1
|
Rounds CC, Feng Y, Pannem S, Brankov J, Samkoe KS, Tichauer KM. Dual-channel pulse-dye densitometry can enable correction of fluorescent targeted and control agent plasma input function differences for quantitative paired-agent molecular imaging: a simulation study. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:046001. [PMID: 40161250 PMCID: PMC11954597 DOI: 10.1117/1.jbo.30.4.046001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025]
Abstract
Significance Paired-agent fluorescent molecular imaging approaches involve co-administration of a control (untargeted) imaging agent with a molecularly targeted agent to account for non-specific effects and quantify binding potential (BP)-a parameter proportional to the concentration of the targeted biomolecule. Accurate BP estimation often requires correction for differences in targeted and control agent plasma input functions (PIFs). Aim We provide a simulation-based evaluation of whether dual-channel pulse dye densitometry (PDD) can be used to measure the PIFs of co-administered targeted and control imaging agents, to enable accurate BP estimation. Approach Monte-Carlo simulations of light propagation were carried out using the anatomy and optical properties of a finger, as well as experimentally measured PIFs of co-administered anti-epidermal growth factor receptor fluorescent affibody, ABY-029, and IRDye 680LT, a control imaging agent from past mouse experiments. The accuracy of PIF shape estimation from PDD and PIF difference correction was evaluated by assessing BP estimation accuracy in a simulated "tumor" tissue. Results "Tumor" BP measurements using deconvolution correction with noise-free PIFs versus PDD-measured PIFs were compared. The relative error in PDD PIF deconvolution BP estimation was 2 ± 1 % . No statistical difference was found between the estimated BP via deconvolution correction with true PIFs and the estimated BP via the reconstructed PIFs using the proposed PAF-PDD methodology. Conclusions These results highlight the potential for developing a PDD instrument that can directly measure targeted and control agent PIFs and be used to correct for any PIF differences between agents for more quantitative estimates of BP in paired-agent imaging studies.
Collapse
Affiliation(s)
- Cody C. Rounds
- Illinois Institute of Technology, Biomedical Engineering, Chicago, Illinois, United States
| | - Yichen Feng
- Dartmouth College, Geisel School of Medicine, Hanover, New Hampshire, United States
| | - Sanjana Pannem
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Jovan Brankov
- Illinois Institute of Technology, Electrical and Computer Engineering, Chicago, Illinois, United States
| | - Kimberly S. Samkoe
- Dartmouth College, Thayer School of Engineering, Hanover, New Hampshire, United States
| | - Kenneth M. Tichauer
- Illinois Institute of Technology, Biomedical Engineering, Chicago, Illinois, United States
| |
Collapse
|
2
|
Hwang DW, Ser J, Ziabrev K, Park GK, Jo MJ, Yokomizo S, Bao K, Yamashita A, Cho H, Henary M, Kashiwagi S, Choi HS. Image-Guided Monitoring of Mitochondria and Blood-Brain Barrier Dysfunction in Amyotrophic Lateral Sclerosis Mice. Biomater Res 2025; 29:0162. [PMID: 40099231 PMCID: PMC11912748 DOI: 10.34133/bmr.0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 01/24/2025] [Accepted: 02/15/2025] [Indexed: 03/19/2025] Open
Abstract
Early detection of amyotrophic lateral sclerosis (ALS) progression is critical for improving disease management and therapeutic outcomes. However, the clinical heterogeneity and variability in ALS symptoms often lead to delayed diagnosis and suboptimal therapeutic interventions. Since mitochondrial dysfunction is a hallmark of ALS, we hypothesized that monitoring mitochondrial function could serve as a reliable strategy for early diagnosis and therapeutic monitoring of ALS. To address this, we synthesized and characterized 2 novel near-infrared fluorophores, ALS04 and ALS05, designed to target mitochondria and lysosomes. Their physicochemical properties, serum protein binding, fluorescence characteristics, photostability, and pharmacokinetics were systematically evaluated. We found that benzothiazole-based fluorophores exhibit excellent mitochondrial targeting, optimal optical properties, biocompatibility, and favorable biodistribution in vivo. Interestingly, ALS04 showed superior mitochondrial accumulation compared to ALS05, despite their similar physicochemical properties. This enhanced accumulation can be attributed to the lower molecular weight and higher lipophilicity of ALS04. Real-time fluorescence imaging revealed a substantial reduction in ALS04 signals in mitochondrial-rich tissues such as brown fat, highlighting its potential for monitoring mitochondrial dysfunction in early-stage ALS. Furthermore, the detection of ALS04 in the mouse brain suggests its ability to monitor blood-brain barrier hyperpermeability, another key feature of ALS pathology. These findings establish ALS04 as a promising noninvasive imaging tool for monitoring biomarkers associated with ALS progression. Its ability to detect early-stage pathophysiological changes in an ALS mouse model highlights its potential for advancing our understanding of ALS mechanisms and facilitating the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Do Won Hwang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Research and Development Center, THERABEST Co. Ltd., Seoul 06656, South Korea
| | - Jinhui Ser
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Konstantyn Ziabrev
- Department of Chemistry, Center of Diagnostics and Therapeutics, Georgia State University, Atlanta, GA 30303, USA
| | - G Kate Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Min Joo Jo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Atsushi Yamashita
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hoonsung Cho
- Department of Materials Science and Engineering, Chonnam National University, Gwangju 61186, South Korea
| | - Maged Henary
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
3
|
Yamashita A, Park SH, Zeng L, Stiles WR, Ahn S, Bao K, Kim J, Kang H, Choi HS. H-Dot Mediated Nanotherapeutics Mitigate Systemic Toxicity of Platinum-Based Anticancer Drugs. Int J Mol Sci 2023; 24:15466. [PMID: 37895146 PMCID: PMC10607179 DOI: 10.3390/ijms242015466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/17/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Platinum-based anticancer agents have revolutionized oncological treatments globally. However, their therapeutic efficacy is often accompanied by systemic toxicity. Carboplatin, recognized for its relatively lower toxicity profile than cisplatin, still presents off-target toxicities, including dose-dependent cardiotoxicity, neurotoxicity, and myelosuppression. In this study, we demonstrate a delivery strategy of carboplatin to mitigate its off-target toxicity by leveraging the potential of zwitterionic nanocarrier, H-dot. The designed carboplatin/H-dot complex (Car/H-dot) exhibits rapid drug release kinetics and notable accumulation in proximity to tumor sites, indicative of amplified tumor targeting precision. Intriguingly, the Car/H-dot shows remarkable efficacy in eliminating tumors across insulinoma animal models. Encouragingly, concerns linked to carboplatin-induced cardiotoxicity are effectively alleviated by adopting the Car/H-dot nanotherapeutic approach. This pioneering investigation not only underscores the viability of H-dot as an organic nanocarrier for platinum drugs but also emphasizes its pivotal role in ameliorating associated toxicities. Thus, this study heralds a promising advancement in refining the therapeutic landscape of platinum-based chemotherapy.
Collapse
Affiliation(s)
- Atsushi Yamashita
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (A.Y.); (S.H.P.); (L.Z.); (W.R.S.); (S.A.); (K.B.); (J.K.); (H.K.)
| | - Seung Hun Park
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (A.Y.); (S.H.P.); (L.Z.); (W.R.S.); (S.A.); (K.B.); (J.K.); (H.K.)
| | - Lingxue Zeng
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (A.Y.); (S.H.P.); (L.Z.); (W.R.S.); (S.A.); (K.B.); (J.K.); (H.K.)
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Wesley R. Stiles
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (A.Y.); (S.H.P.); (L.Z.); (W.R.S.); (S.A.); (K.B.); (J.K.); (H.K.)
| | - Sung Ahn
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (A.Y.); (S.H.P.); (L.Z.); (W.R.S.); (S.A.); (K.B.); (J.K.); (H.K.)
| | - Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (A.Y.); (S.H.P.); (L.Z.); (W.R.S.); (S.A.); (K.B.); (J.K.); (H.K.)
| | - Jonghan Kim
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (A.Y.); (S.H.P.); (L.Z.); (W.R.S.); (S.A.); (K.B.); (J.K.); (H.K.)
- Department of Biomedical & Nutritional Sciences, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (A.Y.); (S.H.P.); (L.Z.); (W.R.S.); (S.A.); (K.B.); (J.K.); (H.K.)
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; (A.Y.); (S.H.P.); (L.Z.); (W.R.S.); (S.A.); (K.B.); (J.K.); (H.K.)
| |
Collapse
|
4
|
Bao K, Tully M, Cardenas K, Wang H, Srinivas S, Rho J, Jeon OH, Dinh J, Yokomizo S, McDonnell R, Yamashita A, Kashiwagi S, Kang H, Kim HK, Choi HS. Ultralow Background Near-Infrared Fluorophores with Dual-Channel Intraoperative Imaging Capability. Adv Healthc Mater 2023; 12:e2203134. [PMID: 36640372 PMCID: PMC10175134 DOI: 10.1002/adhm.202203134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Indexed: 01/15/2023]
Abstract
Two of the most pressing challenges facing bioimaging are nonspecific uptake of intravenously administered contrast agents and incomplete elimination of unbound targeted agents from the body. Designing a targeted contrast agent that shows fast clearance from background tissues and eventually the body after complete targeting is key to the success of image-guided interventions. Here, this work describes the development of renally clearable near-infrared contrast agents and their potential use for dual-channel image-guided tumor targeting. cRGD-ZW800-PEG (800 nm channel) and ZW700-PEG (700 nm channel) are able to visualize tumor margins and tumor vasculature simultaneously and respectively. These targeted agents show rapid elimination from the bloodstream, followed by renal clearance, which together significantly lower off-target background signals and potential toxicity. To demonstrate its applicability, this multispectral imaging is performed in various tumor-bearing animal models including lung cancer, pancreatic neuroendocrine tumors, breast, and ovarian cancer.
Collapse
Affiliation(s)
- Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Molly Tully
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Kevin Cardenas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Haoran Wang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Surbhi Srinivas
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Jiyun Rho
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States; Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 08308, South Korea
| | - Ok Hwa Jeon
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 08308, South Korea
| | - Jason Dinh
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Rose McDonnell
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Atsushi Yamashita
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| | - Hyun Koo Kim
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 08308, South Korea
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, United States
| |
Collapse
|
5
|
Alimu G, Yan T, Zhu L, Du Z, Ma R, Fan H, Chen S, Alifu N, Zhang X. Liposomes loaded with dual clinical photosensitizers for enhanced photodynamic therapy of cervical cancer. RSC Adv 2023; 13:3459-3467. [PMID: 36756546 PMCID: PMC9872094 DOI: 10.1039/d2ra03055a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Photodynamic therapy (PDT) has become a potential anti-cancer strategy owing to its negligible invasiveness, low toxicity, and high selectivity. The photosensitizer (PS) plays an indispensable role in PDT. Herein, a novel type of PS (Ce6-MB@Lips) which can be excited by a near-infrared (NIR) laser was designed and synthesized. Methylene blue (MB) and Chlorin e6 (Ce6), two organic dyes approved by the Food and Drug Administration (FDA), were used to prepare Ce6-MB@Lips by thin-film dispersion method, which improve the water solubility of Ce6 and reduce the cytotoxicity of MB. The Ce6-MB@Lips were shown to have a spherical nanostructure with an average particle size of 160.3 nm and excellent water solubility. Then the optical properties of Ce6-MB@Lips were further studied. Ce6-MB@Lips showed absorption peaks at 413 nm/670 nm and fluorescence peak at 697 nm. Compared with Ce6@Lips and MB@Lips, Ce6-MB@Lips showed better stability, stronger fluorescence intensity, and higher singlet oxygen (1O2) generation ability. Cell experimental analysis exhibited that the stable Ce6-MB@Lips showed low cytotoxicity, high phototoxicity and high reactive oxygen species (ROS) production capacity. After effective cell internalization, the prepared Ce6-MB@Lips showed excellent ability to promote tumor cell apoptosis in vitro. The Ce6-MB@Lips could be a promising candidate for PDT of cervical cancer.
Collapse
Affiliation(s)
- Gulinigaer Alimu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University Urumqi 830054 China
| | - Ting Yan
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University Urumqi 830054 China
| | - Lijun Zhu
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830054 China
| | - Zhong Du
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054 China
| | - Rong Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054 China
| | - Huimin Fan
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830054 China
| | - Shuang Chen
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University Urumqi 830054 China
| | - Nuernisha Alifu
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University Urumqi 830054 China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830054 China
| | - Xueliang Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Xinjiang Medical University Urumqi 830054 China
- State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, School of Medical Engineering and Technology, Xinjiang Medical University Urumqi 830054 China
| |
Collapse
|
6
|
Dutrieux N, Le Coupanec P, Gil H, Koenig A, Abraham P, Quesada JL, Cracowski JL, Righini C, Coll JL. Safety of use of the ENDOSWIR near-infrared optical imaging device on human tissues: prospective blind study. Lasers Med Sci 2022; 37:2873-2877. [PMID: 35650311 DOI: 10.1007/s10103-022-03556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/31/2022] [Indexed: 10/18/2022]
Abstract
Cancer surgery requires removing the tumor tissue in necessary and sufficient quantities. Spectral optical imaging in the short-wave infrared (900-1700 nm) could provide an intraoperative guidance to the surgeon based on the absorption of the tissues without contrast agent. Our objective was to ensure the safety of our ENDOSWIR device on human tissues. Histological analysis of fresh human tonsils exposed to the SWIR light or not was compared and showed no histological differences. This demonstrates the safety of using the SWIR device on human tissues and allows us to initiate a clinical study for the resection of tumors intraoperatively.
Collapse
Affiliation(s)
- Noemie Dutrieux
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Grenoble Alpes University Hospital, Grenoble, France.,Medical Faculty, University of Grenoble Alpes, Grenoble, France.,Institute for Advanced Biosciences, INSERM UGA U1209, CNRS UMR 5309, La Tronche, France
| | - Patricia Le Coupanec
- Univ. Grenoble Alpes, F-38000, Grenoble, France.,CEA, LETI, MINATEC Campus, F-38054, Grenoble, France
| | - Hugo Gil
- Medical Faculty, University of Grenoble Alpes, Grenoble, France.,Department of Anatomo-Cytopathology, Grenoble Alpes University Hospital, Grenoble, France
| | - Anne Koenig
- Univ. Grenoble Alpes, F-38000, Grenoble, France.,CEA, LETI, MINATEC Campus, F-38054, Grenoble, France
| | | | - Jean-Louis Quesada
- Medical Faculty, University of Grenoble Alpes, Grenoble, France.,Centre d'Investigation Clinique, INSERM, Grenoble Alpes University Hospital, Grenoble, France
| | - Jean-Luc Cracowski
- Medical Faculty, University of Grenoble Alpes, Grenoble, France.,Centre d'Investigation Clinique, INSERM, Grenoble Alpes University Hospital, Grenoble, France
| | - Christian Righini
- Department of Oto-Rhino-Laryngology, Head and Neck Surgery, Grenoble Alpes University Hospital, Grenoble, France.,Medical Faculty, University of Grenoble Alpes, Grenoble, France.,Institute for Advanced Biosciences, INSERM UGA U1209, CNRS UMR 5309, La Tronche, France
| | - Jean-Luc Coll
- Institute for Advanced Biosciences, INSERM UGA U1209, CNRS UMR 5309, La Tronche, France.
| |
Collapse
|
7
|
Fukuda T, Yokomizo S, Casa S, Monaco H, Manganiello S, Wang H, Lv X, Ulumben AD, Yang C, Kang MW, Inoue K, Fukushi M, Sumi T, Wang C, Kang H, Bao K, Henary M, Kashiwagi S, Soo Choi H. Fast and Durable Intraoperative Near-infrared Imaging of Ovarian Cancer Using Ultrabright Squaraine Fluorophores. Angew Chem Int Ed Engl 2022; 61:e202117330. [PMID: 35150468 PMCID: PMC9007913 DOI: 10.1002/anie.202117330] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Indexed: 12/19/2022]
Abstract
The residual tumor after surgery is the most significant prognostic factor of patients with epithelial ovarian cancer. Near-infrared (NIR) fluorescence-guided surgery is actively utilized for tumor localization and complete resection during surgery. However, currently available contrast-enhancing agents display low on-target binding, unfavorable pharmacokinetics, and toxicity, thus not ideal for clinical use. Here we report ultrabright and stable squaraine fluorophores with optimal pharmacokinetics by introducing an asymmetric molecular conformation and surface charges for rapid transporter-mediated cellular uptake. Among the tested, OCTL14 shows low serum binding and rapid distribution into cancer tissue via organic cation transporters (OCTs). Additionally, the charged squaraine fluorophores are retained in lysosomes, providing durable intraoperative imaging in a preclinical murine model of ovarian cancer up to 24 h post-injection. OCTL14 represents a significant departure from the current bioconjugation approach of using a non-targeted fluorophore and would provide surgeons with an indispensable tool to achieve optimal resection.
Collapse
Affiliation(s)
- Takeshi Fukuda
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Shinya Yokomizo
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo, 116-8551, Japan
| | - Stefanie Casa
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
| | - Hailey Monaco
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sophia Manganiello
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Haoran Wang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Xiangmin Lv
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Amy Daniel Ulumben
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Chengeng Yang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Min-Woong Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Thoracic and Cardiovascular Surgery, School of Medicine, Chungnam National University, Daejeon, 301-721, South Korea
| | - Kazumasa Inoue
- Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo, 116-8551, Japan
| | - Masahiro Fukushi
- Department of Radiological Sciences, Tokyo Metropolitan University, 7-2-10 Higashi-Ogu, Arakawa, Tokyo, 116-8551, Japan
| | - Toshiyuki Sumi
- Department of Obstetrics and Gynecology, Osaka City University Graduate School of Medicine, 1-4-3, Asahimachi, Abeno-ku, Osaka, 545-8585, Japan
| | - Cheng Wang
- Vincent Center for Reproductive Biology, Vincent Department of Obstetrics and Gynecology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Homan Kang
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Kai Bao
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Maged Henary
- Department of Chemistry, Georgia State University, Atlanta, GA 30303, USA
- Center for Diagnostics and Therapeutics, 145 Piedmont Avenue S.E., Atlanta, GA 30303, USA
| | - Satoshi Kashiwagi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Hak Soo Choi
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
8
|
Fukuda T, Yokomizo S, Casa S, Monaco H, Manganiello S, Wang H, Lv X, Ulumben AD, Yang C, Kang MW, Inoue K, Fukushi M, Sumi T, Wang C, Kang H, Bao K, Henary M, Kashiwagi S, Choi HS. Fast and Durable Intraoperative Near‐infrared Imaging of Ovarian Cancer Using Ultrabright Squaraine Fluorophores. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | | | - Hailey Monaco
- Massachusetts General Hospital radiology UNITED STATES
| | | | - Haoran Wang
- Massachusetts General Hospital radiology UNITED STATES
| | - Xiangmin Lv
- Massachusetts General Hospital Obstetrics and Gynecology UNITED STATES
| | | | - Chengeng Yang
- Massachusetts General Hospital radiology UNITED STATES
| | | | - Kazumasa Inoue
- Tokyo Metropolitan University - Arakawa Campus: Tokyo Toritsu Daigaku - Arakawa Campus Radiation Science JAPAN
| | - Masahiro Fukushi
- Tokyo Metropolitan University - Arakawa Campus: Tokyo Toritsu Daigaku - Arakawa Campus Radiation Science JAPAN
| | - Toshiyuki Sumi
- Osaka City University: Osaka Shiritsu Daigaku Obstetrics and Gynecology JAPAN
| | - Cheng Wang
- Massachusetts General Hospital Obstetrics and Gynecology UNITED STATES
| | - Homan Kang
- Massachusetts General Hospital radiology UNITED STATES
| | - Kai Bao
- Massachusetts General Hospital radiology UNITED STATES
| | - Maged Henary
- Georgia State University Chemistry UNITED STATES
| | - Satoshi Kashiwagi
- Massachusetts General Hospital Radiology 149 13th Street 02129 Charlestown UNITED STATES
| | - Hak Soo Choi
- Massachusetts General Hospital Radiology 149 13th Street 02129 Boston UNITED STATES
| |
Collapse
|
9
|
Mitrofanova LB, Perminova AA, Ryzhkova DV, Sukhotskaya AA, Bairov VG, Nikitina IL. Differential Morphological Diagnosis of Various Forms of Congenital Hyperinsulinism in Children. Front Endocrinol (Lausanne) 2021; 12:710947. [PMID: 34497584 PMCID: PMC8419459 DOI: 10.3389/fendo.2021.710947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/04/2021] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Congenital hyperinsulinism (CHI) has diffuse (CHI-D), focal (CHI-F) and atypical (CHI-A) forms. Surgical management depends on preoperative [18F]-DOPA PET/CT and intraoperative morphological differential diagnosis of CHI forms. Objective: to improve differential diagnosis of CHI forms by comparative analysis [18F]-DOPA PET/CT data, as well as cytological, histological and immunohistochemical analysis (CHIA). MATERIALS AND METHODS The study included 35 CHI patients aged 3.2 ± 2.0 months; 10 patients who died from congenital heart disease at the age of 3.2 ± 2.9 months (control group). We used PET/CT, CHIA of pancreas with antibodies to ChrA, insulin, Isl1, Nkx2.2, SST, NeuroD1, SSTR2, SSTR5, DR1, DR2, DR5; fluorescence microscopy with NeuroD1/ChrA, Isl1/insulin, insulin/SSTR2, DR2/NeuroD1 cocktails. RESULTS Intraoperative examination of pancreatic smears showed the presence of large nuclei, on average, in: 14.5 ± 3.5 cells of CHI-F; 8.4 ± 1.1 of CHI-D; and 4.5 ± 0.7 of control group (from 10 fields of view, x400). The percentage of Isl1+ and NeuroD1+endocrinocytes significantly differed from that in the control for all forms of CHI. The percentage of NeuroD1+exocrinocytes was also significantly higher than in the control. The proportion of ChrA+ and DR2+endocrinocytes was higher in CHI-D than in CHI-F, while the proportion of insulin+cells was higher in CHI-A. The number of SST+cells was significantly higher in CHI-D and CHI-F than in CHI-A. CONCLUSION For intraoperative differential diagnosis of CHI forms, in addition to frozen sections, quantitative cytological analysis can be used. In quantitative immunohistochemistry, CHI forms differ in the expression of ChrA, insulin, SST and DR2. The development of a NeuroD1 inhibitor would be advisable for targeted therapy of CHI.
Collapse
|