rando Allikmets
- grid.21729.3f0000000419368729Department of Ophthalmology, Columbia University, New York, NY USA ,grid.21729.3f0000000419368729Department of Pathology and Cell Biology, Columbia University, New York, NY USA
| | - Brendan R. E. Ansell
- grid.1042.7Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| | - Melanie Bahlo
- grid.1042.7Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC Australia ,grid.1008.90000 0001 2179 088XDepartment of Medical Biology, University of Melbourne, Parkville, VIC Australia
| |
Collapse
|
25
|
Eade K, Gantner ML, Hostyk JA, Nagasaki T, Giles S, Fallon R, Harkins-Perry S, Baldini M, Lim EW, Scheppke L, Dorrell MI, Cai C, Baugh EH, Wolock CJ, Wallace M, Berlow RB, Goldstein DB, Metallo CM, Friedlander M, Allikmets R. Serine biosynthesis defect due to haploinsufficiency of PHGDH causes retinal disease. Nat Metab 2021; 3:366-377. [PMID: 33758422 PMCID: PMC8084205 DOI: 10.1038/s42255-021-00361-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 02/10/2021] [Indexed: 02/08/2023]
Abstract
Macular telangiectasia type 2 (MacTel) is a progressive, late-onset retinal degenerative disease linked to decreased serum levels of serine that elevate circulating levels of a toxic ceramide species, deoxysphingolipids (deoxySLs); however, causal genetic variants that reduce serine levels in patients have not been identified. Here we identify rare, functional variants in the gene encoding the rate-limiting serine biosynthetic enzyme, phosphoglycerate dehydrogenase (PHGDH), as the single locus accounting for a significant fraction of MacTel. Under a dominant collapsing analysis model of a genome-wide enrichment analysis of rare variants predicted to impact protein function in 793 MacTel cases and 17,610 matched controls, the PHGDH gene achieves genome-wide significance (P = 1.2 × 10-13) with variants explaining ~3.2% of affected individuals. We further show that the resulting functional defects in PHGDH cause decreased serine biosynthesis and accumulation of deoxySLs in retinal pigmented epithelial cells. PHGDH is a significant locus for MacTel that explains the typical disease phenotype and suggests a number of potential treatment options.
Collapse
Affiliation(s)
- Kevin Eade
- Lowy Medical Research Institute, La Jolla, CA, USA
| | | | - Joseph A Hostyk
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | | | - Sarah Giles
- Lowy Medical Research Institute, La Jolla, CA, USA
| | - Regis Fallon
- Lowy Medical Research Institute, La Jolla, CA, USA
| | - Sarah Harkins-Perry
- Lowy Medical Research Institute, La Jolla, CA, USA
- The Scripps Research Institute, La Jolla, CA, USA
| | - Michelle Baldini
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Esther W Lim
- Department of Bioengineering, University of California, San Diego, CA, USA
| | - Lea Scheppke
- Lowy Medical Research Institute, La Jolla, CA, USA
| | | | - Carolyn Cai
- Department of Ophthalmology, Columbia University, New York, NY, USA
| | - Evan H Baugh
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Charles J Wolock
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | - Martina Wallace
- Department of Bioengineering, University of California, San Diego, CA, USA
| | | | - David B Goldstein
- Institute for Genomic Medicine, Columbia University, New York, NY, USA
| | | | - Martin Friedlander
- Lowy Medical Research Institute, La Jolla, CA, USA
- The Scripps Research Institute, La Jolla, CA, USA
- Scripps Clinic Medical Group, La Jolla, CA, USA
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
26
|
Mo Y, He ML, Yu JZ, Xie XJ. Bioinformatics analysis of the gene expression profile of retinal pigmental epithelial cells based in single-cell RNA sequencing in myopic mice. Arch Med Sci 2021; 17:574-577. [PMID: 33747297 PMCID: PMC7959012 DOI: 10.5114/aoms/131835] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 12/20/2020] [Indexed: 12/12/2022] Open
Affiliation(s)
- Ya Mo
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mu-Lin He
- Department of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia-Zhen Yu
- Department of Ophthalmology, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xue-Jun Xie
- Department of Ophthalmology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
27
|
Li B, Zhang T, Liu W, Wang Y, Xu R, Zeng S, Zhang R, Zhu S, Gillies MC, Zhu L, Du J. Metabolic Features of Mouse and Human Retinas: Rods versus Cones, Macula versus Periphery, Retina versus RPE. iScience 2020; 23:101672. [PMID: 33196018 PMCID: PMC7644940 DOI: 10.1016/j.isci.2020.101672] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023] Open
Abstract
Photoreceptors, especially cones, which are enriched in the human macula, have high energy demands, making them vulnerable to metabolic stress. Metabolic dysfunction of photoreceptors and their supporting retinal pigment epithelium (RPE) is an important underlying cause of degenerative retinal diseases. However, how cones and the macula support their exorbitant metabolic demand and communicate with RPE is unclear. By profiling metabolite uptake and release and analyzing metabolic genes, we have found cone-rich retinas and human macula share specific metabolic features with upregulated pathways in pyruvate metabolism, mitochondrial TCA cycle, and lipid synthesis. Human neural retina and RPE have distinct but complementary metabolic features. Retinal metabolism centers on NADH production and neurotransmitter biosynthesis. The retina needs aspartate to sustain its aerobic glycolysis and mitochondrial metabolism. RPE metabolism is directed toward NADPH production and biosynthesis of acetyl-rich metabolites, serine, and others. RPE consumes multiple nutrients, including proline, to produce metabolites for the retina.
Collapse
Affiliation(s)
- Bo Li
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA.,Department of Ophthalmology, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, Jiangsu Province 225100, China
| | - Ting Zhang
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Wei Liu
- Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yekai Wang
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA
| | - Rong Xu
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA
| | - Shaoxue Zeng
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Rui Zhang
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Siyan Zhu
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA
| | - Mark C Gillies
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Ling Zhu
- Save Sight Institute, Sydney Medical School, University of Sydney, Sydney, NSW 2000, Australia
| | - Jianhai Du
- Departments of Ophthalmology and Biochemistry, West Virginia University, WVU Eye Institute, One Medical Center Dr, PO Box 9193, Morgantown, WV 26506, USA
| |
Collapse
|
28
|
Sinha T, Naash MI, Al-Ubaidi MR. Flavins Act as a Critical Liaison Between Metabolic Homeostasis and Oxidative Stress in the Retina. Front Cell Dev Biol 2020; 8:861. [PMID: 32984341 PMCID: PMC7481326 DOI: 10.3389/fcell.2020.00861] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022] Open
Abstract
Derivatives of the vitamin riboflavin, FAD and FMN, are essential cofactors in a multitude of bio-energetic reactions, indispensable for lipid metabolism and also are requisites in mitigating oxidative stress. Given that a balance between all these processes contributes to the maintenance of retinal homeostasis, effective regulation of riboflavin levels in the retina is paramount. However, various genetic and dietary factors have brought to fore pathological conditions that co-occur with a suboptimal level of flavins in the retina. Our focus in this review is to, comprehensively summarize all the possible metabolic and oxidative reactions which have been implicated in various retinal pathologies and to highlight the contribution flavins may have played in these. Recent research has found a sensitive method of measuring flavins in both diseased and healthy retina, presence of a novel flavin binding protein exclusively expressed in the retina, and the presence of flavin specific transporters in both the inner and outer blood-retina barriers. In light of these exciting findings, it is even more imperative to shift our focus on how the retina regulates its flavin homeostasis and what happens when this is disrupted.
Collapse
Affiliation(s)
- Tirthankar Sinha
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muna I Naash
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| | - Muayyad R Al-Ubaidi
- Department of Biomedical Engineering, University of Houston, Houston, TX, United States
| |
Collapse
|
29
|
Somasundaran S, Constable IJ, Mellough CB, Carvalho LS. Retinal pigment epithelium and age-related macular degeneration: A review of major disease mechanisms. Clin Exp Ophthalmol 2020; 48:1043-1056. [PMID: 32710488 PMCID: PMC7754492 DOI: 10.1111/ceo.13834] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/05/2020] [Accepted: 07/10/2020] [Indexed: 01/18/2023]
Abstract
Age‐related macular degeneration (AMD) is a progressive degenerative disease that is the leading cause of vision loss in the elderly population. Degeneration/dysregulation of the retinal pigment epithelium (RPE), a supportive monolayer of cells underlying the photoreceptors, is commonly seen in patients with AMD. While treatment exists for the neovascular/wet form of AMD, there is currently no cure for the non‐exudative/dry form of AMD, making it imperative to understand the pathogenesis of this disease. Although our understanding of the aetiology of AMD has increased over the years, the underlying disease mechanism has not yet been identified, mainly due to the multifactorial nature of this disease. Herein, we review some of the commonly proposed degeneration pathways of RPE cells and their role in the pathogenesis of AMD; including activation of the complement cascade, oxidative stress‐induced cell death mechanisms, dysfunctional mitochondria and the role of crystallins in AMD disease progression.
Collapse
Affiliation(s)
- Shreya Somasundaran
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Ian J Constable
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Carla B Mellough
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Science/Lions Eye Institute, University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|