1
|
Lin SY, Schmidt EN, Takahashi-Yamashiro K, Macauley MS. Roles for Siglec-glycan interactions in regulating immune cells. Semin Immunol 2025; 77:101925. [PMID: 39706106 DOI: 10.1016/j.smim.2024.101925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
Cell surface complex carbohydrates, known as glycans, are positioned to be the first point of contact between two cells. Indeed, interactions between glycans with glycan-binding can modulate cell-cell interactions. This concept is particularly relevant for immune cells, which use an array of glycan-binding proteins to help in the process of differentiating 'self' from 'non-self'. This is exemplified by the sialic acid-binding immunoglobulin-type lectins (Siglecs), which recognize sialic acid. Given that sialic acid is relatively unique to vertebrates, immune cells leverage Siglecs to recognize sialic acid as a marker of 'self'. Siglecs serve many biological roles, with most of these functions regulated through interactions with their sialoglycan ligands. In this review, we provide a comprehensive update on the ligands of Siglecs and how Siglec-sialoglycan interactions help regulate immune cells in the adaptive and innate immune system.
Collapse
Affiliation(s)
- Sung-Yao Lin
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - Edward N Schmidt
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Matthew S Macauley
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada; Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada; Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
DeBono NJ, D'Andrea S, Bandala-Sanchez E, Goddard-Borger E, Zenaidee MA, Moh ESX, Fadda E, Harrison LC, Packer NH. The molecular basis of immunosuppression by soluble CD52 is defined by interactions of N-linked and O-linked glycans with HMGB1 box B. J Biol Chem 2025; 301:108350. [PMID: 40015632 PMCID: PMC11982460 DOI: 10.1016/j.jbc.2025.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/01/2025] Open
Abstract
Human soluble CD52 is a short glycopeptide comprising 12 amino acids (GQNDTSQTSSPS) which functions as an immune regulator by sequestering the pro-inflammatory high mobility group box protein 1 (HMGB1) and suppressing immune responses. Recombinant CD52 has been shown to act as a broad anti-inflammatory agent, dampening both adaptive and innate immune responses. This short glycopeptide is heavily glycosylated, with a complex sialylated N-linked glycan at N3 and reported O-linked glycosylation possible on several serine and threonine residues. Previously we demonstrated that specific glycosylation features of CD52 are essential for its immunosuppressive function, with terminal α-2,3-linked sialic acids required for binding to the inhibitory SIGLEC-10 receptor leading to T-cell suppression. Using high resolution mass spectrometry, we have further characterized the N- and O-linked glycosylation of Expi293 recombinantly produced CD52 at a glycopeptide and released glycan level, accurately determining glycan heterogeneity of both N- and O-linked glycosylation, and localizing the site of O-glycosylation to T8 with high confidence and direct spectral evidence. This detailed knowledge of CD52 glycosylation informed the construction of a model system, which we analyzed by molecular dynamics simulations to understand the mechanism of recognition and define interactions between bioactive CD52, HMGB1 and the SIGLEC-10 receptor. Our results confirm the essential role of glycosylation, more specifically hyper-sialylation, in the function of CD52, and identify at the atomistic level specific interactions between CD52 glycans and the Box B domain of HMGB1 that determine recognition, and the stability of the CD52/HMGB1 complex. These insights will inform the development of synthetic CD52 as an immunotherapeutic agent.
Collapse
Affiliation(s)
- Nicholas J DeBono
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Silvia D'Andrea
- Department of Chemistry, Maynooth University, Maynooth, Ireland
| | | | - Ethan Goddard-Borger
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Muhammad A Zenaidee
- Australian Proteome Analysis Facility, Macquarie University, Sydney, New South Wales, Australia
| | - Edward S X Moh
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Elisa Fadda
- Department of Chemistry, Maynooth University, Maynooth, Ireland; School of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Leonard C Harrison
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Nicolle H Packer
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
3
|
Bertuzzi S, Lete MG, Franconetti A, Diercks T, Delgado S, Oyenarte I, Moure MJ, Nuñez‐Franco R, Valverde P, Lenza MP, Sobczak K, Jiménez‐Osés G, Paulson JC, Ardá A, Ereño‐Orbea J, Jiménez‐Barbero J. Exploring Glycan-Lectin Interactions in Natural-Like Environments: A View Using NMR Experiments Inside Cell and on Cell Surface. Chemistry 2025; 31:e202403102. [PMID: 39588609 PMCID: PMC11833217 DOI: 10.1002/chem.202403102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 11/25/2024] [Indexed: 11/27/2024]
Abstract
Glycan-mediated molecular recognition events are essential for life. NMR is widely used to monitor glycan binding to lectins in solution using isolated glycans and lectins. In this context, we herein explore diverse NMR methodologies, from both the receptor and ligand perspectives, to monitor glycan-lectin interactions under experimental conditions mimicking the native milieu inside cells and on cell surface. For the NMR experiments inside cells, galectin-7 is employed as model, since most galectins are soluble and carry out their functions in the cellular micro-environment. Using Danio Rerio oocytes, the 1H-15N HMQC NMR spectrum of a folded galectin has been observed inside cell for the first time, using a glycomimetic ligand (TDG) to overcoming the natural tendency of galectins to bind to numerous galactose-containing receptors within cells. Alternatively, most lectins, other than galectins, are displayed on the cell surface, providing a multivalent presentation to bind their glycan partners in cis (at the same cell) or in trans (on other cells). In this case, ligand-based STD-NMR experiments have been successfully applied to account for the interactions of natural glycans and glycomimetics with Siglec-10. These methodologies provide the proof-of-concept to open the door to the NMR analysis of the recognition of glycans in native-like settings.
Collapse
Affiliation(s)
- Sara Bertuzzi
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Marta G. Lete
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Antonio Franconetti
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Tammo Diercks
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Sandra Delgado
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Iker Oyenarte
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Maria J. Moure
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Reyes Nuñez‐Franco
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Pablo Valverde
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Maria Pia Lenza
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Klaudia Sobczak
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - Gonzalo Jiménez‐Osés
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
| | - James C. Paulson
- Departments of Molecular Medicine and Immunology & MicrobiologyThe Scripps Research Institute10550 North Torrey Pines RoadLa Jolla, California92037USA
| | - Ana Ardá
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - June Ereño‐Orbea
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
| | - Jesús Jiménez‐Barbero
- Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)48160Derio, BizkaiaSpain
- Ikerbasque, Basque Foundation for ScienceBilbaoSpain
- Department of Organic & Inorganic ChemistryFaculty of Science and TechnologyUniversity of the Basque Country, EHU-UPV48940Leioa, BizkaiaSpain
- Centro de Investigacion Biomedica En Red de Enfermedades Respiratorias28029MadridSpain
| |
Collapse
|
4
|
Huang J, Feng L, Huang J, Zhang G, Liao S. Unveiling sialoglycans' immune mastery in pregnancy and their intersection with tumor biology. Front Immunol 2024; 15:1479181. [PMID: 39759524 PMCID: PMC11695303 DOI: 10.3389/fimmu.2024.1479181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/04/2024] [Indexed: 01/07/2025] Open
Abstract
Sialylation is a typical final step of glycosylation, which is a prevalent post-translational modification of proteins. Sialoglycans, the products of sialylation, are located on the outmost of cells and participate in pivotal biological processes. They have been identified as glyco-immune checkpoints and are currently under rigorous investigation in the field of tumor research. It is noteworthy that the exploration of sialoglycans in tumor and pregnancy contexts was both initiated in the 1960s. Mechanisms in these two conditions exhibit similarities. Trophoblast infiltration during pregnancy gets controlled, while tumor invasion is uncontrolled. The maternal-fetal immunotolerance balances acceptance of the semiallogeneic fetus and resistance against "non-self" antigen attack simultaneously. Tumors mask themselves with sialoglycans as "don't eat me" signals to escape immune surveillance. The trophoblastic epithelium is covered with sialoglycans, which have been demonstrated to play an immune regulatory role throughout the entire pregnancy. Immune abnormalities are commonly recognized as an important reason for miscarriages. Therapeutic strategies that desialylation and targeting receptors of sialoglycans have been studied in tumors, while agents that target glyco-immune checkpoints have not been studied in pregnancy. Thus, investigating the roles of sialoglycans in pregnancy and their intersection with tumors may facilitate the development of novel therapies targeting glyco-immune checkpoints for the treatment of pregnancy-related diseases, such as miscarriage and preeclampsia.
Collapse
Affiliation(s)
- Jianmei Huang
- Medical Genetic Institute of Henan Province, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| | - Lu Feng
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jianming Huang
- Biochemistry and Molecular Biology, Sichuan Cancer Institute, Chengdu, China
| | - Guonan Zhang
- Department of Gynecologic Oncology, Sichuan Cancer Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shixiu Liao
- Medical Genetic Institute of Henan Province, Henan Key Laboratory of Genetic Diseases and Functional Genomics, National Health Commission Key Laboratory of Birth Defects Prevention, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
5
|
Marseglia A, Forgione MC, Marcos-Silva M, Di Carluccio C, Manabe Y, Vizarraga D, Nieto-Fabregat F, Lenza MP, Fukase K, Molinaro A, Pich OQ, Aparicio D, Silipo A, Marchetti R. Molecular basis of bacterial lectin recognition of eukaryotic glycans: The case of Mycoplasma pneumoniae and Mycoplasma genitalium cytoadhesins. Int J Biol Macromol 2024; 279:135277. [PMID: 39226978 DOI: 10.1016/j.ijbiomac.2024.135277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/26/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Mycoplasma pneumoniae and Mycoplasma genitalium are two emerging bacterial pathogens that colonize the human respiratory and urogenital epithelia, respectively. Both pathogens express cell surface cytoadhesins that play a crucial role in the interaction with the host, mediating the attachment to sialylated glycan receptors and triggering infection. The design of competitive binding inhibitors of Mycoplasma cytoadhesins has potential to disrupt these interactions and lessen bacterial pathogenesis. To this end, we report here molecular insights into the adhesion mechanisms of M. pneumoniae and M. genitalium, which are largely mediated by sialylated glycans on the host cell surface. In detail, a combination of Nuclear Magnetic Resonance (NMR) spectroscopy, fluorescence analysis and computational studies allowed us to explore the recognition by the cytoadhesins P40/P90 in M. pneumoniae and P110 in M. genitalium of sialylated N- and O-glycans. We reveal that, unlike other bacterial adhesins, which are characterized by a wide binding pocket, Mycoplasma cytoadhesins principally accommodate the sialic acid residue, in a similar manner to mammalian Siglecs. These findings represent crucial insight into the future development of novel compounds to counteract Mycoplasma infections by inhibiting bacterial adherence to host tissues.
Collapse
Affiliation(s)
- Angela Marseglia
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Maria Concetta Forgione
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Marina Marcos-Silva
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - David Vizarraga
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Ferran Nieto-Fabregat
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Maria Pia Lenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49 - 80131 Napoli Italy
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Oscar Q Pich
- Departament de Bioquímica i Biologia Molecular, Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain; Laboratori de Recerca en Microbiologia i Malalties Infeccioses, Hospital Universitari Parc Taulí, Institut d'Investigació i Innovació Parc Taulí (I3PT-CERCA), UniversitatAutònoma de Barcelona, Sabadell, Spain
| | - David Aparicio
- Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Parc Científic de Barcelona, Baldiri Reixac 10, 08028 Barcelona, Spain; Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy; Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126 Napoli, Italy.
| |
Collapse
|
6
|
Hazra R, Chattopadhyay S, Mallick A, Gayen S, Roy S. Unravelling CD24-Siglec-10 pathway: Cancer immunotherapy from basic science to clinical studies. Immunology 2024; 173:442-469. [PMID: 39129256 DOI: 10.1111/imm.13847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 07/27/2024] [Indexed: 08/13/2024] Open
Abstract
Cancer immunotherapy has revolutionized the treatment landscape by harnessing the power of the immune system to combat malignancies. Two of the most promising players in this field are cluster of differentiation 24 (CD24) and sialic acid-binding Ig-like lectin 10 (Siglec-10), and both of them play pivotal roles in modulating immune responses. CD24, a cell surface glycoprotein, emerges as a convincing fundamental signal transducer for therapeutic intervention, given its significant implication in the processes related to tumour progression and immunogenic evasion. Additionally, the immunomodulatory functions of Siglec-10, a prominent member within the Siglec family of immune receptors, have recently become a crucial point of interest, particularly in the context of the tumour microenvironment. Hence, the intricate interplay of both CD24 and Siglec-10 assumes a critical role in fostering tumour growth, facilitating metastasis and also orchestrating immune evasion. Recent studies have found multiple evidences supporting the therapeutic potential of targeting CD24 in cancer treatment. Siglec-10, on the other hand, exhibits immunosuppressive properties that contribute to immune tolerance within the tumour microenvironment. Therefore, we delve into the complex mechanisms through which Siglec-10 modulates immune responses and facilitates immune escape in cancer. Siglec-10 also acts as a viable target for cancer immunotherapy and presents novel avenues for the development of therapeutic interventions. Furthermore, we examine the synergy between CD24 and Siglec-10 in shaping the immunosuppressive tumour microenvironment and discuss the implications for combination therapies. Therefore, understanding the roles of CD24 and Siglec-10 in cancer immunotherapy opens exciting possibilities for the development of novel therapeutics.
Collapse
Affiliation(s)
- Rudradeep Hazra
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Soumyadeep Chattopadhyay
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Arijit Mallick
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Sakuntala Gayen
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, Kolkata, India
| |
Collapse
|
7
|
Ma S, Zhang P, Ye J, Tian Y, Tian X, Jung J, Macauley MS, Zhang J, Wu P, Wen L. Enzyme-Sialylation-Controlled Chemical Sulfation of Glycan Epitopes for Decoding the Binding of Siglec Ligands. J Am Chem Soc 2024; 146:29469-29480. [PMID: 39417319 DOI: 10.1021/jacs.4c08817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Widely distributed in nature, sulfated glycan epitopes play important roles in diverse pathophysiological processes. However, due to their structural complexity, the preparation of glycan epitopes with structurally defined sulfation patterns is challenging, which significantly hampers the detailed elucidation of their biological functions at the molecular level. Here, we introduce a strategy for site-specific chemical sulfation of glycan epitopes, leveraging enzymatic sialylation and desialylation processes to precisely control the regio-specificity of sulfation of disaccharide or trisaccharide glycan backbones. Using this method, a sulfated glycan library covering the most common sialylated glycan epitopes was prepared in high yield and efficiency. By screening a microarray prepared with this glycan library, we systematically probed their binding specificity with human Siglecs (sialic acid-binding immunoglobulin-type lectins), many of which function as glyco-immune checkpoints to suppress immune system activation. Our investigation revealed that sulfation and sialylation patterns serve as important determinants of Siglec binding affinity and specificity. Thus, these findings offer new insights for the development of research tools and potential therapeutic agents targeting glyco-immune checkpoints by modulating the Siglec signaling pathway.
Collapse
Affiliation(s)
- Shengzhou Ma
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Pengfei Zhang
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jinfeng Ye
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Yinping Tian
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xiao Tian
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Jaesoo Jung
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
| | - Jiabin Zhang
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, Guangdong 528400, China
| | - Peng Wu
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California 92037, United States
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Jame-Chenarboo Z, Gray TE, Macauley MS. Advances in understanding and exploiting Siglec-glycan interactions. Curr Opin Chem Biol 2024; 80:102454. [PMID: 38631213 DOI: 10.1016/j.cbpa.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/19/2024]
Abstract
Sialic-acid-binding immunoglobulin-type lectins (Siglecs) are a family of cell-surface immunomodulatory receptors that recognize sialic-acid-containing glycans. The majority of Siglecs have an inhibitory motif in their intercellular domain and can regulate the cellular activation of immune cells. Importantly, the immunomodulatory role of Siglecs is regulated by engagement with distinct sialoglycan ligands. However, there are still many unanswered questions about the precise ligand(s) recognized by individual Siglec family members. New tools and approaches to study Siglec-ligand interactions are rapidly filling this knowledge gap. This review provides an overview of recent advances in discovering Siglec ligands as well as the development of approaches to modulate the function of Siglecs. In both aspects, chemical biology approaches are emphasized with a discussion on how these are complementing biochemical and genetic strategies.
Collapse
Affiliation(s)
| | - Taylor E Gray
- Department of Chemistry, University of Alberta, Canada
| | - Matthew S Macauley
- Department of Chemistry, University of Alberta, Canada; Department of Medical Microbiology and Immunology, University of Alberta, Canada.
| |
Collapse
|
9
|
Kukan EN, Fabiano GL, Cobb BA. Siglecs as modulators of macrophage phenotype and function. Semin Immunol 2024; 73:101887. [PMID: 39357273 DOI: 10.1016/j.smim.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors expressed widely on cells of the hematopoietic system. Siglecs recognize terminal sialic acid residues on glycans and often initiate intracellular signaling upon ligation. Cells can express several Siglec family members concurrently with each showing differential specificities for sialic acid linkages to the underlying glycan as well as varied hydroxyl substitutions, allowing these receptors to fine tune downstream responses. Macrophages are among the many immune cells that express Siglec family members. Macrophages exhibit wide diversity in their phenotypes and functions, and this diversity is often mediated by signals from the local environment, including those from glycans. In this review, we detail the known expression of Siglecs in macrophages while focusing on their functional importance and potential clinical relevance.
Collapse
Affiliation(s)
- Emily N Kukan
- Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Gabrielle L Fabiano
- Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Brian A Cobb
- Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States.
| |
Collapse
|
10
|
Lee IM, Wu HY, Angata T, Wu SH. Bacterial pseudaminic acid binding to Siglec-10 induces a macrophage interleukin-10 response and suppresses phagocytosis. Chem Commun (Camb) 2024; 60:2930-2933. [PMID: 38372418 DOI: 10.1039/d4cc00077c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Pseudaminic acid (Pse) on pathogenic bacteria exopolysaccharide engages with the sialic acid-binding immunoglobulin-type lectin (Siglec)-10 receptor on macrophages via the critical 7-N-acetyl group. This binding stimulates macrophages to secrete interleukin 10 that suppresses phagocytosis against bacteria, but can be reverted by blocking Pse-Siglec-10 interaction with Pse-binding protein as a promising therapy.
Collapse
Affiliation(s)
- I-Ming Lee
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, No. 70 Lien-hai Road, Kaohsiung, 804201, Taiwan
| | - Hsing-Yu Wu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, 11529, Taipei, Taiwan.
| | - Takashi Angata
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, 11529, Taipei, Taiwan.
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, 128 Academia Road, Section 2, Nankang, 11529, Taipei, Taiwan.
| |
Collapse
|
11
|
Boelaars K, van Kooyk Y. Targeting myeloid cells for cancer immunotherapy: Siglec-7/9/10/15 and their ligands. Trends Cancer 2024; 10:230-241. [PMID: 38160071 DOI: 10.1016/j.trecan.2023.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 11/17/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Advances in immunotherapy have revolutionized cancer treatment, yet many patients do not show clinical responses. While most immunotherapies target T cells, myeloid cells are the most abundant cell type in solid tumors and are key orchestrators of the immunosuppressive tumor microenvironment (TME), hampering effective T cell responses. Therefore, unraveling the immune suppressive pathways within myeloid cells could unveil new avenues for cancer immunotherapy. Over the past decade, Siglec receptors and their ligand, sialic acids, have emerged as a novel immune checkpoint on myeloid cells. In this review, we highlight key findings on how sialic acids modify immunity in the TME through engagement of Siglec-7/9/10/15 expressed on myeloid cells, and how the sialic acid-Siglec axis can be targeted for future cancer immunotherapies.
Collapse
Affiliation(s)
- Kelly Boelaars
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, De Boelelaan, 1117, Amsterdam, The Netherlands
| | - Yvette van Kooyk
- Amsterdam UMC location Vrije Universiteit Amsterdam, Molecular Cell Biology and Immunology, Cancer Center Amsterdam, Amsterdam Institute for Infection and Immunity, De Boelelaan, 1117, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Di Carluccio C, Cerofolini L, Moreira M, Rosu F, Padilla-Cortés L, Gheorghita GR, Xu Z, Santra A, Yu H, Yokoyama S, Gray TE, St. Laurent CD, Manabe Y, Chen X, Fukase K, Macauley MS, Molinaro A, Li T, Bensing BA, Marchetti R, Gabelica V, Fragai M, Silipo A. Molecular Insights into O-Linked Sialoglycans Recognition by the Siglec-Like SLBR-N (SLBR UB10712) of Streptococcus gordonii. ACS CENTRAL SCIENCE 2024; 10:447-459. [PMID: 38435526 PMCID: PMC10906241 DOI: 10.1021/acscentsci.3c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 03/05/2024]
Abstract
Streptococcus gordonii is a Gram-positive bacterial species that typically colonizes the human oral cavity, but can also cause local or systemic diseases. Serine-rich repeat (SRR) glycoproteins exposed on the S. gordonii bacterial surface bind to sialylated glycans on human salivary, plasma, and platelet glycoproteins, which may contribute to oral colonization as well as endocardial infections. Despite a conserved overall domain organization of SRR adhesins, the Siglec-like binding regions (SLBRs) are highly variable, affecting the recognition of a wide range of sialoglycans. SLBR-N from the SRR glycoprotein of S. gordonii UB10712 possesses the remarkable ability to recognize complex core 2 O-glycans. We here employed a multidisciplinary approach, including flow cytometry, native mass spectrometry, isothermal titration calorimetry, NMR spectroscopy from both protein and ligand perspectives, and computational methods, to investigate the ligand specificity and binding preferences of SLBR-N when interacting with mono- and disialylated core 2 O-glycans. We determined the means by which SLBR-N preferentially binds branched α2,3-disialylated core 2 O-glycans: a selected conformation of the 3'SLn branch is accommodated into the main binding site, driving the sTa branch to further interact with the protein. At the same time, SLBR-N assumes an open conformation of the CD loop of the glycan-binding pocket, allowing one to accommodate the entire complex core 2 O-glycan. These findings establish the basis for the generation of novel tools for the detection of specific complex O-glycan structures and pave the way for the design and development of potential therapeutics against streptococcal infections.
Collapse
Affiliation(s)
- Cristina Di Carluccio
- Department
of Chemical Sciences, University of Naples
Federico II, Naples 80138, Italy
| | - Linda Cerofolini
- Magnetic
Resonance Centre (CERM), CIRMMP, and Department of Chemistry “Ugo
Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
| | - Miguel Moreira
- Department
of Chemical Sciences, University of Naples
Federico II, Naples 80138, Italy
| | - Frédéric Rosu
- IECB
Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Luis Padilla-Cortés
- Magnetic
Resonance Centre (CERM), CIRMMP, and Department of Chemistry “Ugo
Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
| | - Giulia Roxana Gheorghita
- Magnetic
Resonance Centre (CERM), CIRMMP, and Department of Chemistry “Ugo
Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
- Giotto
Biotech s.r.l., Sesto Fiorentino 50019, Italy
| | - Zhuojia Xu
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Abhishek Santra
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Hai Yu
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Shinji Yokoyama
- Graduate
School of Science, Osaka University, Osaka 565-0871, Japan
| | - Taylor E. Gray
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Chris D. St. Laurent
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Yoshiyuki Manabe
- Graduate
School of Science, Osaka University, Osaka 565-0871, Japan
| | - Xi Chen
- Department
of Chemistry, University of California,
Davis, Davis, California 95616, United States
| | - Koichi Fukase
- Graduate
School of Science, Osaka University, Osaka 565-0871, Japan
| | - Matthew S. Macauley
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
- Department
of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2R3, Canada
| | - Antonio Molinaro
- Department
of Chemical Sciences, University of Naples
Federico II, Naples 80138, Italy
- Graduate
School of Science, Osaka University, Osaka 565-0871, Japan
| | - Tiehai Li
- Shanghai
Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Barbara A. Bensing
- San
Francisco Veterans Affairs Medical Center and University of California, San Francisco, California 94121, United States
| | - Roberta Marchetti
- Department
of Chemical Sciences, University of Naples
Federico II, Naples 80138, Italy
| | - Valérie Gabelica
- IECB
Institut Européen de Chimie et Biologie, Pessac 33600, France
| | - Marco Fragai
- Magnetic
Resonance Centre (CERM), CIRMMP, and Department of Chemistry “Ugo
Schiff”, University of Florence, Sesto Fiorentino 50019, Italy
| | - Alba Silipo
- Department
of Chemical Sciences, University of Naples
Federico II, Naples 80138, Italy
| |
Collapse
|
13
|
Feng H, Feng J, Han X, Ying Y, Lou W, Liu L, Zhang L. The Potential of Siglecs and Sialic Acids as Biomarkers and Therapeutic Targets in Tumor Immunotherapy. Cancers (Basel) 2024; 16:289. [PMID: 38254780 PMCID: PMC10813689 DOI: 10.3390/cancers16020289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
The dysregulation of sialic acid is closely associated with oncogenesis and tumor progression. Most tumor cells exhibit sialic acid upregulation. Sialic acid-binding immunoglobulin-like lectins (Siglecs) are receptors that recognize sialic acid and are expressed in various immune cells. The activity of Siglecs in the tumor microenvironment promotes immune escape, mirroring the mechanisms of the well-characterized PD-1/PD-L1 pathway in cancer. Cancer cells utilize sialic acid-linked glycans to evade immune surveillance. As Siglecs exhibit similar mechanisms as the established immune checkpoint inhibitors (ICIs), they are potential therapeutic targets for different forms of cancer, especially ICI-resistant malignancies. Additionally, the upregulation of sialic acid serves as a potential tumor biomarker. This review examines the feasibility of using sialic acid and Siglecs for early malignant tumor detection and discusses the potential of targeting Siglec-sialic acid interaction as a novel cancer therapeutic strategy.
Collapse
Affiliation(s)
- Haokang Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiale Feng
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Xu Han
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ying Ying
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wenhui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- The Shanghai Geriatrics Medical Center, Zhongshan Hospital MinHang MeiLong Branch, Fudan University, Shanghai 200032, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Lei Zhang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China; (H.F.); (J.F.); (X.H.); (Y.Y.); (W.L.)
- Cancer Center, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| |
Collapse
|
14
|
Wang Y, Peng Y, Long R, Shi P, Zhang Y, Kong DX, Zheng J, Wang X. Sequence variety in the CC' loop of Siglec-8/9/3 determines the recognitions to sulfated oligosaccharides. Comput Struct Biotechnol J 2023; 21:4159-4171. [PMID: 37675287 PMCID: PMC10477811 DOI: 10.1016/j.csbj.2023.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 09/08/2023] Open
Abstract
Siglecs are important lectins found in different types of immune cells and function as regulatory molecules by recognizing self-associated glycans and converting extracellular interactions into signals for inhibiting immune cell functions. Although many Siglecs have been found to show broad specificities and recognize different types of sulfated oligosaccharides, Siglec-8 and Siglec-9 displayed a high degree of specificity for sialyl N-acetyllactosamine (sLacNAc) with sulfations at O6-positions of the galactose (6'-sulfation) and N-acetylglucosamine (6-sulfation), respectively. Siglec-3 was recently discovered to bind sLacNAc both sulfations. In addition to a conserved arginine residue for binding to sialic acid residue, the sequence variety in the CC' loop may provide binding specificities to sulfated oligosaccharides in Siglecs. Thus, the present study employed molecular models to study the impact of different residues in the CC' loops of Siglec-8/9/3 to the recognitions of 6-sulfations in Gal and/or GlcNAc of sLacNAc. The negatively charged residues in the CC' loop of Siglec-9 formed unfavorable electrostatic repulsions with the 6-sulfate in Gal and resulted no recognitions, in contrast to the favorable interactions formed between the positively charged residues in the CC' loop of Siglec-8 and the 6-sulfate in Gal resulting strong specificity. A two-state binding model was proposed for Siglec-3 recognizing 6-sulfations in Gal and GlcNAc of sLacNAc, as the neutral residues in the CC' loop of Siglec-3 could not form strong favorable interactions to lock the 6-sulfate in Gal within a single binding pose or strong unfavorable interactions to repel the 6-sulfate in Gal. The oligosaccharide adopted two distinctive binding poses and oriented the sulfate groups to form interactions with residues in the CC' loop and G-strand. The present study provided a structural mechanism for the sequence variety in the CC' loop of Siglec-8/9/3 determining the recognitions to the sulfated oligosaccharides and offered insights into the binding specificities for Siglecs.
Collapse
Affiliation(s)
- Yucheng Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yujie Peng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rui Long
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Peiting Shi
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yinghao Zhang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - De-Xin Kong
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Jinshui Zheng
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xiaocong Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| |
Collapse
|
15
|
Gonzalez-Gil A, Li TA, Kim J, Schnaar RL. Human sialoglycan ligands for immune inhibitory Siglecs. Mol Aspects Med 2023; 90:101110. [PMID: 35965135 DOI: 10.1016/j.mam.2022.101110] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/08/2023]
Abstract
Most human Siglecs (sialic acid binding immunoglobulin-like lectins) are expressed on the surfaces of overlapping subsets of immune cells, and most carry immunoreceptor tyrosine-based inhibitory domains on their intracellular motifs. When immune inhibitory Siglecs bind to complementary sialoglycans in their local milieu, engagement results in down-regulation of the immune response. Siglecs have come under scrutiny as potential targets of drugs to modify the course of inflammation (and other immune system responses) and as immune checkpoints in cancer. Human Siglecs bind to endogenous human sialoglycans. The identities of these endogenous human sialoglycan immune regulators are beginning to emerge, along with some general principles that may inform future investigations in this area. Among these principles is the finding that a cell type or tissue may express a ligand for a particular Siglec on a single or a very few of its sialoglycoproteins. The selected protein carrier for a particular Siglec may be unique in a certain tissue, but vary tissue-to-tissue. The binding affinity of endogenous Siglec ligands may surpass that of its binding to synthetic sialoglycan determinants by several orders of magnitude. Since most human Siglecs have evolved rapidly and are distinct from those in most other mammals, this review describes endogenous human Siglec ligands for several human immune inhibitory Siglecs. As the identities of these immune regulatory sialoglycan ligands are defined, additional opportunities to target Siglecs therapeutically may emerge.
Collapse
Affiliation(s)
- Anabel Gonzalez-Gil
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - T August Li
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| | - Jean Kim
- Department Medicine, Division of Allergy and Clinical Immunology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
| | - Ronald L Schnaar
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA; Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
16
|
Zheng L, Yang Q, Li F, Zhu M, Yang H, Tan T, Wu B, Liu M, Xu C, Yin J, Cao C. The Glycosylation of Immune Checkpoints and Their Applications in Oncology. Pharmaceuticals (Basel) 2022; 15:ph15121451. [PMID: 36558902 PMCID: PMC9783268 DOI: 10.3390/ph15121451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Tumor therapies have entered the immunotherapy era. Immune checkpoint inhibitors have achieved tremendous success, with some patients achieving long-term tumor control. Tumors, on the other hand, can still accomplish immune evasion, which is aided by immune checkpoints. The majority of immune checkpoints are membrane glycoproteins, and abnormal tumor glycosylation may alter how the immune system perceives tumors, affecting the body's anti-tumor immunity. Furthermore, RNA can also be glycosylated, and GlycoRNA is important to the immune system. Glycosylation has emerged as a new hallmark of tumors, with glycosylation being considered a potential therapeutic approach. The glycosylation modification of immune checkpoints and the most recent advances in glycosylation-targeted immunotherapy are discussed in this review.
Collapse
Affiliation(s)
- Linlin Zheng
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Qi Yang
- Biotherapy Center, Third Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Feifei Li
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, China
| | - Min Zhu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Haochi Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Tian Tan
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Binghuo Wu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Mingxin Liu
- School of Medicine, University of Electronic Science and Technology of China, Chengdu 610054, China
| | - Chuan Xu
- Department of Oncology, Sichuan Academy of Medical Sciences, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
| | - Jun Yin
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
- Correspondence: (J.Y.); (C.C.)
| | - Chenhui Cao
- Sichuan Key Laboratory of Radiation Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610041, China
- Correspondence: (J.Y.); (C.C.)
| |
Collapse
|
17
|
Abstract
Glycoscience assembles all the scientific disciplines involved in studying various molecules and macromolecules containing carbohydrates and complex glycans. Such an ensemble involves one of the most extensive sets of molecules in quantity and occurrence since they occur in all microorganisms and higher organisms. Once the compositions and sequences of these molecules are established, the determination of their three-dimensional structural and dynamical features is a step toward understanding the molecular basis underlying their properties and functions. The range of the relevant computational methods capable of addressing such issues is anchored by the specificity of stereoelectronic effects from quantum chemistry to mesoscale modeling throughout molecular dynamics and mechanics and coarse-grained and docking calculations. The Review leads the reader through the detailed presentations of the applications of computational modeling. The illustrations cover carbohydrate-carbohydrate interactions, glycolipids, and N- and O-linked glycans, emphasizing their role in SARS-CoV-2. The presentation continues with the structure of polysaccharides in solution and solid-state and lipopolysaccharides in membranes. The full range of protein-carbohydrate interactions is presented, as exemplified by carbohydrate-active enzymes, transporters, lectins, antibodies, and glycosaminoglycan binding proteins. A final section features a list of 150 tools and databases to help address the many issues of structural glycobioinformatics.
Collapse
Affiliation(s)
- Serge Perez
- Centre de Recherche sur les Macromolecules Vegetales, University of Grenoble-Alpes, Centre National de la Recherche Scientifique, Grenoble F-38041, France
| | - Olga Makshakova
- FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, Kazan 420111, Russia
| |
Collapse
|
18
|
Freile JÁ, Ustyanovska Avtenyuk N, Corrales MG, Lourens HJ, Huls G, van Meerten T, Cendrowicz E, Bremer E. CD24 Is a Potential Immunotherapeutic Target for Mantle Cell Lymphoma. Biomedicines 2022; 10:1175. [PMID: 35625912 PMCID: PMC9138264 DOI: 10.3390/biomedicines10051175] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/12/2022] [Accepted: 05/17/2022] [Indexed: 01/05/2023] Open
Abstract
CD24 and its ligand Siglec-10 were described as an innate immune checkpoint in carcinoma. Here, we investigated this axis in B-cell lymphoma by assessing CD24 expression and evaluating pro-phagocytic effects of CD24 antibody treatment in comparison to hallmark immune checkpoint CD47. In mantle cell lymphoma (MCL) and follicular lymphoma patients, high mRNA expression of CD24 correlated with poor overall survival, whereas CD47 expression did not. Conversely, CD24 expression did not correlate with survival in diffuse large B-cell lymphoma (DLBCL), whereas CD47 did. CD24 was also highly expressed on MCL cell lines, where treatment with CD24 antibody clones SN3 or ML5 potently induced phagocytosis, with SN3 yielding >90% removal of MCL cells and triggering phagocytosis of primary patient-derived MCL cells by autologous macrophages. Treatment with CD24 mAb was superior to CD47 mAb in MCL and was comparable in magnitude to the effect observed in carcinoma lines. Reversely, CD24 mAb treatment was less effective than CD47 mAb treatment in DLBCL. Finally, phagocytic activity of clone SN3 appeared at least partly independent of antibody-dependent cellular phagocytosis (ADCP), suggesting CD24/Siglec-10 checkpoint activity, whereas clone ML5 solely induced ADCP. In conclusion, CD24 is an immunotherapeutic target of potential clinical relevance for MCL, but not DLBCL.
Collapse
Affiliation(s)
- Jimena Álvarez Freile
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Natasha Ustyanovska Avtenyuk
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Macarena González Corrales
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Harm Jan Lourens
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Gerwin Huls
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Tom van Meerten
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| | - Ewa Cendrowicz
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
- Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Edwin Bremer
- Department of Hematology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands; (J.Á.F.); (N.U.A.); (M.G.C.); (H.J.L.); (G.H.); (T.v.M.)
| |
Collapse
|
19
|
Forgione RE, Nieto FF, Di Carluccio C, Milanesi F, Fruscella M, Papi F, Nativi C, Molinaro A, Palladino P, Scarano S, Minunni M, Montefiori M, Civera M, Sattin S, Francesconi O, Marchetti R, Silipo A. Conformationally Constrained Sialyl Analogues as New Potential Binders of h-CD22. Chembiochem 2022; 23:e202200076. [PMID: 35313057 PMCID: PMC9315041 DOI: 10.1002/cbic.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/19/2022] [Indexed: 11/21/2022]
Abstract
Here, two conformationally constrained sialyl analogues were synthesized and characterized in their interaction with the inhibitory Siglec, human CD22 (h-CD22). An orthogonal approach, including biophysical assays (SPR and fluorescence), ligand-based NMR techniques, and molecular modelling, was employed to disentangle the interaction mechanisms at a molecular level. The results showed that the Sialyl-TnThr antigen analogue represents a promising scaffold for the design of novel h-CD22 inhibitors. Our findings also suggest that the introduction of a biphenyl moiety at position 9 of the sialic acid hampers canonical accommodation of the ligand in the protein binding pocket, even though the affinity with respect to the natural ligand is increased. Our results address the search for novel modifications of the Neu5Ac-α(2-6)-Gal epitope, outline new insights for the design and synthesis of high-affinity h-CD22 ligands, and offer novel prospects for therapeutic intervention to prevent autoimmune diseases and B-cell malignancies.
Collapse
Affiliation(s)
- Rosa Ester Forgione
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 480126NapoliItaly
| | - Ferran Fabregat Nieto
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 480126NapoliItaly
| | - Cristina Di Carluccio
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 480126NapoliItaly
| | - Francesco Milanesi
- Department of Chemistry “Ugo Schiff”University of FlorencePolo Scientifico e Tecnologico50019, Sesto FiorentinoFirenzeItaly
- Centro Risonanze MagneticheCERMVia L. Sacconi 650019 Sesto FiorentinoFirenzeItaly
| | - Martina Fruscella
- Department of Chemistry “Ugo Schiff”University of FlorencePolo Scientifico e Tecnologico50019, Sesto FiorentinoFirenzeItaly
| | - Francesco Papi
- Department of Chemistry “Ugo Schiff”University of FlorencePolo Scientifico e Tecnologico50019, Sesto FiorentinoFirenzeItaly
| | - Cristina Nativi
- Department of Chemistry “Ugo Schiff”University of FlorencePolo Scientifico e Tecnologico50019, Sesto FiorentinoFirenzeItaly
| | - Antonio Molinaro
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 480126NapoliItaly
| | - Pasquale Palladino
- Department of Chemistry “Ugo Schiff”University of FlorencePolo Scientifico e Tecnologico50019, Sesto FiorentinoFirenzeItaly
| | - Simona Scarano
- Department of Chemistry “Ugo Schiff”University of FlorencePolo Scientifico e Tecnologico50019, Sesto FiorentinoFirenzeItaly
| | - Maria Minunni
- Department of Chemistry “Ugo Schiff”University of FlorencePolo Scientifico e Tecnologico50019, Sesto FiorentinoFirenzeItaly
| | - Marco Montefiori
- Dipartimento di ChimicaUniversità degli Studi di Milanovia C. Golgi, 1920133MilanoItaly
| | - Monica Civera
- Dipartimento di ChimicaUniversità degli Studi di Milanovia C. Golgi, 1920133MilanoItaly
| | - Sara Sattin
- Dipartimento di ChimicaUniversità degli Studi di Milanovia C. Golgi, 1920133MilanoItaly
| | - Oscar Francesconi
- Department of Chemistry “Ugo Schiff”University of FlorencePolo Scientifico e Tecnologico50019, Sesto FiorentinoFirenzeItaly
| | - Roberta Marchetti
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 480126NapoliItaly
| | - Alba Silipo
- Department of Chemical SciencesUniversity of Naples Federico IIVia Cintia 480126NapoliItaly
| |
Collapse
|
20
|
Soares CO, Grosso AS, Ereño-Orbea J, Coelho H, Marcelo F. Molecular Recognition Insights of Sialic Acid Glycans by Distinct Receptors Unveiled by NMR and Molecular Modeling. Front Mol Biosci 2021; 8:727847. [PMID: 34869580 PMCID: PMC8634706 DOI: 10.3389/fmolb.2021.727847] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/01/2021] [Indexed: 11/13/2022] Open
Abstract
All cells are decorated with a highly dense and complex structure of glycan chains, which are mostly attached to proteins and lipids. In this context, sialic acids are a family of nine-carbon acidic monosaccharides typically found at the terminal position of glycan chains, modulating several physiological and pathological processes. Sialic acids have many structural and modulatory roles due to their negative charge and hydrophilicity. In addition, the recognition of sialic acid glycans by mammalian cell lectins, such as siglecs, has been described as an important immunological checkpoint. Furthermore, sialic acid glycans also play a pivotal role in host-pathogen interactions. Various pathogen receptors exposed on the surface of viruses and bacteria are responsible for the binding to sialic acid sugars located on the surface of host cells, becoming a critical point of contact in the infection process. Understanding the molecular mechanism of sialic acid glycans recognition by sialic acid-binding proteins, present on the surface of pathogens or human cells, is essential to realize the biological mechanism of these events and paves the way for the rational development of strategies to modulate sialic acid-protein interactions in diseases. In this perspective, nuclear magnetic resonance (NMR) spectroscopy, assisted with molecular modeling protocols, is a versatile and powerful technique to investigate the structural and dynamic aspects of glycoconjugates and their interactions in solution at the atomic level. NMR provides the corresponding ligand and protein epitopes, essential for designing and developing potential glycan-based therapies. In this review, we critically discuss the current state of knowledge about the structural features behind the molecular recognition of sialic acid glycans by different receptors, naturally present on human cells or pathogens, disclosed by NMR spectroscopy and molecular modeling protocols.
Collapse
Affiliation(s)
- Cátia Oliveira Soares
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,Department of Chemistry, UCIBIO-Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Ana Sofia Grosso
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,Department of Chemistry, UCIBIO-Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - June Ereño-Orbea
- CIC bioGUNE, Basque Research and Technology Alliance, Bizkaia Technology Park, Bilbao, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Helena Coelho
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,Department of Chemistry, UCIBIO-Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| | - Filipa Marcelo
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal.,Department of Chemistry, UCIBIO-Applied Molecular Biosciences Unit, NOVA School of Science and Technology, NOVA University Lisbon, Caparica, Portugal
| |
Collapse
|
21
|
Di Carluccio C, Forgione RE, Bosso A, Yokoyama S, Manabe Y, Pizzo E, Molinaro A, Fukase K, Fragai M, Bensing BA, Marchetti R, Silipo A. Molecular recognition of sialoglycans by streptococcal Siglec-like adhesins: toward the shape of specific inhibitors. RSC Chem Biol 2021; 2:1618-1630. [PMID: 34977577 PMCID: PMC8637897 DOI: 10.1039/d1cb00173f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 01/16/2023] Open
Abstract
Streptococcus gordonii and Streptococcus sanguinis, commensal bacteria present in the oral cavity of healthy individuals, upon entry into the bloodstream can become pathogenic, causing infective endocarditis (IE). Sialic acid-binding serine-rich repeat adhesins on the microbial surface represent an important factor of successful infection to cause IE. They contain Siglec-like binding regions (SLBRs) that variously recognize different repertoires of O-glycans, with some strains displaying high selectivity and others broader specificity. We here dissect at an atomic level the mechanism of interaction of SLBR-B and SLBR-H from S. gordonii with a multivarious approach that combines NMR spectroscopy and computational and biophysical studies. The binding pockets of both SLBRs are broad enough to accommodate extensive interactions with sialoglycans although with key differences related to strain specificity. Furthermore, and significantly, the pattern of interactions established by the SLBRs are mechanistically very different from those reported for mammalian Siglecs despite them having a similar fold. Thus, our detailed description of the binding modes of streptococcal Siglec-like adhesins sparks the development of tailored synthetic inhibitors and therapeutics specific for Streptococcal adhesins to counteract IE, without impairing the interplay between Siglecs and glycans. We here present a detailed molecular description of sialoglycans recognition by Siglec-like adhesins from S. gordonii opening the venue for the design of specific inhibitors to influence the propensity of streptococci to cause infective endocarditis.![]()
Collapse
Affiliation(s)
- Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Rosa Ester Forgione
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Andrea Bosso
- Department of Biology, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Shinji Yokoyama
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Elio Pizzo
- Department of Biology, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Antonio Molinaro
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy .,Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University 1-1 Machikaneyama Toyonaka Osaka 560-0043 Japan
| | - Marco Fragai
- Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche di Metallo Proteine (CIRMMP) Via L. Sacconi 6 50019 Sesto Fiorentino Italy.,Department of Chemistry "Ugo Schiff", University of Florence Via della Lastruccia 3-13 50019 Sesto Fiorentino Italy
| | - Barbara A Bensing
- Division of Infectious Diseases, Veterans Affairs Medical Center, Department of Medicine, University of California San Francisco California 94121 USA.,Northern California Institute for Research and Education San Francisco California 94121 USA
| | - Roberta Marchetti
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II Via Cinthia 4 80126 Naples Italy
| |
Collapse
|
22
|
Manabe Y. Chemical Biology Study on N-glycans. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2109.2j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University
| |
Collapse
|
23
|
Manabe Y. Chemical Biology Study on N-glycans. TRENDS GLYCOSCI GLYC 2021. [DOI: 10.4052/tigg.2109.2e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University
| |
Collapse
|
24
|
Glycosylation of Immune Receptors in Cancer. Cells 2021; 10:cells10051100. [PMID: 34064396 PMCID: PMC8147841 DOI: 10.3390/cells10051100] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 12/19/2022] Open
Abstract
Evading host immune surveillance is one of the hallmarks of cancer. Immune checkpoint therapy, which aims to eliminate cancer progression by reprogramming the antitumor immune response, currently occupies a solid position in the rapidly expanding arsenal of cancer therapy. As most immune checkpoints are membrane glycoproteins, mounting attention is drawn to asking how protein glycosylation affects immune function. The answers to this fundamental question will stimulate the rational development of future cancer diagnostics and therapeutic strategies.
Collapse
|
25
|
Wei G, Zhang H, Zhao H, Wang J, Wu N, Li L, Wu J, Zhang D. Emerging immune checkpoints in the tumor microenvironment: Implications for cancer immunotherapy. Cancer Lett 2021; 511:68-76. [PMID: 33957184 DOI: 10.1016/j.canlet.2021.04.021] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022]
Abstract
Immune checkpoints within the tumor microenvironment (TME) play important roles in modulating host antitumor immunity. Checkpoint-based immunotherapies (e.g. immune checkpoint inhibitors) have revolutionized cancer therapy. However, there are still many drawbacks with current checkpoint immunotherapies in clinical practice, such as unresponsiveness, resistance, tumor hyperprogression, autoimmune-related adverse events, and limited efficacy with some solid malignances. These drawbacks highlight the need to further investigate the mechanisms underlying the therapeutic effects, as well as the need to identify new targets for cancer immunotherapy. With the discovery of emerging immune checkpoints in the TME, the development of strategies targeting the pivotal immunomodulators for cancer treatment has been significantly advanced in the past decade. In this review, we summarize and classify the novel emerging immune checkpoints beyond the extensively studied ones (e.g. PD-1, PD-L1, CTLA-4, LAG-3 and TIM-3) in the TME, and provide an update on the clinical trials targeting these key immune molecules.
Collapse
Affiliation(s)
- Gaigai Wei
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Huiling Zhang
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Haiping Zhao
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jing Wang
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Nana Wu
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Leying Li
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jiaying Wu
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, National Children's Medical Center, And Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
26
|
Di Carluccio C, Forgione MC, Martini S, Berti F, Molinaro A, Marchetti R, Silipo A. Investigation of protein-ligand complexes by ligand-based NMR methods. Carbohydr Res 2021; 503:108313. [PMID: 33865181 DOI: 10.1016/j.carres.2021.108313] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/31/2021] [Accepted: 04/06/2021] [Indexed: 11/20/2022]
Abstract
Molecular recognition is at the base of all biological events and its knowledge at atomic level is pivotal in the development of new drug design approaches. NMR spectroscopy is one of the most widely used technique to detect and characterize transient ligand-receptor interactions in solution. In particular, ligand-based NMR approaches, including NOE-based NMR techniques, diffusion experiments and relaxation methods, are excellent tools to investigate how ligands interact with their receptors. Here we describe the key structural information that can be achieved on binding processes thanks to the combined used of advanced NMR and computational methods. Saturation Transfer Difference NMR (STD-NMR), WaterLOGSY, diffusion- and relaxation-based experiments, together with tr-NOE techniques allow, indeed, to investigate the ligand behavior when bound to a receptor, determining, among others, the epitope map of the ligand and its bioactive conformation. The combination of these NMR techniques with computational methods, including docking, molecular dynamics and CORCEMA-ST analysis, permits to define and validate an accurate 3D model of protein-ligand complexes.
Collapse
Affiliation(s)
- Cristina Di Carluccio
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II, Via Cintia 4, I-80126, Napoli, Italy
| | - Maria Concetta Forgione
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II, Via Cintia 4, I-80126, Napoli, Italy; GSK, Via Fiorentina 1, 53100, Siena, Italy
| | | | | | - Antonio Molinaro
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II, Via Cintia 4, I-80126, Napoli, Italy
| | - Roberta Marchetti
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II, Via Cintia 4, I-80126, Napoli, Italy.
| | - Alba Silipo
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant'Angelo, Università di Napoli Federico II, Via Cintia 4, I-80126, Napoli, Italy; CNR, Institute for Polymers, Composites and Biomaterials, IPCB ss, Catania, Italy.
| |
Collapse
|
27
|
Shirakawa A, Manabe Y, Fukase K. Recent Advances in the Chemical Biology of N-Glycans. Molecules 2021; 26:molecules26041040. [PMID: 33669465 PMCID: PMC7920464 DOI: 10.3390/molecules26041040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/19/2022] Open
Abstract
Asparagine-linked N-glycans on proteins have diverse structures, and their functions vary according to their structures. In recent years, it has become possible to obtain high quantities of N-glycans via isolation and chemical/enzymatic/chemoenzymatic synthesis. This has allowed for progress in the elucidation of N-glycan functions at the molecular level. Interaction analyses with lectins by glycan arrays or nuclear magnetic resonance (NMR) using various N-glycans have revealed the molecular basis for the recognition of complex structures of N-glycans. Preparation of proteins modified with homogeneous N-glycans revealed the influence of N-glycan modifications on protein functions. Furthermore, N-glycans have potential applications in drug development. This review discusses recent advances in the chemical biology of N-glycans.
Collapse
Affiliation(s)
- Asuka Shirakawa
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
| | - Yoshiyuki Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan;
- Core for Medicine and Science Collaborative Research and Education, Project Research Center for Fundamental Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
- Correspondence: (Y.M.); (K.F.); Tel.: +81-6-6850-5391 (Y.M.); +81-6-6850-5388 (K.F.)
| |
Collapse
|
28
|
Di Carluccio C, Forgione RE, Montefiori M, Civera M, Sattin S, Smaldone G, Fukase K, Manabe Y, Crocker PR, Molinaro A, Marchetti R, Silipo A. Behavior of glycolylated sialoglycans in the binding pockets of murine and human CD22. iScience 2021; 24:101998. [PMID: 33490906 PMCID: PMC7811138 DOI: 10.1016/j.isci.2020.101998] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/18/2022] Open
Abstract
Siglecs (sialic acid binding immunoglobulin (Ig)-like lectins) constitute a group of 15 human and 9 murine cell-surface transmembrane receptors belonging to the I-type lectin family, mostly expressed on innate immune cells and characterized by broadly similar structural features. Here, the prominent inhibitory CD22 (Siglec-2), well known in maintaining tolerance and preventing autoimmune responses on B cells, is studied in its human and murine forms in complex with sialoglycans. In detail, the role of the N-glycolyl neuraminic acid (Neu5Gc) moiety in the interaction with both orthologues was explored. The analysis of the binding mode was carried out by the combination of NMR spectroscopy, computational approaches, and CORCEMA-ST calculations. Our findings provide a first model of Neu5Gc recognition by h-CD22 and show a comparable molecular recognition profile by h- and m-CD22. These data open the way to innovative diagnostic and/or therapeutic methodologies to be used in the modulation of the immune responses.
Collapse
Affiliation(s)
- Cristina Di Carluccio
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Rosa Ester Forgione
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Marco Montefiori
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy
| | - Monica Civera
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy
| | - Sara Sattin
- Dipartimento di Chimica, Università Degli Studi di Milano, Via Golgi, 19, 20133 Milano, Italy
| | | | - K. Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Suita, Japan
| | - Y. Manabe
- Department of Chemistry, Graduate School of Science, Osaka University, Suita, Japan
| | - Paul R. Crocker
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Antonio Molinaro
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Roberta Marchetti
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| | - Alba Silipo
- Dipartimento di Scienze Chimiche, Complesso Universitario Monte Sant’Angelo, Università di Napoli Federico II, Via Cintia 4, 80126 Napoli, Italy
| |
Collapse
|
29
|
Abdu-Allah HHM, Wu SC, Lin CH, Tseng YY. Design, synthesis and molecular docking study of α-triazolylsialosides as non-hydrolyzable and potent CD22 ligands. Eur J Med Chem 2020; 208:112707. [PMID: 32942185 DOI: 10.1016/j.ejmech.2020.112707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022]
Abstract
Ligand 1 was the first reported example of monomeric high-affinity synthetic CD22 ligand that regulated B cell activation in vitro, augmented antibody production and regulated immune responses in mice. Replacing O-glycoside linkage of 1 by nitrogen of triazole by click reaction afforded compounds which are as potent as the parent compound. The synthesis of the new compounds is straightforward with fewer synthetic steps and higher yield. Such a strategy provided stable ligand that can bind avidly and can be conjugated to drugs for B-cell targeting or multimeric formation. The new compounds were screened for their affinity to CD22, using surface plasmon resonance (SPR). Compound 12 was obtained as a bioisosteric analogue and an anomerically stable imitation of 1. It was, also, screened for MAG to test for selectivity and analyzed by molecular docking and dynamic simulation to explore the potential binding modes and source of selectivity within CD22. Our results could enable the development of small molecule drug capable of modulating the activity of CD22 in autoimmune diseases and malignancies derived from B-cells.
Collapse
Affiliation(s)
- Hajjaj H M Abdu-Allah
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.
| | - Shang-Chuen Wu
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | - Yu-Yao Tseng
- Institute of Biological Chemistry, Academia Sinica, No. 128, Academia Road Section 2, Nan-Kang, Taipei, 11529, Taiwan.
| |
Collapse
|