1
|
Song EH, Garcia J, Xiong N. Dysbiosis-activated IL-17-producing T cells promote skin immunopathological progression in mice deficient of the Notch ligand Jag1 in keratinocytes. J Dermatol Sci 2024; 116:14-23. [PMID: 39304389 DOI: 10.1016/j.jdermsci.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/25/2024] [Accepted: 07/24/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND The Notch signaling pathway is an evolutionarily conserved regulatory cascade critical in skin development and homeostasis. Mice deficient of Notch signaling molecules have impaired skin and hair follicle development associated with local tissue inflammation. However, mechanisms underlying skin inflammation and pathology resulting from defective Notch signals are not well understood. OBJECTIVE To dissect molecular and cellular mechanisms underlying development of skin immunopathology in mice defective of the Notch ligand Jagged-1 (Jag1). METHODS We assessed involvement of microbiota and immune cell subsets in skin pathogenic symptoms in Foxn1CreJag1fl/fl mice that were deficient of Jag1 in keratinocytes. We also used RNA-seq and 16S rRNA gene-seq analyses to identify molecular factors and bacterial species contributing to skin pathologic symptoms in Foxn1CreJag1fl/fl mice. RESULTS Compared to Jag1-sufficient littermate control mice, Foxn1CreJag1fl/fl mice had specific expansion of IL-17a-producing T cells accompanying follicular and epidermal hyperkeratosis and cyst formation while antibody blockage of IL-17a reduced the skin pathology. RNA-sequencing and 16S rRNA gene-sequencing analyses revealed dysregulated immune responses and altered microbiota compositions in the skin of Foxn1CreJag1fl/fl mice. Antibiotic treatment completely prevented over-activation of IL-17a-producing T cells and alleviated skin pathology in Foxn1CreJag1fl/fl mice. CONCLUSION Dysbiosis-induced over-activation of IL-17a-producing T cells is critically involved in development of skin pathology in Foxn1CreJag1fl/fl mice, establishing Foxn1CreJag1fl/fl mice as a useful model to study pathogenesis and therapeutic targets in microbiota-IL-17-mediated skin inflammatory diseases such as hidradenitis suppurativa (HS) and psoriasis.
Collapse
Affiliation(s)
- Eun Hyeon Song
- The Molecular, Cellular, and Integrative Biosciences (MCIBS) Graduate Program, The Pennsylvania State University, PA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, TX, USA
| | - Juan Garcia
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, TX, USA
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, TX, USA; Department of Medicine-Division of Dermatology and Cutaneous Surgery, University of Texas Health Science Center San Antonio, TX , USA.
| |
Collapse
|
2
|
Zhang X, Gao X, Liu Z, Shao F, Yu D, Zhao M, Qin X, Wang S. Microbiota regulates the TET1-mediated DNA hydroxymethylation program in innate lymphoid cell differentiation. Nat Commun 2024; 15:4792. [PMID: 38839760 PMCID: PMC11153590 DOI: 10.1038/s41467-024-48794-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
Innate lymphoid cell precursors (ILCPs) develop into distinct subsets of innate lymphoid cells (ILCs) with specific functions. The epigenetic program underlying the differentiation of ILCPs into ILC subsets remains poorly understood. Here, we reveal the genome-wide distribution and dynamics of the DNA methylation and hydroxymethylation in ILC subsets and their respective precursors. Additionally, we find that the DNA hydroxymethyltransferase TET1 suppresses ILC1 but not ILC2 or ILC3 differentiation. TET1 deficiency promotes ILC1 differentiation by inhibiting TGF-β signaling. Throughout ILCP differentiation at postnatal stage, gut microbiota contributes to the downregulation of TET1 level. Microbiota decreases the level of cholic acid in the gut, impairs TET1 expression and suppresses DNA hydroxymethylation, ultimately resulting in an expansion of ILC1s. In adult mice, TET1 suppresses the hyperactivation of ILC1s to maintain intestinal homeostasis. Our findings provide insights into the microbiota-mediated epigenetic programming of ILCs, which links microbiota-DNA methylation crosstalk to ILC differentiation.
Collapse
Affiliation(s)
- Xusheng Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xintong Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhen Liu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Fei Shao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Dou Yu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Min Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiwen Qin
- Division of Infectious Diseases, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, USA
| | - Shuo Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, 100101, Beijing, China.
- University of Chinese Academy of Sciences, 100049, Beijing, China.
| |
Collapse
|
3
|
To TT, Oparaugo NC, Kheshvadjian AR, Nelson AM, Agak GW. Understanding Type 3 Innate Lymphoid Cells and Crosstalk with the Microbiota: A Skin Connection. Int J Mol Sci 2024; 25:2021. [PMID: 38396697 PMCID: PMC10888374 DOI: 10.3390/ijms25042021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Innate lymphoid cells (ILCs) are a diverse population of lymphocytes classified into natural killer (NK) cells, ILC1s, ILC2s, ILC3s, and ILCregs, broadly following the cytokine secretion and transcription factor profiles of classical T cell subsets. Nonetheless, the ILC lineage does not have rearranged antigen-specific receptors and possesses distinct characteristics. ILCs are found in barrier tissues such as the skin, lungs, and intestines, where they play a role between acquired immune cells and myeloid cells. Within the skin, ILCs are activated by the microbiota and, in turn, may influence the microbiome composition and modulate immune function through cytokine secretion or direct cellular interactions. In particular, ILC3s provide epithelial protection against extracellular bacteria. However, the mechanism by which these cells modulate skin health and homeostasis in response to microbiome changes is unclear. To better understand how ILC3s function against microbiota perturbations in the skin, we propose a role for these cells in response to Cutibacterium acnes, a predominant commensal bacterium linked to the inflammatory skin condition, acne vulgaris. In this article, we review current evidence describing the role of ILC3s in the skin and suggest functional roles by drawing parallels with ILC3s from other organs. We emphasize the limited understanding and knowledge gaps of ILC3s in the skin and discuss the potential impact of ILC3-microbiota crosstalk in select skin diseases. Exploring the dialogue between the microbiota and ILC3s may lead to novel strategies to ameliorate skin immunity.
Collapse
Affiliation(s)
- Thao Tam To
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Nicole Chizara Oparaugo
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Alexander R. Kheshvadjian
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| | - Amanda M. Nelson
- Department of Dermatology, Penn State University College of Medicine, Hershey, PA 17033, USA
| | - George W. Agak
- Division of Dermatology, Department of Medicine, University of California (UCLA), Los Angeles, CA 90095, USA
| |
Collapse
|
4
|
Nabeshima H, Niitsu T, Fukushima K, Kida H. Invariant natural killer T cells and iron metabolism orchestrate skin development and homeostasis. Cell Mol Immunol 2023; 20:1095-1097. [PMID: 37147375 PMCID: PMC10541427 DOI: 10.1038/s41423-023-01016-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 05/07/2023] Open
Affiliation(s)
- Hiroshi Nabeshima
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
| | - Takayuki Niitsu
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Kiyoharu Fukushima
- Laboratory of Host Defense, World Premier Institute Immunology Frontier Research Center (WPI-IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan
- Department of Host Defense, Research Institute for Microbial Diseases (RIMD), Osaka University, 3-1 Yamadaoka, Suita, Osaka, Japan
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Osaka, Japan
- Global Center for Medical Engineering and Informatics, 2-2 Yamadaoka, Suita, Osaka, Japan
| | - Hiroshi Kida
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, Japan.
- Department of Respiratory Medicine, National Hospital Organization Osaka Toneyama Medical Center, 5-1-1 Toneyama, Osaka, Japan.
| |
Collapse
|
5
|
Wang WB, Lin YD, Zhao L, Liao C, Zhang Y, Davila M, Sun J, Chen Y, Xiong N. Developmentally programmed early-age skin localization of iNKT cells supports local tissue development and homeostasis. Nat Immunol 2023; 24:225-238. [PMID: 36624165 DOI: 10.1038/s41590-022-01399-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/01/2022] [Indexed: 01/11/2023]
Abstract
Skin is exposed to various environmental assaults and undergoes morphological changes immediately after birth. Proper localization and function of immune cells in the skin is crucial for protection and establishment of skin tissue homeostasis. Here we report the discovery of a developmentally programmed process that directs preferential localization of invariant natural killer T (iNKT) cells to the skin for early local homeostatic regulation. We show that iNKT cells are programmed predominantly with a CCR10+ skin-homing phenotype during thymic development in infant and young mice. Early skin localization of iNKT cells is critical for proper commensal bacterial colonization and tissue development. Mechanistically, skin iNKT cells provide a local source of transferrin that regulates iron metabolism in hair follicle progenitor cells and helps hair follicle development. These findings provide molecular insights into the establishment and physiological functions of iNKT cells in the skin during early life.
Collapse
Affiliation(s)
- Wei-Bei Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Yang-Ding Lin
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
| | - Luming Zhao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Chang Liao
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Yang Zhang
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Micha Davila
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Jasmine Sun
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA, USA
| | - Yidong Chen
- Department of Population Health Sciences, and Greehey Children's Cancer Research Institute, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
- Department of Medicine-Division of Dermatology and Cutaneous Surgery, University of Texas Health Science Center San Antonio, San Antonio, TX, USA.
| |
Collapse
|
6
|
Song EH, Xu M, Yang J, Xiao Y, Griffith AV, Xiong N. Delta-like 4-Derived Notch Signals Differentially Regulate Thymic Generation of Skin-Homing CCR10 +NK1.1 + Innate Lymphoid Cells at Neonatal and Adult Stages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:950-959. [PMID: 35922065 PMCID: PMC9492633 DOI: 10.4049/jimmunol.2100870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 06/27/2022] [Indexed: 11/06/2022]
Abstract
The thymus is a primary lymphoid organ for T cell development. Increasing evidence found that the thymus is also an important site for development of innate lymphoid cells (ILCs). ILCs generated in thymi acquire unique homing properties that direct their localization into barrier tissues such as the skin and intestine, where they help local homeostasis. Mechanisms underlying the developmental programming of unique tissue-homing properties of ILCs are poorly understood. We report in this article that thymic stroma-derived Notch signaling is differentially involved in thymic generation of a population of NK1.1+ group 1 ILCs (ILC1s) with the CCR10+ skin-homing property in adult and neonatal mice. We found that thymic generation of CCR10+NK1.1+ ILC1s is increased in T cell-deficient mice at adult, but not neonatal, stages, supporting the notion that a large number of developing T cells interfere with signals required for generation of CCR10+NK1.1+ ILC1s. In an in vitro differentiation assay, increasing Notch signals promotes generation of CCR10+NK1.1+ ILC1s from hematopoietic progenitors. Knockout of the Notch ligand Delta-like 4 in thymic stroma impairs generation of CCR10+NK1.1+ ILC1s in adult thymi, but development of CCR10+NK1.1+ ILC1s in neonatal thymi is less dependent on Delta-like 4-derived Notch signals. Mechanistically, the Notch signaling is required for proper expression of the IL-7R CD127 on thymic NK1.1+ ILC1s, and deficiency of CD127 also impairs thymic generation of CCR10+NK1.1+ ILC1s at adult, but not perinatal, stages. Our findings advanced understanding of regulatory mechanisms of thymic innate lymphocyte development.
Collapse
Affiliation(s)
- Eun Hyeon Song
- The Molecular, Cellular, and Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, PA
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Ming Xu
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Jie Yang
- The Molecular, Cellular, and Integrative Biosciences Graduate Program, Pennsylvania State University, University Park, PA
| | - Yangming Xiao
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Ann V Griffith
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX;
- Division of Dermatology and Cutaneous Surgery, Department of Medicine, University of Texas Health Science Center San Antonio, San Antonio, TX; and
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, PA
| |
Collapse
|
7
|
Xu M, Li C, Yang J, Ye A, Yan L, Yeoh BS, Shi L, Kim YS, Kang J, Vijay-Kumar M, Xiong N. Activation of CD81 + skin ILC2s by cold-sensing TRPM8 + neuron-derived signals maintains cutaneous thermal homeostasis. Sci Immunol 2022; 7:eabe0584. [PMID: 35714201 PMCID: PMC9327500 DOI: 10.1126/sciimmunol.abe0584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
As the outermost barrier tissue of the body, the skin harbors a large number of innate lymphoid cells (ILCs) that help maintain local homeostasis in the face of changing environments. How skin-resident ILCs are regulated and function in local homeostatic maintenance is poorly understood. We here report the discovery of a cold-sensing neuron-initiated pathway that activates skin group 2 ILCs (ILC2s) to help maintain thermal homeostasis. In stearoyl-CoA desaturase 1 (SCD1) knockout mice whose skin is defective in heat maintenance, chronic cold stress induced excessive activation of CCR10-CD81+ST2+ skin ILC2s and associated inflammation. Mechanistically, stimulation of the cold-sensing receptor TRPM8 expressed in sensory neurons of the skin led to increased production of IL-18, which, in turn, activated skin ILC2s to promote thermogenesis. Our findings reveal a neuroimmune link that regulates activation of skin ILC2s to support thermal homeostasis and promotes skin inflammation after hyperactivation.
Collapse
Affiliation(s)
- Ming Xu
- Department of Veterinary and Biomedical Sciences, Centre
for Molecular Immunology and Infectious Disease, The Pennsylvania State University,
University Park, PA 16802, USA,Department of Microbiology, Immunology and Molecular
Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
78229, USA
| | - Chao Li
- Department of Microbiology, Immunology and Molecular
Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
78229, USA,Division of Pneumoconiosis, School of Public Health, China
Medical University, Shenyang 110122, China
| | - Jie Yang
- Department of Veterinary and Biomedical Sciences, Centre
for Molecular Immunology and Infectious Disease, The Pennsylvania State University,
University Park, PA 16802, USA
| | - Amy Ye
- Department of Veterinary and Biomedical Sciences, Centre
for Molecular Immunology and Infectious Disease, The Pennsylvania State University,
University Park, PA 16802, USA,Department of Microbiology, Immunology and Molecular
Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
78229, USA
| | - Liping Yan
- Department of Microbiology, Immunology and Molecular
Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
78229, USA
| | - Beng San Yeoh
- Department of Physiology & Pharmacology, University of
Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Lai Shi
- Department of Biochemistry and Molecular Biology, The
Pennsylvania State University, University Park, PA 16802, USA
| | - Yu Shin Kim
- Department of Oral & Maxillofacial surgery, University
of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio,
TX 78229
| | - Joonsoo Kang
- Department of Pathology, University of Massachusetts
Medical School, Albert Sherman Center Worcester, MA 01605
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of
Toledo College of Medicine & Life Sciences, Toledo, OH 43614, USA
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular
Genetics, University of Texas Health Science Center San Antonio, San Antonio, TX
78229, USA,Department of Medicine-Division of Dermatology and
Cutaneous Surgery University of Texas Health Science Center San Antonio, San
Antonio, TX 78229, USA,Correspondence to N.X.
| |
Collapse
|
8
|
Davila ML, Xu M, Huang C, Gaddes ER, Winter L, Cantorna MT, Wang Y, Xiong N. CCL27 is a crucial regulator of immune homeostasis of the skin and mucosal tissues. iScience 2022; 25:104426. [PMID: 35663027 PMCID: PMC9157018 DOI: 10.1016/j.isci.2022.104426] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/30/2022] [Accepted: 05/12/2022] [Indexed: 11/24/2022] Open
Abstract
Abundant immune cells reside in barrier tissues. Understanding the regulation of these cells can yield insights on their roles in tissue homeostasis and inflammation. Here, we report that the chemokine CCL27 is critical for establishment of resident lymphocytes and immune homeostasis in barrier tissues. CCL27 expression is associated with normal skin and hair follicle development independent of commensal bacterial stimulation, indicative of a homeostatic role for the chemokine. Accordingly, in the skin of CCL27-knockout mice, there is a reduced presence and dysregulated localization of T cells that express CCR10, the cognate receptor to CCL27. Besides, CCL27-knockout mice have overreactive skin inflammatory responses in an imiquimod-induced model of psoriasis. Beyond the skin, CCL27-knockout mice have increased infiltration of CCR10+ T cells into lungs and reproductive tracts, the latter of which also exhibit spontaneous inflammation. Our findings demonstrate that CCL27 is critical for immune homeostasis across barrier tissues.
Collapse
Affiliation(s)
- Micha L Davila
- Immunology and Infectious Disease Graduate Program, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, Mail Code 7758, San Antonio, TX 78229, USA
| | - Ming Xu
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, Mail Code 7758, San Antonio, TX 78229, USA
| | - Chengyu Huang
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, Mail Code 7758, San Antonio, TX 78229, USA
| | - Erin R Gaddes
- Department of Biomedical Engineering, 526 CBEB, The Pennsylvania State University, University Park, PA 16802, USA
| | - Levi Winter
- Pathobiology Graduate Program, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Margherita T Cantorna
- Pathobiology Graduate Program, Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Yong Wang
- Department of Biomedical Engineering, 526 CBEB, The Pennsylvania State University, University Park, PA 16802, USA
| | - Na Xiong
- Department of Microbiology, Immunology and Molecular Genetics, Joe R. & Teresa Lozano Long School of Medicine, University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, Mail Code 7758, San Antonio, TX 78229, USA.,Department of Medicine-Division of Dermatology and Cutaneous Surgery University of Texas Health Science Center San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA
| |
Collapse
|
9
|
Lousada MB, Lachnit T, Edelkamp J, Paus R, Bosch TCG. Hydra and the hair follicle - An unconventional comparative biology approach to exploring the human holobiont. Bioessays 2022; 44:e2100233. [PMID: 35261041 DOI: 10.1002/bies.202100233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/14/2022]
Abstract
The microbiome of human hair follicles (HFs) has emerged as an important player in different HF and skin pathologies, yet awaits in-depth exploration. This raises questions regarding the tightly linked interactions between host environment, nutrient dependency of host-associated microbes, microbial metabolism, microbe-microbe interactions and host immunity. The use of simple model systems facilitates addressing generally important questions and testing overarching, therapeutically relevant principles that likely transcend obvious interspecies differences. Here, we evaluate the potential of the freshwater polyp Hydra, to dissect fundamental principles of microbiome regulation by the host, that is the human HF. In particular, we focus on therapeutically targetable host-microbiome interactions, such as nutrient dependency, microbial interactions and host defence. Offering a new lens into the study of HF - microbiota interactions, we argue that general principles of how Hydra manages its microbiota can inform the development of novel, microbiome-targeting therapeutic interventions in human skin disease.
Collapse
Affiliation(s)
- Marta B Lousada
- Monasterium Laboratory Skin & Hair Research, Münster, Germany.,Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| | - Tim Lachnit
- Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| | - Janin Edelkamp
- Monasterium Laboratory Skin & Hair Research, Münster, Germany
| | - Ralf Paus
- Monasterium Laboratory Skin & Hair Research, Münster, Germany.,Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Thomas C G Bosch
- Zoological Institute, Christian-Albrechts, University of Kiel, Kiel, Germany
| |
Collapse
|
10
|
Lujan RA, Vrba SM, Hickman HD. Antiviral Activities of Group I Innate Lymphoid Cells. J Mol Biol 2021; 434:167266. [PMID: 34562465 PMCID: PMC8938296 DOI: 10.1016/j.jmb.2021.167266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022]
Abstract
Even before the adaptive immune response initiates, a potent group of innate antiviral cells responds to a wide range of viruses to limit replication and virus-induced pathology. Belonging to a broader family of recently discovered innate lymphoid cells (ILCs), antiviral group I ILCs are composed of conventional natural killer cells (cNK) and tissue-resident ILCs (ILC1s) that can be distinguished based on their location as well as by the expression of key cell surface markers and transcription factors. Functionally, blood-borne cNK cells recirculate throughout the body and are recruited into the tissue at sites of viral infection where they can recognize and lyse virus-infected cells. In contrast, ILC1s are poised in uninfected barrier tissues and respond not through lysis but with the production of antiviral cytokines. From their frontline tissue locations, ILC1s can even induce an antiviral state in uninfected tissue to preempt viral replication. Mounting evidence also suggests that ILC1s may have enhanced secondary responses to viral infection. In this review, we discuss recent findings demonstrating that ILC1s provide several critical layers of innate antiviral immunity and the mechanisms (when known) underlying protection.
Collapse
Affiliation(s)
- Ramon A Lujan
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sophia M Vrba
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Heather D Hickman
- Laboratory of Clinical Immunology and Microbiology, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|